Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu"

Transkript

1 FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu Öğretim Yılı Güz Dönemi

2 İzdüşüm merkezi(o): Kamera optik sisteminin merkezidir. İzdüşüm ışını: POP doğru parçasını oluşturan ışın. Asal uzaklık: Fotoğraf düzlemi ile izdüşüm merkezi arasında ki uzaklık (c).

3 Asal Nokta: Bu nokta aynı zaman da kamera ekseninin fotoğraf düzlemini ve nesne yüzeyini deldiği H ve H noktasıdır.

4 Ayak ucu (Nadir) Noktası (NN ): İzdüşüm merkezinden geçen çekül doğrusu fotoğraf ve araziyi ayak ucu noktasında keser.

5 Yaşayan,2011

6 1. Paralel izdüşüm: Bir d doğrusuna paralel izdüşüm doğruları çizerek izdüşüm düzlemini deldiği noktalar bulunur

7 2. Dik (Ortogonal) izdüşüm: Noktalardan izdüşüm düzlemine dikler inilir. Bu noktalar nesnenin izdüşüm noktasıdır. Harita, dik bir izdüşümdür. İzdüşüm düzlemi olarak yeryüzünün belirli bir noktasına teğet olan bir düzlem alınır. Genellikle bu düzey deniz yüzeyine paralel bir düzlemdir ve dik izdüşüm küçültülerek kâğıda aktarılır.

8 3. Merkezsel izdüşüm: Uzay noktaları izdüşüm düzlemi dışındaki bir O noktası ile birleştirilir. Bu doğruların düzlemi deldiği noktalar ilgili noktaların merkezsel izdüşümüdür. O noktası izdüşüm merkezidir. Merkezsel izdüflüm Pozitif konum Merkezsel izdüflüm negatif konum

9 3. Merkezsel izdüşüm: O izdüşüm merkezi şekildeki gibi, nesne noktaları ile izdüşüm düzlemi arasında da olabilir. Fotoğraf, merkezsel bir izdüşlümdür. O izdüşüm merkezi, kamera optik sisteminin merkezidir. Tüm izdüşüm ışınları bu noktadan geçer. Geometrik olarak bir harita ile düşey bir hava fotoğrafı arasında en önemli fark, farklı izdüşüm sonucu oluşmalarıdır. Merkezsel izdüflüm Pozitif konum Merkezsel izdüflüm negatif konum

10 Merkezsel izdüşümün Özellikleri Üç boyutlu uzayda bir A noktasına karşılık izdüşüm düzleminde tek bir A noktası vardır. İzdüşüm düzlemindeki A noktasına karşılık ise A O izdüşüm ışını üzerinde bulunan sonsuz sayıda nokta karşılık gelir. Ölçme noktalarının bulunduğu uzay, yani arazi üç boyutludur. Bu noktaların konumları A (X,Y,Z) koordinatları bir tek fotoğraftan elde edilemez. (ancak en az iki fotoğraftan elde edilebilir). Çifte oran özelliği: bir doğru üzerinde bulunan dört nokta için yazılacak bir çifte oran, merkezsel izdüşümde sabittir. Merkezsel İzdüşümün Özelliklerini Araştırın!

11 Üç boyutlu uzaydaki bir d doğrusuna karşılık izdüşüm düzleminde bir tek d' doğrusu vardır. İzdüşüm düzlemindeki bir d' doğrusuna d doğrusu ve O izdüşüm merkezinin belirlediği düzlem üzerinde sonsuz sayıda doğru parçası karşılık gelir. Uzayda birbirine paralel olan fakat izdüşüm düzlemine paralel olmayan doğruların izdüşümleri kesişir Merkezsel izdüşümde paralel doğrular

12 İzdüşüm düzlemine paralel olan birbirine paralel doğrular izdüşüm düzleminde de birbirine paralel kalır. Tek gözümüzde oluşan görüntü aslında merkezsel izdüşümdür ve çevremizdeki nesneleri gözlememizde her zaman perspektif kurallar geçerlidir.

13 Bir doğru üzerinde bulunan dört nokta için yazılacak bir çifte oran, merkezsel izdüşümde değişmez kalır. Buna çifte oran özelliği denir. Bilinen üç doğrultu yardımı ile fotoğrafta bulunan dördüncü bir doğrultunun nesne uzayındaki ya da haritadaki karflılığı bulunabilir.

14 Tek bir fotoğraftan ölçme uzayındaki noktaların X,Y,Z koordinatları elde edilemez. Ölçme uzayındaki noktalar bir düzlemde bulunuyorsa, ölçüm için bir tek fotoğraf yeterlidir. Ölçüm uzayındaki noktaların konumlarının, yani X,Y,Z koordinatlarının bulunması için başka bir noktadan çekilmiş ikinci bir fotoğraf gereklidir. Böylece aynı noktaya ait iki izdüşüm ışını nesne noktasında kesiştirilebilecektir.

15 MATEMATİK TEMELLER Fotogrametride Kullanılan Koordinat Sistemleri Fotoğraf Koordinat sistemi Fotoğraf koordinat sistemi eksenleri cisim koordinat sistemiyle aynı yönde olan ve sağ el koordinat sistemine uyan xyz koordinat sistemidir. Başlangıç noktası O izdüşüm merkezidir. xy düzlemi fotoğraf düzlemine paralel, z ekseni de kamera ekseni ile çakışıktır. x ekseni komşu fotoğrafın izdüşüm merkezi doğrultusundadır. Bu yön hava fotogrametrisinde, yaklaşık olarak uçuş çizgisi doğrultusudur. Noktaların z koordinatı sabit ve asal uzaklığa eşittir.

16 Uzay Koordinat Sistemi Fotogrametride nesne uzayındaki noktalar uzay koordinatları ile tanımlanır. Uzay koordinat sistemi, X ekseni pozitif yönü uçuş yönü doğrultusunda (hava fotogrametrisi için), Z ekseni XY düzlemine dik ve sağ el koordinat sistemine uyan dik bir XYZ koordinat sistemidir. Başlangıç noktasının seçimi serbesttir. Ancak Z (H) ekseni her durumda düşey doğrultuda, XY düzlemi de her zaman yatay bir düzlemdir

17 Matematik temeller Koordinat Dönüşümü İki boyutlu koordinat dönüşümü (Benzerlik dönüşümü)

18 İki boyutlu koordinat dönüşümü (Benzerlik dönüşümü) Başlangıçları farklı, aralarında α kadar dönüklük ve ölçek

19 Benzerlik dönüşümünde 1 ölçek, 1 dönüklük ve 2 öteleme parametresi İki koordinat sistemi arasındaki dönüşüm parametrelerinin bulunması için, her iki sistemde de koordinatları bilinen, ortak noktaya ihtiyaç duyulur.

