İleri Diferansiyel Denklemler

Benzer belgeler
İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

İleri Diferansiyel Denklemler

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

İleri Diferansiyel Denklemler

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

İleri Diferansiyel Denklemler

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

28/04/2014 tarihli LYS-1 Matematik-Geometri Testi konu analizi SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 1 / 31

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR


İleri Diferansiyel Denklemler

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.

Parametrik doğru denklemleri 1

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Ders 10: Düzlemde cebirsel eğriler

13. Karakteristik kökler ve özvektörler

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu

Chapter 1 İçindekiler

ÖSYM. 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz AYT/Matematik

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır?

8.Konu Vektör uzayları, Alt Uzaylar

İÇİNDEKİLER. Bölüm 2 CEBİR 43

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ YAZ OKULU DERS İÇERİGİ. Bölümü Dersin Kodu ve Adı T P K AKTS

HOMOGEN OLMAYAN DENKLEMLER

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

İleri Diferansiyel Denklemler

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir.

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.


EĞİTİM - ÖĞRETİM YILI 10. SINIF MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ

MATEMATÝK GEOMETRÝ DENEMELERÝ

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x.

İleri Diferansiyel Denklemler

Ders 9: Bézout teoremi

Transfer Fonksiyonu. Dürtü yanıtı h[n] olan sisteme x[n]=z n girişi uygulandığında

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

İleri Diferansiyel Denklemler

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

LYS YE DOĞRU MATEMATİK TESTİ

13.Konu Reel sayılar

için doğrudur. olmak üzere tüm r mertebeli gruplar için lemma nın doğru olduğunu kabul edelim. G grubunun mertebesi n olsun. ve olsun.

1994 ÖYS. 6. x, y, z sıfırdan büyük birer tam sayı ve 2x+3y-z=94 olduğuna göre, x in en küçük değeri kaçtır?

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ

VEKTÖR UZAYLARI 1.GİRİŞ

İstatistiksel Mekanik I

Sistem Dinamiği. Bölüm 2- Dinamik Cevap ve Laplace Dönüşümü. Doç.Dr. Erhan AKDOĞAN

12-B. Polinomlar - 1 TEST. olduğuna göre P(x - 2, y + 4) polinomunun katsayılar toplamı kaçtır? olduğuna göre A B kaçtır? A) 78 B) 73 C) 62 D 58 E) 33

çemberi ile O Çemberlerin birbirine göre durumlarını inceleyelim. İlk durumda alalım. olduğu takdirde O2K1

Ortak Akıl MATEMATİK DENEME SINAVI

TEKİRDAĞ SOSYAL BİLİMLER LİSESİ 10. SINIF MATEMATİK DERSİ YILLIK PLANI

Türev Uygulamaları. 9.1 Ortalama Değer teoremi

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2

EĞİTİM ÖĞRETİM YILI. ANADOLU LİSESİ 11.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLLIK PLANI 11.SINIF KAZANIM VE SÜRE TABLOSU

Bölüm 9 KÖK-YER EĞRİLERİ YÖNTEMİ

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER

2000 Birinci Aşama Sınav Soruları

Bir değişkenin bir sabite mümkün olduğu kadar çok yaklaşması durumu ancak onun limitiyle ifade edilebilir.

EĞİTİM-ÖĞRETİM YILI 12. SINIF İLERİ DÜZEL MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ

EĞİTİM ÖĞRETİM YILI. FEN LİSESİ 11.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLLIK PLANI 11.SINIF KAZANIM VE SÜRE TABLOSU

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ

Final sınavı konularına aşağıdaki sorular dahil değildir: 1, 2, 3, 4, 5, 6, 7, 19, 20, 21, 25, 27, 28, 29, 30, 33-b.

MAK 210 SAYISAL ANALİZ

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI

2 1 fonksiyonu veriliyor. olacak şekilde ortalama değer teoremini sağlayacak bir c sayısının var olup olmadığını araştırınız. Eğer var ise bulunuz.

