Kesikli Üniform Dağılımı
|
|
|
- Asli Ayvaz
- 8 yıl önce
- İzleme sayısı:
Transkript
1 9.. KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Kesili Üniform Dağılımı. Bernoulli Dağılımı 3. Binom Dağılımı 4. Negatif Binom Dağılımı. Geometri Dağılım. Hiergeometri Dağılım 7. Poisson Dağılımı Kesili Üniform Dağılımı Kesili bir şans eğişeni tanımlı oluğu tüm notalara eşit olasılı eğerine sahi ise bir başa ifaeyle tanımlı oluğu eğerlerin hesine olasılı fonsiyonun alığı eğer sabit ise bu esili şans eğişeni üniform ağılımına uygunur. Üniform ağılımı gösteren bir şans eğişeni farlı notaa tanımlı ise olasılı ağılımı; X ) şeline ifae eilir.,,3...,. Kesili Üniform Dağılımının Belenen Değer ve Varyansı Örne: Hilesiz bir zar atılığına şans eğişeni ortaya çıabilece farlı urum sayısını ifae ettiğine göre in olasılı ağılımı oluşturara belenen eğerini ve varyansını bulunuz. E( ) ) i i i ( )( ) Var( ) ( ) 3 S = { /,,3,4,, } Ortaya çıan olaylar eşit olasılılı olaylar şans eğişeninin ağılımı = olan esili üniform ağılımına uygunur. X ) E( ) 3,,,3,4,,. ( )( ) 3 Var ( ) 4
2 9.. Bernoulli Dağılımı Bir şans eğişeninin bernoulli ağılımı göstermesi için ilgilenilen süreçte bernoulli eneyinin varsayımlarının sağlanması gereliir. Bernoulli Deneyinin Varsayımları:. Deneyler aynı oşullara terarlanabilirli özelliğine sahi olmalıır.. Deneylerin yalnız ii mümün sonucu olması gereliir. 3. Başarı olasılığı (), eneyen eneye eğişmemeliir. (Başarısızlı olasılığı q = - ile gösterilir) 4. Denemeler birbirinen bağımsız olmalıır. Örneler: Bir fabriaa üretilen bir ürünün hatalı veya sağlam olması, Bir maeni ara atılığına üst yüze yazı veya tura gelmesi, Hilesiz bir zar atılığına zarın te veya çift gelmesi, Bernoulli eneyine ortaya çıan sonuçlaran biri tanesi başarı urumu iğeri ise başarısızlı olara ifae eilir. Bernoulli şans eğişeninin ağılımı ifae eiliren eneyin saece ez terarlanması gereliir. Bernoulli ağılışına şans eğişeni başarı urumu için, başarısızlı urumu için ise eğerini alır. S = { /, } Bernoulli Dağılımının Olasılı Fonsiyonu; Örne: Bir este isambilen çeilen bir ağıın as olu olmaması ile ilgileniyor. As gelmesi başarı olara ifae eiliği urum için olasılı fonsiyonunu oluşturunuz. = (as gelmemesi) = ( as gelmesi) S = { /, } X = ) = 48 / X = ) = 4 / m = E ( ) = s = Var ( ) = (-) = q X ) ( ),. 7 X ) 4 48,. 8
3 9.. Binom Dağılımı Birbirinen bağımsız n aet bernoulli eneyinin bir araya gelmesi sonucuna binom eneyi gerçeleşir. Binom eneyinin gerçeleşmesi için bernoulli eneyinin bütün varsayımlarının sağlanması gereliir. Binom şans eğişeni, n aet enemeei başarı sayısını ifae etmeteir. n enemee en az, en fazla n aet başarı gözlenebileceğinen S = { /,,,,n } olur. Binom Olasılı Fonsiyonunun Ele Eilmesi Gerçeleştirilen her bir Bernoulli eneyi birbirinen bağımsızır ve olasılı fonsiyonu ).q, olara ife eilmiş ii. Bernoulli eneyi n efa terarlanığı uruma tolam aet başarı olmasının olasılığı, aet başarı olasılığı () ile n - aet başarısızlı olasılığının (q=-) çarımını içermeliir. 9 Başarı ve başarısızlıların oluşum sırası yani sıralama önemsiz ise n farlı şeile ortaya çıtığı n için ; C n..( ) X ) n,,,..., n. Örneler: Bir fabrianın eosunan seçilen ürünen sinin hatalı olması, Bir maeni ara ez atılığına hiç tura a gelmemesi üst yüze yazı veya tura gelmesi, Hilesiz bir zar 4 ez atılığına zarın en ço ez çift gelmesi, olara ele eilir. 3
