SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI"

Transkript

1 YILLAR ÖSS-YGS SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = b bc = b+c bcd = b+10c+d Aşğıdki çılımlrı d incelemenizde fyd vr: b = 00 + b b = 0b + 0 b = b0 + = 10b + bb = b00+b = 100b + b = 101b Örnek( 1 ) Rkmlrı toplmının 7 ktın eşit oln iki bsmklı kç syı yzılbilir? Syımız b olsun Ab = 7(+b) 10 + b = 7 + 7b = 6b = b b ye değer verip lrı bullım b O hlde 4 tne b iki bsmklı syısı yzılbilir deriz Örnek( ) b+c+bc toplmı şğıdkilerden hngisine kesinlikle bölünür? A) B) C) D)7 E)11 b+c+bc = 10 +b +10c + +10b + c = b + 11c = 11( +b +c) syımız 11 in ktı olduğun göre 11 ile tm bölünür Cevp E şıkkıdır Örnek( ) b iki bsmklı syının rkmlrı yer değiştirildiğinde syı 6 zlıyor Bun göre kç b iki bsmklı syısı yzılbilir? Rkmlr yer değiştirdiğinde syı zlıyors b b = 6 olur Burdn 10 +b (10b +)= 6 10+b-10b- = 6 9-9b = 6 9(-b) = 6 -b = 7 ve b ye değer verirsek b O hlde cevp olur (Sorud b için iki bsmklı ifdesi kullnılmdığındn b ye 0 verildiğine dikkt edin) Örnek( 4 ) Rkmlrı frklı iki bsmklı en büyük tmsyı, rkmlrı frklı iki bsmklı en küçük tmsyıdn kç fzldır? Rkmlrı frklı iki bsmklı en büyük tmsyı = 98 Rkmlrı frklı iki bsmklı en küçük tmsyı = (-98) = 198 olur wwwgloblderscom 1

2 Örnek( ) Birbirinden frklı üç doğl syının toplmı 18 ise en büyüğü en z kçtır? En büyük en z olcks syılr mümkünse rdışık seçilir Syılrın toplmı e bölündüğünden; 18: = 46 (ortnc syı) syılrımız 4,46,47 seçilirse en büyül en z 47 olur Örnek( 6 ) Üç bsmklı frklı dört pozitif syının toplmı 118 ise en küçüğü en z kçtır? En küçük en z olcks diğerleri büyük seçilmeli Rkmlrı frklı demediğinden Üç büyük syı : 999,998,997 seçilir = 994 bu syı toplmdn çıkrılrk küçük syı bulunur = 14 olur Örnek( 8 ) Üç bsmklı iki syı yzmk için tümü frklı rkmlr kullnılmıştır Bun göre bu iki syının toplmı en z kçtır? Rkmlrımız 0,1,,,4,,6,7,8,9 bunlrın en küçükleri yüzler bsmğın sonr sırsıyl onlr ve birler bsmğın yerleştirilir Anck burd iki syı ynı nd teşkil edilmelidir bulunur Örnek( 9 ) Rkmlrı toplmının 9 ktındn eksik oln iki bsmklı syı kçtır? Syımız b olsun b = 9(+b) 10 + b = 9 + 9b- = 8b - b= 1 için = 81- =6 olur Syımız 61 dir Örnek( 7 ) Rkmlrı frklı iki bsmklı birbirinden frklı dört pozitif syının toplmı 1 ise en küçüğü en z kçtır? Rkmlrı frklı dediğinden Büyük seçilecek syılr : 98,97,96,9 dır = 91 bu toplm 1 ten çıkrılırs 1 91 = çıkr Anck sorudki rkmlrı frklı cümlesi bu syı için de geçerli olduğundn Cevp değildir O hlde seçilen ilk üç syıdn biri değiştirilerek; = 90 bu toplm 1 ten çıkrır 1-90 = sorumuzun cevbıdır Örnek( 10 ) b ve b iki bsmklı doğl b b syılr olmk üzere + = ise kç b b syısı yzılbilir? 10+ b 10b+ + = pyd b eşitlersek 10b+ b 10b+ + = b b 10b+ b + 10b+ = b b + = b 0b b + = b b b+ = 0 (b ) = 0 wwwgloblderscom

3 b- = 0 b = bu durumd ifdeyi tnımsız ypmyn tüm rkmlr verilebilir =b=1,,,4,,6,7,8,9 verilirse b syılrı 11,,,44,,66,77,88,99 Yni 9 tne syı yzılbilir Üç ile bölünebilen rkmlrı frklı en büyük üç bsmklı çift syı = 984 Beş ile bölünebilen rkmlrı frklı en küçük tek syı = = 879 olur Örnek( 11 ) b ve b iki bsmklı syılr b b olmk üzere = 7 eşitliğini sğlyn ve b rkmlrı için b=? b 10 b + b = 7 10b+ = b 10b = 7 9 9b = 7 = 9b burd =9 ve b= dir 9-=7 olur Örnek( 14 ) b iki bsmklı syısındn b iki bsmklı syısı çıkrılırs şğıdkilerden hngisi elde edilemez? A) 6 B) 4 C) 0 D) 7 E) 81 b b = 9(-b) yni syı 9 un ktı olmlıdır ve b sıfırdn frklı olduğundn =9 ve b=0 seçilemeyeceği çıktır Bu durumd -b = 9 olmz Yni 9(-b) 81 yni cevp E şıkkıdır Örnek( 1 ) bc üç bsmklı syısının birler ve yüzler bsmklrı yer değiştirdiğinde syı 97 rtıyors c=? Örnek( 1 ) b iki bsmklı syısının sğın 1 yzıldığınd elde edilen syı, solun 1 yzıldığınd elde edilen syıdn 1188 fzl ise b=? b1 1b = 1188 b (100 + b) = b b 148 = b = 67 b = 7 olur cb bc = c + 10b + ( b + c) = 97 99c 99 = 97 c- = -c = - olur Örnek( 16 ) b iki bsmklı syısının rkmlrı yer değiştirilerek bir toplnıp, bir çıkrılıyor Elde edilen syılr sırsıyl ve7 ise b =? Örnek( 1 ) Üç ile bölünebilen rkmlrı frklı en büyük üç bsmklı çift syı, beş ile bölünebilen rkmlrı frklı en küçük üç bsmklı tek syıdn kç fzldır? wwwgloblderscom Ab + b = 11(+b) = +b = Ab - b = 7 9(-b) = 7 -b = b = (+b)(-b)==1 olur

4 Örnek( 17 ) Rkmlrı frklı üç bsmklı bir syının rkmlrının yerleri değiştirilerek elde edilen tüm frlı syılr toplnıyor Elde edilen syı 1 ise bu syılrdn en büyüğü kçtır? bc cb bc bc cb + cb (+b+c)=1 (+b+c)=6 =, b=, c=1 seçilirse syı 1 olur Örnek( 18 ) Rkmlrı frklı iki bsmklı frklı pozitif dört syının toplmı 79 ise en büyüğü en fzl kçtır? Bu dört syıdn üçü küçük seçilirse; Syılr: 10,1,1 Syılrın toplmı :, bu toplm 79 dn çıkrılır 79 = 44 olur Anck syını rkmlrı ynı olduğundn seçilen syılrdn birini değiştirmek gerekir Yeni syılr : 10,1,14 Yeni toplm : = 4 sorumuzun cevbıdır Örnek( 19 ) Toplmlrı 7 oln 4 frklı syıdn en büyüğü en z kç olbilir? Syılrı mümkün olduğunc birbirine ykın, htt mümkünse rdışık seçmeliyiz Dört rdışık syının toplmı 7 olmuyor O yüzden önce syıyı 4 e bölüp sonr oluşn syılr üzerinde oynm ypılır syılr 14, 14, 14, 144 seçilip ekle çıkr yöntemiyle düzenlenir son durum 141, 14, 144, 14 yni cevp 14 olur Örnek( 0 ) <b<c olmk üzere ile bölebilen kç bc syısı yzılbilir? c syısı seçilirse <b< <b< <b< 1<< 1<4< <4< 1<< << <4< 6 tne syı yzılbilir Örnek( 1 ) Đkisi ten küçük iki bsmklı frklı beş syının toplmı 40 ise en küçüğü en z kçtır? ten küçük seçilecek syılrdn biri bizim rdığımız syı olcktır (bury dikkt) diğer syılr ne kdr büyük seçilirse rdığımız syı o kdr küçük olur O hlde syılrımız 4,97,98,99 olsun Bunlrın toplmı 8 dir 40 8 = 1 rdığımız syı olur Örnek( ) Dört frklı doğl syının toplmı 0 ise en büyük syı en fzl kçtır? Syılrın bsmk syısı belli olmdığındn syılr bir bsmklı seçilebiir O hlde syılr: 0,1, seçilir Syılrın toplmı : 0 = 47 bulunur wwwgloblderscom 4

