TEOG. Matematik ÇÖZÜM KİTAPÇIĞI

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "TEOG. Matematik ÇÖZÜM KİTAPÇIĞI"

Transkript

1 TEOG ÇÖZÜM KİTAPÇIĞI

2 Deneme. (Çarpanlar ve Katlar) EKOK (0,60) 0 Bu araçlar ilk defa 0 saniye dakika sonra yan yana gelirler.. (Üslü İfadeler) ^0, h c m c m olduğundan geriye km yol. (Çarpanlar ve Katlar) EBOB (0,) 6 0 ve sayılarını tam bölen en büyük doğal sayı 6 olduğundan rakamları toplamı dir. kalmıştır.. (Üslü İfadeler). (Çarpanlar ve Katlar) EBOB (A,B). A ve B doğal sayılarının en büyük ortak böleni dir. Bir kenarının uzunluğu cm olan eşkenar üçgenlerden oluşan şeklin çevre uzunluğu.. cm. (Üslü İfadeler) ^0h ^ h 0 x 0 x ise ise x bulunur.. (Üslü İfadeler) c x y m 6. (Üslü İfadeler) c m 06,. 00 ^ h 7 0. (Üslü İfadeler) 0,000. 0,. 0,. 0 x. 0 a olduğundan x, ve a tür. 0, y. 0 b olduğundan y 6 ve b dir. b ve a olduğundan b < a ( > ) ifadesi yanlıştır. y 6 ve x, olduğundan x < y (, < 6) ifadesi doğrudur. x + y < (, + 6 > ) ifadesi yanlıştır. O hâlde I ve III yanlıştır.. (Üslü İfadeler) Bir kişiye 7 tane fındık düşer.... a 7. (Üslü İfadeler) 6 0 A. ^ h.. A sayısının yarısı 0 bulunur c ise 6 tür. a.b ( ). (-) 6 b m Deneme

3 Deneme. (Kareköklü İfadeler) 7 7 Tahtanın bir kenarının uzunluğu 7 metredir. 7. (Kareköklü İfadeler),, 6 olduğundan ABC dik üçgeninin çevre uzunluğu cm. (Kareköklü İfadeler).. cm uzunluğundaki ip cm uzunluğunda eş parçalara ayrıldığında parça elde edilir.. (Kareköklü İfadeler) (Kareköklü İfadeler) (Kareköklü İfadeler) 6 6, 7 olduğundan < < 6 < 7 < 7 < Mehmet in aldığı karpuzun ağırlığı kilogram cinsinden 7 olabilir.. (Kareköklü İfadeler). T.. T. T 0. (Kareköklü İfadeler) APRS karesinin alanı M olduğuna göre AS AP 7 cm dir. AS AP 7 cm olduğundan AD cm dir. A(ABCD) AD.. AB AB cm dir. AP + PB 7 + PB AB PB cm AB 6. (Kareköklü İfadeler) 0,, 6 ve0say lar rasyoneldir. 00 0, 0 say s rasyonel say de ildir. 0 Deneme

4 Deneme. (Çarpanlar ve Katlar) EKOK (6,) 6 ve sayıları ile kalansız bölünebilen sayılar, 6,, 7, 0, 0,... olduğundan üç basamaklı en küçük doğal sayı 0 dir. O hâlde rakamlarından biri 6. (Üslü İfadeler) c m. c m c m. c m. c m c. m (Çarpanlar ve Katlar) EBOB (0,6) 0 6 ve 7 olduğundan bu parçaların sayısı en az (Üslü İfadeler) Kare şeklindeki bahçenin çevre uzunluğu Kare şeklindeki bahçenin bir kenar uzunluğu m dir. m dir. Bahçenin alanı m. (Çarpanlar ve Katlar) olduğundan a, b ve c dir. a+b+c + +. (Üslü İfadeler) + : (Üslü İfadeler). 7.. (Üslü İfadeler) ^ h. ^. h (Üslü İfadeler) 0 dir (Üslü İfadeler) Neptün gezegeninin güneşe uzaklığının bilimsel gösterimi km,0.0 km Deneme

5 Deneme. (Kareköklü İfadeler) ve 00 0 olduğundan rasyonel, 0 olduğundan irrasyoneldir. 7. (Kareköklü İfadeler) Karenin bir kenarının uzunluğu cm. (Kareköklü İfadeler) (Kareköklü İfadeler) (Kareköklü İfadeler) < < 6 ise 7 < < olduğundan A7, B, C ve D0. (Kareköklü İfadeler). (Kareköklü İfadeler) A cm D cm cm B E cm C cm cm F cm ABCD karesinin alanı cm ise BC cm G EFGC karesinin alanı cm ise EC cm. (Kareköklü İfadeler) BE EC BC olduğundan BE 6 cm 6. BEF üçgeninin alanı cm 0. (Kareköklü İfadeler) 6. (Kareköklü İfadeler) abb... c ab.. c.. 6 (Tam kare sayı).. (Tam kare sayı değil) (Tam kare sayı) (Tam kare sayı) Deneme

6 Deneme. (Çarpanlar ve Katlar) EBOB (,0) olduğundan bu gruptaki çocuk sayısı en fazla olabilir. 6. (Üslü Sayılar) ^0, h. ^0, h. 0 0 ^, h , (Çarpanlar ve Katlar) B tam sayısı hem hem de in bir katı olduğundan en az A tam sayısı en az, C tam sayısı en az dir. O hâlde A + B + C (Üslü Sayılar) D G C E F N K. (Çarpanlar ve Katlar) Sayının ve ile kalansız bölünebilmesi için ve in ortak katı olan. 0 a kalansız bölünebilmesi gerekir. 0, 0, 0,... olduğundan 0 sayısına en yakın ve 0 den küçük olan en küçük ortak kat 0 dir. O hâlde 0 0 A ABCD karesinin bir kenar uzunluğu cm, BLKN karesinin bir kenar uzunluğu cm ve EFCG karesinin bir kenar uzunluğu cm dir. O hâlde FN (+) cm B L. (Üslü İfadeler). (Üslü İfadeler) ^0, h c m c m 0. (Üslü İfadeler) (Üslü İfadeler) 0. (Üslü İfadeler) ^ h. ^ h ^ h 6 ^ h. ^ h ^ h A B A sayısı B sayısının 7 7 katıdır. 6 Deneme

7 Deneme. (Üslü İfadeler) 6. (Kareköklü İfadeler) 6,, 0 00,, ile 00 arasında 7 tane tam kare sayı vardır. Oluşturulan dikdörtgenin çevresinin uzunluğu. ( ). 6 6 cm 7. (Kareköklü İfadeler) ve 6 6 olduğundan < 0 < 6. (Kareköklü İfadeler) Çevre uzunluğu en büyük olan II numaralı dikdörtgendir.. (Kareköklü İfadeler) sayısının yaklaşık değeri bilinirse sayısının yaklaşık değeri bulunabilir.. (Kareköklü Sayılar) ve 6 6 olduğundan a+b toplamı 7, ve olabilir. olamaz.. (Kareköklü İfadeler). (Kareköklü İfadeler) : : O hâlde II. ve IV. işlemlerin sonuçları birbirine eşittir.. (Kareköklü İfadeler) sayısı sayısı ile çarpılırsa bir tam sayı Deneme 0. (Kareköklü İfadeler) 7 ve 6 olduğundan m tam sayısı ile 6 tam sayıları arasındadır < 6 olduğundan tane m tam sayısı vardır. 7

8 Deneme. (Çarpanlar ve Katlar) EKOK (,) olduğundan in üç basamaklı en küçük katı 0, den küçük en büyük katı 0 tır. 0, 0,, 0, 6, 0,, 0,, 0 olduğuna göre 0 tane doğal sayı vardır. 6. (Üslü İfadeleer) a ^0, h a 000 c m 0 a c m c m a. (Çarpanlar ve Katlar) EKOK (6, ) olduğundan ün 00 den küçük en büyük katı dir. boncuk arttığı için kutuda en çok + boncuk vardır.. (Çarpanlar ve Katlar) 7. (Üslü İfadeler) x. x 6 ^ h. ^ h x + x + x 0 x 6 Aralarında asal iki doğal sayının EKOK u bu doğal sayıların çarpımıdır olduğundan bu iki doğal sayının toplamı olamaz.. (Üslü İfadeler) Alanı 0 cm ve kısa kenar uzunluğu cm olan dikdörtgenin uzun kenar uzunluğu 0 0 cm dir. Dikdörtgenin çevre uzunluğu. (0 + ). 6 cm dir. 6 Karenin bir kenar uzunluğu alanı 6 ( ) cm. (Üslü İfadeler) 0, cm dir. Karenin kilogram 000 gram olduğundan karıncanın beyin ağırlığının kilogram olarak bilimsel gösterimi (Üslü İfadeler). (Üslü İfadeler) ^h 0. (Üslü İfadeler). (Üslü İfadeler) kg 6 kg D. O. x c m 7 6. & A( ABC) 6... AKLMN ( )... L sirke x L sirke 7. Deneme