20 Kaynak: Yaşayan, 2011 İki Boyutlu Affin Dönüşümü İki boyutlu Affin dönüşümü

21 Üç boyutlu koordinat dönüşümü Başlangıçları aynı olan iki üç boyutlu dik koordinat sistemi (kartezyen koordinat sistemi) arasındaki dönüşüm Bu iki koordinat sistemi arasında bir ölçek katsayısı ve öteleme varsa, genel bir üç boyutlu benzerlik dönüşümü formülü

22 Dönüşüm Matrisi (Ortogonal Matris) Dönüşüm formüllerindeki λa dönüşüm matrisi uzunlukları, λ katsayısı oranında değiştirilir. Ancak bu durumda şeklin benzerliği değişmez, açılar aynı kalır. Bu nedenle bu dönüşüme benzerlik dönüşümü denir. λ = 1 durumunda dönüşüm özel bir dönüşümdür ki buna ortogonal dönüşüm denir. Fotogrametride sembolik olarak tanımlanan A dönüşüm matrisi ortogonal bir matristir. Ortogonal matrisin özellikleri nelerdir?

23

24 Her eleman kendisinin kofaktörüne eşit ya da ters işaretlisidir. a11 için bu bağıntılar yazılırsa;

25 O izdüşüm merkezine paralel XYZ uzay koordinat sistemi ele alınsın Elde edilen xyz koordinat sistemi ve bu eksenler etrafında dönüklük açıları X-ekseni çevresindeki dönüklük v (omega ) Y-ekseni çevresindeki dönüklük ϕ ( fi ) Z-ekseni çevresindeki dönüklük k ( kappa )

26

27 Üç öteleme ve üç dönüklükten oluşan altı elemana bir fotoğrafın dış yöneltme elemanları denir. Bir fotoğrafın altı dış yöneltme elemanı: izdüşüm merkezinin üç koordinatı (Xo,Yo,Zo) ve fotoğraf koordinat sisteminin üç dönüklüğü (v, ϕ, k) dür.

28 Fotoğraf koordinat sisteminin arazi koordinat sistemine göre dönüklüğünü ifade eden A matrisi, her biri ortogonal olan ve düzlem dönüklükten elde edilen üç matrisin arka arkaya çarpılmaları ile elde edilen bir matristir. Av, Aϕ, Ak ya kısmi dönüklük matrisleri denir. Matris çarpımlarında sıra önemlidir.

29

30 Benzerlik dönüşüm formülleri A noktasının koordinat dönüşümü: B noktasının koordinat dönüşümü:

31 Dönüşüm parametrelerinin hesabı İki koordinat sistemi arasındaki dönüşüm parametrelerinin bulunması için, her iki sistemde de koordinatları bilinen, ortak noktaya ihtiyaç duyulur. P1 ve P2 noktalarının 1. koordinat sistemindeki koordinatları sırasıyla (x1, y1) ve (x2, y2), 2. koordinat sistemindeki koordinatlar (X1, Y1) ve (X2, Y2) olsun. P1 ve P2 noktaları için dönüşüm denklemleri aşağıdaki gibi yazılır.

32

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi İçerik Tanımlar

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI FOTOGRAMETRİ I GEOMETRİK ve MATEMATİK TEMELLER Yrd. Doç. Dr. Aycan M. MARANGOZ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/

Detaylı

Fotogrametrinin Optik ve Matematik Temelleri

Fotogrametrinin Optik ve Matematik Temelleri Fotogrametrinin Optik ve Matematik Temelleri Resim düzlemi O : İzdüşüm (projeksiyon ) merkezi P : Arazi noktası H : Asal nokta N : Nadir noktası c : Asal uzaklık H OH : Asal eksen (Alım ekseni) P OP :

Detaylı

Fotogrametrinin Optik ve Matematik Temelleri

Fotogrametrinin Optik ve Matematik Temelleri Fotogrametrinin Optik ve Matematik Temelleri Resim düzlemi O : İzdüşüm (projeksiyon ) merkezi P : Arazi noktası H : Asal nokta N : Nadir noktası c : Asal uzaklık H OH : Asal eksen (Alım ekseni) P OP :

Detaylı

GEOMETRİK, MATEMATİK, OPTİK ve FOTOĞRAFİK TEMELLER (HATIRLATMA) Yrd. Doç. Dr. Aycan M. MARANGOZ

GEOMETRİK, MATEMATİK, OPTİK ve FOTOĞRAFİK TEMELLER (HATIRLATMA) Yrd. Doç. Dr. Aycan M. MARANGOZ FOTOGRAMETRİ II GEOMETRİK, MATEMATİK, OPTİK ve FOTOĞRAFİK TEMELLER (HATIRLATMA) Yrd. Doç. Dr. Aycan M. MARANGOZ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI FOTOGRAMETRİ II FOTOGRAMETRİK DEĞERLENDİRME - TEK RESİM DEĞERLENDİRMESİ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/

Detaylı

FOTOYORUMLAMA UZAKTAN ALGILAMA

FOTOYORUMLAMA UZAKTAN ALGILAMA FOTOYORUMLAMA VE UZAKTAN ALGILAMA (Photointerpretation and Remote Sensing) 1 Ders İçeriği Hava fotoğrafının tanımı Fotogrametrinin geometrik ilkeleri Fotogrametride fotoğrafik temel ilkeler Stereoskopik

Detaylı

TOPOĞRAFYA Temel Ödevler / Poligonasyon

TOPOĞRAFYA Temel Ödevler / Poligonasyon TOPOĞRAFYA Temel Ödevler / Poligonasyon Yrd. Doç. Dr. Aycan M. MARANGOZ ÇEVRE MÜHENDİSLİĞİ BÖLÜMÜ JDF 264/270 TOPOĞRAFYA DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz http://jeodezi.karaelmas.edu.tr/linkler/akademik/marangoz/marangoz.htm

