4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise;

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise;"

Transkript

1 4- SAYISAL İNTEGRAL c ϵ R olmk üzere F() onksiyonunun türevi () ise ( F () = () ); Z ` A d F ` c eşitliğindeki F()+c idesine, () onksiyonunun elirsiz integrli denir. () onksiyonu [,] R için sürekli ise; Z ` A d F ` F F ` değerine, () onksiyonunun [,] rlığınd elirli integrli denir. Geometrik olrk elirli integrl, elirtilen rlıkt, onksiyon eğrisi ile koordint ekseni rsındki kln lndır. y () Aln I Z ` A d Aln I Z ` y A dy

2 İntegrli kolylıkl hesplnilen eğriler; y Diktörtgen lnı; ` I 3A 2 6 Anlitik Q Aln I Z 2 3 d e 4 ` 3 A d 3 A y Ymuk lnı (()=/2); I ` 1 ` A h 2 A d e Anlitik Q Aln I Z 11 A d A A ` A İntegrl Uygulmlrı ; 1. Eğri ltınd kln lnı ulmk, 2. İki eğri rsınd kln lnı ulmk, Aln I Z g ` A d

3 3. Bir eğrinin vey y ekseni etrınd 360 o döndürülmesi ile oluşn kplı ölgenin hcmini ulmk, y () Hcim Z 2 A dy Hcim Z y 2 A d Elektrik Mühendisliğinde kullnıln zı integrl uygulmlrı; 1. Ortlm değer hesı; ort 1 T A Z T ` A d 0 2. Etkin değer hesı; T 2 et 1 A Z T 0 2 ` A d 3. Fourier serilerinin hesınd.

4 Yüksek dereceli polinomlrd vey krmşık onksiyonlrın elirli integrllerinin hesınd, eğri ile koordint ekseni rsınd kln lnın hesı zordur. Bu lnlr ilinen geometrik şekillerin lnlrı kullnılrk, yklşık olrk hesplnilir. Yni eğri ile koordint ekseni rsınd kln ln dh küçük ve ilinen geometrik şekillere ölünerek elde edilen lnlr toplnrk hesplnilir. Syısl Yöntemler; 1. Dikdörtgenler yöntemi İntegrli ulunck eğri ilgili rlıkt küçük dikdörtgenlere ölünür, u dikdörtgenlerin lnlrı toplnrk yklşık sonuç ulunur. 1.) Sol toplmlr [,] rlığı n prçy ölünür. Adım dir. i=0,1,2,..,n-1 için i+1=i+h n I Z ` A d I 1 I 2 I 3 ` ` I 1 0 A 0 ` ` I 2 1 A 1 ` ` I 3 2 A 2 ` h A 0 ` h A 1 ` h A 2 1.) Sğ toplmlr Genel hli Q I Z ` 1B A d t h AX i 0 ` i C [,] rlığı n prçy ölünür. Adım dir. i=1,2,..,n için i+1=i+h n I Z ` A d I 1 I 2 I 3 ` ` I 1 1 A 0 ` ` I 2 2 A 1 ` ` I 3 3 A 2 ` h A 1 ` h A 2 ` h A 3 Genel hli Q I Z ` n B A d t h AX i 1 ` i C

5 1.c) Ort toplmlr [,] rlığı n prçy ölünür. Adım dir. i=0,1,..,n-1 için i+1=i+h n I Z ` A d I 1 I 2 I 3 I 1 0 h 2 I 2 1 h 2 I 3 2 h 2 g g g ` A 0 h A 0 h g 2 ` A 1 h A 1 h g 2 ` A 2 h A 2 h g 2 Genel hli Q I Z 1 ` A d t h AX i 0 H J i h 2 I g K

6 Örnek : Z 1 7 3A 2 A d integrlini dikdörtgenler yöntemini kullnrk ulunuz. (n=3,5,10) Anlitik Q Aln I Z 1 7 d e c 3A 2 A d

7 2. Ymuk Yöntemi İntegrli ulunck eğri ilgili rlıkt küçük ymuklr yrılır, u ymuklrın lnlrı toplnrk yklşık sonuç ulunur. y Algoritm; (5) (6) [,] rlığı n eşit prçy ölünür. (0) (4) (1) (2) (3) I1 I2 I3 I4 I5 I6 () n Ymuklr elde edilir. Herir ymuğun lnı hesplnır. = = 6 Alnlr toplrnk yklşık integrl sonucu ulunur. I Z ` A d I1 I 2 I 3 I 4 I 5 I 6 I 1 h d c ce A I 2 h d c ce A I 3 h d c ce A I 4 h d c ce A I 5 h d c ce A I 6 h d c ce A I Z ` A d t h 2 Genel hli Q I Z D A 0 c 1 ` A d t h 2 c 1 H A J 0 c 2 c ` n c 2 1 2A X i 1 c 3 i I c K c 3 c 4 c 4 c 5 c 5 c 6 ce

8 Örnek : Z 3 A 2 A d integrlini ymuk yöntemini kullnrk ulunuz. (n=3,5,10) 1 7 n=3 için n=5 için Prc =5 Adim = (1.0)-->()=3.000 (2.2)-->()= (3.4)-->()= (4.6)-->()= (5.8)-->()= (7.0)-->()= yklsik integrl = n=10 için Prc =10 Adim = (1.0)-->()=3.000 (1.6)-->()=7.680 (2.2)-->()= (2.8)-->()= (3.4)-->()= (4.0)-->()= (4.6)-->()= (5.2)-->()= (5.8)-->()= (6.4)-->()= (7.0)-->()= yklsik integrl =

9 Örnek : 3 Z 0 sin ` A d integrlini ymuk yöntemini kullnrk ulunuz. (n=5,10) n=10 için Prc =10 Adim = (0.0000)-->()= (0.1047)-->()= (0.2094)-->()= (0.3142)-->()= (0.4189)-->()= (0.5236)-->()= (0.6283)-->()= (0.7330)-->()= (0.8378)-->()= (0.9425)-->()= (1.0472)-->()= yklsik integrl = 0.500

10 3. Simpson (Proller) Yöntemi Belirli integrlin ulunmsı için en yygın kullnıln yöntemdir. Bu yöntemde, sıl onksiyon yerine, u onksiyon 2.dereceden ir polinom uydurup, u polinoml -ekseni rsınd kln lnın hesı ulunur. Eğer uyduruln polinom 1. dereceden ise, yöntem ymuk(trpez) yöntemi olur; Eğer uyduruln polinom 2. dereceden ise, yöntem simpson(polinomlr) yöntemi olur; Simpson yönteminde 3 noktdn geçen polinom denklemi kullnılır. Eğer rlıktki nokt syısı rtırılırs, hsssiyet rtr, ht zlır. Lngrnge enterpolsyon ormulune göre (Enterpolsyon konusu yrıc incelenecektir) 0, 1, 2 noktlrındn geçen prol denklemi; P ` ` 1 2 ` ` A 0 1 A 2 ` 0 0 ` 2 ` ` A 1 A 2 Bu onksiyonun [0, 2] sınırlrın göre elirli integrli ise; 2 Z P ` A d h B ` ` ` C A 0 4 A ` 0 0 ` 1 ` ` ` A 2 A 1 0