9 Deneme. (Kareköklü İfadeler) (Kareköklü İfadeler) 6. (Kareköklü İfadeler). 6 olduğundan 6 nın karekökü bir tam sayı değildir.. olduğundan nin karekökü bir tam sayı değildir.. olduğundan ün karekökü bir tam sayı değildir olduğundan 6 nın karekökü bir tam sayıdır. 7. (Kareköklü İfadeler) ,, 6 olduğundan a 00 0 ve b 6 a + b 0 +. (Kareköklü İfadeler) (Kareköklü İfadeler) O hâlde ve sayılarının çarpımı 60 eder.. (Kareköklü İfadeler) k 70 k k k. (Kareköklü İfadeler) olduğundan x 0 ve y x. y 0. 0 olabilir. 0. (Kareköklü İfadeler) A yerine,, 6, 7,,, 0 tam sayıları yazılabilir. O hâlde A yerine 7 tane tam sayı yazılabilir. Deneme

10 Deneme. (Çarpanlar ve Katlar) EKOK(,0) 0 tır., 0 +,... Güllerin sayısı 0 ile 0 arasında olduğundan sepette gül vardır. 6. (Üslü İfadeler) 0 ^ h + ^ h ^ h ^ h+ ^h ^ h + 0 O hâlde C seçeneğindeki işlemde hata yapılmamıştır.. (Çarpanlar ve Katlar) İstenen sayı ve un ortak katlarından fazla olmalıdır. EKOK(,) 6 6 +, olduğundan (Üslü İfadeler) Alanı 6 cm olan karesel bölgenin bir kenar uzunluğu 6 cm dir. Karesel bölgenin çevre uzunluğu cm. (Çarpanlar ve Katlar) 0.. ve 0.. olduğundan a. (Üslü İfadeler) ,., Ali, 6 fındık yemiştir. Geriye 00 6 fındık kalmıştır.. (Üslü İfadeler) ^ h + ^ ^ hh + ^ h ^ h ^ ^ hh + + ^h + ^ h ^ h ^h. (Üslü İfadeler) dakika 60 saniyedir. Işık 60 saniyede 60 x ,. 0 7 km yol alır.. (Üslü İfadeler) 0.. istenen sayıyı bulmak için sayısından sayısını çıkarmalıyız. ^h 0. (Üslü İfadeler) ^ h. ^6. h sayısı ile çarpılırsa bir tam sayı elde edilir. Deneme

11 Deneme. (Üslü İfadeler) a : b : :. a. b.. a b a + b (Kareköklü İfadeler) 7 ve sayıları irrasyonel sayıdır. 7. (Kareköklü İfadeler) A... B : : A : B : O hâlde a : b en büyüktür.. (Kareköklü İfadeler). (Kareköklü İfadeler) a a a a. a a a 0 0a 0 a. (Kareköklü İfadeler) Dikdörtgenin alanı 6 cm olduğundan AB. BC 6 6. BC 6 ise BC cm olduğundan 6 sayısına karşılık gelen nokta K olabilir.. (Kareköklü İfadeler) A( ABCD) 6. 6 A( PRST) (Kareköklü İfadeler) (Kareköklü İfadeler).. Alan. Alan cm. (Kareköklü İfadeler) Alan. Alan cm 60 sayısı 7 ile arasındadır. Dikdörtgenin alanı cm azalmıştır. Deneme

12 Deneme 6. (Çarpanlar ve Katlar) P ve R sayılarının en büyük ortak böleni a. b. (Çarpanlar ve Katlar) EKOK (, ) sayısının üç basamaklı en küçük katı. 0'dir. Kalan olduğundan A sayısı (Üslü İfadeler) a.. c m 6 a a 6'dır... 7 b.. b b b 7'dir. a + b (Çarpanlar ve Katlar) Aralarında asal iki doğal sayının EBOB'u 'dir. Bu iki sayının EKOK'u 67 66'dır. İki sayının çarpımı EBOB ile EKOK'ların çarpımı olduğundan 66 Çarpımı 66 ve aralarında asal olan iki doğal sayının toplamı en az (Çarpanlar ve Katlar) EBOB (, ) 7. (Üslü İfadeler), x 0 6 sayısı bilimsel gösterimdir.. (Üslü İfadeler) 6 $ $. (Üslü İfadeler) Bahçenin etrafına, köşelerine ve içerisine eşit aralıklarla 0 fidan dikilir.. (Üslü İfadeler) (Üslü İfadeler) ABCD karesinin alanı ( 6 ) cm dir. VYZT dikdörtgenin alanı. 6. cm dir. EFGH dikdörtgeninin alanı cm dir. PRST dikdörtgeninin alanı. 6. cm dir. KLMN dikdörtgeninin alanı.. cm dir. Deneme 6

13 Deneme 6. (Üslü İfadeler) (Kareköklü İfadeler), 7 olduğundan kedilerin kütlesi kilogram cinsinden olabilir.. (Üslü İfadeler) ^ 0, h. ^ 0, h. ^ 0,h A c m$ c m$ c m A c m A ^ h A A 7. (Kareköklü İfadeler) (Kareköklü İfadeler) 6, 0 0, 7 II ve III numaralı karelerin kenar uzunluğu tam sayı değildir.. (Kareköklü İfadeler) (Kareköklü İfadeler) 6.. (Kareköklü İfadeler) rasyonel sayıdır.. (Kareköklü İfadeler) Alanı m olan kare şeklindeki bahçenin bir kenarı mdir '. Bahçenin etrafına sıra tel çekileceğinden telin uzunluğu. mdir '. Deneme 6 0. (Kareköklü İfadeler)

14 Deneme 7. (Çarpanlar ve Katlar) EBOB (, 7) 6 dır., 7 7 olduğundan en az poşete ihtiyaç vardır. 6 6 Bir poşetin maliyeti TL olduğuna göre patateslerin tamamı en az 0. 0 TL ye doldurulabilir. 7. (Üslü İfadeler) x ^0,h 6 c 0 x m x c m c m x. (Çarpanlar ve Katlar) EKOK (6,) 0 dur. 0, 60, 0, 0, 0, 0, 0 olmak üzere 6 ve ile kalansız bölünebilen 00 den küçük 6 tane doğal sayı vardır.. (Üslü İfadeler) : ,. 0. (Çarpanlar ve Katlar) EBOB (, 60) tür., 60 olduğundan bahçenin köşelerine ve çevresine en az. ( + ). 6 ağaç gereklidir.. (Çarpanlar ve Katlar) Sayılardan biri., diğeri. 6 Bu sayıların toplamı + 6. (Üslü İfadeler) a 6 a isea 'tür. b iseb 'tür. a+ b ( ) + ( ) 7 0. (Üslü İfadeler) Şeklin çevresinin uzunluğu cm. (Üslü İfadeler). 7 ^ h. ^ h (Üslü İfadeler) $ ^ h $ 6. (Üslü İfadeler) ^0, h :(0,) c m c m : c m c m c m c m 6 6 c m 6 Deneme 67

15 Deneme 7. (Üslü İfadeler) (Kareköklü İfadeler) A 7 cm E cm B cm F H P R cm D S C AB cm EFHB karesinin alanı 6 cm ise EB 6 cm PRSD karesinin alanı cm ise PD cm. (Kareköklü İfadeler) 0 6. AE AB EB 7 cm dir. AP AD PD cm dir. AP + AE + 7 cm. (Kareköklü İfadeler) 0 sayısı ile tam sayıları arasındadır. 00 sayısı ile tam sayıları arasındadır. a nın alabileceği tam sayılar, 6, 7,,, 0,,,, olmak üzere 0 tanedir.. (Kareköklü İfadeler) (Kareköklü İfadeler) a 6.a 7 a.. a. 7. (Kareköklü İfadeler) sayısının karekökü bir tam sayı a. a. 7 a. a a 0. (Kareköklü İfadeler) (Kareköklü İfadeler) Deneme 67 sayısı ile tam sayıları arasındadır. sayısı ile tam sayıları arasındadır. Sıralama < < şeklindedir

16 Deneme. (Çarpanlar ve Katlar) En küçük boyutlu kareniin bir kenarı EKOK (0, ) 0 cm dir. Karenin alanı cm dir. Bir dikdörtgenin alanı. 0 0 cm dir. 00 Kare oluşturmak için gerekli kâğıt parça sayısı 6 ' dr (Üslü İfadeler) -a -a -a - a. (Çarpanlar ve Katlar) ile bölündüğünde kalanını veren sayılar, 7,, 7,, 7,,... 6 ile bölündüğünde kalanını veren sayılar,,,, 7,,... Ortak olan en küçük sayı 7'dir. EKOK (, 6) 0 olduğundan en büyük iki basamaklı sayı dir. 7 sayısının rakamları toplamı + 7. (Çarpanlar ve Katlar) İki televizyonda çizgi filmler EKOK (, 60) 0 dakika saat arayla birlikte yayınlanırlar. Tekrar birlikte saat te çizgi film yayınlarlar. 7. (Üslü İfadeler) 0,0000,. 0. (Üslü İfadeler) (Çarpanlar ve Katlar) 6. : Sayılardan biri, diğeri. (Üslü İfadeler) Boyalı şeklin çevre uzunluğu cm. (Üslü İfadeler) ^0, h c m c m (Üslü İfadeler) 6. ( ). ( ) sayısı basamaklıdır. 6 Deneme

17 Deneme. (Üslü İfadeler) x : 7 x : ( ) x. 6 x x ise x dir. y : 7 y : ( ) 7 y. 7 y y dir. x + y + 6. (Üslü İfadeler) - 0, (Kareköklü İfadeler) Eşkenar üçgenin çevre uzunluğu cm' dir. KL 6 cm 7. (Kareköklü İfadeler) 7 : : : 0 0 :... (Kareköklü İfadeler) 7 sayısı ile tam sayıları arasındadır. - 7 sayısı ile tam sayıları arasındadır.. (Kareköklü İfadeler). (Kareköklü İfadeler) a. ' dir. 6.. adr ' adr ' , 6, 6 ve sayılarının sıralanışı < 6 < < 6 6 şeklindedir.. (Kareköklü İfadeler) (Kareköklü İfadeler) a,b 0,c a.c. 6 b ^a+ b h.c _ + i. b+ c a ^a- ch. b _ - i.. 0 Deneme 0. (Kareköklü İfadeler) x y olduğundan x + y en az + 7 7