5 Örnek( ) bc üç bsmklı syısı rkmlrı toplmının x ktı, bc üç bsmklı syısı rkmlrı toplmının x ktı ve cb üç bsmklı syısı rkmlrı toplmının x+7 ktı ise x=? bc = (x-)(+b+c) bc = (x-)(+b+c) cb = (x+7)(+b+c) 111(+b+c) = (8x-1)(+b+c) 8x-1 = 111 8x = 11 x = 14 bulunur NOT: Bir doğl syıdn rkmlrının toplmı çıkrılırs 9 un ktı bir syı elde edilir Örnek( 4 ) b üç bsmklı, b iki bsmklı syı ve b=4b+9 ise +b=? b=4b b = 4b = 4b b b = 91 b = 97 + b = 16 olur Örnek ( ) Üç tnesi 17 den büyük 6 tne sym syısının toplmı 64 ise en büyüğü en fzl kçtır? 17 den büyük oln üç syının birisi bizim rdığımız syı olduğundn, 17 den büyük iki syı seçmeliyiz ki kln syı ile birlikte üç tne olsun Syılrımız: 18,18,1,1,1 Syılrın toplmı : 9 Đstenen syı : 64-9 = Örnek (6 ) Üç frklı sym syısının toplmı 48 ise en büyüğü en z kçtır? Syılr birbirine ykın seçilmeli (mümkünse rdışık olmlı) Syılrı rdışık seçersek ortnc syı 48:=16 O hlde syılr 1,16,17 olur ki bu durumd cevp 17 dir Örnek( 7 ) 6 bsmklı en küçük doğl syının kresi, bsmklı en küçük doğl syının kresi b ise b syısının rkmlrı toplmı kç olur? 10 bsmklı en küçük doğl syı= 10 ve 10 kresi = 10 = bsmklı en küçük doğl syı = 10 ve 4 kresi = 10 =b = b = b = syıd 6 tne 9, ve 4 tne de o vr O hlde cevp 69 = 4 bulunur Örnek( 8 ) 10 bsmklı en küçük doğl syının küpü x, 6 bsmklı en küçük doğl syının küpü y ise x-y syısının rkmlrı toplmı nedir Önceki sorudki çözümü inceleyerek bu sorud frk syısının içinde 8 tne 9 ve 6 tne sıfır olduğunu söyleyebiliriz O hlde cevp 89 = 7 olur Örnek( 9 ) 9 bsmklı bir syı bsmklı bir syıy bölündüğünde kln en fzl bsmk, en z b bsmk ise b=? wwwgloblderscom

6 Kln bölenden küçük olcğındn, bölen bsmklı bir syı ise(örneğin 146) kln syı y sıfırdır, y d bölenden küçük bir syıdır ki bu d,4,,,1 bsmklı bir syı olbilir O hlde en fzl, en z 1 bsmklı olur(0(sıfır) syısının bir bsmklı olduğunu unutmylım) O hlde cevp 1= olur Bu durumd bu syılrın çrpımı ( 10 1)(10 1)(10 1) = (10 1) (10 1) = syısı 16 bsmklı bir syıdır 1 Açılımdki eksilen syılr 10 syısını en fzl bir bsmk eksilteceğinden kln syı 1 bsmklı bir syı olcktır Örnek( 0 ) 9 bsmklı bir syı bsmklı bir syıy bölündüğünde kln en fzl, en z b ise b=? Bölen syı beş bsmklı ise kln syı en fzl beş, en z bir bsmklıdır Bölünen syı bölen syının bir ktı ise kln 0(sıfır) olcğındn, klnlr çrpımı 0(sıfır) olur Örnek( 1 ) bsmklı üç tmsyının çrpımı en z kç bsmklı olur? Syılrı en z seçelim Örneğin syılr 10000,10000,10000 olsun (frklı demediği için böyle seçilebilir) Bu durumd bu syılrın çrpımı = 10 olur Bu d 1 bsmklı bir syı eder 4 (10000 = 10 yzılbileceğine dikkt edin) Örnek( ),b,c birbirinden frklı rkmlr ve bc ile cb üç bsmklı syılrdır bc cb =94 ise bc üç bsmklı syısının en büyük değeri en küçük değerinden kç fzldır? bc cb =94 ifdesini çrsk b+c (100c+10b+) = c = 94 99(-c) = 94 -c = 6 bulunur c b yi istediğimiz gibi seçebiliriz çünkü b için herhngi bir şrt oluşmdı O hlde En büyük bc = 98 En küçük bc = 701 Frk = 8 olur Örnek( ) bsmklı üç tmsyının çrpımı en fzl kç bsmklı olur? Bu sefer syılrı büyük seçelim Örneğin syılr 99999,99999,99999 olsun (frklı demediği için böyle seçilebilir) wwwgloblderscom 6 Örnek( 4 ) Birbirinden frklı x,y,z rkmlrı için x =y ve y= z+ 1 olck şekilde yzılbilecek zxy üç bsmklı syılrının toplmı nedir?

7 x =y ve y= z+ 1 şrtlrını birlikte sğlyn değerler tblodki gibidir z x y Oluşn syılr = 14 bulunur Örnek (4 ) bc üç bsmklı syısınd rtr, b üç zlır ve c rtrs syı nsıl değişir? Nottn hreketle syıdki değişiklik = +17 olcktır Örnek( ) 6 tne üç rkmının yn yn yzılmsıyl elde edilecek 6 bsmklı syı şğıdkilerden hngisidir? A) B) D) E) C) Şıklr üslü olduğun göre syımızı üslü biçimde ifde etmeye çlışmlıyız Syımız dır Bu syıyı ile çrpıp ile bölersek syıd bir değişiklik olmz = py kısmındki syı syısındn 1 eksiktir Bunu d = diye ifde edersek sonuç şğıdki gibi olcktır Örnek ( ) b ve cd iki bsmklı syılr bcd çrpımınd rttırılır ve c zltılırs çrpım 160 rtıyor Bun göre b cd=? b syısınd rtrs syı (b + 0) cd syısınd c zlırs syı )cd 0) olur Bu durumd (b+0)(cd-0) bcd = 160 bcd 0b + 0cd 400 bcd =160-0(b cd )=60 (b cd ) = - 8 Örnek (6 ) bc üç bsmklı syısı t ye eşitse bc1 beş bsmklı syısı t cinsinden neye eşittir? = olur ki cevp B şıkkıdır NOT: bc biçimindeki üç bsmklı bir syı için yüzler bsmğındki her rtış +100 yüzler bsmğındki her zlış -100 onlr bsmğındki her rtış +10 onlr bsmğındki her zlış -10 birler bsmğındki her rtış +1 birler bsmğındki her zlış -1 olrk ynsır wwwgloblderscom 7 bc1 syısı bc olrk yzılbilir bc00 = 100bc olduğundn Cevp 100t + 1 olur Örnek (7 ) xy ve yx iki bsmklı xy yx 1 syılrdır = ise x+y=? xy+ yx

8 xy yx 1 9(x = = xy+ yx 11(x+ sdeleştirmeler ypıldığınd (x = (x+ (x (x + = 9 1 gerekli x-y = k ve x +y = 9k olur(k Z) x ve y rkm olduğundn k=1 seçilmek zorunddır Bu durumd x+y=9 olur Örnek (40 ) bc, bc, cb üç bsmklı syılrın toplmı 11 ise ) +b+c kçtır (C: 11) b) bc şeklinde yzılbilecek en büyük ve en küçük syılrın toplmı nedir? ) bc + bc + cb = (+b+c) = 11 (+b+c) = 11 b) = 9, b = 1, c = = 1, b = 1, c = Örnek (8 ) xy ve yx iki bsmklı xy yx = ise xyyx=? syılrdır ( ) ( ) 79 ( xy ) ( yx) = 79 (xy+yx)(xy-yx) = 79(iki kre frkındn ) 11(x+9(x- = 79 (x+(x- = 8 x = ve y=1 olduğundn 11 = 40 sorumuzun cevbıdır Örnek (9 ) ve b rkmlrı kullnılrk yzılbilecek tüm iki bsmklı syılrın toplmı 14 ise en küçüğü kçtır? = 100 Örnek (41 ) bc ve 4bc syılrı dört bsmklı birer syıdır bc syısı 1 ile bölündüğünde kln 6 olduğun göre 4bc syısının 1 ile bölümünden kln kçtır? (ÖSS 00) bc = 1k + 6 olsun (k Z) 4bc = bc olduğundn 4bc = 1k bc = 1k olur 1 zten 1 in ktıdır Geriye sdece 106 syısının 1 e bölümünden klnın hesbı ypılck 106 syısı 1 e bölündüğünde kln = 1 olur Dolyısıyl d sorumuzun cevbı 1 dir Yzılbilecek syılr ; + b + b + bb = 14 (+b) = 14 (+b) = 7 =1 ve b= 6 seçilirse = 11 en küçük syı olur Örnek(4) 1,,,4 ve rkmlrı kullnılrk yzılbilen, rkmlrı tekrrlı vey tekrrsız tüm iki bsmklı tek syılrın toplmı kçtır? (C: 49) (ÖSS 00) ÇÖZÜM 1: Önce kç syı yzbileceğimize bklım Bunun için kombinsyon konusunu htırlmlı vey tek tek yzmlıdır ki tek tek yzım önemli bir zmn kybıdır wwwgloblderscom 8

