Yutucu Yarım Düzlemin Kenarından Kırınan Üniform Alanların Fiziksel Optik Yöntemiyle Hesabı

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Yutucu Yarım Düzlemin Kenarından Kırınan Üniform Alanların Fiziksel Optik Yöntemiyle Hesabı"

Transkript

1 Çankaya University Journal of Science and Engineering Volume 7 (010), No., Yutucu Yarım Düzlemin Kenarından Kırınan Üniform Alanların Fiziksel Optik Yöntemiyle Hesabı Mücahit Sarnık 1,, ve Uğur Yalçın 1 1 Uludağ Üniversitesi, Elektronik Mühendisliği Bölümü, Görükle, Bursa, Türkiye Oyak-Renault Otomobil Fabrikaları, Mühendislik Direktörlüğü, Organize Sanayi Bölgesi, 1637 Bursa, Türkiye Corresponding author: msarnik@yahoo.com Özet. Bu çalışmada, fiziksel optik yöntemi kullanılarak yutucu yarım düzlem yüzeye ait üniform kırınan alanlar hesaplanmıştır. Fiziksel optik yöntemi kullanılarak ulaşılan kırınan alan ifadesi, detour parametresi kullanılarak Fresnel fonksiyonu cinsinden yazılmış ve üniform çözüm ifadesine ulaşılmıştır. Böylece, gözlem açısının her değeri için sonlu bir değere sahip çözüm elde edilebilmiştir. Ayrıca, elde edilen sonuçlar, kesin çözüm ile sayısal olarak karşılaştırılıp değerlendirilmiştir. Anahtar Kelimeler. Fiziksel optik, Green teoremi, kırınan alan, detour parametre. Abstract. In this study, the uniform scattered fields from a black half plane are calculated with the physical optics method. The expression, which is found by physical optics method, is written in terms of Fresnel function by using detour parameter and the uniform solution is found. Hence a finite solution is obtained for all the values of observation angle. Moreover, the found results are compared numerically with the exact solution. Keywords. Physical optics, Green s theorem, diffracted field, detour parameter. 1. Giriş Yutucu yüzey gelen elektromanyetik enerjinin soğurulduğu ve yansımanın görülmediği bir konsepttir. Bu konuda ilk olarak Kirchoff tarafından getirilen yaklaşım Kottler tarafından geliştirilmiştir. Buna göre yüzeyin her iki kısmını ayıran yüzey boyunca tanımlamalar yapılmıştır [1]. Sommerfeld ise konuya farklı bir yaklaşım Received July 1, 010; accepted September 3, 010. Bu makale, 9-30 Nisan 010 tarihlerinde Çankaya Üniversitesi nin Ankara yerleşkesinde yapılmış olan 3. Çankaya Üniversitesi Mühendislik ve Teknoloji Sempozyumu nda sunulan ve sadece geniş bildiri özeti bölümü hakem sürecinden geçerek bu sempozyum kitapçığında yayımlanan bir makalenin revize edilmiş şekli olup Sempozyum Değerlendirme Komitesi tarafından yayımlanmak üzere Çankaya University Journal of Science and Engineering dergisine gönderilmesi önerilmiş ve derginin bağımsız hakem değerlendirmeleri sonucunda yayıma kabul edilmiştir. ISSN c 010 Çankaya University

2 96 Sarnık ve Yalçın getirerek yutulan dalgaların ilk Riemann yüzeyi (gerçek yüzey) dışındaki diğer yüzeylere dağıldığı fikrini belirtmiştir []. Fiziksel optik (FO) yöntemi uygulanma kolaylığı nedeniyle iletken veya iletken olmayan yüzeylerden saçılan ve kırınan alanların hesaplanmasında sıklıkla kullanılan bir yöntemdir [3-7]. FO nun tercih edilmesindeki en önemli sebep yüksek frekanslarda geometrik optik (GO) eşitliklerine kolayca indirgenebilir olması ve çözüm ifadesinin GO ya göre daha genel olmasıdır [7-8]. Bu yöntemde saçılan alanlar için Helmholtz denkleminin ikinci skaler Green teoremi yardımıyla elde edilen bir çözümü 3 boyutlu uzayda genlik ve faz fonksiyonlarından oluşan tek katlı bir integral haline getirilir. Daha sonra durağan faz yöntemi uygulanır ve faz fonksiyonundan bulunan semer noktasının yardımıyla da yansıyan ve kırınan alan ifadeleri elde edilir. FO yaklaşımı ile bulunan alan ifadeleri üniform değilse bu durumda detour parametresi kullanılarak alan ifadeleri üniform hale getirilir. Bu çalışmada ise yutucu yarım düzlem yüzeye ait köşe kırınım alanlarının hesabı FO yöntemiyle yapılacaktır. Üniform olmayan alan ifadelerini üniform hale getirmek için detour parametresi kullanılacaktır. Hesap edilen üniform alanlar kesin çözümle karşılaştırılarak elde edilen alan ifadelerinin doğruluğu kanıtlanacaktır. Zaman faktörü çalışmanın tamamında e jwt olarak göz önüne alınacaktır.. Fiziksel Optik Yöntemi Saçılan ve kırınan alanlar için elektrik Hertz vektörüne ait Helmholtz denkleminin ikinci skaler Green teoremi yardımıyla elde edilen bir çözümü 1 π e = Jev( r )G( r, r )dv (1) 4πjωε 0 v şeklinde verilebilir. Hacimsel akım yoğunluğu vektörü J ev ( r ) = J es ( r )δ(y y ) () ve serbest uzay Green fonksiyonu G( r, r ) = e jkr R olarak verilebilir. Burada R nin genel ifadesi R = [ (x x ) + (y y ) + (z z ) ] 1/ (3)

3 CUJSE 7 (010), No. 97 şeklindedir. Neticede, () ve (3) eşitlikleri (1) integral denkleminde yerine yazılırsa 1 π e = Jes( r e jkr ) 4πjωε 0 R ds (4) s ifadesi elde edilebilir ki bu ifadeden bir yüzeyden yansıyan ve kırınan alanların hesabı yapılabilir. 3. Yutucu Yarım Düzlemin Kenarından Kırınan Alanların Hesabı Yutucu yarım düzlem yüzeyden kırınan üniform alanların hesabını yapabilmek için öncelikle mükemmel iletken yarım düzlemden kırınan alanlar elde edilecektir. Bu amaçla, mükemmel iletken yüzey için kırınım geometrisi Şekil 1 de verilmiştir. Şek ıl 1. Mükemmel iletken yarım düzlem için kırınım geometrisi. Şekil 1 den görüldüğü üzere, gözlem noktasının dalganın yansıdığı/kırındığı yüzeye olan uzaklığı ρ 1 = [ρ + x ρx cos φ] 1/ ve yüzeyin normal birim vektörü de n = e y şeklindedir. Böylece R nin genel ifadesi R = [ ρ 1 + (z z ) ] 1/ şeklinde verilebilir. Gelen düzlemsel dalganın elektrik alan bileşeni E i = e z E 0 e jk(x cos φ +y sin φ ) (5) olarak verilebilir. FO yüzeysel akım yoğunluğu da J es (r ) = ( n H i ) s (6)