11 y ( 5) ( 6) () Algoritm; [,] rlığı n eşit prçy ölünür. ( 0) ( 4) ( 1) ( 2) ( 3) I1 I2 I3 n 3 noktdn ir 2.dereceden ir eğri geçirilir. Böylece n/2 tne lt ölge oluşur. Herir ölgenin lnı hesplnır. = = 6 Alnlr toplnrk yklşık integrl sonucu ulunur. I Z ` A d I1 I 2 I 3 0, 1, 2 ölgesi; I 1 h D c c ce A 0 4A , 3, 4 ölgesi; I 2 h D c c ce A 2 4A , 5, 6 ölgesi; I 3 h D c c ce A 4 4A I h F c c d c ce d A 0 6 2A 2 4 4A 3 1 Genel hli Q I Z ` A d t h 3 H A 0 L J c ` n c 3 1 4A X g i 1 i:tek c 5 i ce G c 1 2A X h i j 2 j k j:cit i I c M K Simpson yöntemi (n ε çit syılr) için kullnılilir.

12 Örnek : 3 Z 0 sin ` A d integrlini simpson yöntemini kullnrk ulunuz. (n=4) Örnek : Z A d integrlini trpez ve simpson yöntemini kullnrk ulunuz. (n=4) 1 2 n=4 için

13 Örnek : Aşğıd, tm dlg kontrollü ir doğrultucunun çıkış dlg geriliminin değişimi verilmiştir. Bu gerilimin ortlm değerini ütün yöntemleri kullnrk ulunuz (n=4).

İntegral Uygulamaları

İntegral Uygulamaları İntegrl Uygulmlrı Yzr Prof.Dr. Vkıf CAFEROV ÜNİTE Amçlr Bu üniteyi çlıştıktn sonr; düzlemsel ln ve dönel cisimlerin cimlerinin elirli integrl yrdımı ile esplnileceğini, küre, koni ve kesik koninin cim

Detaylı

Örnek...2 : x=2, x=4, y=2, y= 5 doğruları arasında kalan

Örnek...2 : x=2, x=4, y=2, y= 5 doğruları arasında kalan KAT CİSİMLERİN HACİMLERİ Örnek...2 : =2, =4, =2, = 5 doğrulrı rsınd kln ölgenin O ekseni etrfınd 360 o döndürülm esi le oluşck ktı cism in hcm ini ulunuz İNTEGRAL İLE HACİM HESAB 1. X EKSENİNDE DÖNDÜRMELER

Detaylı

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 03

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 03 ELEĐ MOOLA ve SÜÜCÜLEĐ DES 03 Özer ŞENYU Mrt 0 ELEĐ MOOLA ve SÜÜCÜLEĐ DA MOOLANN ELEĐ DEE MODELLEĐ E AAEĐSĐLEĐ ENDÜĐ DEESĐ MODELĐ Endüviye uygulnn gerilim (), zıt emk (E), endüvi srgı direni () ile temsil

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

İŞ ETKİ ÇİZGİSİ TEOREMİ. Balıkesir Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Müh. Bölümü Balıkesir, TÜRKİYE THEOREM OF WORK INFLUENCE LINE

İŞ ETKİ ÇİZGİSİ TEOREMİ. Balıkesir Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Müh. Bölümü Balıkesir, TÜRKİYE THEOREM OF WORK INFLUENCE LINE BAÜ Fen Bil. Enst. Dergisi (006).8. İŞ ETKİ ÇİZGİSİ TEOREMİ Scit OĞUZ, Perihn (Krkulk) EFE Blıkesir Üniversitesi Mühendislik Mimrlık Fkültesi İnşt Müh. Bölümü Blıkesir, TÜRKİYE ÖZET Bu çlışmd İş Etki Çizgisi

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinnd P. Beer E. Russell Johnston, Jr. Ders Notu: Hri ACAR İstnbul Teknik Üniveristesi Tel: 85 1 46 / 116 E-mil: crh@itu.edu.tr Web: http://tls.cc.itu.edu.tr/~crh

Detaylı

http://www.metinyayinlari.com Metin Yayınları

http://www.metinyayinlari.com Metin Yayınları İNTEGRAL İÇ KAPAK B kitın ütün ın hklrı sklıdır. Tüm hklrı, zrlr ve METİN YAYINLARI n ittir. Kısmen de ols lıntı pılmz. Metin, içim ve sorlr, ımln şirketin izni olmksızın, elektronik, meknik, fotokopi

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

Çevre ve Alan. İlköğretim 6. Sınıf

Çevre ve Alan. İlköğretim 6. Sınıf Çevre ve Aln İlköğretim 6. Sınıf Çevre Merhb,ilk olrk seninle birlikte evin çevresini bulmy çlışlım Kırmızı çizgiler evin çevre uzunluğunu verir. Çevre Şimdi sır futbol shsınd Çevre Şimdi,Keloğlnın Pmuk

Detaylı

Ünite Planı Şablonu. Öğretmenin. Fatma BAĞATARHAN Yunus Emre Anadolu Lisesi. Ġnönü Mahallesi. Bingöl. Adı, Soyadı. Okulunun Adı

Ünite Planı Şablonu. Öğretmenin. Fatma BAĞATARHAN Yunus Emre Anadolu Lisesi. Ġnönü Mahallesi. Bingöl. Adı, Soyadı. Okulunun Adı Intel Öğretmen Progrmı Ünite Plnı Şlonu Öğretmenin Adı, Soydı Okulunun Adı Okulunun Bulunduğu Mhlle Okulun Bulunduğu Ġl Ftm BAĞATARHAN Yunus Emre Andolu Lisesi Ġnönü Mhllesi Bingöl Ünit Bilgisi Ünite Bşlığı

Detaylı

Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2015-2016 Güz Dönemi

Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2015-2016 Güz Dönemi Andolu Üniversitesi Mühendislik Fkültesi Endüstri Mühendisliği Bölümü Doç. Dr. Nil ARAS ENM411 Tesis Plnlmsı 2015-2016 Güz Dönemi 2 Tesis (fcility) Tesis : Belli bir iş için kurulmuş ypı Tesis etmek :

Detaylı

Komisyon DGS TAMAMI ÇÖZÜMLÜ 10 DENEME SINAVI ISBN 978-605-364-027-1. Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir.

Komisyon DGS TAMAMI ÇÖZÜMLÜ 10 DENEME SINAVI ISBN 978-605-364-027-1. Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir. Komisyon DGS TAMAMI ÇÖZÜMLÜ 0 DENEME SINAVI ISBN 97-0--07- Kitpt yer ln ölümlerin tüm sorumluluğu yzrın ittir. Pegem Akdemi Bu kitın sım, yyın ve stış hklrı Pegem Akdemi Yy. Eğt. Dn. Hizm. Tic. Ltd. Şti

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) 009 - ÖSS / MT- MTEMTİK TESTİ (Mt ). u testte sırsıl, Mtemtik ( 8) Geometri (9 7) nlitik Geometri (8 0) lnlrın it 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için rıln kısmın işretleiniz..