4 9.. Binom Dağılımının Karateristileri Örne: Bir işletmee üretilen ürünlerin % sının hatalı oluğu bilinmeteir. Rasgele ve iaeli olara seçilen ürünen, a) tanesinin hatalı olmasının olasılığını, b) En az 4 tanesinin hatalı olmasının olasılığını hesalayınız. Aritmeti Ortalama m Varyans s E ( X ) n n( ) nq X)..4.. X)..4.. n = =. 3 4 n = =. 3 4 X X 3 =, - =,94 n = a)p ( X = ) =? 4 b)p ( X 4 ) =? X ). (,).(,94),3 P ( X 4 ) = P ( X = 4) + P ( X = ) 4 4.(,).(,94).(,).(,94) 4 Negatif Binom Dağılımı Bernoulli eneyinin tüm varsayımları negatif binom ağılımı içine geçerliir. Binom ağılımına n enemee aet başarı olasılığı ile ilgileniliren, negatif binom ağılımına ise şans eğişeni ( ) ncı başarıyı ele einceye aar yaılan eney sayısına arşılı gelir. Örneler: Bir arayı ez tura gelinceye aar attığımıza nci turayı ele ettiğimiz eneme sayısı, Bir basetbolcunun 3 sayılı atışlara ncu sağlaması için gereli olan atış sayısı. isabeti : eney sayısı : başarı sayısı : başarı olasılığı S = { /, +, +, +3 } Binom ağılımını ullanara - enemee - aet başarı olasılığını hesalanır ve nci enemeei ncı başarıyı ele etme olasılığı ile bağımsız olaylar oluğunan çarılara aşağıai olasılı fonsiyonu ele eilir. X ),,,.... 4
5 9.. Negatif Binom Dağılımının Belenen Değer ve Varyansı ( E ) m Var( ) ( Yanai histogram =, ve = 8 arametreli negatif binom ağılım gösteren bir oulasyonan alınmış hacimli bir örne için oluşturulmuştur. ) 3 8,,, 4,, 8,,, 4, 7 Örne: Bir işinin hilesiz bir zarı ez atması sonucuna, ncu atışına nci ez gelmesi olasılığını hesalayınız. = / - = / = = X ; ). ( ).( ) Zarın açıncı ez atılması sonucu nci ez gelmesini belersiniz? E( ) 3 8 Geometri Dağılım Bernoulli eneyinin tüm varsayımları geometri ağılım içine geçerliir. Negatif Binom ağılımının özel bir urumuur. = oluğuna negatif binom ağılımı geometri ağılımı olara ifae eilir. Geometri ağılım gösteren şans eğişeni X, il başarıyı ele einceye aar yaılan eney sayısını ifae eer. Örneler: Bir arayı tura gelinceye aar attığımıza tura gelmesi için yaılan atış sayısı, Bir işletmenin eosunan il hatalı ürünü bulana aar alınan örne sayısı. 9 : eney sayısı : başarı olasılığı S = { /,, 3, 4.. } Negatif Binom ağılımına = alınığına; X ) X ) X ),,,....,,3,....
6 9.. Geometri Dağılımının Belenen Değer ve Varyansı E( ) m Var ( ) Örne: Bir avcı heefe isabet sağlayana aar ateş etmeteir. Avcının heefi vurma olasılığı,7 oluğuna göre avcının heefi il ez 8 nci ez atış yatığına isabet ettirmesinin olasılığını hesalayınız. = 8 P ( X = 8) =? Yanai histogram =, arametreli geometri ağılım gösteren oulasyonan alınmış hacimli bir örne için oluşturulmuştur X ),7,7,, ,7,7,7, 7 X 8) ÖDEV: Avcının heefi il ez vurma olasılığı, en az olması için heefe en az aç ez ateş etmeliir? Hiergeometri Dağılım Varsayımları, n eneme benzer oşullara terarlanabilir. Her enemenin mümün sonucu varır. Sonlu oulasyonan iaesiz örneleme yaılır. Örneleme iaesiz oluğunan başarı olasılığı ( ) eneyen eneye eğişir. 3 Hiergeometri Dağılımın Olasılı Fonsiyonu n : örne hacmi N : anaütle eleman sayısı B : oulasyonai başarı sayısı : örnetei başarı sayısı S = { /,,, 3,..,n } B N B n X ) N n,,,3..., n. 4
7 9.. Hiergeometri Dağılımın Karateristileri = B/N için Yanai histogram N = ve B = arametreli hiergeometri ağılım gösteren oulasyonan alınmış hacimli bir örne için oluşturulmuştur E( ) n N n Var ( ) n( ) N X Örne: Yeni açılan bir bananın il müşterisi içine tanesi mevuat hesabına sahitir. İaesiz olara rasgele seçilen 8 müşterien tanesinin mevuat hesabına sahi olmasının olasılığı neir? N= B = n = 8 = 8 X ) 8 X ) 4 3 8,,,3...,8. ÖDEV: En ço işinin mevuat hesabına sahi olmasının olasılığını hesalayınız. Poisson Dağılımı Kesili Şans eğişenlerinin olasılı ağılımlarınan en önemlilerinen biri Poisson Dağılımıır. Günlü hayatta ve uygulamaa ço sayıa ullanım alanı bulunmataır. Ünlü Fransız matematiçisi Poisson tarafınan bulunmuştur. Belirli bir alan içerisine rasgele ağılan veya zaman içerisine rasgele gözlenen olayların olasılılarının hesalanabilmesi için ço ullanışlı bir moelir. Poisson Sürecinin Varsayımları. Belirlenen eriyotta meyana gelen ortalama olay sayısı sabittir.. Herhangi bir zaman ilimine bir olayın meyana gelmesi bir öncei zaman ilimine meyana gelen olay sayısınan bağımsızır.