Detaylı

Fotogrametride işlem adımları

Fotogrametride işlem adımları Fotogrametride işlem adımları Uçuş planının hazırlanması Arazide yer kontrol noktalarının tesisi Resim çekimi Değerlendirme Analitik değerlendirme Dijital değerlendirme Değerlendirme Analog değerlendirme

Detaylı

FOTOGRAMETRİK DEĞERLENDİRME - ÇİFT FOT. DEĞ. Analog ve Analitik Stereodeğerlendirme. Yrd. Doç. Dr. Aycan M. MARANGOZ

FOTOGRAMETRİK DEĞERLENDİRME - ÇİFT FOT. DEĞ. Analog ve Analitik Stereodeğerlendirme. Yrd. Doç. Dr. Aycan M. MARANGOZ FOTOGRAMETRİ II FOTOGRAMETRİK DEĞERLENDİRME - ÇİFT FOT. DEĞ. Analog ve Analitik Stereodeğerlendirme BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

Ölçme Bilgisi Jeofizik Mühendisliği Bölümü

Ölçme Bilgisi Jeofizik Mühendisliği Bölümü Ölçme Bilgisi Jeofizik Mühendisliği Bölümü Yrd. Doç. Dr. H. Ebru ÇOLAK ecolak@ktu.edu.tr Karadeniz Teknik Üniversitesi, GISLab Trabzon www.gislab.ktu.edu.tr/kadro/ecolak DÜŞEY MESAFELERİN YÜKSEKLİKLERİN

Detaylı

2. KUVVET SİSTEMLERİ 2.1 Giriş

2. KUVVET SİSTEMLERİ 2.1 Giriş 2. KUVVET SİSTEMLERİ 2.1 Giriş Kuvvet: Şiddet (P), doğrultu (θ) ve uygulama noktası (A) ile karakterize edilen ve bir cismin diğerine uyguladığı itme veya çekme olarak tanımlanabilir. Bu parametrelerden

Detaylı

Fotogrametride Koordinat Sistemleri

Fotogrametride Koordinat Sistemleri Fotogrametride Koordinat Sistemleri Komparator koordinat sistemi, Resim koordinat sistemi / piksel koordinat sistemi, Model veya çekim koordinat sistemi, Jeodezik koordinat sistemi 08 Ocak 2014 Çarşamba

Detaylı

TOPOĞRAFYA Yüksekliklerin Ölçülmesi Nivelman Yöntemleri

TOPOĞRAFYA Yüksekliklerin Ölçülmesi Nivelman Yöntemleri TOPOĞRAFYA Yüksekliklerin Ölçülmesi Nivelman Yöntemleri Yrd. Doç. Dr. Aycan M. MARANGOZ ÇEVRE MÜHENDİSLİĞİ BÖLÜMÜ JDF 264/270 TOPOĞRAFYA DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz http://jeodezi.karaelmas.edu.tr/linkler/akademik/marangoz/marangoz.htm

Detaylı

GEOMETRİK, MATEMATİK, OPTİK ve FOTOĞRAFİK TEMELLER (HATIRLATMA) Yrd. Doç. Dr. Saygın Abdikan

GEOMETRİK, MATEMATİK, OPTİK ve FOTOĞRAFİK TEMELLER (HATIRLATMA) Yrd. Doç. Dr. Saygın Abdikan FOTOGRAMETRİ II GEOMETRİK, MATEMATİK, OPTİK ve FOTOĞRAFİK TEMELLER (HATIRLATMA) Yrd. Doç. Dr. Saygın Abdikan BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF 330/336 FOTOGRAMETRİ II DERSi NOTLARI

Detaylı

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77 UZAYDA DOĞRU VE DÜZLEM Sayfa No. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi.............. 7. BÖLÜM uzayda düzlem denklemleri.......................................... 77. BÖLÜM uzayda Bir

Detaylı

TOPOĞRAFYA Topoğrafya Aletleri ve Parçaları (Teodolit)

TOPOĞRAFYA Topoğrafya Aletleri ve Parçaları (Teodolit) TOPOĞRAFYA Topoğrafya Aletleri ve Parçaları (Teodolit) Yrd. Doç. Dr. Aycan M. MARANGOZ ÇEVRE MÜHENDİSLİĞİ BÖLÜMÜ JDF 264/270 TOPOĞRAFYA DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz http://jeodezi.karaelmas.edu.tr/linkler/akademik/marangoz/marangoz.htm

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

Bilgisayar Grafikleri

Bilgisayar Grafikleri Bilgisayar Grafikleri Konular: Cismin Tanımlanması Bilindiği gibi iki boyutta noktalar x ve y olmak üzere iki boyutun koordinatları şeklinde ifade edilirler. Üç boyutta da üçüncü boyut olan z ekseni üçücü

Detaylı

GPS/INS Destekli Havai Nirengi

GPS/INS Destekli Havai Nirengi GPS/INS Destekli Havai Nirengi GPS/INS (IMU) destekli hava nirengide izdüşüm merkezi koordinatları (WGS84) ve dönüklükler direk ölçülür. İzdüşüm merkezi koordinatları kinematik GPS ile ölçülür. GPS ile

Detaylı

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse

Detaylı

TOPOĞRAFYA Kesitlerin Çıkarılması, Alan Hesapları, Hacim Hesapları

TOPOĞRAFYA Kesitlerin Çıkarılması, Alan Hesapları, Hacim Hesapları TOPOĞRAFYA Kesitlerin Çıkarılması, Alan Hesapları, Hacim Hesapları Yrd. Doç. Dr. Aycan M. MARANGOZ ÇEVRE MÜHENDİSLİĞİ BÖLÜMÜ JDF 264/270 TOPOĞRAFYA DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz http://jeodezi.karaelmas.edu.tr/linkler/akademik/marangoz/marangoz.htm

Detaylı

( m %n' m q >m q J > şekilde şematik olarak gösterilmiştir.