Detaylı

KIVIRMA İŞLEMİNİN ŞEKİL ve BOYUTLARI

KIVIRMA İŞLEMİNİN ŞEKİL ve BOYUTLARI 2011 Şut KIVIRMA İŞEMİNİN ŞEKİ ve BOYUTARI Hzırlyn: Adnn YIMAZ AÇINIM DEĞERERİ 50-21 DİKKAT: İyi niyet, ütün dikkt ve çm krşın ynlışlr olilir. Bu nedenle onucu orumluluk verecek ynlışlıklr için, hiçir

Detaylı

TEST SORULARI Adı /Soyadı : No : İmza: STATİK FİNAL SINAVI. Öğrenci No

TEST SORULARI Adı /Soyadı : No : İmza: STATİK FİNAL SINAVI. Öğrenci No -0-00 dı /Sodı : No : İmz: STTİK FİN SINVI Öğrenci No 00000 z m Şekildeki kirişinde bğ kuvvetlerin bulunuz. =(+e)n/m, =5(+e)N m m Şekildeki ğırlıksız blok det pndül k ve noktsınd küresel mfsl ile dengededir.

Detaylı

ÜNİTE - 7 POLİNOMLAR

ÜNİTE - 7 POLİNOMLAR ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 PROBLEMLER İÇİNDEKİLER Syf No Test No ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 SAYI PROBLEMLERİ... 299-314... 01-08 YAŞ PROBLEMLERİ...

Detaylı

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ Ö.Y.S. 998 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Üç bsmklı bir doğl syısının ktı, iki bsmklı bir y doğl syısın eşittir. 7 Bun göre, y doğl syısı en z kç olbilir? A) B) C) 8 D) E) Çözüm y 7 7y (, en küçük bsmklı,

Detaylı

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT DENKLEM ve EŞİTSİZLİKLER ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT BİRİNCİ DERECEDEN DENKLEM ve EŞİTSİZLİKLER. Kznım : Gerçek syılr kümesinde birinci dereceden eşitsizliğin özelliklerini belirtir.. Kznım : Gerçek

Detaylı

Örnek...2 : Örnek...3 : Örnek...1 : Örnek...4 : a 3 DÜZGÜN ALTIGEN DÜZGÜN ALTIGEN TANIM VE ÖZELLİKLERİ. ABCDEF düzgün

Örnek...2 : Örnek...3 : Örnek...1 : Örnek...4 : a 3 DÜZGÜN ALTIGEN DÜZGÜN ALTIGEN TANIM VE ÖZELLİKLERİ. ABCDEF düzgün ÜZGÜN TIGN ( ÜZGÜN TIGN TNIMI, ÖZİİ V NI ĞNİM ) ÜZGÜN TIGN Örnek...2 : TNIM V ÖZİİ enr syısı 6 oln çok - gene lt ıgen denir. ltıgeni için [], [] ve [] köşegenlerinin kesim noktsı oln noktsı dü zgün ltıge

Detaylı

MATEMATİK 1 TESTİ (Mat 1)

MATEMATİK 1 TESTİ (Mat 1) ÖSS MT-1 / 008 MTMTİK 1 TSTİ (Mt 1) 1. u testte 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik 1 Testi için yrıln kısmın işretleyiniz. 1. 1 + 4 1 ( ) 4. syısı b 0 ) b syısının kç ktıdır? ) b ) b işleminin

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24.

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24. DENKLEM ÇÖZME + + = 0 + = 0 + = 0 + y = 0 İkinci dereceden ir ilinmeyenli denklemdir. İkinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden İki ilinmeyenli

Detaylı

B - GERĐLĐM TRAFOLARI:

B - GERĐLĐM TRAFOLARI: ve Seg.Korum_Hldun üyükdor onrım süresinin dh uzun olmsı yrıc rnın izole edilmesini gerektirmesi; rızlnmsı hlinde r tdiltını d gerektireilmesi, v. nedenlerle, özel durumlr dışınd tercih edilmezler. - GERĐLĐM

Detaylı

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında ORAN ORANTI syısının 0 dn frklı oln b syısın ornı :b vey olrk gösterilir. b İki vey dh fzl ornın eşitlenmesiyle oluşn ifdeye orntı denir. b =c d ifdesine ikili orntı denir. Bir orntı orntı sbitine eşitlenerek

Detaylı

2. BÖLÜM AKIŞKANLARIN STATİĞİ

2. BÖLÜM AKIŞKANLARIN STATİĞİ . BÖLÜM AKIŞKANLARIN STATİĞİ Akışknlr mekniğinin birçok probleminde reket yoktur. Bu tip problemlerde durn bir kışkn içinde bsınç dğılımı ve bu bsınç dğılımının ktı yüzeylere ve yüzen vey dlmış cisimlere

Detaylı

DENEY 6 THEVENIN, NORTON, DOĞRUSALLIK VE TOPLAMSALLIK KURAMLARININ UYGULAMALARI

DENEY 6 THEVENIN, NORTON, DOĞRUSALLIK VE TOPLAMSALLIK KURAMLARININ UYGULAMALARI T.C. Mltepe Üniversitesi Mühendislik ve Doğ Bilimleri Fkültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 201 DEVRE TEORİSİ DERSİ LABORATUVARI DENEY 6 THEVENIN, NORTON, DOĞRUSALLIK VE TOPLAMSALLIK KURAMLARININ

Detaylı

Bir Elektrik Motorunun Kısımları. Bir elektrik motorunun parçaları: Rotor, stator içinde döner.

Bir Elektrik Motorunun Kısımları. Bir elektrik motorunun parçaları: Rotor, stator içinde döner. Bir Elektrik Motorunun Kısımlrı Bir elektrik motorunun prçlrı: Rotor, sttor içinde döner. İki kutuplu bir DA motoru -kutuplu mkinnın kısımlrı ve elemnlrı Dört kutuplu bir DA motoru-endüktör Kutup nüvesi

Detaylı

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - 1-1 1 SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = 100+10+b bc = 100+10b+c bcd =1000+100b+10c+d

Detaylı

ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN

ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN ÖZEL EGE ORTAOKULU ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN HAZIRLAYAN ÖĞRENCĠLER: Olçr ÇOBAN Sevinç SAYAR DANIġMAN ÖĞRETMEN: Gizem GÜNEL AÇIKSÖZ ĠZMĠR 2014 ĠÇĠNDEKĠLER 1. PROJENĠN AMACI... 2 2. GĠRĠġ... 2 3.

Detaylı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı Ankr Üniversitesi Mühendislik Fkültesi, Fizik Mühendisliği Bölümü FZM207 Temel ElektronikI Doç. Dr. Hüseyin Srı 2. Bölüm: Dirençli Devreler İçerik Temel Yslrın Doğrudn Uygulnışı Kynk Gösterimi ve Dönüşümü

Detaylı

ÜÇGEN VE PİSAGOR BAĞINTISI

ÜÇGEN VE PİSAGOR BAĞINTISI ÜÇGEN VE PİSGOR ĞINTISI KZNIMLR Üçgen kvrmı Üçgen çizimi Üçgenin kenrlrı rsındki ğıntılr Üçgen eşitsizliği Üçgenlerde yükseklik Üçgenlerde kenrorty Üçgenlerde çıorty Kenr ort dikme kvrmı Pisgor ğıntısı

Detaylı

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7.