4 98 Sarnık ve Yalçın şeklindedir. Düzlemsel dalganın manyetik alan bileşeni ise, H i = 1 jωµ 0 E i Maxwell-Faraday denklemi ve (5) eşitliği kullanılıp ve gelme açısı φ = φ 0 da alınarak, H i = e x E 0 k sin φ 0 ωµ 0 e jk(x cos φ 0 +y sin φ 0 ) olarak elde edilebilir. Saçılan alana ait elektrik alan bileşeni ise E k π e olup, (4) eşitliğinde (6) eşitliğin kullanılmasıyla, (y alınarak) E = e z ke 0 sin φ 0 π x =0 z = e jkx cos φ 0 e jkr = 0 eşitliği de göz önüne R dx dz (7) olarak bulunabilir. Bu noktadan sonra ifade, gerekli dönüşümler gerçekleştirilerek tek katlı integrale dönüştürülür. Bu integralin içinde x değerine bağlı faz ve genlik fonksiyonlarının çarpımı yer alır. Daha sonra durağan faz metodu ile semer noktası hesaplanarak ilgili alan ifadeleri elde edilebilir. Bunun için (3) eşitliğindeki Green fonksiyonu ilgili eşitlikten e jkr R = 1 j ζ= ( ) H () 0 k ζ ρ 1 e jζ(z z ) dζ şeklinde verilebilir [9]. (7) eşitliğindeki integralin z katının ζ = 0 değeri için hesaplanması ile z = e jkr R dz = π j H() 0 (kρ 1 ) olarak elde edilir. Hankel fonksiyonunun k için Debye asimptotik açınımı H () e jkρ 1+j π 4 0 (kρ 1 ) π kρ1 şeklinde verilebilir [10]. Böylece (7) eşitliğindeki elektrik alan ifadesi, ke 0 sin φ 0 π E = e z j π ej 4 e jkx cos φ 0 e jkρ 1 dx (8) kρ1 x =0

5 CUJSE 7 (010), No. 99 olarak elde edilebilir. Burada (8) eşitliğindeki integral terimi ise, I s = f(x )e jkψ(x ) dx (9) x =0 şeklinde genel bir ifade olarak verilebilir. Bu aşamadan sonra yansıyan ve kırınan alan ifadeleri hesaplanacaktır. Yansıyan alan ifadesinin elde edilmesi için durağan faz yöntemi doğrultusunda genlik ve faz fonksiyonları sırasıyla ve f(x ) = 1 ρ1 (10) ψ(x ) = ρ 1 x cos φ 0 (11) olarak bulunabilir. Yansıyan alan ifadesini bulmak için (9) eşitliğinde bulunan faz fonksiyonunun Taylor seri açılımı yapılır ve ilk 3 terimden sonraki terimler ihmal edilirse, ψ(x ) = 1 0! ψ(x s) + 1 1! ψ (x s)(x x s) + 1! ψ (x s)(x x s) (1) eşitliği bulunabilir. x s, semer noktası faz fonksiyonunun birinci türevinin 0 a e- şitlenmesiyle bulunur. Bu çalışmada ise, (11) eşitliğinin birinci türevi alınıp 0 a eşitlendiğinde semer noktası x s = ρ sin(φ + φ 0) sin φ 0 (13) şeklinde elde edilebilir. Neticede, (10), (11) ve (1) eşitlikleri göz önüne alınarak (9) eşitliği semer noktasında, I s = f(x s)e jkψ(x s ) x =0 olarak bulunabilir. Poisson integrali yaklaşımı kullanılarak integral ifadesi x =0 z = e jk! ψ (x s )(x x s ) dx e (z z ) σ dz = πσ (14) e jk! ψ (x s)(x x s ) dx = π jkψ (x s)

6 100 Sarnık ve Yalçın şeklinde elde edilebilir. (10), (11), (13) ve (14) eşitlikleri kullanılarak da yansıyan alan ifadesi olarak bulunabilir. E y = e z E 0 e jkρ cos(φ+φ 0) Mükemmel iletken yarım düzlemin kenarından kırınan alan ise, I k 1 f(x e ) = jk ψ (x e ) e jkψ(xe) ifadesinden bulunabilir [11]. Burada x e = 0 kenar noktası göz önüne alınarak, I k 1 f(0) = jk ψ (0) e jkψ(0) ifadesi elde edilebilir. (10) ve (11) eşitlikleri kullanılarak da E 0 E d = e z e j π sin φ 0 4 π (cos φ + cos φ 0 ) kρ e jkρ kırınan alan ifadesine ulaşılabilir. Burada ( ) ( ) sin φ 0 φ (cos φ + cos φ 0 ) = tan φ0 φ + φ0 + tan eşitliği kolayca görülebilir. Bu durumda kırınan alan ifadesi [ ( ) ( )] E 0 E d = e z e j π φ φ0 φ + φ0 e jkρ 4 tan + tan π kρ olarak verilebilir. Bu denklem, sonsuza ıraksatan çarpan barındırdığı için detour parametre yöntemiyle bu ıraksama kaldırılabilir. Bunun için gerekli trigonometrik dönüşümlerin yapılmasıyla E d = e z E 0 π e j π 4 sin ( φ φ 0 ) cos ( φ φ 0 ) e jkρ( cos ( φ φ0 kρ ) cos(φ φ 0 )) haline dönüştürülür. Bu noktada gelen ve yansıyan alan ifadelerine ait faz fonksiyonları ξ i(r) = ψ i(r) ψ d eşitliğinde yerine yazıldığında gelen ve yansıyan alanlar için detour parametreleri ξ i(r) = ( ) φ φ0 kρ cos (16) şeklinde bulunabilir. (15) (16) eşitliği ve ilgili Fresnel eşitlikleri göz önüne alınarak kırınan alana ait üniform alan ifadeleri bulunabilir. Fresnel ifadesi ξ i ve ξ r nin birer

7 CUJSE 7 (010), No. 101 fonksiyonu olarak olarak verilebilir [1,13]. ilişkisi kullanılarak ˆF ( ) e j(ξ i(r) + π 4 ) ξ i(r) = πξ i(r) Fresnel fonksiyonu ise, büyük değerler için asimptotik ˆF ( ξ i(r) ) F ( ξi(r) ) sgn ( ξ i(r) ) şeklinde verilebilir. Burada, Fresnel integrali, ˆ ˆF = ej π 4 e jt dt π olarak verilebilir. Bu durumda kırınan alan toplamı ( ) φ φ0 E d = E 0 [F ( ξ i ) sgn (ξ i ) sin e jkρ cos(φ φ 0) ( ) ] φ + φ0 F ( ξ r ) sgn (ξ r ) sin e jkρ cos(φ+φ 0) ξ i şeklinde elde edilebilir. Sonuç olarak, mükemmel iletken yarım düzleme ait toplam saçılan (gelen, yansıyan ve kırınan) alan ifadesi (17) E s = e z E 0 [e jkρ cos(φ+φ0) u ( ξ i ) e jkρ cos(φ+φ0) u ( ξ r ) ( ) φ φ0 + F ( ξ i ) sgn (ξ i ) sin e jkρ cos(φ φ 0) ( ) ] φ + φ0 F ( ξ r ) sgn (ξ r ) sin e jkρ cos(φ+φ 0) olarak (5), (15) ve (17) eşitlikleri göz önüne alınarak bulunabilir. (18) Yutucu yarım düzlemden toplam saçılan alanlar ise, (18) eşitliği yardımıyla kolayca bulunabilir. Yutucu yarım düzlem için: - Gelen alan değeri aynıdır. - Yansıyan alan yoktur. - Kırınan alan ifadesinde ise gelen alanla ilgili terimler olup yansıyan alana bağlı terimler 0 a eşit olur. yüzeyden saçılan toplam alan ifadesi Netice olarak, bu üç durum göz önüne alınarak, yutucu E s = e z E 0 [e jkρ cos(φ φ 0 ) u ( ξ i ) + F ( ξ i ) sgn (ξ i ) sin ( φ φ0 ) ] e jkρ cos(φ φ 0) (19)

