7 SAYISAL İNTEGRASYON YÖNTEMLERİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "7 SAYISAL İNTEGRASYON YÖNTEMLERİ"

Transkript

1 Prof. Dr. Özc Klederli SAYISAL YÖNTEMLER 7 SAYISAL İNTEGRASYON YÖNTEMLERİ Syısl itegrsyo vey itegrl lm işlemi, litik olrk ir itegrli lımsıı çok zor vey olksız olduğu durumlrd vey ir işlevi değerlerii sdece elirli oktlrd ilimesi durumlrıd öem kzır. Ayrıc itegrsyo işlemlerii içere vey gerektire prolemleri ilgisyrl çözümüde kullıl progrmlrd syısl itegrsyo yötemlerii kullılmsı kçıılmzdır. Gerçekte litik itegrl, syısl itegrle göre çözüleilme kolylığı ve soucuu kesiliği ile üstülük gösterir. Uzuluk, l, hcim, eeri,... gii pekçok üyüklüğü hesıd tek ve çok ktlı itegrsyod yrrlılır. Bu ölümde u gii mçlr içi kullılilecek tek ve çok ktlı elirli itegrlleri syısl çözüm yötemleri çıklmıştır. Geel olrk ir f() işlevii rlığıdki elirli itegrli I, I f()d (7.1) şeklide gösterilir. Bu tek ktlı elirli itegrl deir. Bu itegrsyo işlemi ile, Şekil 7.1'de gösterildiği gii geometrik olrk, itegrli hespl f() eğrisii ltıd kl rlığıdki trlı l hesplmış olur. f() I f() d f() f() f() I f() d Şekil 7.1. İtegrl hesı Şekil 7.1'deki trlı lı dolyısıyl itegrli hesıd geellikle rlığı, Şekil 7.'deki gii, klılığıd dilime ölüür. Bu hespt klılığı (7.) olur. Burd itegrli lt sıır değeri, üst sıır değeri ve dilim syısıdır. Eğer dilim klılığı iliiyors dilim syısı (7.) işlemi ile hesplır. İtegrl hesı u yrıklştırm işlemi ile, dilimleri llrıı tek tek, ikişer dilimli, üçer dilimli,... hesı döüşmüş olur. Bu şekilde hespl llr toplrk toplm l vey itegrli değeri hesplır.

2 Prof. Dr. Özc Klederli SAYISAL YÖNTEMLER f() f() Şekil 7.. İtegrl hesıd dilimleme (yrıklştırm) Dilimleri llrıı vey itegrli hesıd ir okt, iki okt, üç okt ve dört okt yklşımlrı yygı olrk kullıl yklşımlrdır Bir Nokt Yklşımı (Dikdörtge Yötemi) Bir okt yklşımıd vey dikdörtge yötemide, Şekil 7.'te de görüleceği gii, = içi f() oktsıd ekseie prlel doğru çizilerek irici dikdörtge dilim elde edilir. = + içi f( + ) oktsıd d ekseie prlel doğru çizilerek ikici dikdörtge dilim elde edilir. Bu şekilde devm edilerek her oktd ekseie prlel doğrulr çizilir ve dikdörtge dilimler elde edilir. İtegrli değeri, u dikdörtge dilimleri llrıı toplmı yklşık eşittir. f() f() f( ) Şekil 7.. Bir okt yklşımı (dikdörtge yötemi) +1 Dikdörtge S =.f( ) Eğer dilimler frklı klılıklrıd ise itegrl 1 I f()d f( ) S (7.) olur. Geelde dilimler eşit klılıklrıd olur. Bu durumd itegrl olur. Bu deklemde dilim syısı, = ( - )/ dir. 1 1 I f()d f( ) (7.5)

3 Prof. Dr. Özc Klederli SAYISAL YÖNTEMLER 7.. İki Nokt Yklşımı (Ymuk (Trpez) Yötemi) Ymuk yötemi olrk tı iki okt yklşımıd iriri rdıd gele her iki okt ir doğru ile irleştirilerek Şekil 7.'teki gii ymuk şekilli dilimler elde edilir. Böylece itegrl, ymuklrı llrıı toplmı döüştürülmüş olur. f() f() f( ) f( +1 ) Şekil 7.. İki okt yklşımı (ymuk yötemi) +1 Ymuk S = (/). [f( )+ f( +1 )] Ymuğu lı, prlel kerlrıı uzuluklrıı toplmıı u iki ker rsıdki uzklığı yrısı ile çrpımı eşittir. Şekil 7.5'te, ymuk yötemi itegrsyo ğıtısıı elde etmek içi Şekil 7.'te iki dilim yrı olrk üyütülerek yeide çizilmiştir. f() f -1 f f +1 f() Şekil 7.5. İki ymuk dilimi Şekil 7.5'te herir dilim içi 1 f() d (f 1 f ) 1 f() d (f f1) yzılır. İki dilim içi f() d f()d f()d (f 1 f) (f f 1) 1

4 Prof. Dr. Özc Klederli SAYISAL YÖNTEMLER (f 1 f f ) 1 uluur. Bu eşitlik geelleştirilecek olurs, ir f() işlevii ymuk yötemie göre rlığıdki syısl itegrsyo eşitliği vey I f()d f() f( ) f( ) f( (1) ) f() (7.6) 1 I f()d f() f() f( ) (7.7) 1 elde edilir. Burd dilim syısıdır. Dilim klılığı ise olur. Geel olrk itegrl kousuu geometrik olrk lmk koly olmkl erer, yötemi, soucu doğruluğu ve uu iyileştirilmesi içi ypılmsı gerekeler hkkıd ilgi vermez. Ack görüldüğü gii, dilim klılığı küçük vey dilim syısı üyük seçildikçe itegrsyo soucuu doğruluğu rtmktdır. Ymuk yötemide yötemi htsıı zltmk vey doğruluğuu rttırmk içi uç düzeltmesi dı verile işlem ypılır. Bu göre uç düzeltmeli ymuk yötemi ğıtısı, I f()d f() f() 1 1 ( ) f( ) 1 [f() f()] (7.8) olur. Burd so terime uç düzeltmesi terimi deir. Syısl örek 7.1: I ( 5) d itegrlii =,5 lrk ) Ymuk ve ) Uç düzeltmeli ymuk yötemleri ile hesplyıız. İtegrli litik çözümü: Ymuk yötemi ile çözüm: =, =, =,5 I ( 5) d 5 9,75

5 Prof. Dr. Özc Klederli SAYISAL YÖNTEMLER 5 6,5,5 I f() f() f(,5) I,5 f() f() [f(,5) f(1) f(1,5) f() f(,5)] I,5 5 1 [5, ,65 7 6,75] 95,6875 Ht = 95,6875 9,75 1,975 Uç düzeltmeli ymuk yötemi ile çözüm: I ucd f() 5 (,5) I 1 f'() 9 (9 Ht = 9,75 9,75 ) 9, Üç ve Dört Nokt Yklşımlrı (Simpso Yötemi) 7..1 Üç Nokt Yklşımı (1/ Simpso Yötemi) Bu yötemde çözüm rlığı çift syıd dilim syısı ölüdükte sor herir iki dilime ilişki üç oktd geçe eğrii ltıdki l yi itegrl hesplır. Bu göre 1/ Simpso kurlı vey iki dilim içi Simpso kurlı X 1 1 I f()d (f 1 f f 1) 1 (7.9) yzılır. Geel olrk 1/ Simpso itegrsyo ğıtısı vey diğer ilie dıyl ikişer dilimli itegrsyo ğıtısı olur. Burd d 1 I f() d f() f() f( ) f( ) (7.1) 1 tek çift (7.11) olup itegrl rlığı çift syıd dilime ölümüş olmlıdır, yi dilim syısı çift syı olmlıdır.