9 Yzılbilecek syı dedi = 1 olur Syılr lt lt yzıldığınd birler bsmğındki 1 rkmın tnesi 1, tnesi, tnesi de tir (1++) = 4 eder Onlr bsmğınd ise her rkmdn 1:= tne vrdır (1+++4+)=4(bu rkmlr onlr bsmğınd olduğu için sıl toplm 410=40 dir Sonuç : 40 +4=49 eder ÇÖZÜM : syılrı tek tek yzrsk; = = = = = bulunur Örnek(4) A ve B birer rkm, AB ve BA d iki bsmklı syılrdır Bun göre, AB BA frkı AH olmz? A) 9 B) 18 C) 6 D) 4 E) 61 (ÖSS 00) AB- BA =9(A-B) yni sonucun 9 un ktı olmsı gerekir 9 un ktı olmyn E şıkkı sorumuzun cevbıdır Örnek( 4 ) Üç bsmklı 9KM syısı iki bsmklı KM syısının 1 ktıdır Bun göre K+M kçtır? (ÖSS-000) 9KM = 1KM 900+KM = 1KM 0KM = 900 KM = 0 K+M=+0= oluır Örnek( 44 ) Üç bsmklı 4AB syısı iki bsmklı BA syısının 1 ktındn 7 fzldır Bun göre BA kçtır? (ÖSS-99) 4AB = 1BA A+B = 10B+1A+7 19B+A = 9 B= ve A=6 seçilirse BA = 6 olur Örnek( 4 ) Rkmlrı sıfırdn frklı,beş bsmklı bir syının yüzler ve binler bsmğındki rkmlr yer değiştirildiğinde elde edilen yeni syı ile eski syı rsındki frk en çok kç olbilir? (ÖSS-98) ABCDE syısınd frkın büyük olmsı için yüzler ve binler bsmklrı şğıdki gibi seçilir A91DE - A19DE 700 elde edilir Örnek( 46 ) Birbirinden frklı iki bsmklı pozitif dört tmsyının toplmı 6dır Bu syılrın en büyüğü 98 olduğun göre en küçüğü en z kçtır (ÖSS-98) Küçüğün en z olmsı için diğerlerinin büyük seçilmesi gerekir Syılrımız : 98,97,96 Syılrın toplmı: 91 4syı : 6 91 = olur YAZAN ĐBRAHĐM HALĐL BABAOĞLU Mtemtik Öğretmeni wwwgloblderscom wwwgloblderscom 9

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

ÜNİTE - 7 POLİNOMLAR

ÜNİTE - 7 POLİNOMLAR ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri

Detaylı

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7.

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7. MC. + + +.. Rsyonel Syılr TEST I sonsuz kesrinin eşiti kçtır? A) B) C) D) E) 4 www.mtemtikclu.com, 006 Ceir Notlrı. 8. Gökhn DEMĐR, gdemir@yhoo.com.tr 0;0 0;0008 = 0; x ise x kçtır? A) 0,0 B) 0,000 C)

Detaylı

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT DENKLEM ve EŞİTSİZLİKLER ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT BİRİNCİ DERECEDEN DENKLEM ve EŞİTSİZLİKLER. Kznım : Gerçek syılr kümesinde birinci dereceden eşitsizliğin özelliklerini belirtir.. Kznım : Gerçek

Detaylı

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24.

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24. DENKLEM ÇÖZME + + = 0 + = 0 + = 0 + y = 0 İkinci dereceden ir ilinmeyenli denklemdir. İkinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden İki ilinmeyenli

Detaylı

MUTLAK DEĞER. a ε R olmak üzere; Mutlak Değer MATEMATĐK ĐM YILLAR 2002 203 2004 2005 2006 2007 2008 2009 2010 2011 14) GENEL ÖRNEKLER.

MUTLAK DEĞER. a ε R olmak üzere; Mutlak Değer MATEMATĐK ĐM YILLAR 2002 203 2004 2005 2006 2007 2008 2009 2010 2011 14) GENEL ÖRNEKLER. Mutlk Değer YILLAR 4 6 8 9 1 11 ÖSS-YGS - - - 1 - - 1 - - 1/1 MUTLAK DEĞER ε R olmk üzere;, -, ise < ise ve b reel syı olmk üzere; 1) dır Eğer ise dır ) 14) + n n Z olmk üzere dır 1) f ( ) > g( ) f ( )

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

b göz önünde tutularak, a,

b göz önünde tutularak, a, 3.ALT GRUPLAR Tnım 3.. bir grup ve G, nin boş olmyn bir lt kümesi olsun. Eğer ( ise ye G nin bir lt grubu denir ve G ile gösterilir. ) bir grup Not 3.. ) grubunun lt grubu olsun. nin birimi ve nin birimi

Detaylı

YÜZDE VE FAĐZ PROBLEMLERĐ

YÜZDE VE FAĐZ PROBLEMLERĐ YILLAR 00 003 00 00 006 007 008 009 010 011 ÖSS-YGS 3 1 1 1 3 YÜZDE VE FAĐZ PROBLEMLERĐ YÜZDE: Bir syının yüzde sı= dır ÖRNEK(1) % i 0 oln syıyı bullım syımız olsun 1 = 0 = 0 ÖRNEK() 800 ün % ini bullım

Detaylı

Komisyon DGS TAMAMI ÇÖZÜMLÜ 10 DENEME SINAVI ISBN 978-605-364-027-1. Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir.

Komisyon DGS TAMAMI ÇÖZÜMLÜ 10 DENEME SINAVI ISBN 978-605-364-027-1. Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir. Komisyon DGS TAMAMI ÇÖZÜMLÜ 0 DENEME SINAVI ISBN 97-0--07- Kitpt yer ln ölümlerin tüm sorumluluğu yzrın ittir. Pegem Akdemi Bu kitın sım, yyın ve stış hklrı Pegem Akdemi Yy. Eğt. Dn. Hizm. Tic. Ltd. Şti

Detaylı

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir.

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir. LOGARİTMA I. Üstl Fonksiyonlr v Logritmik Fonksiyonlr şitliğini sğlyn dğrini bulmk için ypıln işlm üs lm işlmi dnir. ( =... = 8) y şitliğini sğlyn y dğrini bulmk için ypıln işlm üslü dnklmi çözm dnir.

Detaylı

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK MTEMTİK KPSS ÇEVİR KONU - ÇEVİR SORU MTEMTİK EDİTÖR Turgut MEŞE YZR İdris DOĞN ütün hklrı Editör Yyınlrın ittir. Yyınevinin izni olmksızın, kitbın tümünün vey bir kısmının bsımı, çoğltılmsı ve dğıtımı

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi Kesir.. Trlı lnı gösteren kesri bulunuz. kesrini ile genişlettiğimizde elde edilecek kesri bulunuz.. Yndki şekilde bir bütün 8 eş prçy bölünmüş ve bu prçlrdn tnesi trnmıştır. Trlı lnı gösteren kesir syısı

Detaylı

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 PROBLEMLER İÇİNDEKİLER Syf No Test No ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 SAYI PROBLEMLERİ... 299-314... 01-08 YAŞ PROBLEMLERİ...

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4.