18 Deneme. (Çarpanlar ve Katlar) 00. olduğundan 00 sayısının asal çarpanları ve tir. 00. olduğundan 00 sayısının asal çarpanları ve tir. 0.. olduğundan 0 sayısının asal çarpanları, ve tir. 0. olduğundan 0 sayısının asal çarpanları ve tir. 6. (Üslü İfadeler) 0,6 x 0 + x0 + 6x0 7. (Üslü İfadeler) (Çarpanlar ve Katlar) EKOK (, 0) 60 tır. Bu iki otobüs 60 gün sonra tekrar birlikte sefere çıkarlar.. (Üslü İfadeler) sayısı basamaklıdır.. (Çarpanlar ve Katlar) ve sayılarını birlikte bölen sayı sadece dir. Bu nedenle EBOB (, ) dir. Bu iki sayının den başka ortak böleni olmadığı için ile sayıları aralarında asaldır. Bu iki sayının EKOK u. 60 dur.. (Üslü İfadeler) Her kutuda tane defter. (Çarpanlar ve Katlar) A EBOB (6, 6) B EKOK (0, 7) 60 olduğundan A + B (Üslü İfadeler) Şeklin çevresinin uzunluğu 6.. cm. (Üslü İfadeler). (Üslü İfadeler) a - b - c olduğundan sıralama a < b < c şeklindedir. Deneme

19 Deneme. (Üslü İfadeler) 7. (Kareköklü İfadeler) a, b ve c olduğundan a b c (Kareköklü İfadeler) 6... ( irrasyonel) ( irrasyonel).. 6( rasyonel).. 6 ( irrasyonel). (Kareköklü İfadeler) (Kareköklü İfadeler) O noktası ile B noktası arası m, O noktası ile C noktası arası m dir. < 0 < 6 < 0 < olduğundan karınca B ile C noktaları arasında. (Kareköklü İfadeler) < 00 < - < - 00 < - - < - 00 < - olduğundan m, n dir. m + n ( ) + ( ). (Kareköklü İfadeler) (Kareköklü İfadeler) Dik üçgenin alanı cm 0. (Kareköklü İfadeler) iin ç ' tür. iin ç dir. 7 iin ç ' dir. iin ç ' dur. Deneme

20 Deneme 0. (Çarpanlar ve Katlar) EKOK (, ) tir. Ali Bey ile Can Bey in spor salonunda ikinci kez karşılaşmaları ilkinden gün sonra 6. (Üslü İfadeler),x0 0x0 6,x0 x0,x0,x0,x0 0,x0. (Çarpanlar ve Katlar) EBOB (, 60) dir. 60, olduğundan satıcı en az + parça elde eder.. (Çarpanlar ve Katlar) EKOK (6, ) dir. in 0 ile 00 arasındaki katı. 0 dır. Tüm karanfillerin sayısı 0 + tür.. (Çarpanlar ve Katlar) olduğundan 6 sayısı 0 sayısı ile aralarında asaldır. 7. (Üslü İfadeler) ^0,h c 0 c m m m m m 6 6 m - c m c m m-. (Üslü İfadeler) (Üslü İfadeler) 0... c 6 -a a m 6- a ise a-' tür c m -b.. -b - bise b-' dir. a+ b (- ) + (- ) - b. (Üslü İfadeler) ABCD karesinin alanı ( ) 6 ( ) 6 cm KLMN karesinin alanı ( ) ( ) cm A ( ABCD) A( KLMN) 0. (Üslü İfadeler) Deneme 0

21 Deneme 0. (Üslü İfadeler) c- m 7 c- m ^- 0, h c m ^- 0, h c m 6 6. (Kareköklü İfadeler) ^rasyonelh _ i ( irrasyonel) _ i ( rasyonel) ^irrasyonelh 7. (Kareköklü İfadeler). (Üslü İfadeler) (.. ) 0 - ^-6h - ^-6h - ^-6h. a a +. 7 a + a. (Kareköklü İfadeler) 000 den küçük en büyük tam kare doğal sayı 6 dir. 6 sayısının karekökü 6 ' dir. sayısının rakamları toplamı + tür.. (Kareköklü İfadeler) Dikdörtögenin alanı. 6 cm dir. Karenin bir kenarının uzunluğu 6 cm. (Kareköklü İfadeler) olduğundan sayısı, sayısına daha yakındır.. (Kareköklü İfadeler) A _ + i. _ - i B _ 7 + i. _ 7 - i A- B -. (Kareköklü İfadeler) < x < 0 Deneme 0 < x < 0 olduğundan x yerine 7,, tam sayıları yazılabilir. x yerine yazılabilecek tam sayıların toplamı (Kareköklü İfadeler)

ÇARPANLAR VE KATLAR I sayısının asal çarpanlarına ayrılmış hâli aşağıdakilerden A) B) C) D)

ÇARPANLAR VE KATLAR I sayısının asal çarpanlarına ayrılmış hâli aşağıdakilerden A) B) C) D) 8. Sınıf MATEMATİK ÇARPANLAR VE KATLAR I. Aşağıdakilerden hangisi 6 nın çarpanlarından biridir? A) 3 B) 6 C) 8 D) TEST. 360 sayısının asal çarpanlarına ayrılmış hâli aşağıdakilerden hangisidir? A) 3. 3.

Detaylı

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir?

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir? 8. SINIF. Üslü Sayılar - = T olduğuna göre T kaçtır? A) - B) - C) D) 7 TEST.. 0 - işleminin sonucu kaç basamaklı bir sayıdır? A) B) C) 6 D) 7. n =- 7 için n ifadesinin değeri kaçtır? A) - 8 B) - C) 8 D)

Detaylı

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol:

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol: EBOB - EKOK En Büyük Ortak Bölen (Ebob) İki veya daha fazla pozitif tamsayıyı aynı anda bölen pozitif tamsayıların en büyüğüne bu sayıların en büyük ortak böleni denir ve kısaca Ebob ile gösterilir. Örneğin,

Detaylı

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI ÜNİVERSİTEYE GİRİŞ SINAV SORULARI 1. 1999 ÖSS a, b, c pozitif gerçel (reel) sayılar olmak üzere a+ b ifadesindeki her sayı 3 ile çarpılırsa aşağıdakilerden hangisi elde c edilir? 3 a+ b A) B) c a+ 3b C)

Detaylı

90 sayısının asal çarpanlarının toplamı kaçtır?

90 sayısının asal çarpanlarının toplamı kaçtır? 90 sayısının asal çarpanlarının toplamı kaçtır? 2 a.3 b.5 c =750 olduğuna göre a+b-c kaçtır? 25 ve 41 i böldüğünde 1 kalanını veren en büyük doğal sayı kaçtır? 6 ve 8 e bölünebilen iki basamaklı en büyük

Detaylı

ÇARPANLAR ve KATLAR ASAL SAYILAR. Örnek-2 : 17 ve 27 sayılarının asal sayı olup olmadığını inceleyelim.

ÇARPANLAR ve KATLAR ASAL SAYILAR. Örnek-2 : 17 ve 27 sayılarının asal sayı olup olmadığını inceleyelim. SINIF ÇARPANLAR ve KATLAR www.tayfunolcum.com 8.1.1.1: Verilen pozitif tam sayıların çarpanlarını bulur; pozitif tam sayıları üslü ifade ya da üslü ifadelerin çarpımı seklinde yazar. Çarpan ( bölen ) Her

Detaylı

12-A. Sayılar - 1 TEST

12-A. Sayılar - 1 TEST -A TEST Sayılar -. Birbirinden farklı beş pozitif tam sayının toplamı 0 dur. Bu sayılardan sadece ikisi den büyüktür. Bu sayılardan üç tanesi çift sayıdır. Buna göre bu sayılardan en büyüğü en çok kaç

Detaylı

Öğrenci Seçme Sınavı (Öss) / 15 Haziran Matematik I Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 15 Haziran Matematik I Soruları ve Çözümleri Öğrenci Seçme Sınavı (Öss) / 15 Haziran 008 Matematik I Soruları ve Çözümleri 1. ( ).( 4 1 + ) 1 işleminin sonucu kaçtır? A) 7 B) 4 C) 1 D) 4 E) 7 Çözüm 1 ( ).( 4 1 + ) 1 = 7 ( 1).( ) = 1 7 1 = 7 ( ).

Detaylı

Ö.S.S MATEMATĐK I SORULARI ve ÇÖZÜMLERĐ

Ö.S.S MATEMATĐK I SORULARI ve ÇÖZÜMLERĐ Ö.S.S. 008 MATEMATĐK I SORULARI ve ÇÖZÜMLERĐ 1. ( ).( 4 1 + ) 1 işleminin sonucu kaçtır? A) 7 B) 4 C) 1 D) 4 E) 7 Çözüm 1 ( ).( 4 1 + ) 1 7 ( 1).( ) 1 7 1 7 ( ). -7 1. 4,9 0,49 0,1 + işleminin sonucu kaçtır?