6 Prof. Dr. Özc Klederli SAYISAL YÖNTEMLER 6 Syısl örek 7.: / si I d itegrlii 1/ Simpso yötemi ile = 8 lrk hesplyıız. cos =, = /, 8 si I f() f( / ) 96 cos 81 8 / I f() f( / ) f( ) f( ) 1 tek çift ( / ) si ( / ) si (5 / ) si (7 / ) ( / ) cos ( / ) cos (5 / ) cos (7 / ) si ( / ) si ( / ) si (6 / ) cos ( / ) cos ( / ) cos (6 / ) I 1 (,97,9,857,6751) (,956,17157,66) 96 I,16 / si cos / / İtegrli litik değeri: I d t d / / (sec 1)d / = sec d d t, 16 Ht =,16,16, Syısl örek 7.: I e d itegrlii 1/ Simpso yötemi ile =,5 ve =,5 lrk hesplyıız. =, =, =,5 içi 6,5,5 I f() f() [f(,5) f(1,5) f(,5)] [f(1,) f(,)] 19,9 İtegrli litik değeri, I = e e 1 19,855 Ht = 19,9 19,855, 66 =, =, =,5 içi

7 Prof. Dr. Özc Klederli SAYISAL YÖNTEMLER 7 1,5,5 I f() f() [f(,5) f(,75) f(1,5) f(1,75) f(,5) f(,75)] [f(,5) f(1,) f(1,5) f(,) f(,5)] 19, 86 İtegrli litik değeri, I = e e 1 19,855 Ht = 19,86 19,855, Dört Nokt Yklşımı (/8 Simpso Yötemi) Bu yötemde çözüm rlığı üç ve üçü ktı syıd dilim syısı ölüdükte sor herir üç dilime ilişki dört oktd geçe eğrii ltıdki l yi itegrl hesplır. Bu göre /8 Simpso kurlı vey üçer dilim içi Simpso kurlı X I f()d (f 1 f f 1 f ) 1 8 (7.1) yzılır. Geel olrk /8 Simpso itegrsyo ğıtısı vey diğer ilie dıyl üçer dilimli itegrsyo ğıtısı olur. 1 I f() d f() f() f( ) f( ) 8 (7.1) 1 1,,,5,7,8,...,6,9,... f p c d 1 f 1 f 1 p 1 c d f f p c d f 1 f 1 p 1 c d f f p c d

8 Prof. Dr. Özc Klederli SAYISAL YÖNTEMLER p d c d d c d Syısl örek 7.: 1 f f f f d f 9f 9f f I f f f f d 1 I f d f f f f 8 1 1,,,5,,6,9, I d itegrlii /8 Simpso yötemi ile = 9 lrk hesplyıız. 1 ( 1) = -1, =,, I,f( 1) f() f( 1,) f( 1,) 8 1,,,5,... 1,6,... I, f( 1) f() (f(,5556) f(,111) f(,7776) f(1,) 8 f(,118) f(,555)) (f(,) f(1,666)) İtegrli litik değeri = 5, 7.. Çok Ktlı İtegrsyo I 5,99 Ht = 5, 5,99, 966 Çok ktlı itegrsyod her kt ilie ir syısl itegrsyo yötemi ile hesplrk tüm itegrl hesplır. Öreği iki ktlı ir itegrl

9 Prof. Dr. Özc Klederli SAYISAL YÖNTEMLER 9 ise urd d c I f(, y)d dy (7.1) g(y) f(, y)d (7.15) iç vey irici kt itegrl olur. Dolyısıyl tüm itegrli soucu I g(y) dy (7.16) d c itegrlii hesıd uluur. Öreği öyle ir itegrli çözümü dikdörtge yötemi ile ypılck olurs işlemi ypılır. Örek 7.5: d d ( I f(, y)d dy f(, y) ) dy g(y)dy g(y ) y (7.17) c c i1 i d c m 1 Şekil 7.6 içi I d c f(, y)d dy itegrlii ymuk yötemi ile çözüüz. g(y) f(, y)d ve I d c g(y) dy işlemi ypılcktır. Bu göre g(y) f(, y) f(, y) [f(, y) f(, y)] d y I g(y) dy f(, c) f(,c) [f(, c) f(, c)] c f(, d) f(,d) [f(, d) f(, d)] [f(, c y) f(,c y) f(, c y) f(, c y)] y d y y c Şekil 7.6.

10 Prof. Dr. Özc Klederli SAYISAL YÖNTEMLER 1 Syısl örek 7.6: 1 1 I y(1 ) d dy itegrlii ymuk yötemi ile 1 1, d c 1 y 1 m lrk hesplyıız. Bir öceki örekteki gii çözümle d y I g(y) dy f(, c) f(,c) [f(, c) f(, c)] c f(, d) f(,d) [f(, d) f(, d)] [f(, c y) f(,c y) f(, c y) f(, c y)] ğıtısı oluşturulurs 1, I f(1,1) f(,1) [f(1,;1) f(1.,; 1)] f(1, ) f(,) [f(1,; ) f(1.,; )] [f(1; 11) f(; 11) f(1,; 11) f(1.,; 11)] I = 15, İtegrli litik değeri = 15, Ht = 15, 15,, 7

2. BELİRLİ İNTEGRALİN TANIMI ve TEMEL ÖZELLİKLERİ

2. BELİRLİ İNTEGRALİN TANIMI ve TEMEL ÖZELLİKLERİ DERS: MATEMATİK II MAT II () ÜNİTE: BELİRLİ İNTEGRALLER KONU:. ARALIKLARIN PARÇALANMASI. BELİRLİ İNTEGRALİN TANIMI ve TEMEL ÖZELLİKLERİ GEREKLİ ÖN BİLGİLER. semolü ve temel toplm ormülleri. Limiti temel

Detaylı

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise;

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise; 4- SAYISAL İNTEGRAL c ϵ R olmk üzere F() onksiyonunun türevi () ise ( F () = () ); Z ` A d F ` c eşitliğindeki F()+c idesine, () onksiyonunun elirsiz integrli denir. () onksiyonu [,] R için sürekli ise;

Detaylı

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce

Detaylı

Taşkın, Çetin, Abdullayeva

Taşkın, Çetin, Abdullayeva 1 BÖLÜM 1 KÜMELER VE SAYILAR 1.1 KÜMELER 1.1.1. TEMEL TANIMLAR Kesi ir tımı ypılmmkl erer,sezgisel olrk,kümeye iyi tımlmış iri iride frklı eseler topluluğudur diyeiliriz. Kümeyi meyd getire eselere kümei

Detaylı

Euler Yöntemi İle Gerçek Zamanlı Sayısal İntegrasyon İşleminin FPGA Ortamında Gerçekleştirilmesi. İ. Soya, T. Tuncer, Y. Tatar

Euler Yöntemi İle Gerçek Zamanlı Sayısal İntegrasyon İşleminin FPGA Ortamında Gerçekleştirilmesi. İ. Soya, T. Tuncer, Y. Tatar 6 th Itertiol Advced Techologies Symposium (IATS 11), 16-18 My 2011, Elzığ, Turkey Euler Yötemi İle Gerçek Zmlı Syısl İtegrsyo İşlemii FPGA Ortmıd Gerçekleştirilmesi İ. Soy, T. Tucer, Y. Ttr Firt Üiversitesi