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4. IV. HTTİN TTIŞ MTEMTİK YRIŞMSI u test 30 sorudn oluşmktdır. İREYSEL YRIŞM SORULRI 1. 4 3 + 1 4. 3 3 + = + 1 + 1 denkleminin çözüm kümesi şğıdkilerden hngisidir? ) 5 3 ) ) 3 D) 13 3 ) { 0 } ) { 1} ) { }

Detaylı

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ Ö.Y.S. 998 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Üç bsmklı bir doğl syısının ktı, iki bsmklı bir y doğl syısın eşittir. 7 Bun göre, y doğl syısı en z kç olbilir? A) B) C) 8 D) E) Çözüm y 7 7y (, en küçük bsmklı,

Detaylı

8. sınıf ders notları zfrcelikoz@yahoo.com

8. sınıf ders notları zfrcelikoz@yahoo.com III - SAYI ÖRÜNTÜLERİ Htırltm: Syılrı virgülle yrılrk, birbirii rdı dizilmesie syı dizisi, dizideki her bir syıy d terim deir. hrfi verile örütüde syılrı sırsıı belirte semboldür ve ici syıy örütüü geel

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı. İki bsmklı bir sının rkmlrı toplmı dir. Rkmlrı er değiştirdiğinde elde edilen sı, ilk sının sinden fzldır.. Birbirinden frklı tne pozitif tmsının OKEK i olduğun göre, en çok kçtır?

Detaylı

Taşkın, Çetin, Abdullayeva

Taşkın, Çetin, Abdullayeva 1 BÖLÜM 1 KÜMELER VE SAYILAR 1.1 KÜMELER 1.1.1. TEMEL TANIMLAR Kesi ir tımı ypılmmkl erer,sezgisel olrk,kümeye iyi tımlmış iri iride frklı eseler topluluğudur diyeiliriz. Kümeyi meyd getire eselere kümei

Detaylı

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS Rsonel Sılr YILLAR 00 00 00 00 00 00 00 00 00 0 ÖSS-YGS RASYONEL SAYILAR KESĐR: Z ve 0 olmk üzere şeklindeki ifdelere kesir denir p pd kesirçizgisi KESĐR ÇEŞĐTLERĐ: kesri için i) < ise kesir sit kesirdir

Detaylı

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu OĞRU ÇILR Temel Kvrmlr ve oğrud çılr Nokt: Nokt geometrinin en temel terimidir. ni, boyu vey yüksekliği yoktur. İnce uçlu bir klemin kğıt üzerinde bırktığı iz olrk düşünebilirsiniz. oğru: üz, klınlığı

Detaylı

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS - - - - - - LYS - - - - - - - - FONKSĐYONLAR A ve B oşn frklı iki küme olsun A dn B ye tnımlı f fonksiyonu f : A B ile gösterilir A y tnım kümesi, B ye

Detaylı

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında ORAN ORANTI syısının 0 dn frklı oln b syısın ornı :b vey olrk gösterilir. b İki vey dh fzl ornın eşitlenmesiyle oluşn ifdeye orntı denir. b =c d ifdesine ikili orntı denir. Bir orntı orntı sbitine eşitlenerek

Detaylı

DENKLEM ve EŞİTSİZLİKLER

DENKLEM ve EŞİTSİZLİKLER DENKLEM ve EŞİTSİZLİKLER Sf No..................................................... - 7 Denklem ve Eşitsizlikler Konu Özeti............................................. Konu Testleri ( 0)..........................................................

Detaylı

LOGARİTMA. çözüm. için. Tanım kümesindeki 1 elemanını değer kümesindeki herhangi. çözüm. çözüm

LOGARİTMA. çözüm. için. Tanım kümesindeki 1 elemanını değer kümesindeki herhangi. çözüm. çözüm LOGARİTMA Üstel Fonksion >0 ve olmk üzere f:r R +, f() = şeklindeki fonksionlr üstel fonksion denir. Üstel fonksionlr birebir ve örtendir. f:r R +, f()=( ) bğıntısının üstel fonksion olup olmdığını inceleiniz.

Detaylı

1984 ÖSS. 6. a, b, c birer pozitif sayı ve. olduğuna göre, a, b, c arasındaki bağlantılardan hangisi doğrudur? 7. a, b, c birer tamsayı olmak üzere

1984 ÖSS. 6. a, b, c birer pozitif sayı ve. olduğuna göre, a, b, c arasındaki bağlantılardan hangisi doğrudur? 7. a, b, c birer tamsayı olmak üzere 984 ÖSS 033 0. = x 0 olduğun göre x in değeri nedir? A) 0063 B) 063 C) 63 D) 63 E) 630. 6. b c birer pozitif syı ve b c = = 03 04 05 olduğun göre b c rsındki bğlntılrdn hngisi doğrudur? A) c

Detaylı

MATEMATİK 1 TESTİ (Mat 1)

MATEMATİK 1 TESTİ (Mat 1) ÖSS MT-1 / 008 MTMTİK 1 TSTİ (Mt 1) 1. u testte 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik 1 Testi için yrıln kısmın işretleyiniz. 1. 1 + 4 1 ( ) 4. syısı b 0 ) b syısının kç ktıdır? ) b ) b işleminin

Detaylı

ORAN ORANTI ORAN ORANTI ORANTININ ÖZELLİKLERİ ÖRNEK - 1 TANIM. x ve y tamsayıdır. x y

ORAN ORANTI ORAN ORANTI ORANTININ ÖZELLİKLERİ ÖRNEK - 1 TANIM. x ve y tamsayıdır. x y ORAN ORANTI TANIM Anı irimden iki çokluğun iririle krşılştırılmsın orn denir. ornınd ve nı irimden olduğu için nin irimi oktur. ÖRNEK - 1 ve tmsıdır. = ve + = 0 olduğun göre, kçtır? A) 1 B) C) 0 9 D) 1

Detaylı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı Ankr Üniversitesi Mühendislik Fkültesi, Fizik Mühendisliği Bölümü FZM207 Temel ElektronikI Doç. Dr. Hüseyin Srı 2. Bölüm: Dirençli Devreler İçerik Temel Yslrın Doğrudn Uygulnışı Kynk Gösterimi ve Dönüşümü

Detaylı

2002 ORTA ÖĞRETİM KURUMLARI ÖĞRENCİ SEÇME VE YERLEŞTİRME SINAVI MATEMATİK TESTİ 10. 10 10. aşağıdakilerden hangisidir? A) 0,01 B) 0,1 C) 10 D) 100

2002 ORTA ÖĞRETİM KURUMLARI ÖĞRENCİ SEÇME VE YERLEŞTİRME SINAVI MATEMATİK TESTİ 10. 10 10. aşağıdakilerden hangisidir? A) 0,01 B) 0,1 C) 10 D) 100 22 ORTA ÖĞRETİ URUARI ÖĞRECİ EÇE VE YEREŞTİRE IAVI ATEATİ TETİ 1. 3 2 1 1. 1 1. 1 : işleminin sonucu 7 1. 1 1 şğıdkilerden hngisidir? A),1 B),1 C) 1 D) 1 2. O P R T U V Yukrıdki syı doğrusund birbirine

Detaylı

ÜÇGEN VE PİSAGOR BAĞINTISI

ÜÇGEN VE PİSAGOR BAĞINTISI ÜÇGEN VE PİSGOR ĞINTISI KZNIMLR Üçgen kvrmı Üçgen çizimi Üçgenin kenrlrı rsındki ğıntılr Üçgen eşitsizliği Üçgenlerde yükseklik Üçgenlerde kenrorty Üçgenlerde çıorty Kenr ort dikme kvrmı Pisgor ğıntısı

Detaylı

İlişkisel Veri Modeli. İlişkisel Cebir İşlemleri

İlişkisel Veri Modeli. İlişkisel Cebir İşlemleri İlişkisel Veri Modeli İlişkisel Cebir İşlemleri Veri işleme (Mnipultion) işlemleri (İlişkisel Cebir İşlemleri) Seçme (select) işlemi Projeksiyon (project) işlemi Krtezyen çrpım (crtesin product) işlemi

Detaylı

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma DERS NOTU 01 Son Hli Değildir, tslktır: Ekleme ve Düzenlemeler Ypılck BİR SOSYAL BİLİM OLARAK İKTİSAT VE TEMEL KAVRAMLAR 1 Bugünki dersin işleniş plnı: 1. Değişkenler ve Eğriler: Mtemtiksel Htırltm...

Detaylı

Ünite 5 ÜSTEL VE LOGARİTMİK FONKSİYONLAR. 5.1. Üstel Fonksiyon. 5.2. Logaritma Fonksiyonu. 5.3. Üstel ve Logaritmik Denklem ve Eşitsizlikler

Ünite 5 ÜSTEL VE LOGARİTMİK FONKSİYONLAR. 5.1. Üstel Fonksiyon. 5.2. Logaritma Fonksiyonu. 5.3. Üstel ve Logaritmik Denklem ve Eşitsizlikler Ünite ÜSTEL VE LOGARİTMİK FONKSİYONLAR f() g() log.. Üstel Fonksion / / / /.. Logritm Fonksionu.. Üstel ve Logritmik Denklem ve Eşitsizlikler . ÜNİTE: ÜSTEL ve LOGARİTMİK FONKSİYONLAR KAZANIM ve İÇERİK.