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7. MC. + + +.. Rsyonel Syılr TEST I sonsuz kesrinin eşiti kçtır? A) B) C) D) E) 4 www.mtemtikclu.com, 006 Ceir Notlrı. 8. Gökhn DEMĐR, gdemir@yhoo.com.tr 0;0 0;0008 = 0; x ise x kçtır? A) 0,0 B) 0,000 C)

Detaylı

DENEY 2 OHM YASASI UYGULAMASI

DENEY 2 OHM YASASI UYGULAMASI T.C. Mltepe Üniversitesi Mühendislik ve Doğ Bilimleri Fkültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 201 DEVRE TEORİSİ DERSİ LABORATUVARI DENEY 2 OHM YASASI UYGULAMASI Hzırlynlr: B. Demir Öner Sime

Detaylı

KISA MESAFE ERİŞİMLİ TELSİZ (KET) YÖNETMELİĞİ. BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak, Kısaltmalar ve Tanımlar

KISA MESAFE ERİŞİMLİ TELSİZ (KET) YÖNETMELİĞİ. BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak, Kısaltmalar ve Tanımlar 16 Mrt 2007 trihli 26464 syılı Resmi Gzete Telekomüniksyon Kurumundn: KISA MESAFE ERİŞİMLİ TELSİZ (KET) YÖNETMELİĞİ BİRİNCİ BÖLÜM Amç, Kpsm, Dynk, Kısltmlr ve Tnımlr Amç MADDE 1- (1) Bu Yönetmeliğin mcı;

Detaylı

FRENLER 25.02.2012 FRENLERİN SINIFLANDIRILMASI

FRENLER 25.02.2012 FRENLERİN SINIFLANDIRILMASI RENLER RENLER renler çlışmlrı itiriyle kvrmlr enzerler. Kvrmlr ir hreketin vey momentin diğer trf iletilmesini sğlrlr ve kıs ir süre içinde iki trftki hızlr iririne eşit olur. renler ise ir trftki hreketi

Detaylı

ORAN ORANTI ORAN ORANTI ORANTININ ÖZELLİKLERİ ÖRNEK - 1 TANIM. x ve y tamsayıdır. x y

ORAN ORANTI ORAN ORANTI ORANTININ ÖZELLİKLERİ ÖRNEK - 1 TANIM. x ve y tamsayıdır. x y ORAN ORANTI TANIM Anı irimden iki çokluğun iririle krşılştırılmsın orn denir. ornınd ve nı irimden olduğu için nin irimi oktur. ÖRNEK - 1 ve tmsıdır. = ve + = 0 olduğun göre, kçtır? A) 1 B) C) 0 9 D) 1

Detaylı

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS)

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS) ÇMR ÖSS SRULRI 1., ve noktlrı merkezli çember üzerinde m( ) = m( ) =. ir dik üçgeni için, = cm ve = 4 cm olrk veriliyor. Merkezi, yrıçpı [] oln bir çember, üçgenin kenrını ve noktlrınd kesiyor. un göre,

Detaylı

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS Rsonel Sılr YILLAR 00 00 00 00 00 00 00 00 00 0 ÖSS-YGS RASYONEL SAYILAR KESĐR: Z ve 0 olmk üzere şeklindeki ifdelere kesir denir p pd kesirçizgisi KESĐR ÇEŞĐTLERĐ: kesri için i) < ise kesir sit kesirdir

Detaylı

KONİKLER KONİKLER...318-357. Sayfa No. r=a A O A. Asal çember. x 2 + y 2 = a 2

KONİKLER KONİKLER...318-357. Sayfa No. r=a A O A. Asal çember. x 2 + y 2 = a 2 Sf No.........................................................8-7 Prol....................................................................... 9 - Etkinlikler.....................................................................

Detaylı

Liderlik ve Yönetim Tarzı Raporu

Liderlik ve Yönetim Tarzı Raporu Liderlik ve Yönetim Trzı Rporu Myıs 15 GİZLİ Liderlik ve Yönetim Trzı Rporu Giriş Myıs 15 Giriş LYTR, yönetii seçimi ve yönetim eerileri geliştirme ile ilgili kişilik konulrın odklnır. Bu rpor, profesyonel

Detaylı

DENEY 6. İki Kapılı Devreler

DENEY 6. İki Kapılı Devreler 004 hr ULUDĞ ÜNİVERSİTESİ MÜHENDİSLİK FKÜLTESİ ELEKTRİKELEKTRONİK MÜHENDİSLİĞİ ÖLÜMÜ ELN04 Elektrik Devreleri Lorturı II 004 hr DENEY 6 İki Kpılı Devreler Deneyi Ypnın Değerlendirme dı Soydı : Ön Hzırlık

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı. İki bsmklı bir sının rkmlrı toplmı dir. Rkmlrı er değiştirdiğinde elde edilen sı, ilk sının sinden fzldır.. Birbirinden frklı tne pozitif tmsının OKEK i olduğun göre, en çok kçtır?

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK MTEMTİK KPSS ÇEVİR KONU - ÇEVİR SORU MTEMTİK EDİTÖR Turgut MEŞE YZR İdris DOĞN ütün hklrı Editör Yyınlrın ittir. Yyınevinin izni olmksızın, kitbın tümünün vey bir kısmının bsımı, çoğltılmsı ve dğıtımı

Detaylı

EKLEMELİ DC KOMPOUND JENERATÖR DENEY 325-05

EKLEMELİ DC KOMPOUND JENERATÖR DENEY 325-05 İNÖNÜ ÜNİVSİTSİ MÜHNDİSLİK FAKÜLTSİ LKTİKLKTONİK MÜH. BÖL. 35 LKTİK MAKİNALAI LABOATUVAI I KLMLİ DC KOMPOUND JNATÖ DNY 3505. AMAÇ: Kompound bğlnmış DC jenertörün çlışmsını incelemek.. UYGULAMALA:. Yük

Detaylı

Yarım Toplayıcı (Half Adder): İki adet birer bitlik sayıyı toplayan bir devredir. a: Birinci Sayı a b c s. a b. s c.

Yarım Toplayıcı (Half Adder): İki adet birer bitlik sayıyı toplayan bir devredir. a: Birinci Sayı a b c s. a b. s c. Syıl Devreler (Lojik Devreleri) Tümleştirilmiş Kominezonl Devre Elemnlrı Syıl itemlerin gerçekleştirilmeinde çokç kullnıln lojik devreler, klik ğlçlrın ir ry getirilmeiyle tümleştirilmiş devre olrk üretilirler

Detaylı

3N MOBİL HABERLEŞME HİZMETLERİNDE HİZMET KALİTESİ ÖLÇÜTLERİNİN ELDE EDİLMESİNE İLİŞKİN TEBLİĞ

3N MOBİL HABERLEŞME HİZMETLERİNDE HİZMET KALİTESİ ÖLÇÜTLERİNİN ELDE EDİLMESİNE İLİŞKİN TEBLİĞ 3N MOBİL HABERLEŞME HİZMETLERİNDE HİZMET KALİTESİ ÖLÇÜTLERİNİN ELDE EDİLMESİNE İLİŞKİN TEBLİĞ BİRİNCİ BÖLÜM Aç, Kps, Dynk, Tnılr ve Kısltlr Aç MADDE 1 (1) Bu Tebliğin cı, IMT 2000/UMTS Altypılrının Kurulsı

Detaylı

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir.