Detaylı

DERS 4. Determinantlar, Leontief Girdi - Çıktı Analizi

DERS 4. Determinantlar, Leontief Girdi - Çıktı Analizi DERS Determitlr eotief Girdi - Çıktı lizi.. ir Kre Mtrisi Determitı. Determit kvrmıı tümevrıml tımlycğız. mtrisleri determitıı tımlyrk şlylım. Tım. tımlır. mtrisiidetermitı olrk Örek. mtrisii determitı

Detaylı

8. sınıf ders notları zfrcelikoz@yahoo.com

8. sınıf ders notları zfrcelikoz@yahoo.com III - SAYI ÖRÜNTÜLERİ Htırltm: Syılrı virgülle yrılrk, birbirii rdı dizilmesie syı dizisi, dizideki her bir syıy d terim deir. hrfi verile örütüde syılrı sırsıı belirte semboldür ve ici syıy örütüü geel

Detaylı

DETERMINANTLAR. 1. Permütasyon. 1. Permütasyon ) permütasyonundaki ters dönüşüm. 1. Permütasyon 2. BÖLÜM ( )

DETERMINANTLAR. 1. Permütasyon. 1. Permütasyon ) permütasyonundaki ters dönüşüm. 1. Permütasyon 2. BÖLÜM ( ) . BÖÜM. Permütsyo Tım: Bir tm syılr {,,, } kümesideki elemlrı tekrr olmksızı frklı DETERMINNTR sırlmlrıı düzelemesie permütsyo deir. Örek: {,, 3} tm syılr kümesii ltı frklı permütsyou vrdır: (,, 3), (,,

Detaylı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı Trce ve Kellogg Yöemleri Kullılrk İegrl Operörlerii Özdeğerlerii Nümerik Hesı Erk Tşdemir () ; Yüksel Soyk () ; Melih Göce (3) (¹)Kırklreli Üiversiesi, Kırklreli, Türkiye, erksdemir@homil.com (²)Büle Ecevi

Detaylı

BÖLÜM DETERMINANTLAR SD 1

BÖLÜM DETERMINANTLAR SD 1 SD 1 2. BÖLÜM DETERMINANTLAR 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 1. Permütsyo Tım: Bir tm syılr {1, 2,, } kümesideki elemlrı tekrr olmksızı frklı sırlmlrıı düzelemesie

Detaylı

İNTEGRAL 6 RİEMANN TOPLAMI : ALT TOPLAM,ÜST TOPLAM VE RİEMANN ALT TOPLAM ÜST TOPLAM. [a, b] R ARALIĞININ PARÇALANIŞI VE RİEMANN TOPLAMI

İNTEGRAL 6 RİEMANN TOPLAMI : ALT TOPLAM,ÜST TOPLAM VE RİEMANN ALT TOPLAM ÜST TOPLAM. [a, b] R ARALIĞININ PARÇALANIŞI VE RİEMANN TOPLAMI [, ] R ARALIĞININ PARÇALANIŞI VE RİEMANN TOPLAMI f : [, ] R sürekli ir foksio olsu. Bu [,] kplı rlığı = <

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

7. BÖLÜM DOĞRUSAL DÖNÜŞÜMLER

7. BÖLÜM DOĞRUSAL DÖNÜŞÜMLER 7. BÖLÜM DOĞRUSAL DÖNÜŞÜMLER DOĞRUSAL DÖNÜŞÜMLER Bir V ektör uzyıı bir bşk W ektör uzyı döüştüre foksiyolr şu şekilde gösterilir: : V W Burd kullıl termioloji foksiyolrl yıdır. Öreği, V ektör uzyı foksiyouu

Detaylı

A) EÐRÝ ALTINDAKÝ ALAN

A) EÐRÝ ALTINDAKÝ ALAN Belirli Ýtegrli Ugulmlrý A) EÐRÝ ALTINDAKÝ ALAN. f:[, ] R e týmlý ve sürekli olmk þrtýl = f() eðrisi = ve = doðrulrý ve o eksei rsýd kl düzlemsel ölgei lý A = f() d itegrli ile uluur. i) [, ] rlýðýd f()

Detaylı

1981 ÖYS. 1. Bir top kumaşın önce i, sonra da kalanın. ü satılıyor. Geriye 26 m kumaş kaldığı- 3. na göre, kumaşın tümü kaç metredir?

1981 ÖYS. 1. Bir top kumaşın önce i, sonra da kalanın. ü satılıyor. Geriye 26 m kumaş kaldığı- 3. na göre, kumaşın tümü kaç metredir? 98 ÖYS. Bir top kumşı öce i, sor d klı ü stılıyor. Geriye 6 m kumş kldığı- göre, kumşı tümü kç metredir? 70 6 60 0., y pozitif iki tmsyı olmk üzere, (+y)(-y)=88 dir. Bu eşitliği soludki çrplrd üyüğü, küçüğüü

Detaylı

ÜSLÜ SAYILAR. (-2) 3 = (-2). (-2). (-2) = (-8) Kuvvet Tek; NEGATİF. (-2) 4 = (-2). (-2). (-2). (-2) = 16 Kuvvet Çift; POZİTİF.

ÜSLÜ SAYILAR. (-2) 3 = (-2). (-2). (-2) = (-8) Kuvvet Tek; NEGATİF. (-2) 4 = (-2). (-2). (-2). (-2) = 16 Kuvvet Çift; POZİTİF. SINIF ÜSLÜ SAYILAR www.tyfuolcu.co Üslü Syı : ifdesi ı te çrpıı lı gelektedir. =.... te =.. = 8 =. = 4 =. = 9 4 =... = 81 10 6 = 10.10.10.10.10.10 Teel Kvrlr ile. ifdeleri çok sık krıştırıl ifdelerdeir.

Detaylı

SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme

SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme SYISL ÇÖZÜMLEME SYISL ÇÖZÜMLEME 6. Hft LİNEER DENKLEM SİSTEMLERİ İÇİNDEKİLER Doğrusl Deklem Sistemlerii Çöümü Mtrisi Tersi ile Bilimeyeleri Bulm Örek uygulm MTLB t mtrisi tersii (iv komutu) lm Crmer Yötemi

Detaylı

MAT 202 SAYISAL YÖNTEMLER. Bahar Hafta 1. Bu Hafta. Ders Hakkında Bilgiler. Özet. Ders Hakkında Genel Bilgiler. Matris işlemlerine giriş

MAT 202 SAYISAL YÖNTEMLER. Bahar Hafta 1. Bu Hafta. Ders Hakkında Bilgiler. Özet. Ders Hakkında Genel Bilgiler. Matris işlemlerine giriş MAT 202 SAYISAL YÖNTEMLER Bhr 2005-2006 Hft Bu Hft Özet Ders Hkkıd Geel Bilgiler Mtris işlemlerie giriş 2 Öğretim Üyesi: Öğr. Gör. Od No: 442, Tel: 293 3 00 / -- E-mil: ltuger@itu.edu.tr Ders Stleri: Slı

Detaylı

Tanım Türevi F(x) yada diferansiyeli f(x)dx olan f(x) fonksiyonuna f(x) fonksiyonun bir ilkeli ya da belirsiz integrali denir ve f ( x)