(eriyotların esişimi olmaığı varsayımı ile) 3. Mümün olabilece en üçü zaman aralığına en fazla bir olay gerçeleşebilir. 4. Ortaya çıan olay sayısı ile eriyoun uzunluğu oğru orantılıır
8 Freans Freans 9.. Örneler Bir şehire bir aylı süre içerisine meyana gelen hırsızlı olayların sayısı, Bir telefon santraline. içerisine gelen telefon çağrılarının sayısı, Bir ita içinei bası hatalarının sayısı, İstanbul a m ye üşen işi sayısı, Ege Bölgesine 3 aylı süree 4, şietinen büyü olara gerçeleşen erem sayısı. l Poisson Dağılımının Olasılı Fonsiyonu : belirlenen eriyotta ortaya çıan olay sayısı : ortaya çıma olasılığı araştırılan olay sayısı S = { /,,, 3,.., } l e l X )!,,,... iger urumlara 9 3 Poisson Dağılımının Belenen Değer ve Varyansı 4 3 l n = Belenen Değer E() m l 3 4 l n= Varyans Var() l Belenen eğeri ve varyansı birbirine eşit olan te ağılıştır
9 9.. Örne: Bir mağazaya Cumartesi günleri aiaa ortalama olara 4 müşteri gelmeteir. Bir Cumartesi günü bu mağazaya, a) aia içine müşteri gelmesi olasılığını, b)yarım saate en fazla müşteri gelmesi olasılığını, a) l 4 P ( = ) =? e 4! e 4 X )! b) a 4 müşteri gelirse, 3 a 4 müşteri gelir. l 4 P ( > ) =? > ) = [=)+=)+=)] e 4 e! 4 4! ÖDEV: saatte en ço müşteri gelmesinin olasılığını hesalayınız. 4e 4 33e
Kesikli Üniform Dağılımı
KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI Kesikli Üniform Dağılımı Bernoulli Dağılımı Binom Dağılımı Negatif Binom Dağılımı Geometrik Dağılım Hipergeometrik Dağılım Poisson Dağılımı Kesikli Üniform
Dr. Mehmet AKSARAYLI
Dr. Mehmet AKSARAYLI Şans Değişeni: Bir dağılışı olan ve bu dağılışın yaısına uygun freansta oluşum gösteren değişendir. Şans Değişenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesili Şans
Kesikli ġans DeğiĢkenleri Ġçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları
Kesikli ġans DeğiĢkenleri Ġçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli ġans DeğiĢkenlerinin Olasılık Fonksiyonları X, şans değişkeni ve, 2,.., n ise bu tesadüfi değişkenin
KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı
KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı 1 Bernoulli Dağılımı Bir şans değişkeninin bernoulli dağılımı göstermesi için ilgilenilen süreçte bernoulli
Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları
Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.
Dr. Mehmet AKSARAYLI
Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli
Rastlantı Değişkenleri
Rastlantı Değişkenleri Olasılık Kütle Fonk. Example: A shipment of 8 similar microcomputers to a retail outlet contains 3 that are defective. If a school makes a random purchase of 2 of these computers,
İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik
6.SUNUM İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik özellikleri (ortalama, varyans v.b. gibi) hakkında
MAT 208 İSTATİSTİK ve OLASILIK II ALIŞTIRMALAR-1
MAT 208 İSTATİSTİK ve OLASILIK II ALIŞTIRMALAR-1 şeklinde tanımlanan dağılımın a) Ortalama ve varyans değerlerini bulunuz b) Moment yaratma fonksiyonunu bularak a-şıkkını tekrar çözünüz. Bir tezgahta üretilen
Başarı olasılığı olan bir Bernoulli denemesinin aynı şartlar altında (bağımsız olarak) n kez tekrarlanması ile oluşan deneye binom deneyi denir.