8 10 Sarnık ve Yalçın şeklinde elde edilebilir. 4. Tartışma ve Sayısal Sonuçlar Bu bölümde, homojen düzlemsel dalgaların mükemmel iletken ve yutucu yarım düzlemlerden kırınımı ve saçılması olayı sayısal sonuçlarla tartışılacaktır. Sayısal olarak çizilen grafiklerde E 0 birim genlik, düzlemsel dalgaların yüzeye geliş açısı φ 0 = π/4 seçilmiştir. Diğer ilgili parametreler ise fiziksel problemlere uygun olacak şekilde k = 0π ve ρ = 10/k olarak alınmıştır. Bu amaçla, mükemmel iletken yüzeyden saçılan üniform alanların kesin çözümü ifadesi ( ) ( ) E = E 0 e jn π nφ nφ0 4 Jn/ (kρ) sin sin n=1 şeklinde verilebilir [14]. Şekil de (18) ve (0) ile verilen eşitlikler sayısal olarak karşılaştırılmış ve sonuçların birbirine çok yakın olduğu görülmüştür. (0) Şek ıl. Fiziksel optik ile kesin çözümün karşılaştırılması. Şekil 3 te yutucu yarım düzlem yüzeyde (19) eşitliği ile verilen saçılan alanlar sayısal olarak elde edilmiştir. Bu sonuç sınır kırınım dalga metodu ile ulaşılan sonuç ile örtüşmektedir [15] ve φ 0 ın bütün değerlerinde büyük oranda uyuşmaktadır. Ayrıca kρ nun yine değişik değerleri için de birbiriyle tutarlı sonuçlar görülebilir [15]. 5. Sonuç Bu çalışmada, yutucu bir yarım düzlem yüzeyden kırınan alanların hesabı fiziksel optik yöntemiyle elde edilmiştir. Bu yönteme ilave olarak çözümün hesaplanabilmesi için detour parametre ve durağan faz yaklaşımları kullanılmıştır. Hertz vektörüne

9 CUJSE 7 (010), No. 103 Şek ıl 3. Yutucu yarım düzlemden saçılan alanlar. ait Helmholtz denkleminin integral çözümünün kullanıldığı fiziksel optik yöntemiyle ilk olarak mükemmel iletken yarım düzlemden saçılan alanlar hesaplanmış ve bu çözüm kullanılarak yutucu bir yarım düzlem yüzeyden saçılan alanlar bulunmuştur. Bu uygulama özellikle savaş uçaklarında ve hedef olması istenmeyen görünmez uçak teknolojisinde kullanılabilir. Kaynaklar [1] F. Kottler, Diffraction at a black screen, Part I: Kirchhoff s theory, Prog. Optics 4 (1965), [] A. Sommerfeld, Optics, Academic Pres, New York [3] T. J. Hestilow, Simple formulas for the calculation of the average physical optics RCS of a cylinder and a flat plate over a symmetric window around broadside, IEEE Antennas Propag. 4 (000), [4] S. Selleri, P. Bolli and C. Pelosi, A time-domain physical optics heuristic approach to passive intermodulation scattering, IEEE T. Electromagn. C. 43 (001) [5] J. H. Whitteker, Physical optics and field-strength predictions for wireless systems, IEEE J. Sel. Area Comm. 0 (00), [6] J. R. Kurz, A. M. Schober, D. S. Hum, A. J. Saltzman and M. M. Fejer, Nonlinear physical optics with transversely patterned quasi-phase-matching gratings, IEEE J. Sel. Top. Quant. 8 (00), [7] D. J. Blejer, Physical optics polarization scattering matrix for a top hat reflector, IEEE T. Antenn. Propag. 39 (1991), [8] U. Yalçın, İçbükey iletken bir yüzeyin kenarından kırınan elektromagnetik dalgaların fiziksel optik yaklaşımıyla asimptotik hesabı, Eylül 00. URSI-TÜRKİYE 00, İTÜ, İstanbul, Türkiye 18-0 [9] R. F. Harrington, Time-Harmonic Electromagnetic Fields, McGraw-Hill, New York [10] H. E. Bayrakçı, Lineer Sistemlerin Mühendislik Matematiği, Çağlayan Kitabevi, İstanbul 1991.

10 104 Sarnık ve Yalçın [11] G. L. James, Geometrical Theory of Diffraction for Electromagnetic Waves, IEE Peter Peregrinus Ltd., London [1] S.-W. Lee, G. Deschamps, A uniform asymptotic theory of electromagnetic diffraction by a curved wedge, IEEE T. Antenn. Propag. 4 (1976), [13] S.-W. Lee, Comparison of uniform asymptotic theory and Ufimtsev s theory of electromagnetic edge diffraction, IEEE T. Antenn. Propag. 5 (1977), [14] A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering, Prentice-Hall, Englewood Cliffs, New Jersey [15] U. Yalçın, Uniform scattered fields of the extended theory of boundary diffraction wave for PEC surfaces, PIER M 7 (009), 9 39.

YUTUCU KESİK SİLİNDİRİN KENARINDAN KIRINAN ÜNİFORM ALANLARIN SINIR KIRINIM DALGASI TEORİSİ İLE HESABI

YUTUCU KESİK SİLİNDİRİN KENARINDAN KIRINAN ÜNİFORM ALANLARIN SINIR KIRINIM DALGASI TEORİSİ İLE HESABI Gazi Üniv. Müh. Mim. Fak. Der. Journal of the Faculty of Engineering and Architecture of Gazi University Cilt 8, No 1, 85-90, 013 Vol 8, No 1, 85-90, 013 YUTUCU KESİK SİLİNDİRİN KENARINDAN KIRINAN ÜNİFORM

Detaylı

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN AKDENİZ ÜNİVERSİTESİ Anten Parametrelerinin Temelleri Samet YALÇIN Anten Parametrelerinin Temelleri GİRİŞ: Bir antenin parametrelerini tanımlayabilmek için anten parametreleri gereklidir. Anten performansından

Detaylı

Diferansiyel denklemler uygulama soruları

Diferansiyel denklemler uygulama soruları . Aşağıdaki diferansiyel denklemleri sınıflandırınız. a) d y d d + y = 0 b) 5 d dt + 4d + 9 = cos 3t dt Diferansiyel denklemler uygulama soruları 0.0.3 c) u + u [ ) ] d) y + = c d. y + 3 = 0 denkleminin,

Detaylı

Plazma İletiminin Optimal Kontrolü Üzerine

Plazma İletiminin Optimal Kontrolü Üzerine Plazma İletiminin Optimal Kontrolü Üzerine 1 Yalçın Yılmaz, 2 İsmail Küçük ve 3 Faruk Uygul *1 Faculty of Arts and Sciences, Dept. of Mathematics, Sakaya University, Sakarya, Turkey 2 Faculty of Chemical

Detaylı

Diverjans teoremi ise bir F vektörüne ait hacim ve yüzey İntegralleri arasındaki ilişkiyi ortaya koyar ve. biçiminde ifade edilir.