Tanım Türevi F(x) yada diferansiyeli f(x)dx olan f(x) fonksiyonuna f(x) fonksiyonun bir ilkeli ya da belirsiz integrali denir ve f ( x) ÖLÜM - İNTEGRL KVRMI - İlel Fosiyo vey elirsiz İtegrl ir osiyou türevii sıl lıdığıı iliyoruz.u ölümde türevi lımış ir osiyou ileliiöei hlii sıl uluğıı ieleyeeğiz.ypğımız u işleme İtegrl lm vey osiyou ilelii

Detaylı

4.İntegral Belirsiz İntegral Bir fonksiyonun belirsiz integrali Alıştırmalar

4.İntegral Belirsiz İntegral Bir fonksiyonun belirsiz integrali Alıştırmalar İçieiler Ceir 4.İtegrl... 4. Belirsiz İtegrl... 4.. Bir fosiou elirsiz itegrli... Alıştırmlr 4.... 4.. Belirsiz İtegrli Özellileri...... 4.. Temel itegrl lm urllrı..... 4 Alıştırmlr 4.... 8 4..4 İtegrl

Detaylı

TYT / MATEMATİK Deneme - 6

TYT / MATEMATİK Deneme - 6 . Herbir hücrenin sol üst köşesinde kreler içine yzıln syılrın işlemin sonucunu verdiğine dikkt ederek syılrı yerleştirmeliyiz. 7 6 T N M 5 6 T X. ^ h ^ h bulur. M N. 0 6 6 6 0 5 5 5 6 6 5 5 ^5h ^5h ^h

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

MERAKLISINA MATEMATİK

MERAKLISINA MATEMATİK TRİGONOMETRİ : Siüs i b c R si si y si z İsptı : m(ëo).m(ëa) m(ëo).m(ëb) m(ëo).m(ëc) m(ëo) m(ëo) y m(ëo) z b c b c & si & si y & si y R R R R R R si si y b si z c & & & R R R & R.si & b R.siy & c R.siz

Detaylı

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1 IAAOJ, Scietific Sciece, 23,(2), 22-25 GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE Adullh AKKURT, Hüseyi YILDIRIM Khrmmrş Sütçü İmm Üirsitesi, Fe-Edeiyt Fkültesi

Detaylı

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER TEOG Tm Syılr ve Mutlk Değer TAMSAYILAR Eksi sonsuzdn gelip, rtı sonsuz giden syılr tm syılr denir ve tm syılr kümesi Z ile gösterilir. Z = {...,,, 1,0,1,,,... } Tmsyılr kümesi ikiye yrılır: ) Negtif Tmsyılr:

Detaylı

= + + = ETKİNLİK: ( n ) ( ) ETKİNLİK:

= + + = ETKİNLİK: ( n ) ( ) ETKİNLİK: ERİLER Cebir kurllrı ile ck olu te yıyı toplybiliriz. Bu krşılık mtemtik de ouz yıd yıı toplmı ile de ık ık krşılşmktyız. Öreği; 3 yııı odlık çılımı; 3 3 3 = 0,333... = + + +... gibi bir ouz toplmdır.

Detaylı

SAYI ÖRÜNTÜLERİ VE CEBİRSEL İFADELER

SAYI ÖRÜNTÜLERİ VE CEBİRSEL İFADELER ÖRÜNTÜLER VE İLİŞKİLER Belirli bir kurl göre düzenli bir şekilde tekrr eden şekil vey syı dizisine örüntü denir. ÖRNEK: Aşğıdki syı dizilerinin kurlını bulunuz. 9, 16, 23, 30, 37 5, 10, 15, 20 bir syı

Detaylı

... SERİLER Tanım: 2 3 toplamı kaçtır? Çözüm: serisinde 10. kısmi terimler. Ör: bir reel sayı dizisi olmak üzere

... SERİLER Tanım: 2 3 toplamı kaçtır? Çözüm: serisinde 10. kısmi terimler. Ör: bir reel sayı dizisi olmak üzere SERİLER Tım: bir reel syı dizisi olm üzere...... 3 toplmı SERİ deir. gerçel syısı serii geel terimi deir. S 3... toplmı SERİNİN N. KISMİ (PARÇA) TOPLAMI deir. S dizisie SERİNİN N. KISMİ TOPLAMLAR DİZİSİ

Detaylı

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - 1-1 1 SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = 100+10+b bc = 100+10b+c bcd =1000+100b+10c+d

Detaylı

OLİMPİYAT SINAVI. a ise b 2006 b 2005 =? A) 1330 B) 1995 C) 1024 D) 1201 E) 1200

OLİMPİYAT SINAVI. a ise b 2006 b 2005 =? A) 1330 B) 1995 C) 1024 D) 1201 E) 1200 ., b, c, d Z olmk üzere / + /b + /c + /d = ½ ve ( + b + c + d) =.b + c.d + ( + b ).(c +d) + dekliklerii sğly kç (, b, c, d) dörtlüsü vrdır? A) 48 B) 4 C) D) 6 E) 5. Alı 40 birim kre ol bir ABC üçgeii AB,

Detaylı

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ Doç.Dr. Cüet BAYILMIŞ Doç.Dr. Cüet BAYILMIŞ Sısl Alz SAYISAL ANALİZ EĞRİ UYDURMA (Curve Fttg) Doç.Dr. Cüet BAYILMIŞ Sısl Alz İÇİNDEKİLER Eğr Udurm (Curve Fttg) E Küçük Kreler Yötem Doç.Dr.

Detaylı

MATEMATİK.

MATEMATİK. MTEMTİK www.e-ershne.iz. s( \ ) = 6, s( \ ) = 8 tür. kümesinin lt küme syısı ise, kümesinin elemn syısı kçtır?... D. 7 Ynıt:. s( ) =? s( ) = = s( ) = 6 8 s( ) = 6 + + 8 =. Rkmlrı frklı üç smklı üç oğl

Detaylı

TG 15 ÖABT ORTAÖĞRETİM MATEMATİK

TG 15 ÖABT ORTAÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 5 ÖABT ORTAÖĞRETİM MATEMATİK Bu testleri her hkkı sklıdır. Hgi mçl olurs olsu, testleri tmmıı vey ir kısmıı

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA TEK DEĞİŞKENLİ KISITSIZ OPTİMİZASYON:

DOĞRUSAL OLMAYAN PROGRAMLAMA TEK DEĞİŞKENLİ KISITSIZ OPTİMİZASYON: DOĞRUSA OMAYAN PROGRAMAMA TEK DEĞİŞKENİ KISITSIZ OPTİMİZASYON: Kısıtsız optmzsyo herhg r kısıtlm olmksızı r oksyou mksmum vey mmum değerler rştırılmsı prolem le uğrşır. Y kısıtlrıı d sğlmsı gerekl ol r

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

BÖLÜM 3 SAYISAL TÜREV VE İNTEGRAL

BÖLÜM 3 SAYISAL TÜREV VE İNTEGRAL BÖLÜM SAYISAL TÜREV VE İNTEGRAL. Blgsyrl türe.. Bölümüş rk tblolrıyl türe.. Eşt rlıklı er oktlrı ç türe.. Eşt rlıklı er oktlrı ç er oktlrıd türe.. Yüksek mertebede türeler. Syısl tegrl.. Trpez krlı.. Romberg

Detaylı

BENZERLİK VE MODELLEME

BENZERLİK VE MODELLEME BENZEİK E OEEE Boyut lizide sıl yrrlırız? Bir fiziksel olyı etkileye prmetre syısı çok fzl olilir. Boyut lizi ile hem çok syıd ol prmetre syısı zltılmkt hem de prolemi krmşık ypısı oyutsuz gruplr yrılrk

Detaylı

DİZİLER... 213. Dizilerde İşlemler... 213. Dizilerin Eşitliği... 214. Monoton Diziler... 215. Alt Dizi... 216. Konu Testleri (1 6)...