ARASINAV SORULARININ ÇÖZÜMLERİ GÜZ DÖNEMİ A A A A A A A

12.Konu Rasyonel sayılar

6. Ders. Mahir Bilen Can. Mayıs 16, 2016

İkinci Mertebeden Lineer Diferansiyel Denklemler

;] u Y hb* p(a/ > V aaa!a!a!a!!!!!a! BASIN KİTAPÇIĞI

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri

Transkript:

MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret ediniz. Sayfa 1

1. Giriş. LC. LİMİT ÇEMBERLER -düzleminde lineer olmayan sistemlerin analizinde şimdiye kadar kritik noktaların bulunması ve her bir kritik noktanın komşuluğunda sistemin yörüngelerinin nasıl davrandığını inceleme üzerine ağırlık verdik. Bu incelemeler diğer yörüngelerin kritik noktalar civarında, en azından onlara yeterince yakın olanların, nasıl davrandığına ait bir sezgi vermektedir. Yörüngelerin davranışını etkileyen bir diğer önemli olasılık yörüngelerden birinin kapalı bir eğrisi üzerinde olup olmamasıdır. Eğer bu olursa, karşı gelen çözüm geometrik olarak eğrisi üzerinde belli bir periyoduyla dönen bir nokta olarak algılanabilir. Şöyle ki, çözüm vektörü periyodik fonksiyonların bir çifti olacaktır. Yani, her için dir. Eğer böyle bir kapalı eğri varsa, yakın yörüngeler gibi davranmak zorundadır. Olasılıklar aşağıda gösterilmektedir. Yakın yörüngeler ya ye doğru veya den uzağa doğru sarmal olurlar, ya da kendileri kapalı eğrilerdir. Eğer son durum oluşmazsa, diğer bir deyişle izole olmuş kapalı bir eğri ise, bir limit çember olarak adlandırılır. Yakın eğrilerin ye doğru, den uzağa doğru veya hem ye doğru hem de den uzağa doğru sarmal oluşuna göre, eğrisine kararlı, kararsız, veya yarı kararlı bir limit çember denir. Kararlı limit çember Kararsız limit çember Yarı kararlı limit çember Nötral kararlı limit çember En önemli limit çember çeşidi yakın eğrilerin ye doğru iki yönden sarmal olarak yaklaştığı kararlı limit çemberdir. Doğadaki periyodik süreçler çoğu zaman kararlı limit çemberlerle temsil edilirler. Bu nedenle, eğer mevcutsalar, böyle yörüngeleri bulmaya büyük bir ilgi vardır. Maalesef, bunun nasıl yapılacağı veya bir sistemin limit çemberi Sayfa 2

olmadığının nasıl gösterileceği konusunda şaşırtıcı bir biçimde çok az şey bilinmektedir. Bu konuda günümüzde etkin araştırmalar vardır. Biz burada bilinen birkaç şeyi ifade edeceğiz. 2. Limit çemberlerin varlığını gösterme. (1) sisteminin limit çemberi olduğunu göstermek için tarihsel olarak kullanılan temel araç Poincare-Bendixson teoremidir. Poincare-Bendixson Teoremi., ve basit kapalı eğrileri arasındaki sonlu düzlemsel bölge ve, (1) sisteminin vektör alanı olsun. Eğer (i) ve üzerindeki her noktada vektör alanı bölgesinin içine doğru yönlü ise, ve (ii) hiç kritik nokta içermiyorsa, bu durumda (1) sistemi bölgesinde kapalı bir yörüngeye sahiptir. Teoremin hipotezleri Şekil 1 de gösterilmektedir. Matematik analiz konusunda temel bilgi gerektiren teoremin ispatını vermeyeceğiz. Neyse ki, teorem sezgiye kuvvetle hitap eder. Eğer sınırlayan eğrilerin birinin üzerinde başlarsak, hız vektörü nin içine doğru yönlü olduğundan, çözüm nin içine girecektir. Zaman geçtikçe, çözüm asla nin dışına çıkamaz. nin dışına çıkmak için sınır eğrisine yaklaştıkça, hız vektörü içeri doğru yönlü olduğundan, orbiti de kalmaya zorlar. Çözüm asla den çıkmayacağı için, yapabileceği tek şey için bir kritik noktaya yaklaşmak ya da bir kapalı orbite sarmal olmaktır. Fakat, hipotez gereği de hiç kritik nokta yoktur, böylece de kapalı bir orbit vardır. (Bu orbit kararsız bir limit çember olamaz, yukarıda gösterilen diğer üç durumdan biri olmalıdır.) Sayfa 3