Detaylı

KC00-SS.08YT05. Kolay Temel Matematik. Üniversite Haz rl k 1. 8 ( 3 + 2) 6. 3! 3 ( 3 3)": ( 3) x = 3 ve y = 2 3. ( 5) + ( 7) (+2) + 4

KC00-SS.08YT05. Kolay Temel Matematik. Üniversite Haz rl k 1. 8 ( 3 + 2) 6. 3! 3 ( 3 3): ( 3) x = 3 ve y = 2 3. ( 5) + ( 7) (+2) + 4 Üniversite Haz rl k Sözcükte Do al ve Say lar Söz Öbeklerinde ve Tam Say lar Anlam - I - I Kolay Temel Matematik. 8 ( + ) A) 7 B) 8 C) 9 D) 0 E) 6.! ( )": ( ) A) B) 0 C) D) E). 7. + 5 A) 6 B) 7 C) 8 D)

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 10 Mayıs Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 10 Mayıs Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Đlkbahar / Sayısal II / 0 Mayıs 009 Matematik Soruları ve Çözümleri. ( ) 4 işleminin sonucu kaçtır? A) B) C) 4 D) E) 6 Çözüm ( ) 4 ( ) 4 4 6.

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 6. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 6. SINIF TEST SORULARI 1. a ve b birer pozitif tamsayıdır. 12. a = b³ olduğuna göre, a + b toplamının alabileceği en küçük değer kaçtır? A) 21 B) 23 C) 24 D) 25 3. Beş kişinin yaşlarının aritmetik ortalaması 24 tür. Aşağıda

Detaylı

ÖSYM M TEMEL MATEMATİK TESTİ YGS / MAT. Diğer sayfaya geçiniz. 1. Bu testte 40 soru vardır.

ÖSYM M TEMEL MATEMATİK TESTİ YGS / MAT. Diğer sayfaya geçiniz. 1. Bu testte 40 soru vardır. TEMEL MATEMATİK TESTİ 2011 - YGS / MAT M9991.01001 1. Bu testte 40 soru vardır. 1. 2. 2. Cevaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. işleminin sonucu kaçtır?

Detaylı

TEOG HAZIRLIK. Musa BOR

TEOG HAZIRLIK. Musa BOR TEOG HAZIRLIK sınıf. Musa BOR AFG Matbaa Yayıncılık Kağ. İnş. Ltd. Şti. Buca OSB, BEGOS 2. Bölge 3/20 Sk. No: 17 Buca-İZMİR Tel: 0.232.442 01 01-442 03 03 Faks: 442 06 60 Bu kitabın tüm hakları AFG Matbaa

Detaylı

TEST. Çarpanlar ve Katlar. 1. Asal çarpanların çarpımı olan sayı kaçtır? sayısının kaç tane birbirinden farklı asal çarpanı vardır?

TEST. Çarpanlar ve Katlar. 1. Asal çarpanların çarpımı olan sayı kaçtır? sayısının kaç tane birbirinden farklı asal çarpanı vardır? Çarpanlar ve Katlar 8. Sınıf Matematik Soru Bankası TEST. Asal çarpanların çarpımı..5 olan sayı kaçtır? A) 40 B) 480 C) 60 D) 70 4. 60 sayısının kaç tane birbirinden farklı asal çarpanı vardır? A) B) C)

Detaylı

4 BÖLÜNEBÝLME KURALLARI ve BÖLME ÝÞLEMÝ

4 BÖLÜNEBÝLME KURALLARI ve BÖLME ÝÞLEMÝ ÖLÜNÝLM KURLLRI ve ÖLM ÝÞLMÝ YGS MTMTÝK. Rakamları farklı beş basamaklı 8y doğal sayısı 3 ile tam bölünebildiğine göre, + y toplamı kaç farklı değer alabilir?(). ltı basamaklı y tek doğal sayısının hem

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal II / 16 Kasım Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal II / 16 Kasım Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Sonbahar / Sayısal II / 6 Kasım 008 Matematik Soruları ve Çözümleri. a 3 < 5 7 eşitsizliğini sağlayan en küçük a doğal sayısı kaçtır? A) 4 B)

Detaylı

MATEMATİK ASAL ÇARPANLARA AYIRMA. ÖRNEK 120 sayısını asal çarpanlarına ayırınız. ÖRNEK 150 sayısının asal çarpanları toplamını bulunuz.

MATEMATİK ASAL ÇARPANLARA AYIRMA. ÖRNEK 120 sayısını asal çarpanlarına ayırınız. ÖRNEK 150 sayısının asal çarpanları toplamını bulunuz. MATEMATİK ASAL ÇARPANLARA AYIRMA A S A L Ç A R P A N L A R A A Y I R M A T a n ı m : Bir tam sayıyı, asal sayıların çarpımı olarak yazmaya, asal çarpanlarına ayırma denir. 0 sayısını asal çarpanlarına

Detaylı

TEOG SINAV SORUSU OKYANUS KOLEJLERİ SINAV SORUSU MATEMATİK MATEMATİK MATEMATİK. 1. (0,5) 4 ifadesi aşağıdakilerden hangisine eşittir? 1.

TEOG SINAV SORUSU OKYANUS KOLEJLERİ SINAV SORUSU MATEMATİK MATEMATİK MATEMATİK. 1. (0,5) 4 ifadesi aşağıdakilerden hangisine eşittir? 1. 1. (0,5) 4 ifadesi aşağıdakilerden hangisine eşittir? A) & 1 ½ B) > 1 & C) 16 A) 625 1. ù 1$ú 2 ifadesinin değeri aşağıdakilerden hangisine eşittir? A) 16 B) > 1 & C) > 1 & D) 16 2. 15 ile 75 arasında

Detaylı

AKSARAY Mesleki E ğitim Merkezi Matematik ve Meslek Matematiği Soru Bankası

AKSARAY Mesleki E ğitim Merkezi Matematik ve Meslek Matematiği Soru Bankası AKSARAY Mesleki E ğitim Merkezi Matematik ve Meslek Matematiği Soru Bankası SORU 1 525 + 2834 + 379 toplama işlemini alt alta yazarak yapınız. 525 2834 +379 3738 SORU 2 Manavdan kilogramı 4 TL olan armut

Detaylı

6. SINIF GENEL AÇIKLAMA

6. SINIF GENEL AÇIKLAMA 6. SINIF GENEL AÇIKLAMA Bu kitapçık 3 bölümden oluşmaktadır. 1. bölümde yer alan 5 sorunun her biri 1, puan değerindedir.. bölümde yer alan 15 sorunun her biri,4 puan değerindedir. 3. bölümde yer alan

Detaylı

SAYILARIN ASAL ÇARPANLARINA AYRILMASI

SAYILARIN ASAL ÇARPANLARINA AYRILMASI ASAL SAYILAR Asal sayılar, 1 ve kendisinden başka pozitif tam böleni olmayan 1' den büyük tamsayılardır. En küçük asal sayı, 2' dir. 2 asal sayısı dışında çift asal sayı yoktur. Yani, 2 sayısı dışındaki

Detaylı

I F L. IĞDIR FEN LİSESİ MÜDÜRLÜĞÜ 2010 YILI 8. SINIFLAR I. MATEMATİK OLİMPİYAT YARIŞMASI Soru kitapçığı türü A 15 Mayıs 2010 Cumartesi,

I F L. IĞDIR FEN LİSESİ MÜDÜRLÜĞÜ 2010 YILI 8. SINIFLAR I. MATEMATİK OLİMPİYAT YARIŞMASI Soru kitapçığı türü A 15 Mayıs 2010 Cumartesi, I F L IĞDIR FEN LİSESİ MÜDÜRLÜĞÜ 2010 YILI 8. SINIFLAR I. MATEMATİK OLİMPİYAT YARIŞMASI Soru kitapçığı türü A 15 Mayıs 2010 Cumartesi, 10.00-12.30 ÖĞRENCİNİN ADI SOYADI T.C. KİMLİK NO OKULU / SINIFI SALON

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım 2007. Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım 2007. Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Sonbahar / Sayısal I / 18 Kasım 2007 Matematik Soruları ve Çözümleri 1. Bir sayının 0,02 ile çarpılmasıyla elde edilen sonuç, aynı sayının aşağıdakilerden

Detaylı

TEMEL KAVRAMLAR MATEMAT K. 6. a ve b birer do al say r. a 2 b 2 = 19 oldu una göre, a + 2b toplam kaçt r? (YANIT: 28)

TEMEL KAVRAMLAR MATEMAT K. 6. a ve b birer do al say r. a 2 b 2 = 19 oldu una göre, a + 2b toplam kaçt r? (YANIT: 28) TEMEL KAVRAMLAR 6. a ve b birer do al say r. a b = 19 oldu una göre, a + b toplam (YANIT: 8) 1. ( 4) ( 1) 6 1 i leminin sonucu (YANIT: ). ( 6) ( 3) ( 4) ( 17) ( 5) :( 11) leminin sonucu (YANIT: 38) 7.

Detaylı

ORAN-ORANTI TEST 1. 1) Asağıdaki şekillerde mavi bölgelerin kırmızı bölgelere oranını bulunuz. a) b) c)

ORAN-ORANTI TEST 1. 1) Asağıdaki şekillerde mavi bölgelerin kırmızı bölgelere oranını bulunuz. a) b) c) 7BÖLÜM ORAN - ORANTI ORAN-ORANTI TEST 1 1) Asağıdaki şekillerde mavi bölgelerin kırmızı bölgelere oranını bulunuz. a) b) c) ) Aşağıda okunuşları verilen oranları yazınız. a) 16 nın 14 e oranı b) 6 nın

Detaylı

5. a ve b birer pozitif tam sayıdır. A) 1 B) 2 C) 3 D) 14 E) a ve b birer doğal sayıdır. 7. a ve b birer pozitif tam sayıdır.