Detaylı

İntegral Uygulamaları

İntegral Uygulamaları İntegrl Uygulmlrı Yzr Prof.Dr. Vkıf CAFEROV ÜNİTE Amçlr Bu üniteyi çlıştıktn sonr; düzlemsel ln ve dönel cisimlerin cimlerinin elirli integrl yrdımı ile esplnileceğini, küre, koni ve kesik koninin cim

Detaylı

ORAN VE ORANTI Tekrar Zamanı Çözümlü Test 1 Çözümlü Test 2 Uygulama Zamanı 1 Tekrar Zamanı Çözümlü Test 1 Çözümlü Test 2 KESİR PROBLEMLERİ

ORAN VE ORANTI Tekrar Zamanı Çözümlü Test 1 Çözümlü Test 2 Uygulama Zamanı 1 Tekrar Zamanı Çözümlü Test 1 Çözümlü Test 2 KESİR PROBLEMLERİ İÇİNDEKİLER ORAN VE ORANTI Orn Kvrmı... Orntı Kvrmı... Orntı Elemnlrının Yer Değiştirmesi... İçler Dışlr Çrpımı Prolemleri...4 Orntıyı Sitleme-I... Orntıyı Sitleme-II...6 Orntıyı Sitleme-III...7 Uygulm

Detaylı

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce

Detaylı

Komisyon. ALES EŞİT AĞRILIK ve SAYISAL ADAYLARA TAMAMI ÇÖZÜMLÜ 10 DENEME ISBN 978-605-364-214-5

Komisyon. ALES EŞİT AĞRILIK ve SAYISAL ADAYLARA TAMAMI ÇÖZÜMLÜ 10 DENEME ISBN 978-605-364-214-5 Komisyon LES EŞİT ĞRILIK ve SYISL DYLR TMMI ÇÖZÜMLÜ 10 DENEME ISBN 97-605-36-1-5 Kitpt yer ln ölümlerin tüm sorumluluğu yzrın ittir. Pegem kdemi Bu kitın sım, yyın ve stış hklrı Pegem kdemi Yy. Eğt. Dn.

Detaylı

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS)

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS) ÇMR ÖSS SRULRI 1., ve noktlrı merkezli çember üzerinde m( ) = m( ) =. ir dik üçgeni için, = cm ve = 4 cm olrk veriliyor. Merkezi, yrıçpı [] oln bir çember, üçgenin kenrını ve noktlrınd kesiyor. un göre,

Detaylı

B - GERĐLĐM TRAFOLARI:

B - GERĐLĐM TRAFOLARI: ve Seg.Korum_Hldun üyükdor onrım süresinin dh uzun olmsı yrıc rnın izole edilmesini gerektirmesi; rızlnmsı hlinde r tdiltını d gerektireilmesi, v. nedenlerle, özel durumlr dışınd tercih edilmezler. - GERĐLĐM

Detaylı

DERS 4. Determinantlar, Leontief Girdi - Çıktı Analizi

DERS 4. Determinantlar, Leontief Girdi - Çıktı Analizi DERS Determitlr eotief Girdi - Çıktı lizi.. ir Kre Mtrisi Determitı. Determit kvrmıı tümevrıml tımlycğız. mtrisleri determitıı tımlyrk şlylım. Tım. tımlır. mtrisiidetermitı olrk Örek. mtrisii determitı

Detaylı

LOGARİTMA Test -1. olduğuna göre, x kaçtır? olduğuna göre, x aşağıdakilerden hangisidir? A) 3 B) 9 C) 16 D) 64 E) 81.

LOGARİTMA Test -1. olduğuna göre, x kaçtır? olduğuna göre, x aşağıdakilerden hangisidir? A) 3 B) 9 C) 16 D) 64 E) 81. LOGARİTMA Test -. olduğun göre, şğıdkilerden log log log. log olduğun göre, kçtır? 6 6 8. olduğun göre, şğıdkilerden 6. logm olduğun göre, m kçtır? log log log 6 log 6. olduğun göre, şğıdkilerden log log

Detaylı

63032 / 63932 ELEKTRONİK SICAKLIK KONTROL CİHAZI KULLANIM KILAVUZU

63032 / 63932 ELEKTRONİK SICAKLIK KONTROL CİHAZI KULLANIM KILAVUZU 63032 / 63932 ELEKTRONİK SICAKLIK KONTROL CİHAZI KULLANIM KILAVUZU www.omk.com.tr 01.08.2014 V3185 / V4185 VARİL ISITICISI KULLANIM KILAVUZU OMAK MAKİNA SANAYİİ ve TİCARET LİMİTED ŞİRKETİ DR. MEDİHA ELDEM

Detaylı

Mobil Test Sonuç Sistemi. Nasıl Kullanılır?

Mobil Test Sonuç Sistemi. Nasıl Kullanılır? Mobil Test Sonuç Sistemi Nsıl ullnılır? Tkdim Sevgili Öğrenciler ve eğerli Öğretmenler, ğitimin temeli okullrd tılır. İyi bir okul eğitiminden geçmemiş birinin hytt bşrılı olmsı beklenemez. Hedefe ulşmks

Detaylı

1000(1,025) t TL ödeyerek bir fon. F t SORU 2 : SORU 1 : Bahar, t=1,3,5. yılların sonunda. Bir yatırım fonu, 0 t 1. için. anlık faiz oranına göre

1000(1,025) t TL ödeyerek bir fon. F t SORU 2 : SORU 1 : Bahar, t=1,3,5. yılların sonunda. Bir yatırım fonu, 0 t 1. için. anlık faiz oranına göre SORU 1 : Bhr, t=1,3,5. yıllrın sonund 1000(1,025) t TL ödeyerek bir fon oluşturmuştur. Üç ylığ dönüştürülebilir nominl iskonto ornı 4/41 olrk verildiğine göre, bu fonun 7. yıl sonundki birikimli değeri,

Detaylı

Çevre ve Alan. İlköğretim 6. Sınıf

Çevre ve Alan. İlköğretim 6. Sınıf Çevre ve Aln İlköğretim 6. Sınıf Çevre Merhb,ilk olrk seninle birlikte evin çevresini bulmy çlışlım Kırmızı çizgiler evin çevre uzunluğunu verir. Çevre Şimdi sır futbol shsınd Çevre Şimdi,Keloğlnın Pmuk

Detaylı

DENEME 6 SAYISAL BÖLÜM ÇÖZÜMLERİ

DENEME 6 SAYISAL BÖLÜM ÇÖZÜMLERİ DENEME 6 SAYISAL BÖLÜM ÇÖZÜMLERİ. 3 3 = ( 3 ) ( 3) > > = 3 3 = 6 6. xy x = 8 xy x = 8 x.(y ) x.(y ) = 8 8 6 y (y ).(y) = 6 y = 6 y=6 y=5. 36. 8 d 8 = 6 d n 0 8 0 = 6 ( ) = 6 5 = 3 00 3. 880 ( 3) 80 0 =

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) 009 - ÖSS / MT- MTEMTİK TESTİ (Mt ). u testte sırsıl, Mtemtik ( 8) Geometri (9 7) nlitik Geometri (8 0) lnlrın it 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için rıln kısmın işretleiniz..

Detaylı

BÖLÜM 5. MATRİS ve DETERMİNANTLAR 5.1. MATRİSLER. Taşkın, Çetin, Abdullayeva. reel sayılardan oluşan. olmak üzere tüm a.

BÖLÜM 5. MATRİS ve DETERMİNANTLAR 5.1. MATRİSLER. Taşkın, Çetin, Abdullayeva. reel sayılardan oluşan. olmak üzere tüm a. MTEMTİK BÖLÜM 5 Tşkın, Çetin, bdullyev MTRİS ve DETERMİNNTLR 5 MTRİSLER Tnım : mni,,, j + olmk üzere tüm ij reel syılrdn oluşn m m n n mn tblosun m x n tipinde bir mtrisi denir ve kısc şeklinde gösterilir

Detaylı

TG 10 ÖABT KİMYA. KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ KİMYA ÖĞRETMENLİĞİ 29 Haziran 2014 Pazar

TG 10 ÖABT KİMYA. KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ KİMYA ÖĞRETMENLİĞİ 29 Haziran 2014 Pazar KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ KİMYA ÖĞRETMENLİĞİ 9 Hzirn 4 Pzr TG ÖABT KİMYA Bu testlerin her hkkı sklıdır. Hngi mçl olurs olsun, testlerin tmmının vey bir kısmının İhtiyç Yyıncılık

Detaylı

Mantık ve Muhakeme Soruları. 1. Bir uçağın rüzgara karşı hızı 2A km/s, rüzgar yönündeki hızı ise B km/s ise rüzgarın hızı kaç km/s'dır?