Diverjans teoremi ise bir F vektörüne ait hacim ve yüzey İntegralleri arasındaki ilişkiyi ortaya koyar ve. biçiminde ifade edilir. Maxwell denklemlerini intagral bicimlerinin elde edilmesinde Stokes ve Diverjans Teoremlerinden yararlanilir. Stokes Teoremiaşağıdaki gibi ifade edilir, bir F vektörüne ait yüzey integrali ile çizgi integrali

Detaylı

Geometrik Optik ve Uniform Kırınım Teorisi ile Kapsama Alanı Haritalanması

Geometrik Optik ve Uniform Kırınım Teorisi ile Kapsama Alanı Haritalanması Geometrik Optik ve Uniform Kırınım Teorisi ile Kapsama Alanı Haritalanması - ST Mühendislik Dr. Mehmet Baris TABAKCIOGLU Bursa Teknik Üniversitesi İçerik Hesaplamalı Elektromanyetiğe Genel Bakış Elektromanyetik

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 7- SAYISAL TÜREV Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ İntegral işlemi gibi türev işlemi de mühendislikte çok fazla kullanılan bir işlemdir. Basit olarak bir fonksiyonun bir noktadaki

Detaylı

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ YAZ OKULU DERS İÇERİGİ. Bölümü Dersin Kodu ve Adı T P K AKTS

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ YAZ OKULU DERS İÇERİGİ. Bölümü Dersin Kodu ve Adı T P K AKTS Bir Dönemde Okutulan Ders Saati MAT101 Genel I (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri) 1 Kümeler, reel sayılar, bir denklem veya eşitsizliğin grafiği 2 Fonksiyonlar,

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

Ahenk (Koherans, uyum)

Ahenk (Koherans, uyum) Girişim Girişim Ahenk (Koherans, uyum Ahenk (Koherans, uyum Ahenk (Koherans, uyum http://en.wikipedia.org/wiki/coherence_(physics#ntroduction Ahenk (Koherans, uyum Girişim İki ve/veya daha fazla dalganın

Detaylı

Elektromanyetik Dalga Teorisi

Elektromanyetik Dalga Teorisi Elektromanyetik Dalga Teorisi Ders-2 Dalga Denkleminin Çözümü Düzlem Elektromanyetik Dalgalar Enine Elektromanyetik Dalgalar Kayıplı Ortamda Düzlem Dalgalar Düzlem Dalgaların Polarizasyonu Dalga Denkleminin

Detaylı

9.14 Burada u ile u r arasındaki açı ve v ile u θ arasındaki acının θ olduğu dikkate alınarak trigonometrik eşitliklerden; İfadeleri elde edilir.

9.14 Burada u ile u r arasındaki açı ve v ile u θ arasındaki acının θ olduğu dikkate alınarak trigonometrik eşitliklerden; İfadeleri elde edilir. 9.14 Burada u ile u r arasındaki açı ve v ile u θ arasındaki acının θ olduğu dikkate alınarak trigonometrik eşitliklerden; İfadeleri elde edilir. 9.15 Bu bölümde verilen koordinat dönüşümü uygulanırsa;

Detaylı

Dairesel Dalga Kılavuzlarının 2 Boyutlu FDTD Yöntemi le Modellenmesi

Dairesel Dalga Kılavuzlarının 2 Boyutlu FDTD Yöntemi le Modellenmesi Dairesel Dalga Kılavuzlarının 2 Boyutlu FDTD Yöntemi le Modellenmesi Yavuz EROL, Hasan H. BALIK Fırat Üniversitesi Elektrik-Elektronik Mühendisli i Bölümü 23119 Elazı yerol@firat.edu.tr, hasanbalik@gmail.com

Detaylı

Math 322 Diferensiyel Denklemler Ders Notları 2012

Math 322 Diferensiyel Denklemler Ders Notları 2012 1 Genel Tanımlar Bir veya birden fazla fonksiyonun türevlerini içeren denklemlere diferensiyel denklem denmektedir. Diferensiyel denklemler Adi (Sıradan) diferensiyel denklemler ve Kısmi diferensiyel denklemler

Detaylı

Elektromanyetik Dalga Teorisi Ders-3

Elektromanyetik Dalga Teorisi Ders-3 Elektromanyetik Dalga Teorisi Ders-3 Faz ve Grup Hızı Güç ve Enerji Düzlem Dalgaların Düzlem Sınırlara Dik Gelişi Düzlem Dalgaların Düzlem Sınırlara Eğik Gelişi Dik Kutuplama Paralel Kutuplama Faz ve Grup

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. Çankırı Karatekin Üniversitesi Matematik Bölümü 2015 Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. (Adi ) Bir ya da daha fazla bağımsız değişkenden oluşan bağımlı değişken ve türevlerini

Detaylı

ELEKTRİKSEL POTANSİYEL

ELEKTRİKSEL POTANSİYEL ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 8- SAYISAL İNTEGRASYON 1 GİRİŞ Mühendislikte sık karşılaşılan matematiksel işlemlerden biri integral işlemidir. Bilindiği gibi integral bir büyüklüğün toplam değerinin bulunması

Detaylı

İletken Düzlemler Üstüne Yerleştirilmiş Antenler

İletken Düzlemler Üstüne Yerleştirilmiş Antenler İletken Düzlemler Üstüne Yerleştirilmiş Antenler Buraya dek sınırsız ortamlarda tek başına bulunan antenlerin ışıma alanları incelendi. Anten yakınında bulunan başka bir ışınlayıcı ya da bir yansıtıcı,

Detaylı

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ 3 DÜZLEMDE GERİLME DÖNÜŞÜMLERİ Gerilme Kavramı Dış kuvvetlerin etkisi altında dengedeki elastik bir cismi matematiksel bir yüzeyle rasgele bir noktadan hayali bir yüzeyle ikiye ayıracak olursak, F 3 F

Detaylı

Diferensiyel denklemler sürekli sistemlerin hareketlerinin ifade edilmesinde kullanılan denklemlerdir.