( m %n' m q >m q J > şekilde şematik olarak gösterilmiştir. Diğer Araştırmalar : Bir önceki bölümde açıklanan ilk araştırmaların teorik ve deneysel sonuçlarını sınamak amacı ile, seri halinde yeni teorik ve deneysel araştırmalar yapılmıştır. (Çizelge : IV) de belirtilen

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

HACETTEPE ÜNİVERSİTESİ HACETTEPE ASO 1.OSB MESLEK YÜKSEKOKULU HMK 211 CNC TORNA TEKNOLOJİSİ

HACETTEPE ÜNİVERSİTESİ HACETTEPE ASO 1.OSB MESLEK YÜKSEKOKULU HMK 211 CNC TORNA TEKNOLOJİSİ HACETTEPE ÜNİVERSİTESİ HACETTEPE ASO 1.OSB MESLEK YÜKSEKOKULU HMK 211 CNC TORNA TEKNOLOJİSİ Öğr. Gör. RECEP KÖKÇAN Tel: +90 312 267 30 20 http://yunus.hacettepe.edu.tr/~rkokcan/ E-mail_1: rkokcan@hacettepe.edu.tr

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler 2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE ÖĞRENME Ay Hafta D.Saati ALANI EYLÜL 2 Geometri 2 3 Geometri 2 Geometri 2 Olasılıkve ALT

Detaylı

Üç Boyutlu Uzayda Bazı Yüzeyler ve Koordinat Sistemleri

Üç Boyutlu Uzayda Bazı Yüzeyler ve Koordinat Sistemleri Üç Boyutlu Uzayda Bazı Yüzeyler ve Koordinat Sistemleri Yazar Doç.Dr. Hüseyin AZCAN ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; Küresel Koordinatlar Silindirik Koordinatları Dönel Yüzeylerin Elde Edilmesi

Detaylı

Veri toplama- Yersel Yöntemler Donanım

Veri toplama- Yersel Yöntemler Donanım Veri toplama- Yersel Yöntemler Donanım Data Doç. Dr. Saffet ERDOĞAN 1 Veri toplama -Yersel Yöntemler Optik kamera ve lazer tarayıcılı ölçme robotu Kameradan gerçek zamanlı veri Doç. Dr. Saffet ERDOĞAN

Detaylı

FOTOGRAMETRİ - II Uçuş Planı ve İlgili Problemler

FOTOGRAMETRİ - II Uçuş Planı ve İlgili Problemler FOTOGRAMETRİ - II Uçuş Planı ve İlgili Problemler Yrd. Doç. Dr. Aycan M. MARANGOZ FOTOGRAMETRİ ANABİLİM DALI SUNULARI http://geomatik.beun.edu.tr/marangoz/ Hava fotoğrafları ve fotoğraf ölçeği Fotoğraf

Detaylı

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu;

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; 4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ Doğrusal Denklem Sistemi x,x,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; a x + a x + L + a x = b n n a x + a x + L + a x = b n n a x + a

Detaylı

DİK KOORDİNAT SİSTEMİ VE

DİK KOORDİNAT SİSTEMİ VE Ölçme Bilgisi DERS 6 DİK KOORDİNAT SİSTEMİ VE TEMEL ÖDEVLER Kaynak: İ.ASRİ (Gümüşhane Ü) M. Zeki COŞKUN ( İTÜ ) TEODOLİT Teodolitler, yatay ve düşey açıları yeteri incelikte ölçmeye yarayan optik aletlerdir.

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

Math 103 Lineer Cebir Dersi Final Sınavı

Math 103 Lineer Cebir Dersi Final Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Final Sınavı 3 Araliık 27 Hazırlayan: Yamaç Pehlivan Başlama saati: 2: Bitiş Saati: 3:4 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı

Detaylı

DÜŞEY MESAFELERİN (YÜKSEKLİKLERİN) ÖLÇÜLMESİ

DÜŞEY MESAFELERİN (YÜKSEKLİKLERİN) ÖLÇÜLMESİ Dr. Hasan ÖZ DÜŞEY MESAFELERİN (YÜKSEKLİKLERİN) ÖLÇÜLMESİ Noktalar arasındaki düşey mesafelerin ölçülmesine yükseklik ölçmesi ya da nivelman denir. Bir noktanın yüksekliği deniz seviyesi ile o nokta arasındaki

Detaylı

ŞEKİL DEĞİŞTİRME HALİ

ŞEKİL DEĞİŞTİRME HALİ ŞEKİL DEĞİŞTİRME HALİ GİRİŞ Önceki bölümde cisme etkiyen kuvvetlerin dengesi incelenerek gerilme kavramı geliştirildi. Bu bölümde ise şekil değiştiren cisim mekaniğinin en önemli kavramlarından biri olan

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

ÖLÇME BİLGİSİ. PDF created with FinePrint pdffactory trial version http://www.fineprint.com. Tanım

ÖLÇME BİLGİSİ. PDF created with FinePrint pdffactory trial version http://www.fineprint.com. Tanım ÖLÇME BİLGİSİ Dersin Amacı Öğretim Üyeleri Ders Programı Sınav Sistemi Ders Devam YRD. DOÇ. DR. HAKAN BÜYÜKCANGAZ ÖĞR.GÖR.DR. ERKAN YASLIOĞLU Ders Programı 1. Ölçme Bilgisi tanım, kapsamı, tarihçesi. 2.

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 19 HAZİRAN 2016 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

Örnek...1 : mx+3y+12=0 ve 2x 5y+3=0 doğruları para - lelse m kaçtır?

Örnek...1 : mx+3y+12=0 ve 2x 5y+3=0 doğruları para - lelse m kaçtır? İKİ DOĞRUNUN BİRBİRİNE GÖRE DURUMU DURUM 1 PARALEL DOĞRULAR ve doğruları paralel doğrular ise eğimleri eşittir. Yani / / m 1 =m 2 Ayr ıca : a 1 x+b 1 y+c 1 =0 =0} / / a 1 a 2 = b 1 c 1 c 2 Örnek...1 :

Detaylı

TOPOĞRAFYA Ölçü Birimleri, Ölçek Kavramı, Ölçme Kavramı, Hata kaynakları ve Türleri, Arazi Ölçmelerine Giriş

TOPOĞRAFYA Ölçü Birimleri, Ölçek Kavramı, Ölçme Kavramı, Hata kaynakları ve Türleri, Arazi Ölçmelerine Giriş TOPOĞRAFYA Ölçü Birimleri, Ölçek Kavramı, Ölçme Kavramı, Hata kaynakları ve Türleri, Arazi Ölçmelerine Giriş Yrd. Doç. Dr. Aycan M. MARANGOZ ÇEVRE MÜHENDİSLİĞİ BÖLÜMÜ JDF 264/270 TOPOĞRAFYA DERSİ NOTLARI

Detaylı

LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA. (YGS ve LYS na) HAZIRLIK İÇİN. Örnek çözümlü. Deneme sınavlı GEOMETRİ-2.

LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA. (YGS ve LYS na) HAZIRLIK İÇİN. Örnek çözümlü. Deneme sınavlı GEOMETRİ-2. LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS na) HAZIRLIK İÇİN Konu anlatımlı Örnek çözümlü Test çözümlü Test sorulu Deneme sınavlı GEOMETRİ-2 Hazırlayan Erol GEDİKLİ Matematik

Detaylı

Yatay Eksen: Dürbünün etrafında döndüğü eksendir. Asal Eksen: Çekül doğrultusundaki eksen Düzeç Ekseni: Düzecin üzerinde bulunduğueksen Yöneltme

Yatay Eksen: Dürbünün etrafında döndüğü eksendir. Asal Eksen: Çekül doğrultusundaki eksen Düzeç Ekseni: Düzecin üzerinde bulunduğueksen Yöneltme Teodolit Yatay Eksen: Dürbünün etrafında döndüğü eksendir. Asal Eksen: Çekül doğrultusundaki eksen Düzeç Ekseni: Düzecin üzerinde bulunduğueksen Yöneltme Ekseni: Kıllar şebekesinin kesim noktası ile objektifin

Detaylı

Uzaktan Alg ılamaya Giriş Ünite 6 - Görüntü O t r orektifikasyonu

Uzaktan Alg ılamaya Giriş Ünite 6 - Görüntü O t r orektifikasyonu Uzaktan Algılamaya Giriş Ünite 6 - Görüntü Ortorektifikasyonu Ortorektifikasyon Uydu veya uçak platformları ile elde edilen görüntü verisi günümüzde haritacılık ve CBS için temel girdi kaynağını oluşturmaktadır.

Detaylı

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak.

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ: 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. 2. Bu eş potansiyel çizgileri kullanarak elektrik alan çizgilerinin

Detaylı

3 VEKTÖRLER. Pilot uçağın kokpit inden havaalanını nasıl bulur?

3 VEKTÖRLER. Pilot uçağın kokpit inden havaalanını nasıl bulur? 3.1 Koordinat sistemleri 3.2 Kartezyen koordinatlar 3.3 Vektörler 3.4 Vektörlerin bileşenleri 3.5 Vektörlerin toplanması 3.6 Vektörlerin çıkarılması 37Bii 3.7 Birim vektör 3 VEKTÖRLER Pilot uçağın kokpit

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

KADASTRO HARİTALARININ SAYISALLAŞTIRILMASINDA KALİTE KONTROL ANALİZİ

KADASTRO HARİTALARININ SAYISALLAŞTIRILMASINDA KALİTE KONTROL ANALİZİ KADASTRO HARİTALARININ SAYISALLAŞTIRILMASINDA KALİTE KONTROL ANALİZİ Yasemin ŞİŞMAN, Ülkü KIRICI Sunum Akış Şeması 1. GİRİŞ 2. MATERYAL VE METHOD 3. AFİN KOORDİNAT DÖNÜŞÜMÜ 4. KALİTE KONTROL 5. İRDELEME

Detaylı

5 İki Boyutlu Algılayıcılar

5 İki Boyutlu Algılayıcılar 65 5 İki Boyutlu Algılayıcılar 5.1 CCD Satır Kameralar Ölçülecek büyüklük, örneğin bir telin çapı, objeye uygun bir projeksiyon ile CCD satırının ışığa duyarlı elemanı üzerine düşürülerek ölçüm yapılır.

Detaylı

TOPOĞRAFYA. Ölçme Bilgisinin Konusu

TOPOĞRAFYA. Ölçme Bilgisinin Konusu TOPOĞRAFYA Topoğrafya, bir arazi yüzeyinin tabii veya suni ayrıntılarının meydana getirdiği şekil. Bu şeklin kâğıt üzerinde harita ve tablo şeklinde gösterilmesiyle ilgili ölçme, hesap ve çizim işlerinin

Detaylı

HRT 105 HARİTA MÜHENDİSLİĞİNE GİRİŞ

HRT 105 HARİTA MÜHENDİSLİĞİNE GİRİŞ HRT 105 HARİTA MÜHENDİSLİĞİNE GİRİŞ Temel Haritacılık Konuları_Ders# 5 Yrd.Doç.Dr. H.Ebru ÇOLAK KTÜ. Mühendislik Fakültesi Harita Mühendisliği Bölümü TEMEL HARİTA BİLGİLERİ JEODEZİ Yeryuvarının şekil,

Detaylı

KÜRESEL AYNALAR ÇUKUR AYNA. Yansıtıcı yüzeyi, küre parçasının iç yüzeyi ise çukur ayna yada içbükey ayna ( konveks ayna ) denir.

KÜRESEL AYNALAR ÇUKUR AYNA. Yansıtıcı yüzeyi, küre parçasının iç yüzeyi ise çukur ayna yada içbükey ayna ( konveks ayna ) denir. KÜRESEL AYNALAR Yansıtıcı yüzeyi küre parçası olan aynalara denir. Küresel aynalar iki şekilde incelenir. Yansıtıcı yüzeyi, küre parçasının iç yüzeyi ise çukur ayna yada içbükey ayna ( konveks ayna ) denir.eğer

Detaylı

ULAŞIM YOLLARINA AİT TANIMLAR

ULAŞIM YOLLARINA AİT TANIMLAR ULAŞIM YOLLARINA AİT TANIMLAR Geçki: Karayolu, demiryolu gibi ulaştıma yapılarının, yuvarlanma yüzeylerinin ortasından geçtiği varsayılan eksen çizgisinin harita ya da arazideki izdüşümüdür. Topografik