DİZİLER... 213. Dizilerde İşlemler... 213. Dizilerin Eşitliği... 214. Monoton Diziler... 215. Alt Dizi... 216. Konu Testleri (1 6)... ÜNİTE GERÇEK TOPLAM SAYI ÇARPIM DİZİLERİ ARİTMETİK SEMBOLÜ DİZİ Böüm Dizier GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ GEOMETRİK DİZİ SERİLER DİZİLER..................................................................

Detaylı

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ Doç.Dr. Cüe BAYILMIŞ Doç.Dr. Cüe BAYILMIŞ Sısl Aliz SAYISAL ANALİZ SAYISAL İNTEGRAL Numericl Iegrio Doç.Dr. Cüe BAYILMIŞ Sısl Aliz İÇİNDEKİLER Sısl İegrl Trpez Ymuk Yöemi Simpso Yöemi /

Detaylı

ÜNİTE - 7 POLİNOMLAR

ÜNİTE - 7 POLİNOMLAR ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri

Detaylı

ÜÇGN ÜÇGN ÇI ÖZLLİLİ x ı x 6. ir iç çıorty ile ir dış çıortyı kesişmesiyle oluş çıı ölçüsü m() z z y ı y z z ı 1. Üçgei iç çılrı ölçüleri toplmı 180 d

ÜÇGN ÜÇGN ÇI ÖZLLİLİ x ı x 6. ir iç çıorty ile ir dış çıortyı kesişmesiyle oluş çıı ölçüsü m() z z y ı y z z ı 1. Üçgei iç çılrı ölçüleri toplmı 180 d ÜÇGN ÜÇGN ÇI ÖZLLİLİ x ı x 6. ir iç çıorty ile ir dış çıortyı kesişmesiyle oluş çıı ölçüsü m() z z y ı y z z ı 1. Üçgei iç çılrı ölçüleri toplmı 180 dir. x + y + z 180. Üçgei dış çılrı ölçüleri toplmı

Detaylı

a 4 b a Cevap : A Cevap : E Cevap : C

a 4 b a Cevap : A Cevap : E Cevap : C TYT / TETİK Deneme - 8., 8 - - - - 8-8 - & - - $ c- m + 5 5 0 0 -. 5 5 $ 75. 5 75 89 5 75 5-9 ^5-9h$ ^5 + 9h 5 ^5-9h$ ^5+ 9h $ 7 evp : 5.. 00 + 0 + 00 + 0 + + 00 + 0 + ( + + ) 55 - - 0 & - 0 & olmlıdır.

Detaylı

Pr[ ] 1 Pr[ ] 1 ( ) 1 ( ) What if not known?

Pr[ ] 1 Pr[ ] 1 ( ) 1 ( ) What if not known? 1 Mrkov ve Chebychev Eşitsizlikleri Pr [ ] = 1 Pr [ < ] = 1 f ( ) dx = 1 () x dx F Pr[ ] 1 Pr[ ] 1 ( ) 1 ( ) Wht if ot kow? bilimiyor olbilir r.d. i sdece ortlmsıı ve vrysıı bildiğimizi vrsylım. Ortlm

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal II / 27 Kasım Matematik Sorularının Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal II / 27 Kasım Matematik Sorularının Çözümleri Akdemik Personel ve Lisnsüstü Eğitimi Giriş Sınvı ALES / Sonbhr / Syısl II / 7 Ksım 0 Mtemtik Sorulrının Çözümleri. Bölüm şeklindeki kreköklü ifdenin pydsını krekökten kurtrmk için py ve pydyı, pydnın

Detaylı

MATEMATİK CANAVARI MATEMATİK FORMÜLLERİ. Devirli Ondalık Sayıyı Rasyonel Sayıya Çevirme:

MATEMATİK CANAVARI MATEMATİK FORMÜLLERİ. Devirli Ondalık Sayıyı Rasyonel Sayıya Çevirme: Ardışık Syılr Toplm Formülleri Ardışık syılrı toplmı: 1 + + 3 +...+ =.(+1) Ardışık çift syılrı toplmı : + 4 + 6 +... + =.(+1) Ardışık tek syılrı toplmı: 1 + 3 + 5 +... + ( 1) =.= Ardışık tm kre syılrı

Detaylı

İntegralin Uygulamaları

İntegralin Uygulamaları Bölüm İntegrlin Uygulmlrı. Aln f ve g, [, b] rlığındki her x için f(x) g(x) eşitsizliğini sğlyn sürekli fonksiyonlr olmk üzere y = f(x), y = g(x) eğrileri, x = ve x = b düşey doğrulrı rsındki S bölgesini

Detaylı

YILLAR ÖSS-YGS ) a 0 ve b 0 olmak üzere; 8) Üslü Denklemler: a -1, a 0, a 1

YILLAR ÖSS-YGS ) a 0 ve b 0 olmak üzere; 8) Üslü Denklemler: a -1, a 0, a 1 YILLAR 00 00 00 00 00 00 008 009 00 0 ÖSS-YGS Böle: i,( 0 ÜSLÜ İFADELER R ve Z olk üzere te ı çrpıı deir. ii, (b 0 b b... te Not:.... dır. te... 0 ve... 0. 0 te 0 te ÜSLÜ ÇOKLUKLARLA İLGİLİ ÖZELLİKLER

Detaylı

a bir reel (gerçel) sayı ve n bir pozitif tam sayı olsun. 1 dir. n a ye üslü ifade

a bir reel (gerçel) sayı ve n bir pozitif tam sayı olsun. 1 dir. n a ye üslü ifade ÜSLÜ İFADELER A. Tı bir reel (gerçel syı ve bir pozitif t syı olsu.... te olck şekilde, te ı çrpıı ol deir. ye üslü ifde Kurl. sıfırd frklı bir reel syı olk üzere,. 0 0 0 ifdesi tısızdır.. ( R... 0 7..

Detaylı

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS)

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS) ÇMR ÖSS SRULRI 1., ve noktlrı merkezli çember üzerinde m( ) = m( ) =. ir dik üçgeni için, = cm ve = 4 cm olrk veriliyor. Merkezi, yrıçpı [] oln bir çember, üçgenin kenrını ve noktlrınd kesiyor. un göre,

Detaylı

2. Geriye doğru Yerine Koyma (Back Substitution): Bu adımda, son denklemden başlayarak herbir bilinmeyen bulunur.

2. Geriye doğru Yerine Koyma (Back Substitution): Bu adımda, son denklemden başlayarak herbir bilinmeyen bulunur. Guss Elimisyou Lieer deklem sistemlerii çözmede kullıl e popüler tekiklerde birisi Guss Elimisyou yötemidir. Bu yötem geel bir deklemli ve bilimeyeli lieer sistemi çözümüe bir yklşım getirmektedir....