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir. 1 İNTEGRAL BİR FONKSİYONUN DİFERANSİYELİ Tanım: f: [a,b] R, x f(x) fonksiyonu (a,b) aralığında türevli olmak üzere, x değişkeninin değişme miktarı x ise f '(x). x ifadesine f(x) fonksiyonunun diferansiyeli

Detaylı

2002 ORTA ÖĞRETİM KURUMLARI ÖĞRENCİ SEÇME VE YERLEŞTİRME SINAVI MATEMATİK TESTİ 10. 10 10. aşağıdakilerden hangisidir? A) 0,01 B) 0,1 C) 10 D) 100

2002 ORTA ÖĞRETİM KURUMLARI ÖĞRENCİ SEÇME VE YERLEŞTİRME SINAVI MATEMATİK TESTİ 10. 10 10. aşağıdakilerden hangisidir? A) 0,01 B) 0,1 C) 10 D) 100 22 ORTA ÖĞRETİ URUARI ÖĞRECİ EÇE VE YEREŞTİRE IAVI ATEATİ TETİ 1. 3 2 1 1. 1 1. 1 : işleminin sonucu 7 1. 1 1 şğıdkilerden hngisidir? A),1 B),1 C) 1 D) 1 2. O P R T U V Yukrıdki syı doğrusund birbirine

Detaylı

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma DERS NOTU 01 Son Hli Değildir, tslktır: Ekleme ve Düzenlemeler Ypılck BİR SOSYAL BİLİM OLARAK İKTİSAT VE TEMEL KAVRAMLAR 1 Bugünki dersin işleniş plnı: 1. Değişkenler ve Eğriler: Mtemtiksel Htırltm...

Detaylı

DENEY 3: EŞDEĞER DİRENÇ, VOLTAJ VE AKIM ÖLÇÜMÜ

DENEY 3: EŞDEĞER DİRENÇ, VOLTAJ VE AKIM ÖLÇÜMÜ A. DENEYĠN AMACI : Direnç devrelerinde eşdeğer direnç ölçümü ypmk. Multimetre ile voltj ve kım ölçümü ypmk. Ohm knununu sit ve prtik devrelerde nlmy çlışmk. B. KULLANILACAK AAÇ VE MALZEMELE : 1. DC güç

Detaylı

1.6 ELEKTROMOTOR KUVVET VE POTANSİYEL FARK

1.6 ELEKTROMOTOR KUVVET VE POTANSİYEL FARK .6 ELEKTROMOTOR KUVVET VE POTANSİYEL FARK İki uundn potnsiyel frk uygulnmış metl iletkenlerde, serest elektronlr iletkenin yüksek potnsiyeline doğru çekilirler. Elektrik kımını oluşturn, elektronlrın u

Detaylı

TEST - 1 KATI BASINCI. I. yarg do rudur. II. yarg yanl flt r. Buna göre, fiekil-i de K ve L cisimlerinin yere yapt klar bas nçlar eflit oldu una göre,

TEST - 1 KATI BASINCI. I. yarg do rudur. II. yarg yanl flt r. Buna göre, fiekil-i de K ve L cisimlerinin yere yapt klar bas nçlar eflit oldu una göre, TI BSINCI TEST - 1 1 1 π dir π Bun göre, 4 > 1 CEV B de ve cisimlerinin e ypt klr s nçlr eflit oldu un göre, SX S Z + 4 8 S Y I II III CEV B Tu llr n X, Y ve Z noktlr n ypt s nç, X S Y S Z S dir Bun göre,

Detaylı

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir.

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir. LOGARİTMA I. Üstl Fonksiyonlr v Logritmik Fonksiyonlr şitliğini sğlyn dğrini bulmk için ypıln işlm üs lm işlmi dnir. ( =... = 8) y şitliğini sğlyn y dğrini bulmk için ypıln işlm üslü dnklmi çözm dnir.

Detaylı

1981 ÜYS Soruları. 1. Bir top kumaşın önce i, sonra da kalanın ü. satılıyor. Geriye 26 m kumaş kaldığına göre, kumaşın tümü kaç metredir?

1981 ÜYS Soruları. 1. Bir top kumaşın önce i, sonra da kalanın ü. satılıyor. Geriye 26 m kumaş kaldığına göre, kumaşın tümü kaç metredir? 98 ÜYS Sorulrı. r top kumşın önce, sonr d klnın ü 5 stılıor. Gere 6 m kumş kldığın göre, kumşın tümü kç metredr? ) 7 ) 65 ) 6 ) 55 ) 5 4. r şekln, u brm uzunluğun göre ln ölçüsü, v brm uzunluğun göre ln

Detaylı

GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI

GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI Q z Genel ükleme durumund, ir Q noktsını üç outlu olrk temsil eden küik gerilme elemnı üzerinde 6 ileşeni gösterileilir: σ, σ, σ z, τ, τ z, τ z. Söz konusu

Detaylı

THÉVENİN, NORTON, MAKSİMUM GÜÇ TEOREMİ ve DEVRE PARAMETRELERİ

THÉVENİN, NORTON, MAKSİMUM GÜÇ TEOREMİ ve DEVRE PARAMETRELERİ DENEY NO: 4 THÉENİN, NORTON, MAKSİMUM GÜÇ TEOREMİ ve DERE PARAMETRELERİ Mlzeme ve Cihz Litei:. 330 direnç det. k direnç 3 det 3.. k direnç det 4. 3.3 k direnç det 5. 5.6 k direnç det 6. 0 k direnç det

Detaylı

63032 / 63932 ELEKTRONİK SICAKLIK KONTROL CİHAZI KULLANIM KILAVUZU

63032 / 63932 ELEKTRONİK SICAKLIK KONTROL CİHAZI KULLANIM KILAVUZU 63032 / 63932 ELEKTRONİK SICAKLIK KONTROL CİHAZI KULLANIM KILAVUZU www.omk.com.tr 01.08.2014 V3185 / V4185 VARİL ISITICISI KULLANIM KILAVUZU OMAK MAKİNA SANAYİİ ve TİCARET LİMİTED ŞİRKETİ DR. MEDİHA ELDEM

Detaylı

YÜZDE VE FAĐZ PROBLEMLERĐ

YÜZDE VE FAĐZ PROBLEMLERĐ YILLAR 00 003 00 00 006 007 008 009 010 011 ÖSS-YGS 3 1 1 1 3 YÜZDE VE FAĐZ PROBLEMLERĐ YÜZDE: Bir syının yüzde sı= dır ÖRNEK(1) % i 0 oln syıyı bullım syımız olsun 1 = 0 = 0 ÖRNEK() 800 ün % ini bullım