3.5. Bazı Kesikli Dağılımlar 3.5.1. Bernoulli Dağılımı Bir deneyde başarı ve başarısızlık diye nitelendirilen iki sonuçla ilgilenildiğinde bu deneye (iki sonuçlu) Bernoulli deneyi ya da Bernoulli denemesi
Mustafa YAĞCI, [email protected] Geometrik Kombinasyon
Mustafa YĞI w www.mustafayagci.com.tr, 0 ebir Notları Mustafa YĞI, [email protected] Geometri Kombinasyon H er farlı ii notanın bir oğru belirttiğini biliyoruz. Pei hangi oğruyu belirtiyorları? O
SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım
SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin
ANADOLU ÜNİVERSİTESİ ÖRNEK: GEOMETRİK DAĞILIM
ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ KESİKLİ DAĞILIMLAR-2 DOÇ. DR. NİHAL ERGİNEL 2015 GEOMETRİK DAĞILIM Bir Bernoulli deneyi ilk olumlu sonuç elde edilmesine kadar tekrarlansın. X: ilk olumlu sonucun
3/6/2013. Ders 6: Kesikli Olasılık Dağılımları
Ders 6: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı
Ders 6: Kesikli Olasılık Dağılımları
Ders 6: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı
Ders 5: Kesikli Olasılık Dağılımları
Ders 5: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı
Ders 5: Kesikli Olasılık Dağılımları
Ders 5: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı
DALMIŞ YÜZEYLERDEKİ KUVVETLER
9 DALMIŞ YÜZEYLERDEKİ KUVVETLER Kalınlığı olmayan bir yüzeyi göz önüne alalım. Sıvı içine almış bir yüzeye Arşimet Prensipleri geçerli olmala birlite yüzeyinin her ii tarafı aynı sıvı ile oluruluğuna uvvet
Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01
Ortak Varyans ve İstatistiksel Bağımsızlık Bir rassal değişken çifti istatistiksel olarak bağımsız ise aralarındaki ortak varyansın değeri 0 dır. Ancak ortak varyans değerinin 0 olması, iki rassal değişkenin
Cebir Notları. Kombinasyon. www.mustafayagci.com, 2005. Mustafa YAĞCI, [email protected]
ve ve n tane farlı elemanan oluşan bir ümenin altümelerine birer ombinasyon enir. n, r 0 r n olma üzere, n elemanlı A ümesinin r elemanlı altümelerinen her birine A ümesinin r li bir ombinasyonu enir ve
Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:
OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi
BRİNELL SERTLİK YÖNTEMİ
www.muhenisiz.net 1 BRİNELL SERTLİK YÖNTEMİ Belli çaptaki sert bir bilya malzeme yüzeyine belli bir yükü uygulanarak 30 saniye süre ile bastırılır. Deneye uygulanan yükün meyana gelen izin alana bölünmesiyle
EME Sistem Simülasyonu. Giriş. Olasılık Dağılımı. Rassal Degiskenler
EME 3105 1 Giriş Sistem Simülasyonu Önümüzdeki hafta simulasyon girdilerinin modellenmesinde kullanılan kesikli ve sürekli Simulasyonda İstatistiksel Modeller-I Ders 4 dağılımlar hatırlatılacaktır. Rassal
RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN
RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi
ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI
ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI 1 Rassal Değişken Bir deney ya da gözlemin şansa bağlı sonucu bir değişkenin aldığı değer olarak düşünülürse, olasılık ve istatistikte böyle bir
OLASILIK. P(A) = şeklinde ifade edilir.
OLASILIK Olasılık belirli bir olayın olabilirliğinin sayısal ölçüsüdür. Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. 17 yy. da şans oyunlarıyla birlikte kullanılmaya
10. Hilesiz iki zar birlikte atılıyor. Üst yüze gelen sayıların toplamı 6 olduğuna göre bunlardan birinin 1 olma olasılığı kaçtır?
. kız ve 5 erkek arasınan kişilik bir ekip seçilecektir. n çok birinin kız olması olasılığı kaçtır? ( 5 ). 6 evli çift arasınan rasgele kişi seçiliyor. Seçilen bu kişi arasına evli bulunmama olasılığı
Kollektif Risk Modellemesinde Panjér Yöntemi
Douz Eylül Üniversitesi İtisadi ve İdari Bilimler Faültesi Dergisi, Cilt:6, Sayı:, Yıl:, ss.39-49. olletif Ris Modellemesinde anér Yöntemi ervin BAYAN İRVEN Güçan YAAR Özet Hayat dışı sigortalarda, olletif
KESİKLİ DÜZGÜN DAĞILIM