Detaylı

DENEY 3: EŞDEĞER DİRENÇ, VOLTAJ VE AKIM ÖLÇÜMÜ

DENEY 3: EŞDEĞER DİRENÇ, VOLTAJ VE AKIM ÖLÇÜMÜ A. DENEYĠN AMACI : Direnç devrelerinde eşdeğer direnç ölçümü ypmk. Multimetre ile voltj ve kım ölçümü ypmk. Ohm knununu sit ve prtik devrelerde nlmy çlışmk. B. KULLANILACAK AAÇ VE MALZEMELE : 1. DC güç

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

DERS 3. Matrislerde İşlemler, Ters Matris

DERS 3. Matrislerde İşlemler, Ters Matris DES Mrislerde İşleler, Ters Mris Mrisler Mrislerle ilgili eel ılrııı ıslı e sır ve e süu oluşurk içide diiliş e sıı oluşurduğu lo ir ris deir ir ris geellikle şğıdki gii göserilir ve [ ij ], i ; j risii

Detaylı

DENEY 6. İki Kapılı Devreler

DENEY 6. İki Kapılı Devreler 004 hr ULUDĞ ÜNİVERSİTESİ MÜHENDİSLİK FKÜLTESİ ELEKTRİKELEKTRONİK MÜHENDİSLİĞİ ÖLÜMÜ ELN04 Elektrik Devreleri Lorturı II 004 hr DENEY 6 İki Kpılı Devreler Deneyi Ypnın Değerlendirme dı Soydı : Ön Hzırlık

Detaylı

c

c Mtemt ık Ol ımp ıytı Çlışm Sorulrı c www.sbelin.wordpress.com sbelinwordpress@gmil.com Bu çlışm kğıdınd mtemtik olimpiytlrı sınvlrın hzırlnn öğrenciler ve öğretmenler için hzırlnmış sorulr bulunmktdır.

Detaylı

ENERJİ İLETİMİ DERSİ (DERS NOTLARI) Fırat Üniversitesi Mühendislik Fakültesi Elektrik - Elektronik Mühendisliği Bölümü

ENERJİ İLETİMİ DERSİ (DERS NOTLARI) Fırat Üniversitesi Mühendislik Fakültesi Elektrik - Elektronik Mühendisliği Bölümü Fırt Üiversitesi Mühedislik Fkültesi Elektrik - Elektroik Mühedisliği Bölümü ENERJİ İLETİMİ DERSİ (DERS NOTLARI) Hzırly: Arş. Gör. Göky BAYRAK ELAZIĞ-008 İletim Htlrıı Elektriksel Ypısı ) Sürekli Durum:Nomil

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7.

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7. MC. + + +.. Rsyonel Syılr TEST I sonsuz kesrinin eşiti kçtır? A) B) C) D) E) 4 www.mtemtikclu.com, 006 Ceir Notlrı. 8. Gökhn DEMĐR, gdemir@yhoo.com.tr 0;0 0;0008 = 0; x ise x kçtır? A) 0,0 B) 0,000 C)

Detaylı

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır.

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır. gösterilir. MUTLAK DEĞER Syı doğrusu üzerinde syısının sıfır oln uzklığın in mutlk değeri denir ve ile B O A 0 OA = OB =, 0 =, < 0 olrk tnımlnır. < 0 < y için y = y işleminin eşitini bulunuz. < 0 için

Detaylı

Nümerik Analiz A A -1 =I. Bilgisayar Destekli. Ders notları TERS MATRİS HESABI GAUSS-JORDAN tekniği. m=n

Nümerik Analiz A A -1 =I. Bilgisayar Destekli. Ders notları TERS MATRİS HESABI GAUSS-JORDAN tekniği. m=n ESKİŞEHİR OSMNGZİ ÜNİVERSİESİ Mühedislik Mimrlık Fkültesi İşt Mühedisliği Bölümü EPost: ogu hmettopcu@gmilcom We: http://mmfoguedutr/topcu Bilgisyr Destekli Nümerik liz Ders otlrı hmet OPÇU m Kre mtrisi

Detaylı

1993 ÖYS. 1. Rakamları birbirinden farklı olan üç basamaklı en büyük tek sayı aşağıdakilerden hangisine kalansız bölünebilir?

1993 ÖYS. 1. Rakamları birbirinden farklı olan üç basamaklı en büyük tek sayı aşağıdakilerden hangisine kalansız bölünebilir? ÖYS. Rkmlrı birbirinden frklı oln üç bsmklı en büyük tek syı şğıdkilerden hngisine klnsız bölünebilir? D) 8 E) 7. +b= b olduğun göre, b kçtır? D) 8 E). İki bsmklı, birbirinden frklı pozitif tmsyının toplmı

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 9. MATEMATİK YARIŞMASI 6. SINIFLAR TEST SORULAR ve YANITLAR

ÖZEL EGE LİSESİ OKULLAR ARASI 9. MATEMATİK YARIŞMASI 6. SINIFLAR TEST SORULAR ve YANITLAR 1) 2, 8, 26, 80... şeklideki ir syı örütüsüde 30. teri kçtır? A) 3 30 + 1 B) 3 30 1 C) 2 30 1 D) 2 30 + 1 5) Adylrı oy kulldığı ir seçide 889 öğrei oy kullktır. Seçie ktıl 8 dyd irii kzilesi içi e z kç

Detaylı

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI LYS LİMİT VE SÜREKLİLİK KONU ÖETLİ ÇÖÜMLÜ SORU BANKASI ANKARA İÇİNDEKİLER Limit Kvrmı ve Grfik Sorulrı... Limitle İlgili Bzı Özellikler...7 Genişletilmiş Reel Sılrd Limit... Bileşke Fonksionun Limiti...

Detaylı

LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2

LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2 LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ SABİT NOKTA İTERASYONU YÖNTEMİ Bu yötemde çözüme gitmek içi f( olarak verile deklem =g( şeklie getirilir. Bir başlagıç değeri seçilir ve g ( ardışık

Detaylı

Kapalılık (closure) Birleşme özelliği (associative law) Yer değiştirme özelliği (commutative law) Ters (inverse) Dağılım özelliği (distributive law)

Kapalılık (closure) Birleşme özelliği (associative law) Yer değiştirme özelliği (commutative law) Ters (inverse) Dağılım özelliği (distributive law) Temel Tnımlr BİL 201 Boole Ceiri ve Temel Geçitler (Boolen Alger & Logic Gtes) Bilgisyr Mühendisligi Bölümü Hcettepe Üniversitesi Kplılık (closure) Birleşme özelliği (ssocitive lw) Yer değiştirme özelliği

Detaylı

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57 99 ÖYS. si oln si kçtır? A) 9 B) 8 C) D) 6 E) 5 6. Bir nın yşı, iki çocuğunun yşlrı toplmındn üyüktür. yıl sonr nın yşı, çocuklrının yşlrı toplmının ktı olcğın göre ugün kç yşınddır? A) 5 B) 5 C) 55 D)

Detaylı

TG 6 ÖABT ORTAÖĞRETİM MATEMATİK

TG 6 ÖABT ORTAÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 6 ÖABT ORTAÖĞRETİM MATEMATİK Bu testleri her hkkı sklıdır. Hgi mçl olurs olsu, testleri tmmıı ve ir kısmıı

Detaylı

a R, n tek ve Örneğin, a, b R + ve m, n Z + olmak üzere; 1. n a b a b dir. 2. n m n m a a n n n 5. m n m 6. 0 a b n a n b dir. Örnek 4.

a R, n tek ve Örneğin, a, b R + ve m, n Z + olmak üzere; 1. n a b a b dir. 2. n m n m a a n n n 5. m n m 6. 0 a b n a n b dir. Örnek 4. Bölü. Köklü Syılr Muhrre Şhi. Köklü Syılr.. Köklü Syılrı Tıı Bu bölüde, kök dediğiiz sebollerle gösterile gerçek syılrı köklü syılr olrk tıtck ve bulrı gerçek syılrı rsyoel kuvvetleri olduğuu göstereceğiz.