Poincare-Bendixson teoremini kullanmak için, eğri bounca hız vektörleri aynı kenara yönlü olacak şekilde kapalı eğriler için vektör alanı aramalıdır. Aşağıdaki örnek onların bulunabileceği bir durumdur. Örnek 1. (2) Şekil 2 ilgili vekör alanının iki çember üzerinde nasıl göründüğünü göstermektedir. Merkezi orijinde yarıçapı 2 olan çember üzerinde vektör alanı içeri doğru, yarıçapı olan çember üzerinde ise dışarı doğru yönlüdür. Bunu ispat etmek için vektör alanını yarıçapı olan çember üzerinde (3) olarak yazarız. (3) denkleminin sağ tarafındaki ilk vektör çembere teğettir; ikinci vektör radyal olarak büyük çemberin içine ve küçük çemberin dışına doğru yönlüdür. Böylece, (2) deki iki vektörün toplamı büyük çember boyunca içeri ve küçük çember boyunca dışarı doğru yönlüdür. Poincare-Bendixson teoreminin iki çember arasındaki yüzük şeklinde bölgelere de uygulanabileceğine belirtmek istiyoruz. Bununla birlikte, bölgesinin sistemin hicbir kritik noktasını içermediğini sağlatmalıyız. noktasının sistemin tek noktası olduğunu göstermeyi ödev olarak bırakıyoruz; bu yüzük şeklindeki bölgenin kritik nokta içermediğini gösterir. Sayfa 4

Yukarıdaki tartışma Poincare-Bendixson teoreminin ye uygulanabileceğini gösterir ve nin kapalı bir orbite sahip olduğu sonucuna varırız. Gerçekten, nin sistemi çözdüğünü göstermek kolaydır. Böylece, kapalı eğrinin geometrik yeri birim çemberdir. Limit çemberin kararlı olduğunun gösterilmesini ve sistemin tek kapalı orbiti olduğunu göstermeyi bir diğer ödev olarak bırakıyoruz. 3. Limit çemberin olmaması durumu. Şimdi dikkatimizi limit çemberin varlığını gösterme probleminin tersine çevirelim. Limit çemberin mevcut olmadığını göstermek için bazen kullanılan iki teorem şunlardır. Bendixson Kriteri. Eğer ve basit bağlantılı (deliksiz) bir bölgesinde sürekli ve nin her noktasında ise (4) sistemi de kapalı bir orbite sahip değildir. İspat. bölgesinde kapalı bir orbitinin varlığını kabul edelim. Green teoremini (normal formunu) kullanarak çelişki elde edelim. Bu teorem, bölgesi basit kapalı eğrisinin iç kısmı olmak üzere, (5) verir. Bu sonuç, bununla birlikte, bir çelişkidir. Çünkü, hipotez gereği, fonksiyonu sürekli ve asla sıfır değerini almaz; böylece, ya pozitif ya da negatiftir ve (5) in sağ tarafı bu nedenle ya pozitif ya da negatiftir. Diğer taraftan, sol taraf sıfır olmak zorundadır. kapalı eğrisi sistemle tanımlanan hız vektör alanına teğettir Bu, nin normal vektörü ile hız vektörü nin ortagonal olması demektir; yani soldaki fonksiyonu özdeş olarak sıfırdır. Sayfa 5

Bu çelişki, nin (4) sisteminin bir kapalı orbitini içerdiği kabulümüzün yanlış olduğu anlamına gelmektedir, ve böylece Bendixson kriteri ispat edilmiş olur. Kritik Nokta Kriteri. Kapalı bir orbit iç bölgesinde bir kritik noktaya sahiptir. Bu cümleyi tersine çevirirsek, ifadenin gerçekten kapalı bir orbitin yokluğu kriteri olduğunu görürüz. Bu kriter, basit bağlantılı bölgesi bir kritik noktaya sahip değilse, bu durumda limit çember içeremez demektedir. Çünkü, eğer içerseydi, Kritik Nokta Kriteri limit çemberin içersinde bir kritik nokta olduğunu söylerdi, ve bu nokta de delik olmadığından ye de ait oludu. Bu teorem limit çemberler, içerisinde kritik nokta olan bölgeleri çevrelerler ile Poincare-Bendixson teoremi limit çemberler, içerisinde kritik nokta olamayan bölgelerde bulunurlar arasındaki farkı dikkatli bir şekilde not edelim. Fark, Poincare-Bendixson teoremindeki bölgelerin her zaman delikli olduğudur; kritik noktalar deliktedir. Örnek 1 bunu göstermektedir. Örnek 2. ve nin hangi değerleri için, sistemi kapalı orbitlere sahiptir. ÇÖZÜM. Bendixson kriteri ile, ise ne olur? Bendixson kriteri hiçbir şey söylemez. LS notlarındaki lineer sistem analizimize dönelim. Sistemin karakteristik denklemi dir. olsun. Bu durumda, ise kökler ters işaretlidir ve orijin bir eyer noktasıdır; ise kökler karmaşık sayılardır ve orijin bir merkez noktasıdır, sistem bir kapalı eğriye sahiptir. Böylece 4. Van der Pol denklemi. Sayfa 6