KESİKLİ DÜZGÜN DAĞILIM Eğer X kesikli rassal değişkeninin alabileceği değerler (,,..., ) eşit olasılığa sahip ise, kesikli düzgün dağılım söz konusudur. p(x) =, X=,,..., şeklinde gösterilir. Bir kutuda
ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ
ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ TEMEL KAVRAMLAR PARAMETRE: Populasyonun sayısal açıklayıcı bir ölçüsüdür ve anakütledeki tüm elemanlar dikkate alınarak hesaplanabilir. Ana kütledeki
SAB 101 OLASILIK DERS NOTLARI. Prof.Dr. Fatih TANK. SAB 101 Olasılık. F.Tank. 1. Geometirk Dağılım. 2. Negatif Binom Dağılımı
SAB 101 OLASILIK DERS NOTLARI Prof.Dr. Fatih TANK Ankara Üniversitesi Uygulamalı Bilimler Fakültesi Sigortacılık ve Aktüerya Bilimleri Bölümü Prof.Dr. Fatih TANK - Olasılık Ders Notları- Sayfa : 1/7 Haftalık
İSTATİSTİK DERS NOTLARI
Balıkesir Üniversitesi İnşaat Mühendisliği Bölümü [email protected] İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN Hidrolik Anabilim Dalı Balıkesir Üniversitesi Balıkesir Üniversitesi İnşaat
BAZI ÖNEMLİ SÜREKLİ DEĞİŞKEN DAĞILIMLARI
BAZI ÖNEMLİ SÜREKLİ DEĞİŞKEN DAĞILIMLARI BAZI SÜREKLİ OLASILIK DAĞILIMLARI 1. SÜREKLİ DÜZGÜN (UNIFORM) DAĞILIM 2. NORMAL DAĞILIM 3. BİNOM DAĞILIMINA NORMAL YAKLAŞIM 4. POISSON DAĞILIMINA NORMAL YAKLAŞIM
Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ RANDOM DEĞİŞKEN
SÜREKSİZ (DISCRETE) OLASILIK DAĞILIMLARI 1 RANDOM DEĞİŞKEN Nümerik olarak ifade edilebilen bir deneyin sonuçlarına rassal (random) değişken denir. Temelde iki çeşit random değişken vardır. ##süreksiz(discrete)
BİYOİSTATİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH
BİYOİSTTİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. slı SUNER KRKÜLH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim D. Web: www.biyoistatistik.med.ege.edu.tr 1 OLSILIK Olasılık; Tablo
BİYOİSTATİSTİK Bazı Olasılık Dağılışları Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH
BİYOİSTATİSTİK Bazı Olasılık Dağılışları Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Uygulamalı bilim
7. SINIF MATEMATİK A. 2. Aşağıdakilerden hangisi 2
. Mee, şeilei gibi puanlanmış heef ahasına 2 aış yapıyor. Poziif am sayıların oluğu her bölgeye iişer o, negaif am sayıların oluğu her bölgeye üçer o isabe eiriyor. Mee isabe eiriği her o için o bölgeei
İÇİNDEKİLER. Ön Söz Saymanın Temel Kuralları Permütasyon (Sıralama) Kombinasyon (Gruplama) Binom Açılımı...
İÇİNDEKİLER Ön Söz... Saymanın Temel Kuralları... Permütasyon (Sıralama)... 8 Kombinasyon (Gruplama)... 6 Binom Açılımı... Olasılık... 9 İstatistik... 8... Dağılımlar... 5 Genel Tarama Sınavı... 6 RASTGELE
Tork ve Denge. Test 1 in Çözümleri
9 ork ve Denge est in Çözümleri M. Sistemlerin engee olması için toplam momentin (torkun) sıfır olması gerekir. Verilen üç şekil için enge koşulunu yazalım. F. br =. br F = Şekil II G =. +. +. =. 6 = 6
Ders 6: Sürekli Olasılık Dağılımları
Ders 6: Sürekli Olasılık Dağılımları Normal Dağılım Standart Normal Dağılım Binom Dağılımına Normal Yaklaşım Düzgün (uniform) Dağılım Üstel Dağılım Dağılımlar arası ilişkiler Bir rastgele değişkenin, normal
DERS 10. Kapalı Türev, Değişim Oranları
DERS 0 Kapalı Türev, Değişim Oranları 0.. Kapalı Türev. Fonksiyon kavramının ele alınığı ikinci erste kapalı enklemlerin e fonksiyon tanımlayabileceğini görmüştük. F (, enklemi ile tanımlanan f fonksiyonu
Simülasyonda İstatiksel Modeller
Simülasyonda İstatiksel Modeller Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri iyi tanımlayabilir. İlgilenilen olayın örneklenmesi ile uygun
4) Seyrek rastlanılan bir hastalık için belli bir zaman araalığında bu hastalığa yakalananların sayısının gözlenmesi,
POĐSSON DAĞILIMI Poisson Dağılımı sürekli oramlarda (zaman, alan, hacim, ) kesikli sonuçlar veren ve aşağıda a),b),c) şıklarında belirilen özelliklere sahip deneylerin modellenmesinde kullanılan bir dağılım
Kİ KARE TESTLERİ. Biyoistatistik (Ders 2: Ki Kare Testleri) Kİ-KARE TESTLERİ. Sağlıktan Yakınma Sigara Var Yok Toplam. İçen. İçmeyen.