Detaylı

LYS 2016 MATEMATİK ÇÖZÜMLERİ

LYS 2016 MATEMATİK ÇÖZÜMLERİ LYS 06 MATEMATİK ÇÖZÜMLERİ 6.. 5. 5. ( ) 8 6 65 buluruz. 5. 5 5 Doğru Cevp: C Şıkkı 8 7 ()... 9 buluruz. Doğru Cevp : D Şıkkı 9 8 8 9 8 9 8 9 9 9 9 9 8 buluruz. 8 8 8 8 8 Doğru Cevp : A Şıkkı (n )! (n

Detaylı

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ ESKİŞEHİR OSMNGZİ ÜNİVERSİESİ Müendislik Mimrlık Fkültesi İnşt Müendisliği Bölümü E-Post: ogu.met.topu@gmil.om We: ttp://mmf.ogu.edu.tr/topu Bilgisyr Destekli Nümerik nliz Ders notlrı met OPÇU n>m 8 8..

Detaylı

DRC üst taban, 6 alt taban olmak üzere 12 mavi kare vardır. 4. Sekiz basamaklı herhangi bir özel sayı x = abcdefgh olsun. Deneme - 2 / Mat.

DRC üst taban, 6 alt taban olmak üzere 12 mavi kare vardır. 4. Sekiz basamaklı herhangi bir özel sayı x = abcdefgh olsun. Deneme - 2 / Mat. Deneme - / Mt MATEMATİK DENEMESİ. 6 üst tn, 6 lt tn olmk üzere mvi kre vrdır. Ypının tüm yüzeyi kreden oluştuğun göre, 6 7. 0,.., f -, 0, p. 0,. c- m.,,. ^- h.. 7. ^- h 7 - ulunur. +. c m olur. ( ) 9 c

Detaylı

İÇİNDEKİLER SAYISAL YETENEK SÖZEL YETENEK

İÇİNDEKİLER SAYISAL YETENEK SÖZEL YETENEK İÇİNDEKİLER SAYISAL YETENEK Mtemtiğe Giriş... 1 Temel Kvrmlr... 9 Doğl Syılrd Bölme İşlemi... 65 EBOB - EKOK... 93 Rsyonel Syılr... 111 Bsit Eşitsizlikler... 131 Mutlk Değer... 151 Çrpnlr Ayırm... 169

Detaylı

15. ANTALYA MATEMATĐK OLĐMPĐYATI (2010) SORULARININ ÇÖZÜMLERĐ

15. ANTALYA MATEMATĐK OLĐMPĐYATI (2010) SORULARININ ÇÖZÜMLERĐ . ANTALYA MATEMATĐK OLĐMPĐYATI (00) SORULARININ ÇÖZÜMLERĐ PROBLEM : vrdır? + y y deklemii pozitif tmsyılrd kç (, y ) çözüm ikilisi A) B) 6 C) 4 D) 8 E) Sosuz çoklukt ÇÖZÜM (L. Gökçe): + deklemide pyd eşitleyip

Detaylı

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS - - - - - - LYS - - - - - - - - FONKSĐYONLAR A ve B oşn frklı iki küme olsun A dn B ye tnımlı f fonksiyonu f : A B ile gösterilir A y tnım kümesi, B ye

Detaylı

TYT / MATEMATİK Deneme - 2

TYT / MATEMATİK Deneme - 2 TYT / MTMTİK eneme -. 7 ^7h ^h $ bulunur. evp : 6. b b c 6 c 6, b ve c nin ritmetik ortlmsı O b c 6 bulunur.. y z y z ^ h $ bulunur. evp : 7. y çift ne olurs olsun çift syı olduğundn in yd çift olduğundn

Detaylı

DRC. 4. Sekiz basamaklı herhangi bir özel sayı x = abcdefgh olsun. Deneme - 2 / Mat. c m. m m. y Cevap A. Cevap D 21, 25, = = =. 21.

DRC. 4. Sekiz basamaklı herhangi bir özel sayı x = abcdefgh olsun. Deneme - 2 / Mat. c m. m m. y Cevap A. Cevap D 21, 25, = = =. 21. Deneme - / Mt MATMATİK DNMSİ. - + -. 0,.., f -, 0, p. 0,. c- m.,,. ^- h.. 7. ^- h 7 - ulunur. +. c m olur.. + + ulunur. ( ) c m + c m. cc m m. c m.. ulunur. evp evp. Sekiz smklı herhngi ir özel syı cdefgh

Detaylı

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Diziler. 1. Aşağıdakilerden kaç tanesi bir dizinin genel

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Diziler. 1. Aşağıdakilerden kaç tanesi bir dizinin genel ÖĞRENCİNİN ADI SOYADI: NUMARASI: Dersi Adı SINIFI: KONU: Diziler Dersi Kousu. Aşğıdkilerde kç tesi bir dizii geel terimi olbilir? I. II. log III. IV. V. 7 7 9 9 t 4 4 E). Aşğıdkilerde hgisi bir dizii geel

Detaylı

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ Mühedislik Mirlık Fkültesi İşt Mühedisliği Bölüü EPost: oguhettopcu@gilco We: http://foguedutr/topcu Bilgisyr Destekli Nüerik Aliz Ders otlrı Ahet TOPÇU + + + + + + + +

Detaylı

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik)

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik) ÜÇGN LN Üçgende ln Şekilde verilen üçgeninde,, üçgenin köşeleri, [], [], [] üçgenin kenrlrıdır. c b üçgeninin kenrlrı dlndırılırken, her kenr krşısınd bulunn köşenin hrfi ile isimlendirilir. üçgeninin

Detaylı

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır?

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır? RAKAM Syılrı ifde etmek için kullndığımız 0,,2,3,4,5,6,7,8,9 sembollerine rkm denir. Örnek... :, b ve c birbirlerinden frklı birer rkmdır..b+9.b c en çok kçtır? DOĞAL SAYILAR N={0,,2,3...,n,...} kümesine

Detaylı

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ ESKİŞEHİR OSMNGZİ ÜNİVERSİTESİ Mühedslk Mmrlık Fkültes İşt Mühedslğ Bölümü EPost: oguhmettopcu@gmlcom Web: http://mmfoguedutr/topcu Blgsyr Destekl Nümerk lz Ders otlrı hmet TOPÇU Ktsyılr mtrs Özdeğer Özvektör

Detaylı

Bölüm- Parametrik Hesap

Bölüm- Parametrik Hesap MAK 0: İNAMİK r. Ahmet Tşkese Fil hzırlık ölüm- Prmetrik Hesp 1 ölüm-rijit Cisim Sbit merk. Etr. döme * θ = 6 devir dödüğüde 4(6=3θ C θ C = 8 devir 8(5=4.5(θ A θ A = 8.889 devir α A =rd/s ω A = t + 5 rd/s

Detaylı

Örnek...2 : x=2, x=4, y=2, y= 5 doğruları arasında kalan

Örnek...2 : x=2, x=4, y=2, y= 5 doğruları arasında kalan KAT CİSİMLERİN HACİMLERİ Örnek...2 : =2, =4, =2, = 5 doğrulrı rsınd kln ölgenin O ekseni etrfınd 360 o döndürülm esi le oluşck ktı cism in hcm ini ulunuz İNTEGRAL İLE HACİM HESAB 1. X EKSENİNDE DÖNDÜRMELER