5. a ve b birer pozitif tam sayıdır. A) 1 B) 2 C) 3 D) 14 E) a ve b birer doğal sayıdır. 7. a ve b birer pozitif tam sayıdır. Üniversite Haz rl k Sözcükte Do al ve Say lar Söz Öbeklerinde ve Tam Say lar Anlam - I - I YGS Temel Matematik. 8 + 4. + 8 : 4 işleminin sonucu A) 8 B) 9 C) D) 5 E) 8 5. a ve b birer pozitif tam sayıdır.

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI ., x x 0,,4 0,7 eşitliğinde x kaçtır? 4. a b b c 3 olduğuna göre a b c ifadesinin değeri kaçtır? A) 0, B) 0,5 C) 0, D) 0,5 A) 9 B) 8 C) D) 4 3. x.y 64, y.x 6 olduğuna göre, x.y ifadesinin değeri kaçtır?

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 8. SINIFLAR TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 8. SINIFLAR TEST SORULARI EGE BÖLGESİ OKULLAR ARASI 7. MATEMATİK YARIŞMASI. Kartezyen koordinat sisteminde, K(3, ) noktasının y 3=0 doğrusuna göre simetriği olan nokta aşağıdakilerden hangisidir?. A ve B tamsayı olmak üzere, A

Detaylı

MATEMATİK DERS PLÂNI. : Doğal Sayılar (Asal Sayılar Bölünebilme O.B.E.B ve O.K.E.K)

MATEMATİK DERS PLÂNI. : Doğal Sayılar (Asal Sayılar Bölünebilme O.B.E.B ve O.K.E.K) MATEMATİK DERS PLÂNI Başlangıç Tarihi :.. Dersin adı Sınıf Öğrenme Alanı Alt Öğrenme Alanı Planlanan Süre : Matematik : 9. Sınıf : Sayılar : Doğal Sayılar (Asal Sayılar Bölünebilme O.B.E.B ve O.K.E.K)

Detaylı

2004 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

2004 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI 4 II MATEMATİK YARIŞMASI I AŞAMA SORULARI 4? 4 4 A B denkleminde A ve B birbirinden farklı pozitif tam sayılar olduğuna göre, A + B toplamı kaçtır? işleminin sonucu kaçtır? 5 A) B) C) - D) E) - 8 4 x x

Detaylı

SERĠMYA 2011 - IX. ULUSAL ĠLKÖĞRETĠM MATEMATĠK OLĠMPĠYATI. 9. Ulusal. serimya. İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI.

SERĠMYA 2011 - IX. ULUSAL ĠLKÖĞRETĠM MATEMATĠK OLĠMPĠYATI. 9. Ulusal. serimya. İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI. Sayfa1 9. Ulusal serimya İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI 2011 Sayfa2 1. Bir ABCD konveks dörtgeninde AD 10 cm ise AB CB? m( Dˆ ) 90, ( ˆ) 150 0 0 m C ve m Aˆ m Bˆ ( ) ( ) olarak

Detaylı

Temel Matematik Testi - 4

Temel Matematik Testi - 4 Test kodunu sitemizde kullanarak sonucunuzu öğrenebilir, soruların video çözümlerini izleyebilirsiniz. Test Kodu: D00. Bu testte 0 soru vardır.. Tavsiye edilen süre 0 dakikadır. Temel Matematik Testi -.

Detaylı

TEST: 6. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi

TEST: 6. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi TEST: 6 5. 1. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12 2. 6. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi aşağıdakilerden hangisidir? A) 7x+5y=35 B) 7x-5y=35

Detaylı

SERİMYA II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

SERİMYA II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI SERİMYA - 4 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI. 4? 4 4. A B denkleminde A ve B birbirinden farklı pozitif tam sayılar olduğuna göre, A + B toplamı kaçtır? işleminin sonucu kaçtır? A) 6 B) 8 C) D)

Detaylı

2011 YGS MATEMATİK Soruları

2011 YGS MATEMATİK Soruları 0 YGS MTEMTİK Soruları. + + ) 8 ) 0 ) 6 ) E). a = 6 b = ( a)b olduğuna göre, ifadesinin değeri kaçtır? ) ) 6 ) 9 ) 8 E). (.0 ) ) 0, ) 0, ) 0, ) E) 6. x = y = 8 z = 6 olduğuna göre, aşağıdaki sıralamalardan

Detaylı

2012 YGS MATEMATİK Soruları

2012 YGS MATEMATİK Soruları 01 YGS MATEMATİK Soruları 1. 10, 1, 0, 0, işleminin sonucu kaçtır? A) B), C) 6 D) 6, E) 7. + ABC 4 x 864 Yukarıda verilenlere göre, çarpma işleminin sonucu kaçtır? A) 8974 B) 907 C) 9164 D) 94 E) 98. 6

Detaylı

SERİMYA 2003 I. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

SERİMYA 2003 I. MATEMATİK YARIŞMASI I. AŞAMA SORULARI SERİMYA 00 I. MATEMATİK YARIŞMASI I. AŞAMA SORULARI. + + 5 0 + + + 0 40 toplamının sonucu kaçtır? A) 5 B) C) D) E) + 4. a,b,c Z olmak üzere, a + b + c 7 = 6 ise, a.b.c kaçtır? A) 6 B) 8 C) D) 6 E) 8 y.

Detaylı

Ýþlem Yeteneði Temel Kavramlar Sayý Basamaklarý Taban Aritmetiði Bölme ve Bölünebilme Ebob-Ekok

Ýþlem Yeteneði Temel Kavramlar Sayý Basamaklarý Taban Aritmetiði Bölme ve Bölünebilme Ebob-Ekok Ödev Tarihi :... Ödev Kontrol Tarihi :... Kontrol Eden :... LYS MATEMATİK - I Ödev Kitapçığı (MF-TM) Ýþlem Yeteneði Temel Kavramlar Sayý Basamaklarý Taban Aritmetiði Bölme ve Bölünebilme Ebob-Ekok Adý

Detaylı

TEST. Dik Üçgen ve Pisagor Bağıntısı. 4. Dik Kenarlar Hipotenüs. 5. Aşağıdaki dik üçgenlerden hangisinin çevre uzunluğu en fazladır?

TEST. Dik Üçgen ve Pisagor Bağıntısı. 4. Dik Kenarlar Hipotenüs. 5. Aşağıdaki dik üçgenlerden hangisinin çevre uzunluğu en fazladır? ik Üçgen ve Pisagor ağıntısı. Sınıf atematik Soru ankası TEST 1.. ik enarlar Hipotenüs m m cm 1 cm cm 60 cm y cm 100 cm z cm 1, cm 1,3 cm ir el fenerinden çıkan ışık m yol alarak yukarıdaki m uzunluğundaki

Detaylı

Singapur Matematik Olimpiyatı Soruları

Singapur Matematik Olimpiyatı Soruları Singapur Matematik Olimpiyatı Soruları 1.) 1, 1, 1,., 1 sayıları tahtaya yazılıyor. Burak x ve y gibi iki sayı seçip bunları siliyor ve 1 2 3 2010 x+y+xy sayısını yazıyor. Burak bu işleme tahtada tek sayı

Detaylı

= =

= = a 0 için a 1 = 1 a dır. 1 2 2 1 4 + 1 1 m = = 1 4. 4 1+4m = 1 1+4m = 1 13 1 4 1+4m=13, 4m=12, m=3 = 1 4 + m 1 4 1 + 4m 4 0,2= 2 10, 0,4 = 4 10 a3 = a.a.a 2.(0,2) 3 + (0,4) 3 = 2.( 2 10 )3 + ( 4 10 )3 8

Detaylı

MATEMATİK SORULARI 1) 66 ile 6 doğal sayıları arasında kaç tane doğal sayı vardır? a) 55 b) 56 c) 59 d) 60 2) sayısında 3 rakamlarının basamak

MATEMATİK SORULARI 1) 66 ile 6 doğal sayıları arasında kaç tane doğal sayı vardır? a) 55 b) 56 c) 59 d) 60 2) sayısında 3 rakamlarının basamak MATEMATİK SORULARI ) 66 ile 6 doğal sayıları arasında kaç tane doğal sayı vardır? a) b) 6 c) 9 d) 60 2) 2 sayısında rakamlarının basamak değerleri toplamı kaçtır? a) 00 b)2 c)000 d)00000 ) 208 sayısının

Detaylı

6. Rakamları farklı, iki basamaklı farklı beş doğal sayının. 7. A = 7 + 11 + 15 + 19 + + 99 veriliyor.

6. Rakamları farklı, iki basamaklı farklı beş doğal sayının. 7. A = 7 + 11 + 15 + 19 + + 99 veriliyor. Bölüm: Doğal Sayılar ve Tamsayılar Test: Temel Kavramlar. abc ve cba üç basamaklı doğal sayılardır. abc cba = 97 olduğuna göre, abc biçiminde yazılabilecek en küçük doğal sayının rakamları toplamı A) B)

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 19 Aralık Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 19 Aralık Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Sonbahar / Sayısal I / 9 Aralık 00 Matematik Soruları ve Çözümleri. + 4 işleminin sonucu kaçtır? A) B) C) D) 4 E) 6 Çözüm + 4 + 4 4 + 4 4.. işleminin

Detaylı

1998 ÖYS. orantılı olacaktır. Bu iki kardeşten büyük olanın bugünkü yaşı kaçtır? 1. Üç basamaklı bir x doğal sayısının 7

1998 ÖYS. orantılı olacaktır. Bu iki kardeşten büyük olanın bugünkü yaşı kaçtır? 1. Üç basamaklı bir x doğal sayısının 7 998 ÖYS. Üç basamaklı bir doğal sayısının 7 katı, iki basamaklı bir y doğal sayısına eşittir. Buna göre, y doğal sayısı en az kaç olabilir? orantılı olacaktır. Bu iki kardeşten büyük olanın bugünkü yaşı

Detaylı

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır?