Biyoistatisti (Ders : Ki Kare Testleri) Kİ KARE TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Saarya Üniversitesi Tıp Faültesi Biyoistatisti Anabilim Dalı [email protected] Kİ-KARE TESTLERİ 1. Ki-are testleri
Tesadüfi Değişken. w ( )
1 Tesadüfi Değişken Tesadüfi değişkenler gibi büyük harflerle veya gibi yunan harfleri ile bunların aldığı değerler de gibi küçük harflerle gösterilir. Tesadüfi değişkenler kesikli veya sürekli olmak üzere
rasgele değişkeninin olasılık yoğunluk fonksiyonu,
3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının
İstatistik ve Olasılık
İstatistik ve Olasılık Ders 5: Rastgele Değişkenlerin Dağılımları II Prof. Dr. İrfan KAYMAZ Sık Kullanılan Dağılımlar Frekans tablolarına dayalı histogram ve frekans poligonları, verilerin dağılımı hakkında
11. SINIF SORU BANKASI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 1. Konu ELEKTRİKSEL KUVVET VE ELEKTRİK ALAN TEST ÇÖZÜMLERİ
. SINI SORU BANKASI. ÜNİT: LKTRİK V MANYTİZMA. Konu LKTRİKSL KUVVT V LKTRİK ALAN TST ÇÖZÜMLRİ Test in Çözümleri. lektriksel Kuvvet ve lektrik Alan I k. A K() k. ve yüklerinin K noktasınaki yükü üzerine
Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,
14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.
Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ
YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun.
Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur
Kümeler Kümeler ve küme işlemleri olasılığın temellerini oluşturmak için çok önemlidir Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Sonlu sayıda, sonsuz sayıda, kesikli
Örnek...2 : Hilesiz iki zar atma deneyinin bütün çıktılarını aşağıdaki tabloya yazınız.
OLASILIK (İHTİMALLER HESABI) Olasılık kavram ı ilk önceleri şans oyunları ile başlamıştır. Örneğin bir oyunda kazanıp kazanmama, bir paranın atılmasıyla tura gelip gelmemesi gibi. Bu gün bu kavramın birçok
İstatistik 1. Bölüm 5 Olasılık Teorisi ve Kesikli Olasılık Dağılımları. Ankara Üniversitesi SBF, GYY
İstatistik 1 Bölüm 5 Olasılık Teorisi ve Kesikli Olasılık Dağılımları Bu Bölümde İşlenecek Konular Temel Olasılık Teorisi Örnek uzayı ve olaylar, basit olasılık, birleşik olasılık Koşullu Olasılık İstatistiksel
OLASILIK OLASILIK. Bireysel belirsizlik ve uzun dönemdeki düzenlilik deneysel bilimlerde de sık sık ortaya çıkar
OLASILIK OLASILIK İstatistiğin temel araçlarından biri olasılıktır 17. yy daşans oyunları ile başlamıştır Her bir denemenin çıktısı belirsizdir Fakat uzun dönemde çıktı kestirimlenebilir Bireysel belirsizlik
PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER
PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve
İ. T. Ü İ N Ş A A T F A K Ü L T E S İ - H İ D R O L İ K D E R S İ BOYUT ANALİZİ
İ. T. Ü İ N Ş A A T F A K Ü L T E S İ - H İ D R O L İ K D E R S İ BOYUT ANALİZİ (Buckingham) teoremini tanımlayınız. Temel (esas) büyüklük ve temel (esas) boyut ne emektir? Açıklayınız. Bir akışkanlar
Elektromanyetik Teori Bahar 2005-2006 Dönemi. MAXWELL DENKLEMLERİ VE ELEKTROMANYETİK DALGALAR Giriş
MAXWELL DENKLEMLERİ VE ELEKTROMANYETİK DALGALAR Giriş Teori alanınaki katkılarıyla 19. yüzyıl fiziğinin en büyük alarınan biri olan Maxwell in en önemli çalışması elektromanyetizma hakkınaır. Maxwell,
1. BÖLÜM ELEKTROSTATİK. Yazar: Dr. Tayfun Demirtürk E-posta: [email protected]
1. BÖLÜM ELEKTROSTATİK Yazar: Dr. Tayfun Demirtürk Eposta: [email protected] 1 ELEKTROSTATİK: Durgun yüklerin etkilerini ve aralarınaki etkileşmeleri inceler. Doğaa iki çeşit elektrik yükü bulunur: ()
MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.
Tremalarla Oluşum: Kenar uzunluğu 1 olan bir eşkenar üçgenle başlayalım. Bu üçgene S 0
SİERPİNSKİ ÜÇGENİ Polonyalı matematiçi Waclaw Sierpinsi (1882-1969) yılında Sierpinsi üçgeni veya Sierpinsi şapası denilen bir fratal tanıttı. Sierpinsi üçgeni fratalların il örneğidir ve tremalarla oluşturulur.