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR KASIM EKİM EYLÜL Ay Hafta D.Saat i 0 04 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE SÜRE ÖĞRENME ALANI ALT ÖĞRENME ALANI Örüntü Süslemeler si KAZANIMLAR.Doğru, çokgen

Detaylı

MUHSİN ERTUĞRUL MESLEKİ EĞİTİM MERKEZİ TAKIDA TEKNİK RESİM SORULARI 1) Standart yazı ve rakamların basit ve sade olarak yazılması nedeni

MUHSİN ERTUĞRUL MESLEKİ EĞİTİM MERKEZİ TAKIDA TEKNİK RESİM SORULARI 1) Standart yazı ve rakamların basit ve sade olarak yazılması nedeni MUHSİN ERTUĞRUL MESLEKİ EĞİTİM MERKEZİ TAKIDA TEKNİK RESİM SORULARI 1) Standart yazı ve rakamların basit ve sade olarak yazılması nedeni aşağıdakilerden hangisidir? A) Estetik görünmesi için. B) Rahat

Detaylı

Dijital Fotogrametri ve 3B Modelleme

Dijital Fotogrametri ve 3B Modelleme Dijital Fotogrametri ve 3B Modelleme Ders Notları, 2013 Doç. Dr. Fevzi Karslı Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 07 Ekim 2013 Pazartesi 1 Ders Planı ve İçeriği Dijital Fotog. ve 3B Mod.

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi FOTOGRAMETRİ I Fotogrametrik Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi Tanımlar Metrik Kameralar Mercek Kusurları

Detaylı

PARABOL. Merkezil parabol. 2px. 2py F 0, 2 F,0. Şekil I. Şekil II. p Odağı F 2. Odağı F 0, Doğrultmanı x. Doğrultmanı y

PARABOL. Merkezil parabol. 2px. 2py F 0, 2 F,0. Şekil I. Şekil II. p Odağı F 2. Odağı F 0, Doğrultmanı x. Doğrultmanı y ARABL Tanım: Düzlemde verilen sabit bir noktası ile bir d doğrusuna uzaklıkları eşit olan noktaların geometrik erine arabol denir. Sabit noktaa arabolün odağı; doğrua ise doğrultmanı denir. Merkezil arabol

Detaylı

TEODOLIT. Açiklanan yatay ve düsey açilari ölçmek için kullanilan optik mekanik topografya aleti, teodolit olarak adlandirilir.

TEODOLIT. Açiklanan yatay ve düsey açilari ölçmek için kullanilan optik mekanik topografya aleti, teodolit olarak adlandirilir. TEODOLIT Açiklanan yatay ve düsey açilari ölçmek için kullanilan optik mekanik topografya aleti, teodolit olarak adlandirilir. Teodolit genel olarak dürbün, açi ölçme ve okuma donanimi, düzeçler, yatay

Detaylı

AÇILIŞ EKRANI. Açılış ekranı temelde üç pencereye ayrılır:

AÇILIŞ EKRANI. Açılış ekranı temelde üç pencereye ayrılır: AÇILIŞ EKRANI Açılış ekranı temelde üç pencereye ayrılır: Tam ortada çizim alanı (drawing area), en altta komut satırı (command line) ve en üstte ve sol tarafta araç çubukları (toolbar). AutoCAD te dört

Detaylı

TEKNİK RESİM DERSİ ÖĞR. GÖR. BERIVAN POLAT

TEKNİK RESİM DERSİ ÖĞR. GÖR. BERIVAN POLAT TEKNİK RESİM DERSİ ÖĞR. GÖR. BERIVAN POLAT DERS 6 Perspektif Cismin üç yüzünü gösteren, tek görünüşlü resimlerdir. Cisimlerin, gözümüzün gördüğü şekle benzer özelliklerdeki üç boyutlu (hacimsel) anlatımını

Detaylı

31.10.2014. CEV 361 CBS ve UA. Koordinat ve Projeksiyon Sistemleri. Öğr. Gör. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Yerin Şekli

31.10.2014. CEV 361 CBS ve UA. Koordinat ve Projeksiyon Sistemleri. Öğr. Gör. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Yerin Şekli CEV 361 CBS ve UA Koordinat ve Projeksiyon Sistemleri Öğr. Gör. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Yerin Şekli 1 Yerin Şekli Ekvator çapı: 12756 km Kuzey kutuptan güney kutuba çap: 12714 km

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR II ZAMANA BAĞLI ISI İLETİMİ 1.Deneyin Adı: Zamana bağlı ısı iletimi. 2. Deneyin

Detaylı

İÇİNDEKİLER BÖLÜM 1 ÖLÇME TEKNİĞİ VE HARİTA ALMA YÖNTEMLERİ

İÇİNDEKİLER BÖLÜM 1 ÖLÇME TEKNİĞİ VE HARİTA ALMA YÖNTEMLERİ İÇİNDEKİLER II Sayfa No: ÖNSÖZ...I İÇİNDEKİLER...III ŞEKİLLER LİSTESİ...VIII ÇİZELGELER LİSTESİ...XII EKLER LİSTESİ...XIII BÖLÜM 1 ÖLÇME TEKNİĞİ VE HARİTA ALMA YÖNTEMLERİ 1. ÖLÇME TEKNİĞİ VE HARİTA ALMA

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI 6. SINIF 5. SINIF TÜM KONULARI 1.ÜNİTE: Geometrik Şekiller 1) Verileri Düzenleme, Çokgenler ve Süsleme 2) Dörtgenler 3)

Detaylı

Bağımsız Model Blok Dengeleme için Model Oluşturma ve Ön Sayısal Bilgi İşlemleri

Bağımsız Model Blok Dengeleme için Model Oluşturma ve Ön Sayısal Bilgi İşlemleri Bağımsız Model Blok Dengeleme için Model Oluşturma ve Ön Sayısal Bilgi İşlemleri Eminnur AYHAN* 1. Giriş Fotogrametrik nirengi çeşitli ölçütlere göre sınıflandırılabilir. Bu ölçütler dengelemede kullanılan

Detaylı

CBS. Projeksiyon. CBS Projeksiyon. Prof.Dr. Emin Zeki BAŞKENT. Karadeniz Teknik Üniversitesi Orman Fakültesi 2010, EZB