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? TEMEL MATEMATİK TESTİ 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. 1. 3. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? A)

Detaylı

YGS MATEMATİK DENEMESİ-1

YGS MATEMATİK DENEMESİ-1 YGS MATEMATİK DENEMESİ- Mustafa SEVİMLİ Fatih KAYGISIZ İbrahim KUŞÇUOĞLU Aydın DANIŞMAN ÇAKABEY ANADOLU LİSESİ Serkan TÜRKER Nejdet KİRPİ Şenay TAĞ GÜRLER Taner KAHYA Çakabey Anadolu Lisesi 0-0 . x olduğuna

Detaylı

BÖLÜNEBĐLME KURALLARI

BÖLÜNEBĐLME KURALLARI YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS - 2 2-2 1 1-1 1 kalanı bulmak için sağdan ve + ile başlamak gerekir BÖLÜNEBĐLME KURALLARI 2 Đle Bölünebilme: tüm çift sayılar, yani birler

Detaylı

KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA

KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA İÇİNDEKİLER Matematiğe Giriş... Temel Kavramlar... Bölme - Bölünebilme Kuralları... 85 EBOB - EKOK... Rasyonel Sayılar... Basit Eşitsizlikler... 65 Mutlak

Detaylı

2003 ÖSS Soruları. işleminin sonucu kaçtır? ifadesinin sadeleştirilmiş biçimi aşağıdakilerden hangisidir? A) 1 B) 7 C) 9 D) 11 E) 21

2003 ÖSS Soruları. işleminin sonucu kaçtır? ifadesinin sadeleştirilmiş biçimi aşağıdakilerden hangisidir? A) 1 B) 7 C) 9 D) 11 E) 21 00 ÖSS Soruları,, 0,0. + + 0, 0, 0,00 işleminin sonucu kaçtır? ) ) 7 ) 9 ) ). ( y )( + y+ y ) ( y) c + m y ifadesinin sadeleştirilmiş biçimi aşağıdakilerden hangisidir? ) y ) + y ) y y + y ) ) + y y. (0,

Detaylı

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30 İçindekiler 1. ÜNİTE Bölüm 1 : Üslü Sayılar... 8 Bölüm 2 : Doğal Sayılar... 18 Bölüm 3 : Doğal Sayı Problemleri... 30 Bölüm 4 :- Çarpanlar ve Katlar, Bölünebilme... 40 Bölüm 5 : Asal Sayılar, Ortak Bölenler,

Detaylı

Türkiye Ulusal Matematik Olimpiyatları DENEME SINAVI. 4. Deneme

Türkiye Ulusal Matematik Olimpiyatları DENEME SINAVI. 4. Deneme Türkiye Ulusal Matematik Olimpiyatları Birinci Aşama Zor Deneme Sınavı 11 Haziran 2016 DENEME SINAVI 4. Deneme Soru Sayısı: 32 Sınav Süresi: 210 dakika Başarılar Dileriz... Page 1 of 9 DENEME SINAVI (4.

Detaylı

SAYISAL BÖLÜM. 5. a, b, c pozitif tamsayılar, c asal sayı ve. olduğuna göre, aşağıdaki sıralamalardan hangisi doğrudur? 6 E) 1

SAYISAL BÖLÜM. 5. a, b, c pozitif tamsayılar, c asal sayı ve. olduğuna göre, aşağıdaki sıralamalardan hangisi doğrudur? 6 E) 1 SYISL ÖLÜM ĐKKT! U ÖLÜM VPLYĞINIZ TOPLM SORU SYISI 90 IR. Đlk 4 Matematiksel Đlişkilerden Yararlanma Gücü, Son 4 en ilimlerindeki Temel Kavram ve Đlkelerle üşünme Gücü ile ilgilidir. şit ğırlık ÖSS puanınızın

Detaylı

SORU 3: Aşağıdaki çarpma işlemlerini yapınız. SORU 1: Çarpma işlemlerini yapınız. SORU 4: Aşağıdaki bölme işlemlerini yapınız

SORU 3: Aşağıdaki çarpma işlemlerini yapınız. SORU 1: Çarpma işlemlerini yapınız. SORU 4: Aşağıdaki bölme işlemlerini yapınız SORU 1: Çarpma işlemlerini yapınız. 2415 SORU 2: ölme işlemlerini yapınız. SORU 3: şağıdaki çarpma işlemlerini yapınız. SORU 4: şağıdaki bölme işlemlerini yapınız SORU 5: şağıdaki boşlukları doldurunuz.

Detaylı

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5 1 14 ve 1 sayılarına tam bölünebilen üç basamaklı kaç farklı doğal sayı vardır? x = 14.a = 1b x= ekok(14, 1 ).k, (k pozitif tamsayı) x = 4.k x in üç basamaklı değerleri istendiğinden k =, 4, 5, 6, 7,,

Detaylı

Olimpiyat Eğitimi CANSU DENEME SINAVI

Olimpiyat Eğitimi CANSU DENEME SINAVI TUSİ Ortaöğretim Öğretmenleri için Olimpiyat Eğitimi CANSU DENEME SINAVI 15.11.2013-29.11.2013 2 1. Bir x sayısı x = 1 1 + x eşitliğini sağlamaktadır. x 1 x hangisidir? in en basit hali aşağıdakilerden

Detaylı

ÖZEL EGE LİSESİ 11. MATEMATİK YARIŞMASI 7. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ 11. MATEMATİK YARIŞMASI 7. SINIF ELEME SINAVI TEST SORULARI . a,b,c negatif tam sayılardır. (a + 3).b b< c< a ve; = 6 olduğuna c göre, a+b+c toplamının en büyük değeri 4. 50 kişinin çalıştığı bir şirkette 25 kişi İngilizce, 6 kişi Fransızca biliyor. En çok bir

Detaylı

MATEMATİK SORULARI 3-12,14,15,18,19,17,20,20,21,22,26,28,30,33,35,36,38,40,41,42,43,44

MATEMATİK SORULARI 3-12,14,15,18,19,17,20,20,21,22,26,28,30,33,35,36,38,40,41,42,43,44 MATEMATİK SORULARI 1- sayısının karekökü aşağıdakilerden hangisidir? A) 9 B) 81 C) 3 D)6 2-Köşe noktalarının koordinatları A(-2,-5),B(-4,-5) ve C(-1,-1) olan üçgenin y eksenine göre yansıması alındıktan

Detaylı

BASIN KİTAPÇIĞI ÖSYM

BASIN KİTAPÇIĞI ÖSYM BASIN KİTAPÇIĞI 00000000 AÇIKLAMA 1. Bu kitapç kta Lisans Yerle tirme S nav -1 Geometri Testi bulunmaktad r. 2. Bu test için verilen toplam cevaplama süresi 45 dakikadır. 3. Bu kitapç ktaki testlerde yer

Detaylı

Ortaokul Matematik Org Editörleri Ortak Fikir Denemeleri Teog Matematik-1

Ortaokul Matematik Org Editörleri Ortak Fikir Denemeleri Teog Matematik-1 Ortaokul Matematik Org Editörleri Ortak Fikir enemeleri Teog Matematik- liye RC SRIBŞ Bayram FISTI Esra İNÇER ÇIR Eylül RBY Mehmet BOZURT Mine GÖSU Muhammet BOZURT Mustafa Sefa TUNCY hmet SĞIÇ Sinan SRITŞ

Detaylı

X. Ulusal İlköğretim Matematik Olimpiyatı

X. Ulusal İlköğretim Matematik Olimpiyatı X. Ulusal İlköğretim Matematik Olimpiyatı B 1. Bir kentten diğerine giden bir otobüs, yolun ilk yarısını 40 km/saat, ikinci yarısını ise 60 km/saat hızla gittiyse, otobüsün ortalama hızı kaç km/saat olmuştur?

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

Temel Matematik Testi - 8

Temel Matematik Testi - 8 Test kodunu sitemizde kullanarak sonucunuzu öğrenebilir, soruların video çözümlerini izleyebilirsiniz. Test Kodu: D008. u testte 40 soru vardır.. Tavsiye edilen süre 40 dakikadır. Temel Matematik Testi

Detaylı

Ortak Akıl MATEMATİK DENEME SINAVI 3 201412-1

Ortak Akıl MATEMATİK DENEME SINAVI 3 201412-1 Ortak Akıl YGS MATEMATİK DENEME SINAVI 011-1 Ortak Akıl Adem ÇİL Ayhan YANAĞLIBAŞ Barış DEMİR Celal İŞBİLİR Deniz KARADAĞ Engin POLAT Erhan ERDOĞAN Ersin KESEN Fatih TÜRKMEN Kadir ALTINTAŞ Köksal YİĞİT

Detaylı

I.BÖLÜM (Toplam 35 soru bulunmaktadır.)