Olasılık Kuramı ve Bazı Olasılık Dağılımları
KAVRAMLAR Olasılık Kuramı ve Bazı Olasılık Dağılımları Deney: belirli koşullar altında tekrarlanabilen ve her tekrarda farklı sonuçlar elde edilebilen işlemdir. Örneklem uzayı: bir denemenin tüm olası
ÖRNEKTİR. Uyarı! ertansinansahin.com A) 1 2 B) 2 3. İletkenlik
Elektrik kımı ve Devreleri Elektrik akımı Potansiyel fark (gerilim) Yüklü küreler arasınaki yük alışverişini, sıvı seviyelerinin farklı oluğu kaplaraki sıvı akışıyla kıyaslayalım. Yüksek potansiyel ve
BÖLÜM I. Tam sayılarda Bölünebilme
BÖLÜM I Tam sayılara Bölünebilme Teorem 1.1 (Bölme algoritması) b > 0 olmak üzere, verilen a ve b tam sayıları için a = qb + r, 0 r < b (1) olacak şekile bir ve bir tek q, r Z çifti varır. İspat: 1. İlk
MALZEMELERDE SERTLİK ÖLÇME DENEYİ. DENEYİN AMACI: Mühendislik malzemelerin sertliğinin ölçülmesi ve mukavemetleri hakkında ön fikir edinilmesi
MALZEMELERDE SERTLİK ÖLÇME DENEYİ DENEYİN ADI: Malzemelere Sertlik Ölçme Deneyi DENEYİN AMACI: Mühenislik malzemelerin sertliğinin ölçülmesi ve mukavemetleri hakkına ön fikir einilmesi DENEYDE KULANILAN
OLASILIK ve KURAMSAL DAĞILIMLAR
OLASILIK ve KURAMSAL DAĞILIMLAR Kuramsal Dağılımlar İstatistiksel çözümlemelerde; değişkenlerimizin dağılma özellikleri, çözümleme yönteminin seçimi ve sonuçlarının yorumlanmasında önemlidir. Dağılma özelliklerine
DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 2303
Dersi Veren Birim: Endüstri Mühendisliği Dersin Türkçe Adı: İSTATİSTİK I Dersin Orjinal Adı: İSTATİSTİK I Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: END 0 Dersin Öğretim
İstatistik ve Olasılık
İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde
IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R
IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R Geçen Ders Envanter yonetımı: Gazetecı problemı Rastsal Rakamlar Üret Talebi hesapla Geliri hesapla Toplam maliyeti hesapla Günlük ve aylık
Uygulama 3 Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH
BİYOİSTATİSTİK Uygulama 3 Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr Olasılık Hatırlatma Olasılık teorisi,
NOKTANIN İZ DÜŞÜMÜ VE İŞARETLEME
r. oç. r. Musa Galip ÖZK NOKTNIN İZ ÜŞÜMÜ VE İŞRETLEME Herhangi ir cismin tasarlanması veya çizilmiş resminin okunması, ununla ilişkili noktalara ait görünüşlerin analiz eilmesi ile sağlanır. İki noktaan
RASGELE SÜREÇLER. Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk fonksiyonu aşağıdaki gibi olmalıdır.
RASGELE SÜREÇLER Eğer bir büyülüğün her t anında alacağı değeri te bir şeilde belirleyen matematisel bir ifade verilebilirse bu büyülüğün deterministi bir büyülü olduğu söylenebilir. Haberleşmeden habere
İstatistik ve Olasılık
İstatistik ve Olasılık Örnekleme Planlar ve Dağılımları Prof. Dr. İrfan KAYMAZ Tanım İncelenen olayın ait olduğu anakütlenin bütünüyle dikkate alınması zaman, para, ekipman ve bunun gibi nedenlerden dolayı
ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Olasılık
ÖĞRENCİNİN ADI SOYADI: NUMARASI: Dersin Adı SINIFI: KONU: Olasılık Dersin Konusu. Bir kutudaki 7 farklı boncuğun içinden iki tanesi seçiliyor. Buna göre, örneklem uzayının eleman sayısı A) 7 B)! 7. madeni
STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN
Statik Ders Notları Sınav Soru ve Çözümleri DĞHN MÜHENDİSLİK MEKNİĞİ STTİK MÜHENDİSLİK MEKNİĞİ STTİK İÇİNDEKİLE 1. GİİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMLEİ - İki Boyutlu Kuvvet
İnşaat Mühendisliği Bölümü UYGULAMA 1- BOYUT ANALİZİ
UYGULAMA - BOYUT ANALİZİ INS 36 HİDROLİK 03-GÜZ (Buckingham) teoremini tanımlayınız. Temel (esas) büyüklük ve temel (esas) boyut ne emektir? Açıklayınız. Bir akışkanlar mekaniği problemine teoremi uygulanığına
BLAST A C G T T A A A C T C G G C I I I I I I I I I A C T T T A A G C C A A G C
BLS Öcei erste; DN izilerie,,g, bazlarıı izilişi, RN izilerie,,g,u bazlarıı izilişi ve protei izilerie amio asitleri izilişi baımıa, orta bir alfabe ile yazılmış izileri hizalaması üzerie urulu. Hizalamış
MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.
TEST 22-1 KONU ELEKTROMANYETİK KUVVET. Çözümlerİ ÇÖZÜMLERİ
OU LTROMT UVVT Çözümler TST - ÇÖÜMLR 4.. L M i i i i Telleren geçen akımlar aynı yönlü ise teller birbirini çeker. ki i k i = = ( - L arası kuvvet) 4i = (L - M arası kuvvet) net = ileşke kuvvet ye zıt
ALIŞTIRMALAR. Sayısal Bilginin Özetlenmesi:
İSTATİSTİK I ALIŞTIRMALAR Y.Doç.Dr. Hüseyin Taştan AÇIKLAMA: N: P. Newbold, İşletme ve İktisat için İstatistik, 4. basımdan çeviri. Çift sayılı alıştırmalar için kitabın arkasındaki çözümlere bakabilirsiniz.