Detaylı

BÖLÜM 6: KABLOLAR 6.1. KABLOLAR

BÖLÜM 6: KABLOLAR 6.1. KABLOLAR ÖLÜM 6 KLOLR ÖLÜM 6: KLOLR 6.. KLOLR Kllr, mühendislikte kullnıln tşııcı sistemlerden iridir. rihe kıldığınd çk önceleri kullnılmış ln ir tşııcı sistem lduğu görülmektedir. Kllr,. sm köprülerde. Enerji

Detaylı

1984 ÖSS. 6. a, b, c birer pozitif sayı ve. olduğuna göre, a, b, c arasındaki bağlantılardan hangisi doğrudur? 7. a, b, c birer tamsayı olmak üzere

1984 ÖSS. 6. a, b, c birer pozitif sayı ve. olduğuna göre, a, b, c arasındaki bağlantılardan hangisi doğrudur? 7. a, b, c birer tamsayı olmak üzere 984 ÖSS 033 0. = x 0 olduğun göre x in değeri nedir? A) 0063 B) 063 C) 63 D) 63 E) 630. 6. b c birer pozitif syı ve b c = = 03 04 05 olduğun göre b c rsındki bğlntılrdn hngisi doğrudur? A) c

Detaylı

3. Bir integral bantlı fren resmi çizerek fren kuvveti ve fren açma işinin nasıl bulunduğunu adım adım gösteriniz (15p).

3. Bir integral bantlı fren resmi çizerek fren kuvveti ve fren açma işinin nasıl bulunduğunu adım adım gösteriniz (15p). Ü L E Y M A N D E M Ġ R E L Ü N Ġ V E R Ġ T E Ġ M Ü H E N D Ġ L Ġ K F A K Ü L T E Ġ M A K Ġ N A M Ü H E N D Ġ L Ġ Ğ Ġ B Ö L Ü M Ü I. öğrtim II. öğrtim MAK-43 MT-Trnsport Tkniği ÖĞRENCĠ ADI OYADI NUMARA

Detaylı

ÜÇGENDE AÇI-KENAR BAĞINTILARI

ÜÇGENDE AÇI-KENAR BAĞINTILARI ÜÇGN ÇI-NR ĞINTILRI ir üçgende üük çı krşısınd üük kenr, küçük çı krşısınd küçük kenr ulunur. 3 Şekildeki verilere göre, en uzun kenr şğıdkilerden hngisidir? 3 3 üçgeninde, kenrlr rsınd > > ğıntısı vrs,

Detaylı

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce

Detaylı

ARABA BENZERİ GEZGİN ROBOTUN OTOMATİK PARK ETMESİ İÇİN BİR YÖNTEM

ARABA BENZERİ GEZGİN ROBOTUN OTOMATİK PARK ETMESİ İÇİN BİR YÖNTEM ARABA BENZERİ GEZGİN ROBOTUN OTOMATİK PARK ETMESİ İÇİN BİR YÖNTEM Burk Uzkent Osmn Prlktun Elektrik-Elektronik Mühendisliği Bölümü Eskişehir Osmngzi Üniversitesi, Eskişehir uzkent.burk@gmil.com oprlk@ogu.edu.tr

Detaylı

Algoritma Geliştirme ve Veri Yapıları 4 Algoritma ve Yazılımın Şekilsel Gösterimi. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 4 Algoritma ve Yazılımın Şekilsel Gösterimi. Mustafa Kemal Üniversitesi Algoritm Geliştirme ve Veri Ypılrı 4 Algoritm ve Yzılımın Şekilsel Gösterimi Mustf Keml Üniversitesi Algoritm ve Yzılımın Şekilsel Gösterimi Algoritmik progrm tsrımı, verilen ir prolemin ilgisyr ortmınd

Detaylı

SANTRİFÜJ KOMPRESÖR ÇARKININ ÖN TASARIMI. Saim KOÇAK. S. Ü. Mühendislik - Mimarlık Fakültesi Makina Mühendisliği Bölümü, Kampüs Konya

SANTRİFÜJ KOMPRESÖR ÇARKININ ÖN TASARIMI. Saim KOÇAK. S. Ü. Mühendislik - Mimarlık Fakültesi Makina Mühendisliği Bölümü, Kampüs Konya TEKNOLOJİ, (00), Syı -, 9-5 TEKNOLOJİ SANTRİFÜJ KOMPRESÖR ÇARKININ ÖN TASARIMI Sim KOÇAK S. Ü. Mühendislik - Mimrlık Fkültesi Mkin Mühendisliği Bölümü, Kmpüs Kony ÖZET Sntrifüj kompresörü çrkınd ön tsrımın

Detaylı

Kartografik Tasarım Üretim Seminer 1. www.iobildirici.com. iobildirici@yahoo.com

Kartografik Tasarım Üretim Seminer 1. www.iobildirici.com. iobildirici@yahoo.com Krtogrik Tsrım Üretim Seminer ANALOG HARİTALARDAN MEKANSAL VERİ KAZANIMI: DATUM, PROJEKSİYON, KOORDİNAT SİSTEMLERİ, SAYISALLAŞTIRMA Pro.Dr. İ.Öztuğ BİLDİRİCİ Selçuk Üniversitesi Mühendislik-Mimrlık Fkültesi

Detaylı

Sigma 28, 124-137, 2010 Review Paper / Derleme Makalesi ANALYTIC HIERARCHY PROCESS FOR SPATIAL DECISION MAKING

Sigma 28, 124-137, 2010 Review Paper / Derleme Makalesi ANALYTIC HIERARCHY PROCESS FOR SPATIAL DECISION MAKING Journl of Engineering nd Nturl Sciences Mühendislik ve Fen Bilimleri Dergisi Sigm 28, 24-37, 200 Review Pper / Derleme Mklesi ANALYTIC HIERARCHY PROCESS FOR SPATIAL DECISION MAKING Dery ÖZTÜRK*, Ftmgül

Detaylı

GERİ KARIŞMALI ph NÖTRALİZASYON PROSESİNİN BİLGİSAYAR DESTEKLİ KONTROLÜ

GERİ KARIŞMALI ph NÖTRALİZASYON PROSESİNİN BİLGİSAYAR DESTEKLİ KONTROLÜ GERİ KARIŞMALI ph NÖTRALİZASYON PROSESİNİN BİLGİSAYAR DESTEKLİ KONTROLÜ Onur Ömer SÖĞÜT*, A. Fruk BAKAN**, Mesut AKGÜN* * YTÜ Dvutpş Kmpüsü, Kimy Mühendisliği Bölümü, 34210 Esenler, İstnul **YTÜ Elektrik

Detaylı

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi Kesir.. Trlı lnı gösteren kesri bulunuz. kesrini ile genişlettiğimizde elde edilecek kesri bulunuz.. Yndki şekilde bir bütün 8 eş prçy bölünmüş ve bu prçlrdn tnesi trnmıştır. Trlı lnı gösteren kesir syısı

Detaylı

ÇÖZÜMLER. 3. I. Ortam sürtünmesiz ise, a) Di na mi ğin te mel pren si bi sis te me uy gu lan dığın 30 T 1 T 1. II. Ortamın sürtünme katsayısı 0,1 ise,