Diferensiyel denklemler sürekli sistemlerin hareketlerinin ifade edilmesinde kullanılan denklemlerdir. .. Diferensiyel Denklemler y f (x) de F ( x, y, y, y,...) 0 veya y f ( x, y, y,...) x ve y değişkenlerinin kendileri ve türevlerini içinde bulunduran denklemlerdir. (Türevler; "Bağımlı değişkenin değişiminin

Detaylı

ÇEV 2006 Mühendislik Matematiği (Sayısal Analiz) DEÜ Çevre Mühendisliği Bölümü Doç.Dr. Alper ELÇĐ

ÇEV 2006 Mühendislik Matematiği (Sayısal Analiz) DEÜ Çevre Mühendisliği Bölümü Doç.Dr. Alper ELÇĐ Giriş ÇEV 2006 Mühendislik Matematiği (Sayısal Analiz) DEÜ Çevre Mühendisliği Bölümü Doç.Dr. Alper ELÇĐ Sayısal Analiz Nedir? Mühendislikte ve bilimde, herhangi bir süreci tanımlayan karmaşık denklemlerin

Detaylı

İşaret ve Sistemler. Ders 11: Laplace Dönüşümleri

İşaret ve Sistemler. Ders 11: Laplace Dönüşümleri İşaret ve Sistemler Ders 11: Laplace Dönüşümleri Laplace Dönüşüm Tanımı Bir f(t) fonksiyonunun Laplace alındığında oluşan fonksiyon F(s) yada L[f(t)] olarak gösterilir. Burada tanımlanan s: İşaret ve Sistemler

Detaylı

ELEKTROMANYETİK DALGALAR DERSİ YAZ DÖNEMİ

ELEKTROMANYETİK DALGALAR DERSİ YAZ DÖNEMİ DERS İÇERİĞİNE GENEL BAKIŞ ELEKTROMANYETİK DALGALAR DERSİ 2015-2016 YAZ DÖNEMİ Yrd. Doç. Dr. Seyit Ahmet Sis seyit.sis@balikesir.edu.tr, MMF 7. kat, ODA No: 3, Dahili: 5703 1 DERS İÇERİĞİNE GENEL BAKIŞ

Detaylı

ÇOKLU KIRINIMLAR İÇEREN SENARYOLAR İÇİN ELEKTROMANYETİK DALGA YAYILIM MODELLERİ

ÇOKLU KIRINIMLAR İÇEREN SENARYOLAR İÇİN ELEKTROMANYETİK DALGA YAYILIM MODELLERİ Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Cilt 19, Sayı 1, 2014 DERLEME ÇOKLU KIRINIMLAR İÇEREN SENARYOLAR İÇİN ELEKTROMANYETİK DALGA YAYILIM MODELLERİ Mehmet Barış TABAKCIOĞLU * Ahmet

Detaylı

HOMOGEN OLMAYAN DENKLEMLER

HOMOGEN OLMAYAN DENKLEMLER n. mertebeden homogen olmayan lineer bir diferansiyel denklemin y (n) + p 1 (x)y (n 1) + + p n 1 (x)y + p n (x)y = f(x) (1) şeklinde olduğunu ve bununla ilgili olan n. mertebeden lineer homogen denlemin

Detaylı

Fizik Dr. Murat Aydemir

Fizik Dr. Murat Aydemir Fizik-1 2017-2018 Dr. Murat Aydemir Ankara University, Physics Engineering, Bsc Durham University, Physics, PhD University of Oxford, Researcher, Post-Doc Ofis No: 35 Merkezi Derslikler Binasi murat.aydemir@erzurum.edu.tr

Detaylı

Doğrusal Demet Işıksallığı 2. Fatma Çağla Öztürk

Doğrusal Demet Işıksallığı 2. Fatma Çağla Öztürk Doğrusal Demet Işıksallığı Fatma Çağla Öztürk İçerik Demet Yönlendirici Mıknatıslar Geleneksel Demir Baskın Mıknatıslar 3.07.01 HPFBU Toplantı, OZTURK F. C. Demet Yönlendirici Mıknatıslar Durgun mıknatıssal

Detaylı

Chapter 1 İçindekiler

Chapter 1 İçindekiler Chapter 1 İçindekiler Kendinizi Test Edin iii 10 Birinci Mertebeden Diferansiel Denklemler 565 10.1 Arılabilir Denklemler 566 10. Lineer Denklemler 571 10.3 Matematiksel Modeller 576 10.4 Çözümü Olmaan

Detaylı

FİZ217 TİTREŞİMLER VE DALGALAR DERSİNİN 2. ARA SINAV SORU CEVAPLARI

FİZ217 TİTREŞİMLER VE DALGALAR DERSİNİN 2. ARA SINAV SORU CEVAPLARI 1) Gerilmiş bir ipte enine titreşimler denklemi ile tanımlıdır. Değişkenlerine ayırma yöntemiyle çözüm yapıldığında için [ ] [ ] ifadesi verilmiştir. 1.a) İpin enine titreşimlerinin n.ci modunu tanımlayan

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

DERS BİLGİLERİ. D+U+L Saat. Kodu Yarıyıl ELEKTROMAGNETİK TEORİNİN ANALİTİK ESASLARI. EE529 Güz 3+0+0 3 7. Ön Koşul Dersleri. Dersin Koordinatörü

DERS BİLGİLERİ. D+U+L Saat. Kodu Yarıyıl ELEKTROMAGNETİK TEORİNİN ANALİTİK ESASLARI. EE529 Güz 3+0+0 3 7. Ön Koşul Dersleri. Dersin Koordinatörü DERS BİLGİLERİ Ders ELEKTROMAGNETİK TEORİNİN ANALİTİK ESASLARI Kodu Yarıyıl D+U+L Saat Kredi AKTS EE529 Güz 3+0+0 3 7 Ön Koşul Dersleri EE323 Dersin Dili Dersin Seviyesi Dersin Türü Dersin Koordinatörü

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

WLAN Kanalları İçin Bant Durduran Frekans Seçici Yüzey Tasarımı

WLAN Kanalları İçin Bant Durduran Frekans Seçici Yüzey Tasarımı WLAN Kanalları İçin Bant Durduran Frekans Seçici Yüzey Tasarımı 1 İfakat Merve Bayraktar, 2 Nursel Akçam ve 2 Funda Ergün Yardım 1 Gümrük ve Ticaret Bakanlığı, Ankara, Türkiye 2 Gazi Üniversitesi, Ankara,

Detaylı

8.04 Kuantum Fiziği Ders XII

8.04 Kuantum Fiziği Ders XII Enerji ölçümünden sonra Sonucu E i olan enerji ölçümünden sonra parçacık enerji özdurumu u i de olacak ve daha sonraki ardışık tüm enerji ölçümleri E i enerjisini verecektir. Ölçüm yapılmadan önce enerji

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok Gauss Yasası Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok daha kullanışlı bir şekilde nasıl hesaplanabileceği

Detaylı

Binalar Arası Elektromanyetik Dalga Yayılımının Nümerik Modellenmesi. Numerical Modeling of Electromagnetic Wave Propagation Between Buildings

Binalar Arası Elektromanyetik Dalga Yayılımının Nümerik Modellenmesi. Numerical Modeling of Electromagnetic Wave Propagation Between Buildings Özgün Ö., Binalar Arası Elektromanyetik Dalga Yayılımının Nümerik Modellenmesi, Cilt 6, Sayı 11, Syf 5-3, Haziran 016 Gönderim Tarihi: 18.01.017, Kabul Tarihi: 1.03.017 Binalar Arası Elektromanyetik Dalga

Detaylı

Birinci Mertebeden Adi Diferansiyel Denklemler

Birinci Mertebeden Adi Diferansiyel Denklemler Birinci Mertebeden Adi Diferansiyel Denklemler Bir veya daha çok bağımlı değişken, bir veya daha çok bağımsız değişken ve bağımlı değişkenin bağımsız değişkene göre (diferansiyel) türevlerini içeren bağıntıya

Detaylı

2 1 fonksiyonu veriliyor. olacak şekilde ortalama değer teoremini sağlayacak bir c sayısının var olup olmadığını araştırınız. Eğer var ise bulunuz.