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

Üslü İfadelerde İşlemler (Temel Kurallar) - Çalışma Kağıdı Ortaokul Matematik Kafası $ = k) 81 $ 243 = Kerim Hoca. p) 125 $ 625 = w) 3

Üslü İfadelerde İşlemler (Temel Kurallar) - Çalışma Kağıdı Ortaokul Matematik Kafası $ = k) 81 $ 243 = Kerim Hoca. p) 125 $ 625 = w) 3 .Sınıf Mtemtik ÜSLÜ İFADELER Yyın No : / Kznım :... + Üssün Üssü ve Sırlm Bir üslü ifdenin üssü lındığınd üsler çrpılır.. Alıştırmlr Aşğıdki işlemlerin sonuçlrını üslü biçimde yzınız. y ^ h y ) ^ h b)

Detaylı

İntegral Uygulamaları

İntegral Uygulamaları İntegrl Uygulmlrı Yzr Prof.Dr. Vkıf CAFEROV ÜNİTE Amçlr Bu üniteyi çlıştıktn sonr; düzlemsel ln ve dönel cisimlerin cimlerinin elirli integrl yrdımı ile esplnileceğini, küre, koni ve kesik koninin cim

Detaylı

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT DENKLEM ve EŞİTSİZLİKLER ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT BİRİNCİ DERECEDEN DENKLEM ve EŞİTSİZLİKLER. Kznım : Gerçek syılr kümesinde birinci dereceden eşitsizliğin özelliklerini belirtir.. Kznım : Gerçek

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

RASYONEL SAYILAR. ÖRNEK: a<0<b<c koşulunu sağlayan a, b, c reel sayıları. tan ımsız. belirsiz. basit kesir

RASYONEL SAYILAR. ÖRNEK: a<0<b<c koşulunu sağlayan a, b, c reel sayıları. tan ımsız. belirsiz. basit kesir RASYONEL SAYILAR 0 ve, Z olmk üzere şeklindeki syılr rsyonel syı denir. 0 0 tn ımsız 0 0 elirsiz 0 sit kesir ileşik kesir Genişletilerek vey sdeleştirilerek elde edilen kesirlere denk kesirler denir. Sıfır

Detaylı

LİMİT VE SÜREKLİLİK ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

LİMİT VE SÜREKLİLİK ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT LİMİT VE SÜREKLİLİK ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT Limit. Kzım : Bir bğımsız değişkei verile bir sı klşmsıı öreklerle çıklr.. Kzım : Bir foksiou bir oktdki iti, sold iti ve sğd iti kvrmlrıı öreklerle

Detaylı

Dış Etki Olarak Sıcaklık Değişmesi ve/veya Mesnet Çökmelerinin Göz Önüne Alınması Durumu

Dış Etki Olarak Sıcaklık Değişmesi ve/veya Mesnet Çökmelerinin Göz Önüne Alınması Durumu Dış Etk Olrk Sıcklık Değşmes ve/vey eset Çökmeler Göz Öüe Alımsı Durumu Dış etk olrk göz öüe lı sıcklık eğşm ve meset çökmeler hpersttk sstemlere şekl eğştrme le brlkte kest zoru mey getrr. Sıcklık eğşm:

Detaylı

3. BÖLÜM: ÜSLÜ İFADE VE DENKLEMLER KONU ÖZETİ

3. BÖLÜM: ÜSLÜ İFADE VE DENKLEMLER KONU ÖZETİ . BÖLÜM: ÜSLÜ İFADE VE DENKLEMLER KONU ÖZETİ A. ÜSLÜ İFADELER 6.,, c R olmk üzere. Üslü İfdeler. +. c. = ( + c) dir. Bir syıı kedisi ile tekrrlı çrpımı o syıı kuvvetii lm y d üssüü lm deir. R ve Z + olmk

Detaylı

1. x 1 x. Çözüm : (x 1 x. (x 1 x )2 = 3 2 x 2 2x = 1 x + 1 x2 = 9. x x2 = 9 x2 + 1 x2. 2. x + 1 x = 8 ise x 1 x

1. x 1 x. Çözüm : (x 1 x. (x 1 x )2 = 3 2 x 2 2x = 1 x + 1 x2 = 9. x x2 = 9 x2 + 1 x2. 2. x + 1 x = 8 ise x 1 x MC www.mtemtikclub.com, 006 Cebir Notlrı Çrpnlr Ayırm Gökhn DEMĐR, gdemir3@yhoo.com.tr Đki ifdenin çrpımı ypılırken, sonuc çbuk ulşmk için, bzı özel çrpımlrın eşitini klımızd tutr ve bundn yrrlnırız. Bu

Detaylı

6. DOĞRUSAL REGRESYON MODELİNE MATRİS YAKLAŞIMI

6. DOĞRUSAL REGRESYON MODELİNE MATRİS YAKLAŞIMI 6. DOĞRUSAL REGRESYON MODELİNE MATRİS YAKLAŞIMI Y i β + β X i + β X i + + β k X ki + i (i,,, gibi çok çıklyıcı değişkee ship bir model, şğıdki gibi bir eşlı deklem modelii göstermektedir. Y β + β X + β

Detaylı

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır?

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır? 988 ÖYS. Toplmlrı 4 oln gerçel iki syıdn üyüğü küçüğüne ölündüğünde ölüm 4, kln dir. Küçük syı kçtır? A) 56 B) 5 C) 48 D) 44 E) 40. 0,5 6 devirli (peryodik) ondlık syısı şğıdkilerden hngisine eşittir?

Detaylı

A, A, A ) vektör bileşenleri

A, A, A ) vektör bileşenleri Elektromnetik Teori hr 006-007 Dönemi VEKTÖR VE SKLER KVRMI Mühendislik, fiik ve geometri ugulmlrınd iki türlü büüklük kullnılır: skler ve vektör. Skler, sdece büüklüğü oln niceliklerdir. elli bir ölçeği

Detaylı

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir.

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir. LOGARİTMA I. Üstl Fonksiyonlr v Logritmik Fonksiyonlr şitliğini sğlyn dğrini bulmk için ypıln işlm üs lm işlmi dnir. ( =... = 8) y şitliğini sğlyn y dğrini bulmk için ypıln işlm üslü dnklmi çözm dnir.

Detaylı

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları...

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları... İÇİNDEKİLER Ön Söz... Mtris Cebiri... Elementer İşlemler... Determinntlr...7 Lineer Denklem Sistemleri...8 Vektör Uzylrı...6 Lineer Dönüşümler...48 Özdeğerler - Özvektörler ve Köşegenleştirme...55 Genel

Detaylı

ÇSD SİSTEMLERİN ZORLANMIŞ TİTREŞİMİ

ÇSD SİSTEMLERİN ZORLANMIŞ TİTREŞİMİ ÇSD SİSELERİN ZORLANIŞ İREŞİİ u u u u bşlgıç koşullrı eksdek br N serbeslk derecel ssem hreke deklem mrs formd; u C u u şeklde yzılblr. Bu mrs formdk hreke deklem, u ve ürevler çere brbre bğlı N de deklem

Detaylı

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır.

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır. LYS- MTEMTİK MTEMTİK TESTİ. u testte Mtemtik lnın it toplm 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için yrıln kısmın işretleyiniz.. = 5! +! olduğun göre,! syısının türünden eşiti şğıdkilerden

Detaylı