(6) İkinci mertebeden lineer olamayan önemli bir denklem biçimindedir. Bu denklem, sönüm kuvveti in pozisyona bağlı olduğu (örneğin, kütle yoğunluğu değişken bir viskoz ortam içerisinde hareket ediyor olabilir) ve yay sabiti in yayın ne kadar gerildiğine bağlı olduğu (bu çoğu yaylar için belli ölçüde doğrudur), kütle-yay sistemi için bir model olarak düşünülebilir. (7) (6) denklemi sistemine denktir. Belli koşullar altında, (7) sistemi sadece bir kararlı limit çembere sahiptir. Yani, (6) denklemi sadece bir periyodik çözüme sahiptir ve tüm yakın orbitler için periyodik çözüme yaklaşırlar. Lineard tarafından verilen ve aşağıdaki teoremde genelleştirilen koşullar bu sonucu garantilemektedir. Levinson-Smith Teoremi. Aşağıdaki koşulların sağlandığını kabul edelim. (a) ) çift ve süreklidir, (b) tekdir, için, ve süreklidir, (c) olmak üzere, için (d) olmak üzere, bir sayısı için: Bu durumda, (i) (7) sisteminin orijinde sadece bir kritik noktası vardır; (ii) (7) sisteminin sadece bir karalı bir limit çemberdir. kapalı orbiti (sıfır hariç) vardır ve bu orbit orijin civarında (iii) tüm diğer orbitler (sıfır hariç) için ye sarmal şekilde yaklaşır. Sayfa 7

İspat oldukça zor olduğundan vermiyoruz. Klasik bir uygulama olarak bir boş tüpteki akımı tanımlayan (8) denklemidir. ( sabiti tüp sabitine bağlı olan bir pozitif parametredir.) Denklem sıfırdan farklı sadece bir periyodik çözüme sahiptir. Sezgisel olarak, denklemi lineer olmayan bir kütle yay sistemi olarak düşünün. büyük olduğu zaman, restore eden ve söndüren kuvvetler büyük olur, dolayısıyla in zamana göre azalması gerekir. Fakat küçüldüğü zaman, sönüm negatif olur ve in zamana göre artmasına neden olur. Böylece, çözümün salınım yapması ve denklemin tam olarak bir periyodik çözüme sahip olması makul bir gerçektir. Periyodiklik gösteren olayları modelleyen sistemlerde ortaya çıktığı için, limit çemberlere çok fazla ilgi vardır. Örneğin, ve ikinci dereceden polinomlar olduğu zaman, (1) sisteminin kaç tane limit çembere sahip olduğu bilinmemektedir. 20. yüzyıl ortalarında, tanınmış iki Rus matematikçi maksimum sayının üç olduğuna dair yüz sayfalık bir ispat yayınladı, fakat zor ispatlarında bir boşluk bulundu ve sonucu şüpheli durumda bıraktı; yirmi yıl sonra Çinli matematikçi Mingsu Wang dört limit çembere sahip bir sistem inşa etti. Kullandığı iki polinom hem küçük hem de büyük katsayılar içermektedir; bu nümerik hesabı zorlaştırdığından orbitlerin bir bilgisayar grafiği yoktur. Bazı matematikçiler limit çemberlerin maksimum sayısının dört, bazıları altı olduğu yönünde, diğerleri ise bir maksimum sayının olmadığı yönde, kestirimlerde bulunmaktadırlar. Sağ tarafın ikinci dereceden daha yüksek polinomlar olduğu otonom sistemler için daha bile azı bilinmektedir. Bununla birlikte, ve nin polinomlar olduğu her hangi bir özel sistemde limit çemberlerin sayısının sonlu olduğunu söyleyen genel olarak kabul edilmiş bir ispat vardır. Alıştırma. Bölüm 5D Sayfa 8