2 1 fonksiyonu veriliyor. olacak şekilde ortalama değer teoremini sağlayacak bir c sayısının var olup olmadığını araştırınız. Eğer var ise bulunuz. ANALİZ 1.) a) sgn. sgn( 1) = 1 denkleminin çözüm kümesini b) f ( ) 3 1 fonksiyonu veriliyor. olacak şekilde ortalama değer teoremini sağlayacak bir c sayısının var olup olmadığını araştırınız. Eğer var

Detaylı

İnce Antenler. Hertz Dipolü

İnce Antenler. Hertz Dipolü İnce Antenler Çapları boylarına göre küçük olan antenlere ince antenler denir. Alanların hesabında antenlerin sonsuz ince kabul edilmesi kolaylık sağlar. Ancak anten empedansı bulunmak istendiğinde kalınlığın

Detaylı

1. Hafta Uygulama Soruları

1. Hafta Uygulama Soruları . Hafta Uygulama Soruları ) x ekseni, x = doğrusu, y = x ve y = x + eğrileri arasında kalan alan nedir? ) y = x 3 ve y = 4 x 3 parabolleri arasında kalan alan nedir? 3) y = x, x y = 4 eğrileri arasında

Detaylı

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği ANTENLER Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü Ders içeriği BÖLÜM 1: Antenler BÖLÜM 2: Antenlerin Temel Parametreleri BÖLÜM 3: Lineer Tel Antenler BÖLÜM 4: Halka Antenler

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

ELEKTROMANYETIK ALAN TEORISI

ELEKTROMANYETIK ALAN TEORISI ELEKTROMANYETIK ALAN TEORISI kaynaklar: 1) Electromagnetic Field Theory Fundamentals Guru&Hiziroglu 2) A Student s Guide to Maxwell s Equations Daniel Fleisch 3) Mühendislik Elektromanyetiğinin Temelleri

Detaylı

HATA VE HATA KAYNAKLARI...

HATA VE HATA KAYNAKLARI... İÇİNDEKİLER 1. GİRİŞ... 1 1.1 Giriş... 1 1.2 Sayısal Analizin İlgi Alanı... 2 1.3 Mühendislik Problemlerinin Çözümü ve Sayısal Analiz... 2 1.4 Sayısal Analizde Bilgisayarın Önemi... 7 1.5 Sayısal Çözümün

Detaylı

Elektrik ve Magnetizma

Elektrik ve Magnetizma Elektrik ve Magnetizma 1.1. Biot-Sawart yasası Üzerinden akım geçen, herhangi bir biçime sahip iletken bir tel tarafından bir P noktasında üretilen magnetik alan şiddeti H iletkeni oluşturan herbir parçanın

Detaylı

LİNEER DALGA TEORİSİ. Page 1

LİNEER DALGA TEORİSİ. Page 1 LİNEER DALGA TEORİSİ Giriş Dalgalar, gerçekte viskoz akışkan içinde, irregüler ve değişken geçirgenliğe sahip bir taban üzerinde ilerlerler. Ancak, çoğu zaman akışkan hareketi neredeyse irrotasyoneldir.

Detaylı

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Analiz Cilt 2 Ünite 8-14 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1082 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 600

Detaylı

ENİNE DEMET DİNAMİĞİ. Prof. Dr. Abbas Kenan Çiftçi. Ankara Üniversitesi

ENİNE DEMET DİNAMİĞİ. Prof. Dr. Abbas Kenan Çiftçi. Ankara Üniversitesi ENİNE DEMET DİNAMİĞİ Prof. Dr. Abbas Kenan Çiftçi Ankara Üniversitesi 1 Dairesel Hızlandırıcılar Yönlendirme: mağnetik alan Odaklama: mağnetik alan Alan indisi zayıf odaklama: 0

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı

Bölüm-4. İki Boyutta Hareket

Bölüm-4. İki Boyutta Hareket Bölüm-4 İki Boyutta Hareket Bölüm 4: İki Boyutta Hareket Konu İçeriği 4-1 Yer değiştirme, Hız ve İvme Vektörleri 4-2 Sabit İvmeli İki Boyutlu Hareket 4-3 Eğik Atış Hareketi 4-4 Bağıl Hız ve Bağıl İvme

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 5001

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 5001 Dersi Veren Birim: Fen Bilimleri Enstitüsü Dersin Türkçe Adı: Uygulamalı Matematik Dersin Orjinal Adı: Applied Mathematics Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisansüstü Dersin Kodu:

Detaylı

Şekil 23.1: Düzlemsel bölgenin alanı

Şekil 23.1: Düzlemsel bölgenin alanı Bölüm Belirli İntegral Şekil.: Düzlemsel bölgenin alanı Düzlemde kare, dikdörtgen, üçgen, çember gibi iyi bilinen geometrik şekillerin alanlarını bulmak için uygun formüller kullanıyoruz. Ama, uygulamada

Detaylı

Bölüm 1: Lagrange Kuramı... 1

Bölüm 1: Lagrange Kuramı... 1 İÇİNDEKİLER Bölüm 1: Lagrange Kuramı... 1 1.1. Giriş... 1 1.2. Genelleştirilmiş Koordinatlar... 2 1.3. Koordinat Dönüşüm Denklemleri... 3 1.4. Mekanik Dizgelerin Bağ Koşulları... 4 1.5. Mekanik Dizgelerin

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ 1. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için

Detaylı

Mat Matematik II / Calculus II

Mat Matematik II / Calculus II Mat - Matematik II / Calculus II Çalışma Soruları Çok Değişkenli Fonksiyonlar: Seviye eğri ve yüzeyler, Limit ve süreklilik wolframalpha.com uygulamasında bir fonksiyonun tanım kümesini bulmak için: x

Detaylı

Yer Tabakaları Arasında Elektromagnetik Dalga Yayılımı

Yer Tabakaları Arasında Elektromagnetik Dalga Yayılımı Yer Tabakaları Arasında Elektromagnetik Dalga Yayılımı AH OKTAY* ÖZET: Bu yazıda, tabakalı yeraltı ortamında elektromagnetik dalga yayılımı incelenmektedir. Birinci kısımda, elektromagnetik dalga yayılımmın