ÇÖZÜMLER. 3. I. Ortam sürtünmesiz ise, a) Di na mi ğin te mel pren si bi sis te me uy gu lan dığın 30 T 1 T 1. II. Ortamın sürtünme katsayısı 0,1 ise, BÖÜM DİNAMİ AIŞIRMAAR ÇÖZÜMER DİNAMİ 1 4kg 0N yty M düzle rsınd : rsınd cisin ivesi /s olduğundn cise uygulnn kuvvet, 1 4 0 N olur M rsınd : M rsınd cisin ivesi /s olduğundn cise etki eden sürtüne kuvveti,

Detaylı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı Trce ve Kellogg Yöemleri Kullılrk İegrl Operörlerii Özdeğerlerii Nümerik Hesı Erk Tşdemir () ; Yüksel Soyk () ; Melih Göce (3) (¹)Kırklreli Üiversiesi, Kırklreli, Türkiye, erksdemir@homil.com (²)Büle Ecevi

Detaylı

ÖLÇME BĐLGĐSĐ. Ders Notları. Yrd. Doç.Dr. Orhan KURT. KOCAELĐ ÜNĐVERSĐTESĐ Yayın No: 428

ÖLÇME BĐLGĐSĐ. Ders Notları. Yrd. Doç.Dr. Orhan KURT. KOCAELĐ ÜNĐVERSĐTESĐ Yayın No: 428 Ölçme ilgisi Ders Notlr KOELĐ ÜNĐVERĐTEĐ Yyın No: 48 ÖNÖZ Jeodezi ve Fotogrmetri Mühendisliği uzmnlık lnının nbilim Dllrındn birisi oln Ölçme Tekniği; temel ölçü letleri, bu letler ile gerçekleştirilen

Detaylı

"DEMOKRATİK KATILIM PLATFORMU" TARAFINDAN 49. TÜRKİYE JEOLOJİ KURULTAYI SIRASINDA YAPILMIŞ OLAN ANKETİN SONUÇLARI VE DEĞERLENDİRMESİ

DEMOKRATİK KATILIM PLATFORMU TARAFINDAN 49. TÜRKİYE JEOLOJİ KURULTAYI SIRASINDA YAPILMIŞ OLAN ANKETİN SONUÇLARI VE DEĞERLENDİRMESİ "DEMOKRATİK KATILIM PLATFORMU" TARAFINDAN 49. TÜRKİYE JEOLOJİ KURULTAYI SIRASINDA YAPILMIŞ OLAN ANKETİN SONUÇLARI VE DEĞERLENDİRMESİ "DEMOKRATİK KATILIM PLATFORMU" trfındn 49, Türkiye Jeoloji Kurultyı

Detaylı

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS - - - - - - LYS - - - - - - - - FONKSĐYONLAR A ve B oşn frklı iki küme olsun A dn B ye tnımlı f fonksiyonu f : A B ile gösterilir A y tnım kümesi, B ye

Detaylı

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1 IAAOJ, Scietific Sciece, 23,(2), 22-25 GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE Adullh AKKURT, Hüseyi YILDIRIM Khrmmrş Sütçü İmm Üirsitesi, Fe-Edeiyt Fkültesi

Detaylı

Taşkın, Çetin, Abdullayeva

Taşkın, Çetin, Abdullayeva 1 BÖLÜM 1 KÜMELER VE SAYILAR 1.1 KÜMELER 1.1.1. TEMEL TANIMLAR Kesi ir tımı ypılmmkl erer,sezgisel olrk,kümeye iyi tımlmış iri iride frklı eseler topluluğudur diyeiliriz. Kümeyi meyd getire eselere kümei

Detaylı

Telekomünikasyon, bilginin haberleşme amaçlı

Telekomünikasyon, bilginin haberleşme amaçlı GÜNÜMÜZ HABERLEŞME TEKNOLOJİLERİNE KISA BİR BAKIŞ Mehmet Okty ELDEM Elektronik Y. Mühendisi EMO Ankr Şubesi Üyesi okty.eldem@gmil.com Telekomüniksyon, bilginin hberleşme mçlı olrk dikkte değer bir mesfeye

Detaylı

Bilgisayar Destekli Tasarım/İmalat Sistemlerinde Kullanılan Modelleme Yöntemleri: Bézier ve Tiriz Eğrileri ve İmalat Uygulamaları

Bilgisayar Destekli Tasarım/İmalat Sistemlerinde Kullanılan Modelleme Yöntemleri: Bézier ve Tiriz Eğrileri ve İmalat Uygulamaları Bilgisr Destekli Tsrım/İmlt Sistemlerinde Kllnıln Modelleme Yöntemleri: Béier ve Tiri Eğrileri ve İmlt Uglmlrı Bilimsel Hesplm II Dönem Projesi Hmdi Ndir Trl İçerik. Giriş. Bilgisrlı Destekli Tsrım (CAD

Detaylı

KISA MESAFE ERİŞİMLİ TELSİZ (KET) CİHAZLARI HAKKINDA YÖNETMELİK. BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak, Kısaltmalar ve Tanımlar

KISA MESAFE ERİŞİMLİ TELSİZ (KET) CİHAZLARI HAKKINDA YÖNETMELİK. BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak, Kısaltmalar ve Tanımlar 11 Eylül 2012 SALI Resmî Gzete Syı : 28408 YÖNETMELİK Bilgi Teknolojileri ve İletişim Kurumundn: KISA MESAFE ERİŞİMLİ TELSİZ (KET) CİHAZLARI HAKKINDA YÖNETMELİK BİRİNCİ BÖLÜM Amç, Kpsm, Dynk, Kısltmlr

Detaylı

4.3. Türev ile İlgili Teoremler

4.3. Türev ile İlgili Teoremler 4.. Türev ile İlgili Teoremler Bu kesimde ortalama değer teoremini vereceğiz. Ortalama değer teoremini ispatlarken kullanılacak olan Fermat teoremini ve diğer bazı teoremleri ispat edeceğiz. 4...Teorem

Detaylı

Parabol, Elips ve Hiperbol Cebirsel Tan mlar ve Geometrik Çizimler

Parabol, Elips ve Hiperbol Cebirsel Tan mlar ve Geometrik Çizimler Mtemtik Düns, 2005 Yz Kpk Konusu: Konikler Geçen z d, ir koni in denkleminin, düzlemin eksenlerini döndürerek ve öteleerek, 0, c ve ƒ sitleri için, 2 + c 2 = 0, 2 = ƒ, 2 + c 2 = 1, d = 2 içiminde z lilece

Detaylı

LOGARİTMA Test -1. olduğuna göre, x kaçtır? olduğuna göre, x aşağıdakilerden hangisidir? A) 3 B) 9 C) 16 D) 64 E) 81.