CBS. Projeksiyon. CBS Projeksiyon. Prof.Dr. Emin Zeki BAŞKENT. Karadeniz Teknik Üniversitesi Orman Fakültesi 2010, EZB Prof.Dr. Emin Zeki BAŞKENT Karadeniz Teknik Üniversitesi Orman Fakültesi Elipsoid şeklindeki dünyanın bir düzlem üzerine indirilmesi ve koordinatlarının matematiksel dönüşümleridir. Harita üç şekilde projeksiyonu

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

5. ÜNİTE İZDÜŞÜMÜ VE GÖRÜNÜŞ ÇIKARMA

5. ÜNİTE İZDÜŞÜMÜ VE GÖRÜNÜŞ ÇIKARMA 5. ÜNİTE İZDÜŞÜMÜ VE GÖRÜNÜŞ ÇIKARMA KONULAR 1. İzdüşüm Metodları 2. Temel İzdüşüm Düzlemleri 3. Cisimlerin İzdüşümleri 4. Görünüş Çıkarma BU ÜNİTEYE NEDEN ÇALIŞMALIYIZ? İz düşümü yöntemlerini, Görünüş

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI

T.C. MİLLÎ EĞİTİM BAKANLIĞI T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKİ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) İNŞAAT TEKNOLOJİSİ İZ DÜŞÜM ANKARA 2005 Milli Eğitim Bakanlığı tarafından geliştirilen modüller; Talim ve

Detaylı

Fotogrametriye Giriş

Fotogrametriye Giriş ye Giriş 2013-2014, BAHAR YY Fevzi Karslı (Doç. Dr.) Harita Mühendisliği Bölümü 23 Mart 2014 Pazar Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, kavramlar, kaynaklar. 2. Hafta nin tanımı ve uygulama

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

Digital Görüntü Temelleri Görüntü Oluşumu

Digital Görüntü Temelleri Görüntü Oluşumu Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 25 Ekim

Detaylı

Fotogrametriye Giriş

Fotogrametriye Giriş Fotogrametriye Giriş 2014-2015, Bahar YY Fevzi Karslı (Doç. Dr.) Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 7 Mart 2015 Cumartesi Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, kavramlar,

Detaylı

3. TABAKA KAVRAMI ve V-KURALI

3. TABAKA KAVRAMI ve V-KURALI 1 3. T VRMI ve V-URLI Tabaka nedir? lt ve üst sınırlarıyla bir diğerinden ayrılan, kendine has özellikleri olan, sabit hidrodinamik koşullar altında çökelmiş, 1 cm den daha kalın, en küçük litostratigrafi

Detaylı

- 2-1 0 1 2 + 4a a 0 a 4a

- 2-1 0 1 2 + 4a a 0 a 4a İKİNCİ DERECEDEN FNKSİYNLARIN GRAFİKLERİ a,b,c,z R ve a 0 olmak üzere, F : R R f() = a + b + c şeklinde tanımlanan fonksionlara ikinci dereceden bir değişkenli fonksionlar denir. Bu tür fonksionların grafikleri

Detaylı

HARİTA DAİRESİ BAŞKANLIĞI. İSTANBUL TKBM HİZMET İÇİ EĞİTİM Temel Jeodezi ve GNSS

HARİTA DAİRESİ BAŞKANLIĞI. İSTANBUL TKBM HİZMET İÇİ EĞİTİM Temel Jeodezi ve GNSS HİZMET İÇİ EĞİTİM MART 2015 İSTANBUL TAPU VE KADASTRO II.BÖLGE MÜDÜRLÜĞÜ SUNUM PLANI 1- Jeodezi 2- Koordinat sistemleri 3- GNSS 3 JEODEZİ Jeodezi; Yeryuvarının şekil, boyut, ve gravite alanı ile zamana

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

JDF 116 / 120 ÖLÇME TEKNİĞİ / BİLGİSİ II POLİGONASYON

JDF 116 / 120 ÖLÇME TEKNİĞİ / BİLGİSİ II POLİGONASYON JDF 116 / 120 ÖLÇME TEKNİĞİ / BİLGİSİ II POLİGONASYON Yrd. Doç. Dr. HÜSEYİN KEMALDERE Jeodezik Noktaların Sınıflandırması (BÖHHBÜY-Md:8) Noktaların sınıflandırılması aşağıdaki şekildedir: a) Uzay ve uydu

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

M. MARANGOZ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ

M. MARANGOZ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ ÖLÇME BİLGİSİ II Poligon İstikşafı ve Yerüstü Tesisleri, Poligon Ölçüsü ve Türleri Yrd. Doç. Dr. Aycan M. MARANGOZ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF120 ÖLÇME BİLGİSİ II DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz

Detaylı

Ders 8: Konikler - Doğrularla kesişim

Ders 8: Konikler - Doğrularla kesişim Ders 8: Konikler - Doğrularla kesişim Geçen ders RP 2 de tekil olmayan her koniğin bir dönüşümün ardından tek bir koniğe dönüştüğü sonucuna vardık; o da {[x : y : z x 2 + y 2 z 2 = 0]} idi. Bu derste bu

Detaylı

BÜYÜK ÖLÇEKLİ HARİTA YAPIMINDA STEREOGRAFİK ÇİFT PROJEKSİYONUN UYGULANIŞI

BÜYÜK ÖLÇEKLİ HARİTA YAPIMINDA STEREOGRAFİK ÇİFT PROJEKSİYONUN UYGULANIŞI 36 İNCELEME - ARAŞTIRMA BÜYÜK ÖLÇEKLİ HARİTA YAPIMINDA STEREOGRAFİK ÇİFT PROJEKSİYONUN UYGULANIŞI Erdal KOÇAIC*^ ÖZET Büyük ölçekli harita yapımında G İ R İŞ uygulanabilen "Stereografik çift Stereografik

Detaylı

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir.