I.BÖLÜM (Toplam 35 soru bulunmaktadır.) I.BÖLÜM (Toplam 35 soru bulunmaktadır.) 1. 10 arkadaşınız ile bir asansöre biniyorsunuz. Đlk katta 3 kişi iniyor ve 1 kişi biniyor. Đkinci katta 5 kişi iniyor ve 3 kişi biniyor. Üçüncü katta 6 kişi iniyor.

Detaylı

0,012 0,5 + : 7 0,003 0, ,3 0, 225 1,2 1,2 0,24 0,3 0,3 0,05 0,009 0,03 0,005 0,0009 C) 1 A) 1 4 B) 1 2 D) 45 E) 46 A) 0,09 B) 0,8 C) 0,9

0,012 0,5 + : 7 0,003 0, ,3 0, 225 1,2 1,2 0,24 0,3 0,3 0,05 0,009 0,03 0,005 0,0009 C) 1 A) 1 4 B) 1 2 D) 45 E) 46 A) 0,09 B) 0,8 C) 0,9 KPSS 007 GY (3) DENEME 9 / 50. SORU 3. 5 9 0,3 0, 5 50. 0,0 0,5 + : 7 0,003 0,05 İşleminin sonucu kaçtır? işleminin sonucu kaçtır? A) 9 B) 0 C) A) 4 B) C) D) 45 E) 46 D) E) 4 DENEME 7 / 48. SORU 48.,,

Detaylı

Özel AKEV İlköğretim Okulu Fen ve Matematik Olimpiyatı

Özel AKEV İlköğretim Okulu Fen ve Matematik Olimpiyatı Özel KEV İlköğretim Okulu Fen ve Matematik Olimpiyatı DİKKT! CEVP KĞIDININ TEST -- BÖLÜMÜNE MTEMTİK SORULRI İŞRETLENECEKTİR. ) 3 basamaklı 4 tane sayının aritmetik ortalaması 400 dür. Bu dört sayının birler

Detaylı

TMÖZ Türkiye Matematik Öğretmenleri Zümresi

TMÖZ Türkiye Matematik Öğretmenleri Zümresi YGS MATEMATĠK DENEMESĠ-1 Muharrem ġahġn TMÖZ Türkiye Matematik Öğretmenleri Zümresi Eyüp Kamil YEġĠLYURT Gökhan KEÇECĠ Saygın DĠNÇER Mustafa YAĞCI Ġ:K Ve TMÖZ üyesi 14 100 matematik ve geometri sevdalısı

Detaylı

Temel Matematik Testi - 10

Temel Matematik Testi - 10 Test kodunu sitemizde kullanarak sonucunuzu öğrenebilir, soruların video çözümlerini izleyebilirsiniz. Test Kodu: D00. Bu testte 0 soru vardır.. Tavsiye edilen süre 0 dakikadır. Temel Matematik Testi -

Detaylı

Öğrenci Seçme Sınavı (Öss) / 19 Nisan Matematik Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 19 Nisan Matematik Soruları ve Çözümleri Öğrenci Seçme Sınavı (Öss) / 9 Nisan 99 Matematik Soruları ve Çözümleri. Üç basamaklı bir sayının iki basamaklı bir sayıyla çarpımı en az kaç basamaklı bir sayı olur? A) B) C) D) 6 E) 7 Çözüm I. Yol basamaklı

Detaylı

5. SINIF A)8 B)8,1 C)8,2 D)8,3 E)8,4

5. SINIF A)8 B)8,1 C)8,2 D)8,3 E)8,4 5. SINIF Soru 1 9, 0, 7, 4 rakamları kullanılarak elde edilen, rakamları birbirinden farklı dört basamaklı, en büyük çift doğal sayı ile en küçük çift doğal sayının farkı kaçtır? A)4950 B)4560 C)4260 D)4205

Detaylı

3. SINIF = 8 6 eşitliğinin sağlanabilmesi için şekillerin yerine gelebilecek işlemler aşağıdakilerden hangisi olmalıdır?

3. SINIF = 8 6 eşitliğinin sağlanabilmesi için şekillerin yerine gelebilecek işlemler aşağıdakilerden hangisi olmalıdır? 3. SINIF Soru 1 73 25 = 8 6 eşitliğinin sağlanabilmesi için şekillerin yerine gelebilecek işlemler aşağıdakilerden hangisi olmalıdır? A) :, + B) +, - C) -, + D) -, X : - E), Soru 2 Yandaki şekilde soru

Detaylı

Yükseköğretime Geçiş Sınavı (Ygs) / 11 Nisan 2010. Matematik Soruları ve Çözümleri 12 E) 25

Yükseköğretime Geçiş Sınavı (Ygs) / 11 Nisan 2010. Matematik Soruları ve Çözümleri 12 E) 25 Yükseköğretime Geçiş Sınavı (Ygs) / Nisan 00 Matematik Soruları ve Çözümleri. 0, 0,0 0, işleminin sonucu kaçtır? A) B) 4 7 C) 0 8 D) E) Çözüm 0, 0,0 0, = 0,00 0,0 0, = 0,7 0, 000 7 7. = = 000 00 0... işleminin

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 10. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 10. SINIF TEST SORULARI . a 6 b a b 8 ifadesinin açılımında b çarpanının bulunmadığı terim aşağıdakilerden hangisidir?. Bir toplulukta en az iki kişinin yılın aynı ayı ve haftanın aynı gününde doğduğu kesin bilindiğine göre,

Detaylı

ONLiNE OLiMPiYAT

ONLiNE OLiMPiYAT ONLiNE OLiMPiYAT 010-011 4.DENEME SINAVI 16. ULUSAL ĐLKÖĞRETĐM MATEMATĐK OLĐMPĐYATI TÜRKĐYE GENELĐ ONLĐNE DENEME SINAVI - 4 1. Aşama Soru Kitapçığı SINAV TARĐHĐ : 4-7 Mart 011 ÖĞRENCĐNĐN ADI SOYADI : OKULU/SINIFI

Detaylı

14 Nisan 2012 Cumartesi,

14 Nisan 2012 Cumartesi, TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 17. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI - 2012 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü B 14 Nisan 2012 Cumartesi,

Detaylı

a.c = 48 3a + 2b c = 37 ise, a nın alacağı en küçük değer kaçtır?

a.c = 48 3a + 2b c = 37 ise, a nın alacağı en küçük değer kaçtır? . a,b,c birbirinden farklı tamsayılar ve a sıfırdan. a, b, c R olmak üzere farklı olmak üzere, a.b = 0 c

Detaylı

1.DENEME HAZIRLIK MATEMATİK MATEMATİK TESTİ. 1-En yakın yüzlüğe yuvarlandığında 2200 olan en küçük sayı hangisidir? A-2150 B-2151 C-2190 D-2199

1.DENEME HAZIRLIK MATEMATİK MATEMATİK TESTİ. 1-En yakın yüzlüğe yuvarlandığında 2200 olan en küçük sayı hangisidir? A-2150 B-2151 C-2190 D-2199 1.DENEME HAZIRLIK MATEMATİK MATEMATİK TESTİ 1-En yakın yüzlüğe yuvarlandığında 2200 olan en küçük sayı hangisidir? A-2150 B-2151 C-2190 D-2199 2-Onlar basamağı 5, yüzler basamağı 2 ve binler basamağı 6

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16.MATEMATİK YARIŞMASI 6. SINIF FİNAL SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16.MATEMATİK YARIŞMASI 6. SINIF FİNAL SORULARI 6. SINIF FİNAL SORULARI 1. a b ve a,b N olmak üzere, altı basamaklı (aaabbb) sayısının 4 ile bölümünden kalan 1 dir. Üç basamaklı (bba) sayısı 9 ile kalansız bölünebildiğine göre, iki basamaklı (aa) sayısının

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ SINIF DEĞERLENDİRME SINAVI - 2

T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ SINIF DEĞERLENDİRME SINAVI - 2 T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ 2016-2017 8. SINIF DEĞERLENDİRME SINAVI - 2 2016-2017 8. SINIF DEĞERLENDİRME SINAVI - 2 MATEMATİK Adı ve Soyadı :...

Detaylı

Meslek Yüksekokulları Đle Açıköğretim Önlisans Programları Mezunlarının Lisans Öğrenimine Dikey Geçiş Sınavı

Meslek Yüksekokulları Đle Açıköğretim Önlisans Programları Mezunlarının Lisans Öğrenimine Dikey Geçiş Sınavı Meslek Yüksekokulları Đle Açıköğretim Önlisans Programları Mezunlarının Lisans Öğrenimine Dikey Geçiş Sınavı Dikey Geçiş Sınavı / DGS / 15 Temmuz 007 Matematik Soruları ve Çözümleri 1. 4A < 457 olduğuna

Detaylı

C C C C C C CC CC. 8.Sınıf MATEMATİK. Fraktallar Konu Testi. Test Aşağıdakilerden hangisi fraktallar için söylenemez?