Mantık ve Muhakeme Soruları. 1. Bir uçağın rüzgara karşı hızı 2A km/s, rüzgar yönündeki hızı ise B km/s ise rüzgarın hızı kaç km/s'dır? Mntık ve 1. Bir uçğın rüzgr krşı hızı 2A km/s, rüzgr yönündeki hızı ise B km/s ise rüzgrın hızı kç km/s'dır? A) (2A B)/2 B) 2A B C) B 2A D) (B 2A)/2 E) (2A + B)/2 2. Bir tord 8 yeşil, 9 mvi, 10 kırmızı

Detaylı

3.4 İşlem. 3.4.1 İşlem Kavramı. Etkinlik 3.53. Etkinlik 3.52

3.4 İşlem. 3.4.1 İşlem Kavramı. Etkinlik 3.53. Etkinlik 3.52 . İşlm.. İşlm Kvrmı Etkinlik.5 A,,, B,, v C,,5, kümlri vriliyor.. AxB kümsini yzınız.. AxB n C y f ğıntısı f x, y x il y n, küçük olmynı içimin tnımlnıyor. AxB f C f ğıntısını ynki gii ir Vnn şmsı il göstriniz.

Detaylı

ph Hesabı Prof. Dr. Mustafa DEMİR M.DEMİR(ADU) 16-PH HESABI 1

ph Hesabı Prof. Dr. Mustafa DEMİR M.DEMİR(ADU) 16-PH HESABI 1 p esbı Prof. Dr. Mustf DEMİR M.DEMİR(ADU) 6-P ESABI . uvvetli sit ve bz çözeltilerinde p hesbı. Zyıf sit çözeltilerinin p ı. Zyıf Bz Çözeltisinin p ı 4. Zyıf sidin tuzunu içeren bir çözeltinin p ının hesbı

Detaylı

BÖLÜM 3 : RASLANTI DEĞİŞKENLERİ

BÖLÜM 3 : RASLANTI DEĞİŞKENLERİ BÖLÜM : RASLANTI DEĞİŞKENLERİ (Rndom Vribles Giriş: Bölüm de olsılık fonksionu, denein örneklem uzını oluşurn sonuçlrın erimleri ile belirleniordu. Örneğin; iki zr ıldığınd, P gelen 6 olsı sırlı ikilinin

Detaylı

Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2015-2016 Güz Dönemi

Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2015-2016 Güz Dönemi Andolu Üniversitesi Mühendislik Fkültesi Endüstri Mühendisliği Bölümü Doç. Dr. Nil ARAS ENM411 Tesis Plnlmsı 2015-2016 Güz Dönemi 2 Tesis (fcility) Tesis : Belli bir iş için kurulmuş ypı Tesis etmek :

Detaylı

ph Hesabı (TİTRASYON) Prof. Dr. Mustafa DEMİR http://web.adu.edu.tr/akademik/mdemir/ M.DEMİR(ADU) 2009-07-PH HESABI (titrasyon) 1

ph Hesabı (TİTRASYON) Prof. Dr. Mustafa DEMİR http://web.adu.edu.tr/akademik/mdemir/ M.DEMİR(ADU) 2009-07-PH HESABI (titrasyon) 1 p esbı (TİTRASYON) Prof. Dr. Mustf DEMİR http://web.du.edu.tr/kdemik/mdemir/ M.DEMİR(ADU) 009-07-P ESABI (titrsyon) . uvvetli sit ve bz çözeltilerinde p hesbı. Zyıf sit çözeltilerinin p ı. Zyıf Bz Çözeltisinin

Detaylı

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 03

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 03 ELEĐ MOOLA ve SÜÜCÜLEĐ DES 03 Özer ŞENYU Mrt 0 ELEĐ MOOLA ve SÜÜCÜLEĐ DA MOOLANN ELEĐ DEE MODELLEĐ E AAEĐSĐLEĐ ENDÜĐ DEESĐ MODELĐ Endüviye uygulnn gerilim (), zıt emk (E), endüvi srgı direni () ile temsil

Detaylı

BULANIK MANTIK. Gaziosmanpaşa Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, Tokat.

BULANIK MANTIK. Gaziosmanpaşa Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, Tokat. Nim Çğmn, ncgmn@gop.edu.tr BLNIK MNTIK Gziosmnpş Üniversitesi, Fen Edebiyt Fkültesi, Mtemtik Bölümü, Tokt. Mtemtik deyince ilk kl gelen kesinliktir. Hlbuki günlük hytt konuşmlrımız rsınd belirsizlik içeren,

Detaylı

a + 12 2, 3, π v.b sayılardır.

a + 12 2, 3, π v.b sayılardır. . BÖLÜM: TEMEL KAVRAMLAR. A RAKAM VE SAYI KAVRAMI Rkm: Syılrı ife etmek için kullnıln { 0,,,,,,6,,8, 9} semollerinen her irine rkm enir. ÖRNEK:, rkm olmk üzere; + = ise. nin lğı en üyük eğer neir? ÇÖZÜM:.

Detaylı

Matematik Olimpiyatları İçin

Matematik Olimpiyatları İçin ONU NLTIMLI Mtemtik Olimpiytlrı İçin enzerlik LİS MTMTİ OLİMPİYTLRI İÇİN Mustf Yğı, Osmn kiz enzerlik Mustf Yğı Osmn kiz İki çokgenin köşeleri rsınd ire-ir eşleme ypılırs eşleştirilen köşelere krşılıklı

Detaylı

www.mustafayagci.com.tr, 2013 Geometri Notları Mustafa YAĞCI, yagcimustafa@yahoo.com Küp

www.mustafayagci.com.tr, 2013 Geometri Notları Mustafa YAĞCI, yagcimustafa@yahoo.com Küp www.mustfygci.com.tr, 0 Geometri Notlrı Mustf YĞI, ygcimustf@yhoo.com üp ütün yüzleri kre oln bir prizmy, diğer deyişle tüm yrıtlrı eş oln dikdörtgenler prizmsın küp denir. üp, nihyetinde bir dikdörtgenler

Detaylı

İŞ ETKİ ÇİZGİSİ TEOREMİ. Balıkesir Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Müh. Bölümü Balıkesir, TÜRKİYE THEOREM OF WORK INFLUENCE LINE

İŞ ETKİ ÇİZGİSİ TEOREMİ. Balıkesir Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Müh. Bölümü Balıkesir, TÜRKİYE THEOREM OF WORK INFLUENCE LINE BAÜ Fen Bil. Enst. Dergisi (006).8. İŞ ETKİ ÇİZGİSİ TEOREMİ Scit OĞUZ, Perihn (Krkulk) EFE Blıkesir Üniversitesi Mühendislik Mimrlık Fkültesi İnşt Müh. Bölümü Blıkesir, TÜRKİYE ÖZET Bu çlışmd İş Etki Çizgisi

Detaylı

YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1

YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1 YGS-YS GOMTRİ ÖZT ÇÖZÜMRİ TST 1 1. 1. y 1 1 + 1 1ʺ 1 1ʹ 17 0ʹ 1 1ʹ ʹ + ʹ 1ʺ ʹ + ʹ 1ʺ 7 0ʹ 1ʺ 0 0ʹ 1ʺ bulunur. 1 y < + 1 y dir. y < 7 + 1 < 7 0 < < 1 in en büyü tm syı değeri 17 in en üçü tm syı değeri

Detaylı

SAYI KÜMELERİ. Örnek...1 :

SAYI KÜMELERİ. Örnek...1 : SAYILAR SAYI KÜMELERİ RAKAM S yı l r ı i f d e e t m ek i ç i n k u l l n d ı ğ ı m ız 0,,,,,,6,7,8,9 semollerine rkm denir. DOĞAL SAYILAR N={0,,,...,n,...} k üm e s i n e d o ğ l s yı l r k üm e s i d

Detaylı

Yarım Toplayıcı (Half Adder): İki adet birer bitlik sayıyı toplayan bir devredir. a: Birinci Sayı a b c s. a b. s c.