Detaylı

İÇİNDEKİLER. iii ÖNSÖZ BÖLÜM 1 TEMEL KAVRAMLAR 1 BÖLÜM 2 LİNEER KISMİ DİFERENSİYEL DENKLEMLER 9

İÇİNDEKİLER. iii ÖNSÖZ BÖLÜM 1 TEMEL KAVRAMLAR 1 BÖLÜM 2 LİNEER KISMİ DİFERENSİYEL DENKLEMLER 9 İÇİNDEKİLER ÖNSÖZ ix BÖLÜM 1 TEMEL KAVRAMLAR 1 1.1. Tanımlar 2 1.2. Diferensiyel Denklemlerin Çözümü (İntegrali) 5 1.3. Başlangıç Değer ve Sınır Değer Problemleri 7 BÖLÜM 2 LİNEER KISMİ DİFERENSİYEL DENKLEMLER

Detaylı

Statik Manyetik Alan

Statik Manyetik Alan Statik Manyetik Alan Amper Kanunu Manyetik Vektör Potansiyeli Maxwell in diverjans eşitliği Endüktans 1 Amper Kanununun İntegral Formu 2 Amper Kanununun İntegral Formu z- ekseni boyunca uzanan çok uzun

Detaylı

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği ANTENLER Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü Ders içeriği BÖLÜM 1: Antenler BÖLÜM 2: Antenlerin Temel Parametreleri BÖLÜM 3: Lineer Tel Antenler BÖLÜM 4: Halka Antenler

Detaylı

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak ya Kullanım Şartları hakkında bilgi almak için

Detaylı

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 4. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

FİZ 216 ELEKTRİK ve MANYETİZMA GRADİYENT DİVERJANS ROTASYONEL (KÖRL) HELMHOLTZ TEOREMİ KOORDİNAT SİSTEMLERİ

FİZ 216 ELEKTRİK ve MANYETİZMA GRADİYENT DİVERJANS ROTASYONEL (KÖRL) HELMHOLTZ TEOREMİ KOORDİNAT SİSTEMLERİ FİZ 216 ELEKTRİK ve MANYETİZMA GRADİYENT DİVERJANS ROTASYONEL (KÖRL) HELMHOLTZ TEOREMİ KOORDİNAT SİSTEMLERİ (del) operatörü, Bir f skaler alanına etkirse: f GRADİYENT Bir A vektör alanı ile skaler çarpılırsa:

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

LYS Y OĞRU MTMTİK TSTİ LYS-. u testte Matematik ile ilgili soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a ve b asal

Detaylı

A A = A 2 x + A 2 y + A 2 z (1) A A. Üç-boyutlu uzayda, iki tane vektörü kartezyen koordinatlarda dikkate alalım: A = Axˆx + A y ŷ + A z ẑ,

A A = A 2 x + A 2 y + A 2 z (1) A A. Üç-boyutlu uzayda, iki tane vektörü kartezyen koordinatlarda dikkate alalım: A = Axˆx + A y ŷ + A z ẑ, Vektör Analizi(Özet) Bir vektörün büyüklüğü(boyu) Birim vektör A A = A 2 + A 2 y + A 2 z (1) A â A (2) İki vektörün skaler(nokta) çarpımı Üç-boyutlu uzayda, iki tane vektörü kartezyen koordinatlarda dikkate

Detaylı

Akışkan Kinematiği 1

Akışkan Kinematiği 1 Akışkan Kinematiği 1 Akışkan Kinematiği Kinematik, akışkan hareketini matematiksel olarak tanımlarken harekete sebep olan kuvvetleri ve momentleri gözönüne almadan; Yerdeğiştirmeler Hızlar ve İvmeler cinsinden

Detaylı

Elektromanyetik Alan Kaynakları (1)

Elektromanyetik Alan Kaynakları (1) (4) Elektrostatik Giriş Elektrostatik zamana bağlı olarak değişen elektrik alanlar için temel oluşturur. Pek çok elektronik cihazın çalışması elektrostatik üzerine kuruludur. Bunlara örnek olarak osiloskop,

Detaylı

Prof. Dr. Abdullah YILDIZ KİŞİSEL BİLGİLER: Adı Soyadı : Abdullah Yıldız Doğum Yeri : Kayseri/Yahyalı Doğum Tarihi:8.1.1951 ÖĞRENİM DURUMU :

Prof. Dr. Abdullah YILDIZ KİŞİSEL BİLGİLER: Adı Soyadı : Abdullah Yıldız Doğum Yeri : Kayseri/Yahyalı Doğum Tarihi:8.1.1951 ÖĞRENİM DURUMU : Prof. Dr. Abdullah YILDIZ KİŞİSEL BİLGİLER: Adı Soyadı : Abdullah Yıldız Doğum Yeri : Kayseri/Yahyalı Doğum Tarihi:8.1.1951 ÖĞRENİM DURUMU : 1972 Lisans, Ankara Üniversitesi Fen Fakültesi 1982 Yüksek Lisans,

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

8.04 Kuantum Fiziği Ders IV. Kırınım olayı olarak Heisenberg belirsizlik ilkesi. ise, parçacığın dalga fonksiyonu,

8.04 Kuantum Fiziği Ders IV. Kırınım olayı olarak Heisenberg belirsizlik ilkesi. ise, parçacığın dalga fonksiyonu, Geçen Derste Kırınım olayı olarak Heisenberg belirsizlik ilkesi ΔxΔp x 2 Fourier ayrışımı Bugün φ(k) yı nasıl hesaplarız ψ(x) ve φ(k) ın yorumu: olasılık genliği ve olasılık yoğunluğu ölçüm φ ( k)veyahut

Detaylı

A. Seçilmiş bağıntılar Zamana bağlı Schrödinger denklemi: Zamandan bağımsız Schrödinger denklemi: Hamilton işlemcisinin konum temsili

A. Seçilmiş bağıntılar Zamana bağlı Schrödinger denklemi: Zamandan bağımsız Schrödinger denklemi: Hamilton işlemcisinin konum temsili A. Seçilmiş bağıntılar Zamana bağlı Schrödinger denklemi: Zamandan bağımsız Schrödinger denklemi: Hamilton işlemcisinin konum temsili Momentum işlemcisinin konum temsili Konum işlemcisinin momentum temsili

Detaylı

KATI CİSİMLERİN BAĞIL İVME ANALİZİ:

KATI CİSİMLERİN BAĞIL İVME ANALİZİ: KATI CİSİMLERİN BAĞIL İVME ANALİZİ: Genel düzlemsel hareket yapmakta olan katı cisim üzerinde bulunan iki noktanın ivmeleri aralarındaki ilişki, bağıl hız v A = v B + v B A ifadesinin zamana göre türevi

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun

Detaylı

ARASINAV SORULARININ ÇÖZÜMLERİ GÜZ DÖNEMİ A A A A A A A

ARASINAV SORULARININ ÇÖZÜMLERİ GÜZ DÖNEMİ A A A A A A A AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ BİTİRME ÖDEVİ I ARASINAV SORULARININ ÇÖZÜMLERİ - 6 GÜZ DÖNEMİ ADI SOYADI :... NO :... A A A A A A A SINAV TARİHİ VE SAATİ : Bu sınav 4 sorudan oluşmaktadır ve sınav

Detaylı

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir.