LOGARİTMA Test -1. olduğuna göre, x kaçtır? olduğuna göre, x aşağıdakilerden hangisidir? A) 3 B) 9 C) 16 D) 64 E) 81. LOGARİTMA Test -. olduğun göre, şğıdkilerden log log log. log olduğun göre, kçtır? 6 6 8. olduğun göre, şğıdkilerden 6. logm olduğun göre, m kçtır? log log log 6 log 6. olduğun göre, şğıdkilerden log log

Detaylı

Tablo 1: anket sorularına verilen cevapların % de dağılımı Anket soruları. % c. % a. % b

Tablo 1: anket sorularına verilen cevapların % de dağılımı Anket soruları. % c. % a. % b PROJENİN ADI: Kimy Öğretiminde Alterntif Öğretim Metodu PROJE AMACI: Kimy öğretiminde lterntif uygulm olrk nimsyon sunumu tekniğinin uygulnilirliğini örneklerle göstermek ve dh iyi nsıl öğreteilirim sorusun

Detaylı

LOGARİTMA. çözüm. için. Tanım kümesindeki 1 elemanını değer kümesindeki herhangi. çözüm. çözüm

LOGARİTMA. çözüm. için. Tanım kümesindeki 1 elemanını değer kümesindeki herhangi. çözüm. çözüm LOGARİTMA Üstel Fonksion >0 ve olmk üzere f:r R +, f() = şeklindeki fonksionlr üstel fonksion denir. Üstel fonksionlr birebir ve örtendir. f:r R +, f()=( ) bğıntısının üstel fonksion olup olmdığını inceleiniz.

Detaylı

ÖRNEK 8.8: Aşağıdaki şekilde bir su deposunun altında bağlanmış olan boru hattı temsil edilmiştir. Sistem 180F'de

ÖRNEK 8.8: Aşağıdaki şekilde bir su deposunun altında bağlanmış olan boru hattı temsil edilmiştir. Sistem 180F'de ÖRNEK 8.8: Aşğıdki şekilde ir su deposunun ltınd ğlnmış oln oru httı temsil edilmiştir. Sistem 80F'de su içermektedir. Boru httındn 00 l/dk kım sğlmk için tnktki su seviyesi ne olmlıdır? Suyun yoğunluğu

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. ab iki basamaklı saısı b ile bölündüğünde, bölüm 5 ve kalan b 5 tir. u şartlara uan kaç farklı ab iki basamaklı saısı vardır? ) 5 6 7 5. a, b, c, d, e sıfırdan farklı tamsaılar

Detaylı

ORAN VE ORANTI Tekrar Zamanı Çözümlü Test 1 Çözümlü Test 2 Uygulama Zamanı 1 Tekrar Zamanı Çözümlü Test 1 Çözümlü Test 2 KESİR PROBLEMLERİ

ORAN VE ORANTI Tekrar Zamanı Çözümlü Test 1 Çözümlü Test 2 Uygulama Zamanı 1 Tekrar Zamanı Çözümlü Test 1 Çözümlü Test 2 KESİR PROBLEMLERİ İÇİNDEKİLER ORAN VE ORANTI Orn Kvrmı... Orntı Kvrmı... Orntı Elemnlrının Yer Değiştirmesi... İçler Dışlr Çrpımı Prolemleri...4 Orntıyı Sitleme-I... Orntıyı Sitleme-II...6 Orntıyı Sitleme-III...7 Uygulm

Detaylı

DENKLEM ve EŞİTSİZLİKLER

DENKLEM ve EŞİTSİZLİKLER DENKLEM ve EŞİTSİZLİKLER Sf No..................................................... - 7 Denklem ve Eşitsizlikler Konu Özeti............................................. Konu Testleri ( 0)..........................................................

Detaylı

ELEKTRİK DAĞITIM ȘİRKETLERİNİN SORUMLULUĞUNDAKİ YOL AYDINLATMASINA İLİȘKİN KURALLARIN İRDELENMESİ

ELEKTRİK DAĞITIM ȘİRKETLERİNİN SORUMLULUĞUNDAKİ YOL AYDINLATMASINA İLİȘKİN KURALLARIN İRDELENMESİ ELEKTRİK DAĞITIM ȘİRKETLERİNİN SORUMLULUĞUNDAKİ YOL AYDINLATMASINA İLİȘKİN KURALLARIN İRDELENMESİ M. Akif ȘENOL 1 Ercüment ÖZDEMİRCİ 2 M. Cengiz TAPLAMACIOĞLU 3 1 Enerji ve Tbii Kynklr Bknlığı, Ankr, 2

Detaylı

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI Konu Başlıkları Lineer Denklem Sistemlerinin Çözümü İntegral ve Türev İntegral (Alan) Türev (Sayısal Fark ) Diferansiyel Denklem çözümleri Denetim Sistemlerinin

Detaylı

Mıknatıs mantığında oluşan N S Kutuplaşması kullanılarak N kutbu tarafına S kutbu gelecek vada S kutbu tarafında N kutbu gelecek şekilde akımın yönü

Mıknatıs mantığında oluşan N S Kutuplaşması kullanılarak N kutbu tarafına S kutbu gelecek vada S kutbu tarafında N kutbu gelecek şekilde akımın yönü 1. DC MOTORLAR Mntık olrk bobin üzerinden geçen kıın sonucund oluşturduğu ğnetik kçklr syesinde oluşturduğu kutuplşyı ileri ve geri yönlü olrk kullnrk yni zıt kutuplrın çekesi vd ynı kutuplrın birbirini

Detaylı

8. sınıf ders notları zfrcelikoz@yahoo.com

8. sınıf ders notları zfrcelikoz@yahoo.com III - SAYI ÖRÜNTÜLERİ Htırltm: Syılrı virgülle yrılrk, birbirii rdı dizilmesie syı dizisi, dizideki her bir syıy d terim deir. hrfi verile örütüde syılrı sırsıı belirte semboldür ve ici syıy örütüü geel

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. a 9! 8!, 9! 8! OKEK (a, ) OBEB (a, ) ifadesinin değeri kaçtır?. a ve a ile arasındaki ağıntı nedir? a a a a a a a a. ( ). ( ). ( ) 8 nın insinden eşiti nedir?. z z z toplamı

Detaylı

Yerel Topluluklar ve Yönetimler Arasında Sınır-Ötesi Đşbirliği Avrupa Çerçeve Sözleşmesine Ek Protokol

Yerel Topluluklar ve Yönetimler Arasında Sınır-Ötesi Đşbirliği Avrupa Çerçeve Sözleşmesine Ek Protokol Yerel Topluluklr ve Yönetimler Arsınd Sınır-Ötesi Đşirliği Avrup Çerçeve Sözleşmesine Ek Protokol Strsourg 9 Xl 1995 Avrup Antlşmlrı Serisi/159 Yerel Topluluklr vey Yönetimler rsınd Sınır-ötesi Đşirliği

Detaylı

TG 10 ÖABT KİMYA. KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ KİMYA ÖĞRETMENLİĞİ 29 Haziran 2014 Pazar

TG 10 ÖABT KİMYA. KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ KİMYA ÖĞRETMENLİĞİ 29 Haziran 2014 Pazar KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ KİMYA ÖĞRETMENLİĞİ 9 Hzirn 4 Pzr TG ÖABT KİMYA Bu testlerin her hkkı sklıdır. Hngi mçl olurs olsun, testlerin tmmının vey bir kısmının İhtiyç Yyıncılık

Detaylı