Yarım Toplayıcı (Half Adder): İki adet birer bitlik sayıyı toplayan bir devredir. a: Birinci Sayı a b c s. a b. s c. Syıl Devreler (Lojik Devreleri) Tümleştirilmiş Kominezonl Devre Elemnlrı Syıl itemlerin gerçekleştirilmeinde çokç kullnıln lojik devreler, klik ğlçlrın ir ry getirilmeiyle tümleştirilmiş devre olrk üretilirler

Detaylı

Velilere Yönelik Soru Formu

Velilere Yönelik Soru Formu Velilere Yönelik Soru Formu Eğitim Stndrtlrı Pilot Çlışmsı 4. Sınıf Mtemtik Okul Sınıf Öğrenci Sevgili veliler, Sevgili velyet shipleri, Çocuğunuzun sınıfı, mtemtik eğitim stndrtlrın ilişkin bir pilot

Detaylı

Ünite Planı Şablonu. Öğretmenin. Fatma BAĞATARHAN Yunus Emre Anadolu Lisesi. Ġnönü Mahallesi. Bingöl. Adı, Soyadı. Okulunun Adı

Ünite Planı Şablonu. Öğretmenin. Fatma BAĞATARHAN Yunus Emre Anadolu Lisesi. Ġnönü Mahallesi. Bingöl. Adı, Soyadı. Okulunun Adı Intel Öğretmen Progrmı Ünite Plnı Şlonu Öğretmenin Adı, Soydı Okulunun Adı Okulunun Bulunduğu Mhlle Okulun Bulunduğu Ġl Ftm BAĞATARHAN Yunus Emre Andolu Lisesi Ġnönü Mhllesi Bingöl Ünit Bilgisi Ünite Bşlığı

Detaylı

JOVO STEFANOVSKİ NAUM CELAKOSKİ. Sekizyıllık İlköğretim

JOVO STEFANOVSKİ NAUM CELAKOSKİ. Sekizyıllık İlköğretim JOVO STEFNOVSKİ NUM CELKOSKİ Sekizyıllık İlköğretim Syın Öğrenci! u kitp, ders proğrmınd öngörülen ders mlzemesini öğrenmek için yrdımcı olcktır. Vektörler, öteleme ve dönme hkkınd yeni ilginç bilgiler

Detaylı

UZAYDA VEKTÖRLER / TEST-1

UZAYDA VEKTÖRLER / TEST-1 UZAYDA VEKTÖRLER / TEST-. A(,, ) ve B(,, ) noktlrı rsındki uklık kç birimdir? 6. A e e e B e e e AB vektörü ile nı doğrultud ıt öndeki birim vektör şğıdkilerden ( e e e ). A(, b, ) B(,, ) noktlrı ve U

Detaylı

ÜÇGENDE AÇI-KENAR BAĞINTILARI

ÜÇGENDE AÇI-KENAR BAĞINTILARI ÜÇGN ÇI-NR ĞINTILRI ir üçgende üük çı krşısınd üük kenr, küçük çı krşısınd küçük kenr ulunur. 3 Şekildeki verilere göre, en uzun kenr şğıdkilerden hngisidir? 3 3 üçgeninde, kenrlr rsınd > > ğıntısı vrs,

Detaylı

Veliler Anketi. Standart denetlemesi Matematik 4. sınıf 2013

Veliler Anketi. Standart denetlemesi Matematik 4. sınıf 2013 Veliler Anketi Stndrt denetlemesi Mtemtik 4. sınıf 2013 Sevgili Anne ve Bblr, Sevgili Veliler, Çocuğunuzun sınıfı bu öğretim yılınd 4.sınıf Mtemtik dersinde ilk stndrt denetlenmesi uygulmsın ktılcktır.

Detaylı

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1 IAAOJ, Scietific Sciece, 23,(2), 22-25 GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE Adullh AKKURT, Hüseyi YILDIRIM Khrmmrş Sütçü İmm Üirsitesi, Fe-Edeiyt Fkültesi

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI EĞİTİM TEKNOLOJİLERİ GENEL MÜDÜRLÜĞÜ Ölçme Değerlendirme ve Açıköğretim Kurumları Daire Başkanlığı

T.C. MİLLÎ EĞİTİM BAKANLIĞI EĞİTİM TEKNOLOJİLERİ GENEL MÜDÜRLÜĞÜ Ölçme Değerlendirme ve Açıköğretim Kurumları Daire Başkanlığı T.C. MİLLÎ EĞİTİM BKNLIĞI EĞİTİM TEKNOLOJİLERİ GENEL MÜDÜRLÜĞÜ Ölçme Değerlendirme ve çıköğretim Kurumlrı Dire Bşknlığı KİTPÇIK TÜRÜ T.C. SĞLIK BKNLIĞI PERSONELİNİN UNVN DEĞİŞİKLİĞİ SINVI 43. GRUP: ELEKTRİK

Detaylı

3. BÖLÜM: ÜSLÜ İFADE VE DENKLEMLER KONU ÖZETİ

3. BÖLÜM: ÜSLÜ İFADE VE DENKLEMLER KONU ÖZETİ . BÖLÜM: ÜSLÜ İFADE VE DENKLEMLER KONU ÖZETİ A. ÜSLÜ İFADELER 6.,, c R olmk üzere. Üslü İfdeler. +. c. = ( + c) dir. Bir syıı kedisi ile tekrrlı çrpımı o syıı kuvvetii lm y d üssüü lm deir. R ve Z + olmk

Detaylı

MALTA HAÇI MEKANİZMASININ KİNEMATİĞİ ÜZERİNE

MALTA HAÇI MEKANİZMASININ KİNEMATİĞİ ÜZERİNE MALTA HAÇI MEKANİZMASININ KİNEMATİĞİ ÜZERİNE Yrdımcı Doçent Doktor Yılmz YÜKSEL 1. GİRİŞ Tekstil Mklnlrmd hmmddeyi mmul mdde hline getirirken çoğu kere bir çok teknik iş belirli bir sıry göre rdrd ypılmktdır.

Detaylı

ARABA BENZERİ GEZGİN ROBOTUN OTOMATİK PARK ETMESİ İÇİN BİR YÖNTEM

ARABA BENZERİ GEZGİN ROBOTUN OTOMATİK PARK ETMESİ İÇİN BİR YÖNTEM ARABA BENZERİ GEZGİN ROBOTUN OTOMATİK PARK ETMESİ İÇİN BİR YÖNTEM Burk Uzkent Osmn Prlktun Elektrik-Elektronik Mühendisliği Bölümü Eskişehir Osmngzi Üniversitesi, Eskişehir uzkent.burk@gmil.com oprlk@ogu.edu.tr

Detaylı

TRAFİK SAYIMLARI, BÖLGE NÜFUSLARI VE BÖLGELER ARASI UZAKLIKLARI KULLANARAK BAŞLANGIÇ-SON MATRİSİ TAHMİNİ

TRAFİK SAYIMLARI, BÖLGE NÜFUSLARI VE BÖLGELER ARASI UZAKLIKLARI KULLANARAK BAŞLANGIÇ-SON MATRİSİ TAHMİNİ Gzi Üniv. Müh. Mim. Fk. Der. J. Fc. Eng. Arch. Gzi Univ. Cilt 4, No, 9-36, 009 Vol 4, No, 9-36, 009 TRAFİK SAYIMLARI, BÖLGE NÜFUSLARI VE BÖLGELER ARASI UZAKLIKLARI KULLANARAK BAŞLANGIÇ-SON MATRİSİ TAHMİNİ

Detaylı

DİZİLER... 213. Dizilerde İşlemler... 213. Dizilerin Eşitliği... 214. Monoton Diziler... 215. Alt Dizi... 216. Konu Testleri (1 6)...

DİZİLER... 213. Dizilerde İşlemler... 213. Dizilerin Eşitliği... 214. Monoton Diziler... 215. Alt Dizi... 216. Konu Testleri (1 6)... ÜNİTE GERÇEK TOPLAM SAYI ÇARPIM DİZİLERİ ARİTMETİK SEMBOLÜ DİZİ Böüm Dizier GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ GEOMETRİK DİZİ SERİLER DİZİLER..................................................................