C C C C C C CC CC. 8.Sınıf MATEMATİK. Fraktallar Konu Testi. Test Aşağıdakilerden hangisi fraktallar için söylenemez? Fraktallar Konu Testi MATEMATİK 8.Sınıf Test-01 1. Aşağıdakilerden hangisi fraktallar için söylenemez? Fraktallar, bir şeklin orantılı olarak küçültülmesi ya da büyütülmesiyle elde edilir. Fraktalın, küçük

Detaylı

2012 YGS MATEMATİK SORU VE ÇÖZÜMLERİ. b 27 18. 3. a 12 8 A) 4 2 B) 3 3 C) 4 D) 5 E) 6. Çözüm : Cevap : E. 4. x ve y birer gerçel sayı olmak üzere,

2012 YGS MATEMATİK SORU VE ÇÖZÜMLERİ. b 27 18. 3. a 12 8 A) 4 2 B) 3 3 C) 4 D) 5 E) 6. Çözüm : Cevap : E. 4. x ve y birer gerçel sayı olmak üzere, 01 YGS MATEMATİK SORU VE ÇÖZÜMLERİ 1. 10, 5,1 0,5 0, işleminin sonucu kaçtır? A) 5 B) 5,5 C) 6 D) 6,5 E) 7. a 1 8 b 7 18 olduğuna göre a b çarpımı kaçtır? A) 4 B) C) 4 D) 5 E) 6 10, 5,1 105 1 41 1 5 0,

Detaylı

16. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A

16. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A AKDENİZ ÜNİVERSİTESİ 16. ULUSAL ANTALYA MATEMATİK OLİMPİYATLARI BİRİNCİ AŞAMA SORULARI A A A A A A A SINAV TARİHİ VESAATİ:16 NİSAN 2011 - Cumartesi 10.00-12.30 Bu sınav 25 sorudan oluşmaktadır vesınav

Detaylı

THE ENGLISH SCHOOL GİRİŞ SINAVI 2012. Süre: 1 saat ve 30 dakika

THE ENGLISH SCHOOL GİRİŞ SINAVI 2012. Süre: 1 saat ve 30 dakika THE ENGLISH SCHOOL GİRİŞ SINAVI 2012 MATEMATİK BİRİNCİ SINIF Süre: 1 saat ve 30 dakika Tüm soruları cevaplayınız. Tüm işlemlerinizi gösteriniz ve cevaplarınızı soru kâğıdında ılan uygun yerlere yazınız.

Detaylı

Sayısal öğrencisi olan Ali nin bir hafta sonu çözdüğü

Sayısal öğrencisi olan Ali nin bir hafta sonu çözdüğü 13. ( n + 3 )! ( n + )! ( n + 1 )! = 3. 3. 5. 7 15. b olduğuna göre, n kaçtır? 3 6 9 a c d ) 1 ) 3 ) 4 ) 6 ) 8 16 14. V 3 V V 1 Yukarıda verilen düzgün altıgen şeklindeki pistin noktasından belirtilen

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ 8. SINIF 1. DÖNEM MATEMATİK DERSİ MERKEZÎ ORTAK SINAVI

T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ 8. SINIF 1. DÖNEM MATEMATİK DERSİ MERKEZÎ ORTAK SINAVI MATEMATİK 2016 A SORU SAYISI : 20 T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ 8. SINIF 1. DÖNEM MATEMATİK DERSİ MERKEZÎ ORTAK SINAVI 23 KASIM 2016 Saat: 10.10 Adı

Detaylı

17 ÞUBAT 2016 5. kontrol

17 ÞUBAT 2016 5. kontrol 17 ÞUBAT 2016 5. kontrol 3 puanlýk sorular 1. Tuna ve Coþkun un yaþlarý toplamý 23, Coþkun ve Ali nin yaþlarý toplamý 24 ve Tuna ve Ali nin yaþlarý toplamý 25 tir. En büyük olanýn yaþý kaçtýr? A) 10 B)

Detaylı

8. 2 x+1 =20 x. 9. x 3 +6x 2-4x-24=0 10.

8. 2 x+1 =20 x. 9. x 3 +6x 2-4x-24=0 10. MAT-1 EK SORULAR-2 1. 6. A)7 B)8 C)15.D)56 E)64 Olduğuna göre x.a)1 B)2 C)3 D)4 E)6 7. 2. Birbirinden farklı x ve y gerçek A)5.B)6 C)7 D)8 E)9 sayıları için; x 2 +2009y=y 2 +2009x eşitliği sağlandığına

Detaylı

1. Hem % 15 i, hem de % 33 ü tam sayı olan en küçük pozitif sayı nedir? c)

1. Hem % 15 i, hem de % 33 ü tam sayı olan en küçük pozitif sayı nedir? c) TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 10. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 2005 Soru kitapçığı türü A 1. Hem % 15 i, hem de % 33

Detaylı

Matematik ders ve çalışma kitabımız. defterimiz

Matematik ders ve çalışma kitabımız. defterimiz Öğrencinin Adı: Uzun Dönemli Amaç 1- RİTMİK SAYMALAR Kısa Dönemli Amaç Davranışlar Araç-Gereçler Başlama-Bitiş Tarihleri Değerlendirme 100 e kadar beşer ritmik sayar. 1. 5 ten başlayarak 20 (30, 40, 50,

Detaylı

10. ÜNİTE HACİM VE SIVI ÖLÇÜLERİ, KATI CİSİMLERİN ALAN VE HACİMLERİ MESLEKİ UYGULAMALARI

10. ÜNİTE HACİM VE SIVI ÖLÇÜLERİ, KATI CİSİMLERİN ALAN VE HACİMLERİ MESLEKİ UYGULAMALARI 10. ÜNİTE HACİM VE SIVI ÖLÇÜLERİ, KATI CİSİMLERİN ALAN VE HACİMLERİ MESLEKİ UYGULAMALARI KONULAR HACİM VE HACİM ÖLÇÜLERİ KAVRAMI HACİM ÖLÇÜLERİ BİRİMLERİ 1. Metreküpün Katları As Katları 2. Birimlerin

Detaylı

... 2.Adım 3. Adım 4. Adım

... 2.Adım 3. Adım 4. Adım 1-.... 2.Adım 3. Adım 4. Adım Yukarıda verilen şekillerdeki üçgen sayısı ile örüntülü bir sayı dizisi oluşturulmuştur. İki basamaklı doğal sayılardan rastgele seçilen bir sayının bu sayı dizisinin elemanı

Detaylı

Bu ders materyali 22.05.2015 09:35:42 tarihinde matematik öğretmeni Ömer SENCAR tarafından hazırlanmıştır. Unutmayın bilgi paylaştıkça değerlidir.

Bu ders materyali 22.05.2015 09:35:42 tarihinde matematik öğretmeni Ömer SENCAR tarafından hazırlanmıştır. Unutmayın bilgi paylaştıkça değerlidir. -1- Bu ders materyali.05.015 09:35:4 tarihinde matematik öğretmeni Ömer SENCAR tarafından SAYI KÜMESİ TAMAMLAYARAK BÖLÜNEBİLME KURALLARINI UYGULAMA SORU-1) "Rakamları kalansız bölünebilen sayılara TEKİN

Detaylı

Cevap: A. Cevap: E. Cevap: A. 8. a b. Cevap: D

Cevap: A. Cevap: E. Cevap: A. 8. a b. Cevap: D . 0,5, 0,5 0, 0,75 5 5. () 5 5 Verilenler arasında 0 a en yakın olan 0,5 yani.. 8 8 8 6 8 0,0006 0,08 0000 00 0,08 8 000 8 6 0 8 0 0 0 6 8 0 8 0 6 6. Not : a b a b a b 65 65 65 65 65 65 0 00 65 65 00 00

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ 8. SINIF 1. DÖNEM MATEMATİK DERSİ MERKEZÎ ORTAK SINAVI (MAZERET)

T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ 8. SINIF 1. DÖNEM MATEMATİK DERSİ MERKEZÎ ORTAK SINAVI (MAZERET) MTEMTİK 2016 SORU SYISI : 20 T.C. MİLLÎ EĞİTİM BKNLIĞI ÖLÇME, DEĞERLENDİRME VE SINV HİZMETLERİ GENEL MÜDÜRLÜĞÜ 8. SINIF 1. DÖNEM MTEMTİK DERSİ MERKEZÎ ORTK SINVI (MZERET) 17 RLIK 2016 Saat:. dı ve Soyadı

Detaylı

Ortak Akıl MATEMATİK DENEME SINAVI

Ortak Akıl MATEMATİK DENEME SINAVI Ortak kıl YGS MTEMTİK ENEME SINVI 1 01511-1 Ortak kıl dem ÇİL li an GÜLLÜ yhan YNĞLIŞ arbaros GÜR arış EMİR eniz KRĞ Ersin KESEN Fatih TÜRKMEN Hatice MNKN Kemal YIN Köksal YİĞİT Muhammet YVUZ Oral YHN

Detaylı

İSTANBUL İLİ İLKÖĞRETİM OKULLARI 4, 5, 6. SINIFLAR ARASI MATEMATİK OLİMPİYATI SORU KİTAPÇIĞI 13 NİSAN 2013 T.C İSTANBUL VALİLİĞİ ÖZEL AKASYA KOLEJİ

İSTANBUL İLİ İLKÖĞRETİM OKULLARI 4, 5, 6. SINIFLAR ARASI MATEMATİK OLİMPİYATI SORU KİTAPÇIĞI 13 NİSAN 2013 T.C İSTANBUL VALİLİĞİ ÖZEL AKASYA KOLEJİ İSTANBUL İLİ İLKÖĞRETİM OKULLARI 4, 5, 6. SINIFLAR ARASI MATEMATİK OLİMPİYATI SORU KİTAPÇIĞI 13 NİSAN 2013 T.C İSTANBUL VALİLİĞİ ÖZEL AKASYA KOLEJİ DİKKAT: 1. Soru kitapçıklarını kontrol ederek, baskı

Detaylı