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir. PİRAMİTLER Bir düzlemde kapalı bir bölge ile bu düzlemin dışında bir T noktası alalım. Kapalı bölgenin tüm noktalarının T noktası ile birleştirilmesi sonucunda oluşan cisme piramit denir. T noktası piramidin

Detaylı

10. SINIF GEOMETRİ KONU ÖZETİ

10. SINIF GEOMETRİ KONU ÖZETİ 2012 10. SINIF GEOMETRİ KONU ÖZETİ TOLGA YAVAN Matematik Öğretmeni 1. ÜNİTE: DÜZLEM GEOMETRİDE TEMEL ELEMANLAR VE İSPAT BİÇİMLERI Temel Postulatlar İspatlanamayan ve ispatına gerek duyulmayan ancak doğru

Detaylı

ÖLÇME BİLGİSİ (SURVEYING) SDÜ, Orman Fakültesi, Orman İnşaatı Geodezi ve Fotogrametri Anabilim Dalı

ÖLÇME BİLGİSİ (SURVEYING) SDÜ, Orman Fakültesi, Orman İnşaatı Geodezi ve Fotogrametri Anabilim Dalı ÖLÇME BİLGİSİ (SURVEYING) 1 Yrd. Doç. Dr. H. Oğuz Çoban Süleyman Demirel Üniversitesi Orman Fakültesi Orman Mühendisliği Bölümü Orman İnşaatı Geodezi ve Fotogrametri Anabilim Dalı Telefon : 2113944 E-posta

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

3. TABAKA KAVRAMI ve V-KURALI

3. TABAKA KAVRAMI ve V-KURALI 1 3. T VRMI ve V-URLI Tabaka nedir? lt ve üst sınırlarıyla bir diğerinden ayrılan, kendine has özellikleri olan, sabit hidrodinamik koşullar altında çökelmiş, 1 cm den daha kalın, en küçük litostratigrafi

Detaylı

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi

Detaylı

MERCEKLER. Kısacası ince kenarlı mercekler ışığı toplar, kalın kenarlı mercekler ışığı dağıtır.

MERCEKLER. Kısacası ince kenarlı mercekler ışığı toplar, kalın kenarlı mercekler ışığı dağıtır. MERCEKLER İki küresel yüzey veya bir düzlemle bir küresel yüzey arasında kalan saydam ortamlara mercek denir. Şekildeki gibi yüzeyler kesişiyorsa ince kenarlı mercek olur ki bu mercek üzerine gelen bütün

Detaylı

MERCEKLER 1 R 1 ± 1 n = F. MERCEKLER Özel ışınlar:

MERCEKLER 1 R 1 ± 1 n = F. MERCEKLER Özel ışınlar: MERCEKLER Bir yüzü veya iki yüzü küresel olan ya da bir yüzü küresel diğer yüzü düzlem olan saydam isimlere merek denir. Merekler, üzerine düşen ışığı kırma özelliğine saiptir. MERCEKLER Özel ışınlar:.

Detaylı

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir? PROL est -. m parabolü eksenini kesmiorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?. f a b c (, ) ) (, ) (, ) (, ) ( 6, ). m parabolü eksenini iki farklı noktada kesmektedir. una göre,

Detaylı

ÜNİTELENDİRME ŞEMASI

ÜNİTELENDİRME ŞEMASI LENDİRME ŞEMASI ÜNİTE DOĞRULAR VE AÇILAR. Aynı düzlemde olan üç doğrunun birbirine göre durumlarını belirler ve inşa eder.. Paralel iki doğrunun bir kesenle yaptığı açıların eş olanlarını ve bütünler olanlarını

Detaylı

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 1 YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 RASYONEL SAYILAR KÜMESİ VE ÖZELLİKLERİ 07 BASİT EŞİTSİZLİKLER

Detaylı

HAFTA-2 Norm Yazı Çizgi Tipleri ve Kullanım Yerleri Yıliçi Ödev Bilgileri AutoCad e Genel Bakış Tarihçe Diğer CAD yazılımları AutoCAD Menüleri

HAFTA-2 Norm Yazı Çizgi Tipleri ve Kullanım Yerleri Yıliçi Ödev Bilgileri AutoCad e Genel Bakış Tarihçe Diğer CAD yazılımları AutoCAD Menüleri HAFTA-2 Norm Yazı Çizgi Tipleri ve Kullanım Yerleri Yıliçi Ödev Bilgileri AutoCad e Genel Bakış Tarihçe Diğer CAD yazılımları AutoCAD Menüleri AutoCAD ile iletişim Çizimlerde Boyut Kavramı 0/09 2. Hafta

Detaylı

Yapılma Yöntemleri: » Arazi ölçmeleri (Takeometri)» Hava fotoğrafları (Fotoğrametri) TOPOĞRAFİK KONTURLAR

Yapılma Yöntemleri: » Arazi ölçmeleri (Takeometri)» Hava fotoğrafları (Fotoğrametri) TOPOĞRAFİK KONTURLAR TOPOĞRAFİK HARİTALAR EŞ YÜKSELTİ EĞRİLERİ TOPOĞRAFİK HARİTALAR Yapılma Yöntemleri:» Arazi ölçmeleri (Takeometri)» Hava fotoğrafları (Fotoğrametri) HARİTALAR ve ENİNE KESİT HARİTALAR Yeryüzü şekillerini

Detaylı

MALZEME BİLGİSİ. Kristal Yapılar ve Kristal Geometrisi

MALZEME BİLGİSİ. Kristal Yapılar ve Kristal Geometrisi MALZEME BİLGİSİ Dr.- Ing. Rahmi ÜNAL Konu: Kristal Yapılar ve Kristal Geometrisi 1 KRİSTAL YAPILAR Malzemelerin iç yapısı atomların diziliş biçimine bağlıdır. Kristal yapı Kristal yapılarda atomlar düzenli

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

02.04.2012. Düşey mesafelerin (Yüksekliklerin) Ölçülmesi. Düşey Mesafelerin (Yüksekliklerin) Ölçülmesi. Düşey Mesafelerin (Yüksekliklerin) Ölçülmesi

02.04.2012. Düşey mesafelerin (Yüksekliklerin) Ölçülmesi. Düşey Mesafelerin (Yüksekliklerin) Ölçülmesi. Düşey Mesafelerin (Yüksekliklerin) Ölçülmesi Düşey mesafelerin (Yüksekliklerin) Ölçülmesi Noktalar arasındaki düşey mesafelerin ölçülmesine yükseklik ölçmesi ya da nivelman denir. Yükseklik: Ölçülmek istenen nokta ile sıfır yüzeyi olarak kabul edilen

Detaylı