Detaylı

DENEY 3: EŞDEĞER DİRENÇ, VOLTAJ VE AKIM ÖLÇÜMÜ

DENEY 3: EŞDEĞER DİRENÇ, VOLTAJ VE AKIM ÖLÇÜMÜ A. DENEYĠN AMACI : Direnç devrelerinde eşdeğer direnç ölçümü ypmk. Multimetre ile voltj ve kım ölçümü ypmk. Ohm knununu sit ve prtik devrelerde nlmy çlışmk. B. KULLANILACAK AAÇ VE MALZEMELE : 1. DC güç

Detaylı

Yükseköğretime Geçiş Sınavı (Ygs) / 1 Nisan 2012. Matematik Soruları ve Çözümleri

Yükseköğretime Geçiş Sınavı (Ygs) / 1 Nisan 2012. Matematik Soruları ve Çözümleri Yükseköğretime Geçiş Sınvı (Ygs) / Nisn 0 Mtemtik Sorulrı ve Çözümleri. 0,5, işleminin sonuu kçtır? 0,5 0, A) 5 B) 5,5 C) 6 D) 6,5 E) 7 Çözüm 0,5 0,5, 0, 05 50 5.5.4 5.5. 4 4 0 5 .. 4.6 6 işleminin sonuu

Detaylı

Bildirişimli Matematiğin Q Sürü Bellekli 3D I@I Internet Sürüsü

Bildirişimli Matematiğin <T, 1, n> Q Sürü Bellekli 3D I@I Internet Sürüsü Bildirişimli Mtemtiğin Q Sürü Bellekli 3D II Internet Sürüsü Prof. Dr. Fevzi Ünlü Mtemtik ve Bilisyr Bilimleri Profesörü Ee Üniversitesi ve Yşr Üniversitesi Emekli Öğretim Üyesi İzmir Özet Q ve

Detaylı

YGS TAM İSABET ÇÖZÜMLERİ - 15401

YGS TAM İSABET ÇÖZÜMLERİ - 15401 ÇÖZÜMLERİ - 0 TÜRKÇE. Prçd ltı çizili söze yüklenen nlm şiirin bir ilhml yzıldığıdır. C seçeneği bunun tm tersini ifde etmektedir.. "Bşının derdine düşmek" ylnızc kendini düşünüp bşklrını önemsememektir.

Detaylı

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise;

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise; 4- SAYISAL İNTEGRAL c ϵ R olmk üzere F() onksiyonunun türevi () ise ( F () = () ); Z ` A d F ` c eşitliğindeki F()+c idesine, () onksiyonunun elirsiz integrli denir. () onksiyonu [,] R için sürekli ise;

Detaylı

ELN1002 BİLGİSAYAR PROGRAMLAMA 2

ELN1002 BİLGİSAYAR PROGRAMLAMA 2 ELN00 BİLGİSAYAR PROGRAMLAMA YİNELEME (RECURSION) Sunu Plnı Yinelemenin nlmı Yinelemeli fonksiyon tnımınd temel ve genel durum Bsit değişken tipleriyle yinelemeli fonksiyon oluşturm Dizi prmetreleriyle

Detaylı

III. 6.ELEKTROMOTOR KUVVET VE DOĞRU AKIM DEVRELERİ.

III. 6.ELEKTROMOTOR KUVVET VE DOĞRU AKIM DEVRELERİ. 103. 6.ELEKTOMOTO KUVVET VE DOĞU AKM DEVELEİ..6.0l. ELEKTOMOTO KUVVET VE ELEKTİK DEVESİ. Bir iletkende devmlı olrk kım tutilmek için, iletkenin iki uçun potnsiyel frkı uygulnmsı gerekir. Bu potnsiyel frkı

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI T.C. DEVLET DEMİRYOLLARI İŞLETMESİ GENEL MÜDÜRLÜĞÜ PERSONELİNİN UNVAN DEĞİŞİKLİĞİ SINAVI

T.C. MİLLÎ EĞİTİM BAKANLIĞI T.C. DEVLET DEMİRYOLLARI İŞLETMESİ GENEL MÜDÜRLÜĞÜ PERSONELİNİN UNVAN DEĞİŞİKLİĞİ SINAVI T.C. MİLLÎ EĞİTİM BKNLIĞI EĞİTİM TEKNOLOJİLERİ GENEL MÜDÜRLÜĞÜ Ölçme Değerlenirme ve çıköğretim Kurumlrı Dire Bşknlığı KİTPÇIK TÜRÜ T.C. DEVLET DEMİRYOLLRI İŞLETMESİ GENEL MÜDÜRLÜĞÜ PERSONELİNİN UNVN DEĞİŞİKLİĞİ

Detaylı

Yüksek sayıda makalelerin sırrı

Yüksek sayıda makalelerin sırrı Yüksek syıd mklelerin sırrı Prof. Dr. Metin Blcı Türk ilim cmisının 2010 yılınd en çok yyın yptığı ilk 10 ilimsel derginin nlizini yptı. Bun göre toplm 21.529 mklenin %10 unun çok düşük düzeyde ve üstelik

Detaylı

YAŞ PROBLEMLERĐ GENEL ÖRNEKLER. Yaş Problemleri MATEMATĐK ĐM YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

YAŞ PROBLEMLERĐ GENEL ÖRNEKLER. Yaş Problemleri MATEMATĐK ĐM YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 YILLAR 00 003 004 005 006 007 008 009 010 011 ÖSS-YGS 1 - - 1 1 1 - - - - YAŞ PROBLEMLERĐ Belli bir yıl sonra herkesin yaşı aynı miktarda artar Đki kişinin yaşları toplamı t yıl sonra t artar, t yıl önce

Detaylı

on8 S İ G O R T A C I L I K S E K T Ö R Ü K U R U M S A L W E B S İ T E L E R İ G E N E L A N A L İ Z Ç A L I Ş M A S I

on8 S İ G O R T A C I L I K S E K T Ö R Ü K U R U M S A L W E B S İ T E L E R İ G E N E L A N A L İ Z Ç A L I Ş M A S I on8 S İ G O R T A C I L I K S E K T Ö R Ü K U R U M S A L W E B S İ T E L E R İ G E N E L A N A L İ Z Ç A L I Ş M A S I Kurumsl web sitelerinin en büyük hedefi; kullnıcılrı müşteri, müşterileri kullnıcı

Detaylı

ÜNİTE - 9 GEOMETRİK CİSİMLER

ÜNİTE - 9 GEOMETRİK CİSİMLER ÜNİ - 9 GMRİK İSİMLR KI İSİMLRİN YÜZY LNLRI V İMLRİ RİZMLR Q ve Q birbirine prlel iki düzlem olsun. iri, diğeri Q düzlemindeki birbirine eş iki çokgenin köşeleri krşılıklı olrk birleştirilirse elde edilen

Detaylı

3N MOBİL HABERLEŞME HİZMETLERİNDE HİZMET KALİTESİ ÖLÇÜTLERİNİN ELDE EDİLMESİNE İLİŞKİN TEBLİĞ

3N MOBİL HABERLEŞME HİZMETLERİNDE HİZMET KALİTESİ ÖLÇÜTLERİNİN ELDE EDİLMESİNE İLİŞKİN TEBLİĞ 3N MOBİL HABERLEŞME HİZMETLERİNDE HİZMET KALİTESİ ÖLÇÜTLERİNİN ELDE EDİLMESİNE İLİŞKİN TEBLİĞ BİRİNCİ BÖLÜM Aç, Kps, Dynk, Tnılr ve Kısltlr Aç MADDE 1 (1) Bu Tebliğin cı, IMT 2000/UMTS Altypılrının Kurulsı

Detaylı

Telekomünikasyon, bilginin haberleşme amaçlı

Telekomünikasyon, bilginin haberleşme amaçlı GÜNÜMÜZ HABERLEŞME TEKNOLOJİLERİNE KISA BİR BAKIŞ Mehmet Okty ELDEM Elektronik Y. Mühendisi EMO Ankr Şubesi Üyesi okty.eldem@gmil.com Telekomüniksyon, bilginin hberleşme mçlı olrk dikkte değer bir mesfeye

Detaylı

ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN

ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN ÖZEL EGE ORTAOKULU ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN HAZIRLAYAN ÖĞRENCĠLER: Olçr ÇOBAN Sevinç SAYAR DANIġMAN ÖĞRETMEN: Gizem GÜNEL AÇIKSÖZ ĠZMĠR 2014 ĠÇĠNDEKĠLER 1. PROJENĠN AMACI... 2 2. GĠRĠġ... 2 3.

Detaylı

Bir Elektrik Motorunun Kısımları. Bir elektrik motorunun parçaları: Rotor, stator içinde döner.

Bir Elektrik Motorunun Kısımları. Bir elektrik motorunun parçaları: Rotor, stator içinde döner. Bir Elektrik Motorunun Kısımlrı Bir elektrik motorunun prçlrı: Rotor, sttor içinde döner. İki kutuplu bir DA motoru -kutuplu mkinnın kısımlrı ve elemnlrı Dört kutuplu bir DA motoru-endüktör Kutup nüvesi

Detaylı

LOJİSTİK OPERASYONDA SÜREÇ İYİLEŞTİRME VE UYGULAMASI

LOJİSTİK OPERASYONDA SÜREÇ İYİLEŞTİRME VE UYGULAMASI LOJİSTİK OPERASYONDA SÜREÇ İYİLEŞTİRME VE UYGULAMASI Ömer GÜZELDAL ÖZET Bu ildiride, Arlık 2003 trihinde, lojistik şirket için gerçekleştirilen, lojistik opersyon için süreç tsrımı ve iyileştirme çlışmsı

Detaylı