İSTATİSTİK. Hafta 7.2 Kesikli Olasılık Dağılımları Poisson Dağılımı. Yrd. Doç. Dr. H. İbrahim CEBECİ
İSTATİSTİK Hafta 7.2 Kesikli Olasılık Dağılımları Simeon Poisson a atfen isimlendirilen dağılım, bir örnek uzayın belli bir bölgesi veya zamanındaki olayların sayısının incelendiği kesikli bir olasılık
Parametrik Olmayan İstatistik. Prof. Dr. Cenk ÖZLER
Parametrik Olmayan İstatistik Prof. Dr. Cenk ÖZLER Not: Beklenen Frekansı 5 in altında olan gruplar varsa, bu gruplar bir önceki veya bir sonraki grupla birleştirilir. Hipotezler χ 2 Dağılışa Uyum Testi
MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.
Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:
OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler, bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi
3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI
ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6
Ankara Üniversitesi, SBF İstatistik 2 Ders Notları Prof. Dr. Onur Özsoy 1
1 Rastgele bir denemede ortaya çıkması olası sonuçların tamamıdır Örnek: bir zar bir kez yuvarlandığında S= Yukarıdaki sonuçlardan biri elde edilecektir. Sonuçların her biri basit olaydır Örnek: Bir deste
Mustafa YAĞCI, Geometrik Kombinasyon
Mustafa YĞI w www.mustafayagci.com.tr, 01 ebir Notları Mustafa YĞI, [email protected] Geometri Kombinasyon H er farlı ii notanın bir oğru belirttiğini biliyoruz. Pei hangi oğruyu belirtiyorları? O
Cahit Arf Liseler Arası Matematik Yarışması 2008
Cahit Arf Liseler Arası Matemati Yarışması 2008 İinci Aşama 11 Mayıs 2008 Notlar: Birnci tasla. 1. Tamsayılardan gerçel sayılara tanımlı fonsiyonlar ümesi üzerinde şöyle bir operatörü tanımlayalım: f(x)
0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart
ÖABT Olasılık - İstatistik KONU TESTİ Saymanın Temel Kuralları
ÖABT Olasılık - İstatistik KONU TESTİ Saymanın Temel Kuralları. 9 + = 6. A dan B ye 5 farklı şekilde gidebilir. B den C ye 3 farklı şekilde gidebilir. 5.3 = 5. 4.5 = 0 7. 5.3.3.5 = 5 3. kişi için iki durum
SÜREKLİ DÜZGÜN DAĞILIM
SÜREKLİ DÜZGÜN DAĞILIM X rassal değişkenin olasılık yoğunluk fonksiyonu; şeklinde ise x e düzgün dağılmış rassal değişken, f(x) e sürekli düzgün dağılım denir. a 0 olduğuna göre, f(x) >0 olur.
MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.
MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.
DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ
DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati (T+U+L) Kredi AKTS OLASILIK VE İSTATİSTİK FEB-222 2/ 2.YY 3+0+0 3 3 Dersin Dili Dersin Seviyesi
İSTATİSTİK VE OLASILIK SORULARI
İSTATİSTİK VE OLASILIK SORULARI SORU 1 Meryem, 7 arkadaşı ile bir voleybol maçına katılmayı planlamaktadır. Davet ettiği arkadaşlarından herhangi bir tanesinin EVET deme olasılığı 0,8 ise, en az 3 arkadaşının
ÖABT Olasılık - İstatistik KONU TESTİ Saymanın Temel Kuralları
ÖABT Olasılık - İstatistik KONU TESTİ Saymanın Temel Kuralları. 9 + = 6. A dan B ye 5 farklı şekilde gidebilir. B den C ye 3 farklı şekilde gidebilir. 5.3 = 5. 4.5 = 0 7. 5.3.3.5 5 3. kişi için iki durum
istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi
2010 S 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek t ablolar ve f ormüller bu kitapçığın sonunda verilmiştir. 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi yanlıstır? ) Maddesel
Simülasyonda İstatiksel Modeller. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation
Simülasyonda İstatiksel Modeller Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri
RİSK ANALİZİ VE AKTÜERYAL MODELLEME
SORU 1: Bir hasar sıklığı dağılımının rassal değişken olan ortalaması (0,8) aralığında tekdüze dağılmaktadır. Hasar sıklığı dağılımının Poisson karma dağılıma uyduğu bilindiğine göre 1 ya da daha fazla
MAKROİKTİSAT (İKT209)
MKROİKTİST (İKT29) Ders 5: Basit Keynesyen Moel Prof. Dr. Fera HLICIOĞLU İktisat Bölümü Siyasal Bilgiler Fakültesi İstanbul Meeniyet Üniversitesi Derste İnelenen Konular Basit Keynesyen moel Toplam planlanan