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. STATIK VE MUKAVEMET 4. Ağırlık Merkezi AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük bir alana etki eden birbirlerine

Detaylı

Hanta-virüs Modelinden Elde Edilen Lojistik Diferansiyel Denklem. Logistic Differential Equations Obtained from Hanta-virus Model

Hanta-virüs Modelinden Elde Edilen Lojistik Diferansiyel Denklem. Logistic Differential Equations Obtained from Hanta-virus Model SDU Journal of Science (E-Journal), 2016, 11 (1): 82-91 Hanta-virüs Modelinden Elde Edilen Lojistik Diferansiyel Denklem Zarife Gökçen Karadem 1,*, Mevlüde Yakıt Ongun 2 1 Süleyman Demirel Üniversitesi,

Detaylı

ýçindekiler Ön Söz xiii Antenler 1.1 1.2 1.3 1.4 1.5 1.6 Temel Anten Parametreleri 27 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.

ýçindekiler Ön Söz xiii Antenler 1.1 1.2 1.3 1.4 1.5 1.6 Temel Anten Parametreleri 27 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2. çindekiler Ön Söz xiii 1 Antenler 1 1.1 Giri 1 1.2 Anten Tipleri 4 1.3 I ma Mekanizmas 7 1.4 nce Tel Antende Ak m Da l m 17 1.5 Tarihsel Geli meler 20 1.6 Multimedya 24 Kaynakça 24 2 Temel Anten Parametreleri

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTROMANYETİK DALGA TEORİSİ VİZE SORULARI :.. OKUL NO ADI SOYADI

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTROMANYETİK DALGA TEORİSİ VİZE SORULARI :.. OKUL NO ADI SOYADI ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTROMANYETİK DALGA TEORİSİ VİZE SORULARI 18.04.2011 OKUL NO :.. ADI SOYADI :.. S-1 z-ekseni boyunca az yönünde 15A akı taşıya bir akı fila a ı mevcuttur. H yi Kartezyen

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

BÖLÜM 12-15 HARMONİK OSİLATÖR

BÖLÜM 12-15 HARMONİK OSİLATÖR BÖLÜM 12-15 HARMONİK OSİLATÖR Hemen hemen her sistem, dengeye yaklaşırken bir harmonik osilatör gibi davranabilir. Kuantum mekaniğinde sadece sayılı bir kaç problem kesin olarak çözülebilmektedir. Örnekler

Detaylı

EEM 335 -ELEKTROMANYETİK DALGALAR

EEM 335 -ELEKTROMANYETİK DALGALAR Karabük Universitesi Elektrik Elektronik Mühendisliği 2014-2015 Güz Dönemi EEM 335 -ELEKTROMANYETİK DALGALAR 2014/2015 Güz ders :Doç. Dr. Habibe Uslu sorumluları :Yrd. Doç. Dr. Ahmet Hayrettin YÜZER Oda

Detaylı

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ 6.2. Laplace Dönüşümü Tanımı Bir f(t) fonksiyonunun Laplace alındığında oluşan fonksiyon F(s) ya da L[f(t)] olarak gösterilir. Burada tanımlanan s; ÇÖZÜM: a) b) c) ÇÖZÜM: 6.3.

Detaylı

İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER

İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER 1.1. Fiziksel Kanunlar ve Diferensiyel Denklemler Arasındaki İlişki... 1 1.2. Diferensiyel Denklemlerin Sınıflandırılması ve Terminoloji...

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

1984 ÖYS A) 875 B) 750 C) 625 D) 600 E) 500

1984 ÖYS A) 875 B) 750 C) 625 D) 600 E) 500 984 ÖYS. + + a a + a + a işleminin sonucu nedir? a A) +a B) a C) +a D) a E) +a a b ab. ifadesinin kısaltılmış biçimi a b + a b + ab a + b A) a b a b D) a b B) a b a + b E) ab(a-b) C) a b a + b A) 87 B)

Detaylı

ELEKTROMANYETİK DALGA TEORİSİ DERS - 5

ELEKTROMANYETİK DALGA TEORİSİ DERS - 5 ELEKTROMANYETİK DALGA TEORİSİ DERS - 5 İletim Hatları İLETİM HATLARI İletim hatlarının tarihsel gelişimi iki iletkenli basit hatlarla (ilk telefon hatlarında olduğu gibi) başlamıştır. Mikrodalga enerjisinin

Detaylı

Gravite alanı belirlemede modern yaklaşımlar

Gravite alanı belirlemede modern yaklaşımlar Gravite alanı belirlemede modern yaklaşımlar Lisansüstü Ders Notları Aydın ÜSTÜN Selçuk Üniversitesi Harita Mühendisliği austun@selcuk.edu.tr Konya, 2016 A. Üstün (Selçuk Üniversitesi) Gravite alanı belirleme

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 4- LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ Matematikte veya hidrolik, dinamik, mekanik, elektrik

Detaylı

Elipsoid Üçgenlerinin Hesaplanması Yedek Hesap Yüzeyi olarak Küre

Elipsoid Üçgenlerinin Hesaplanması Yedek Hesap Yüzeyi olarak Küre Jeodezi 7 1 Elipsoid Üçgenlerinin Hesaplanması Yedek Hesap Yüzeyi olarak Küre Elipsoid yüzeyinin küçük parçalarında oluşan küçük üçgenlerin (kenarları 50-60 km den küçük) hesaplanmasında klasik jeodezide

Detaylı

BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK İlhan AYDIN SIMULINK ORTAMI Simulink bize karmaşık sistemleri tasarlama ve simülasyon yapma olanağı vermektedir. Mühendislik sistemlerinde simülasyonun önemi

Detaylı

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM Yavaş değişen akımların analizinde kullanılacak genel denklem bir kanal kesitindeki toplam enerji yüksekliği: H = V g + h + z x e göre türevi alınırsa: dh d V = dx dx

Detaylı

Bekleme Hattı Teorisi

Bekleme Hattı Teorisi Bekleme Hattı Teorisi Sürekli Parametreli Markov Zincirleri Tanım 1. * +, durum uzayı * +olan sürekli parametreli bir süreç olsun. Aşağıdaki özellik geçerli olduğunda bu sürece sürekli parametreli Markov

Detaylı

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET TİTREŞİM VE DALGALAR Periyodik Hareketler: Belirli aralıklarla tekrarlanan harekete periyodik hareket denir. Sabit bir nokta etrafında periyodik hareket yapan cismin hareketine titreşim hareketi denir.

Detaylı

Kesirli Türevde Son Gelişmeler

Kesirli Türevde Son Gelişmeler Kesirli Türevde Son Gelişmeler Kübra DEĞERLİ Yrd.Doç.Dr. Işım Genç DEMİRİZ Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü 6-9 Eylül, 217 Kesirli Türevin Ortaya Çıkışı Gama ve Beta Fonksiyonları Bazı

Detaylı