ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında"

Transkript

1 ORAN ORANTI syısının 0 dn frklı oln b syısın ornı :b vey olrk gösterilir. b İki vey dh fzl ornın eşitlenmesiyle oluşn ifdeye orntı denir. b =c d ifdesine ikili orntı denir. Bir orntı orntı sbitine eşitlenerek b = c =k biçiminde de yzılbilir. d Örnek...1 : =3b ise +4 b 2b =? ORANTININ ÖZELLİKLERİ 1) b =c d.d=b.c ( içler dışlr çrpımı eşittir) 2) 3) 4) b =c d c =b d b =c d =k b =d c =1 k b =c d =k n b = cn n d n=kn Örnek...4 : 3 = b 4 = c 5 ve 3 4b 2c= 68 ise c kçtır? Örnek...2 : +4b +2b = 5 3 ise 2 b +b =? w w w. m t b z. c o m Örnek...5 : 1 2 =2b+1 3 =3c 4 ve +b 2 c=3 ise kçtır? UYARI b =c d =e f ifdesi : c: e= b: d: f olrk d yzılbilir. Örnek...3 : :5:c=8:b:12 ise b+bc kçtır? Örnek...6 : Bir krışımd bulunn, b ve c mddeleri rsınd b = 2 3, b c =2 ilişkisi olduğu biliniyor. 5 Krışımın toplm ğırlığı 1250 grm ise krışımd kç grm mddesi vrdır? 9. Sınıf Mtemtik Konu Anltımı 1/6

2 NOT 1) x =x ifdesinde x' e ile b nin ort b orntılısı denir. 2) b =c ifdesinde x syısın, b ve c x nin dördüncü orntılısı denir. Örnek...10 : x+ 7 =11, + 7 x =9 ise x =? Örnek...7 : 2, 3 ve 12 ile dördüncü orntılı oln syı ; 3 ve 12 ile ort orntılı oln negtif reel syı b ise b kçtır? Örnek...11 : b =b c =c d =3 İse d =? Örnek...12 : x+ y y = y+z z =z+k k =1,3 ise x k =? 5) b =c d m.+n.c m.b+n.d =k (m ve n syılrının her ikisi de sıfır olmmk koşuluyl) örneğin b =c d +c b+d =k 1 2 = =1 2 Örnek...8 : b = c d = 3 8 ise b+d +c =? w w w. m t b z. c o m Altın Orn: Uç noktlrı A ve B oln bir doğru prçsını üzerindeki P noktsındn eşit olmyn iki prçy bölelim. Eğer prçlrdn küçük olnının boyunun büyük olnın ornı,büyük olnının, tüm çubuğun boyun ornı eşitse çubuk P noktsı trfındn ltın ornd bölünmüştür ve eşit oln bu ornlr ltın orn denir. Altın orn ϕ sembolü ile temsil edilir ve ϕ= 5+1 =1, irrsyonel syısıdır. 2 Örnek...9 : 3 =b 5 = 6+k.b 28 ise k kçtır? Altın orn terimleri 1,1,2,3,5,8,13,... şeklinde ilerleyen Fiboncci dizisinin terimleri rsındki orn olrk d krşımız çıkr. Altın dikdörtgen: Kenrlrının ornı 1 ϕ oln dikdörtgendir. Altın orn doğd d pek çok def krşımız çıkmktdır. Örneğin, omuzdn prmk ucun oln mesfe ile dirsekten prmk oln mesfenin ornı, rı kovnındki dişi rı ile erkek rı syılrı rsındki orn yklşık olrk ltın orndır. 9. Sınıf Mtemtik Konu Anltımı 2/6

3 ORANTI MODELLERİ 1. DOĞRU ORANTI İki çokluk belirten ifde ynı ktlrl rtıp ynı ktlrl zlıyors böyle çoklulr ters orntılıdır denir. Kısc y, x ile doğru orntılı ise bu ilişkiyi y=k.x (k>0) ile modelleriz. y y=k.x Örnek...16 : Bir rcın duruş mesfesi, frene bsıldığı ndki hızının kresi ile orntılıdır. Bu rç stte 40 km hızl giderken duruş mesfesi 5 metre olduğun göre, stte 80 km hızl giderken duruş mesfesi kç metre olur? k x y 0 k 2k... 1 x Örnek...17 : Bir sınıftki kız öğrencilerin syısı 1,8 erkek öğrencilerin syısı ise 1,5 ile doğru orntılıdır. Sınıf mevcudu en z kçtır? Örnek...13 : syısı b ile doğru orntılı ve =8 için b=20 ise b=25 için kçtır? Örnek...14 : ( 2) syısı (b+1) ile doğru orntılı ve =48 için b=5 ise b=59 için kçtır? w w w. m t b z. c o m Örnek...18 : Eş güçteki 20 işçi 300 m 2 duvr örebiliyor. Bun göre ynı güçteki 30 işçi ynı sürede kç m 2 duvr örer? Örnek...15 :,b,c syılrı sırsıyl 2,4 ve 5 ile doğru orntılı ve 4 3b+2c=60 ise b kçtır? Örnek...19 : Bir ust 6 günde 7 sndlye,bir çırk 9 günde 5 sndlye ypbilmektedir. Berber 217 sndlyeyi kç günde yprlr? 9. Sınıf Mtemtik Konu Anltımı 3/6

4 2. TERS ORANTI iki çokluktn biri büyürken diğeri ynı ornd küçülüyors bu çokluklr ters orntılıdır denir. Kısc y, x ile ters orntılı ise bu ilişkiyi modelleriz. y y= k x (k>0) ile Örnek...23 : Eş güçteki 20 işçi bir işi 30 günde bitirebiliyor. Bun göre ynı güçteki 25 işçi kç günde işi bitirir y= k x k 1 Örnek...20 : syısı ile b ters orntılı ve =8 için b=20 ise b=24 için kçtır? Örnek...21 : (x+4) syısı (y 2) ile ters orntılıdır. x=1 için y=10 ise y=3 için x kçtır? x x y k k/2... w w w. m t b z. c o m Örnek...24 : 30 kişilik bir topluluğ 20 gün yetecek kdr yemek vrdır. 5 gün sonr kç kişi bu topluluktn yrılmlıdır ki kln yemek kln kişilere 30 gün yetsin? 3. BİLEŞİK ORANTI İçinde üç vey dh fzl orn bulundurn orntılr bileşik orntı denir. Kısc y, x ile doğru, z ile ters orntılı ise bu ilişkiyi y= k.x z (k>0) ile modelleriz. Örnek...25 : syısı ile b syısı doğru, c ters orntılıdır. =12 için b=16 ve c=20 ise c=12 ve b=10 için kçtır? Örnek...22 :, b, c syılrı sırsıyl 2, 4 ve 5 ile ters orntılı ve 4 3b+2c 4=260 ise c kçtır? 9. Sınıf Mtemtik Konu Anltımı 4/6

5 Örnek...26 : (x+3) syısı ile (y+2) syısı doğru, (z 4) ile ters orntılıdır. x=17 için z=9 ve y=8 ise z=12 ve y=10 için x kçtır? Örnek...30 : Bir yrışt sbit hızlrl yrışn 3 kişiden A yrışı bitirdiğinde B nin 50 metre C nin ise 60 metre yolu vrdır. B yrışı bitirdiğinde ise C nin yrışı bitirmesine 12 metre yolu kldığın göre pist kç metredir? Örnek...27 : 225 TL 3 ve 4 ile doğru 2 ile ters orntılı prçlnırs en büyük prç kç TL olur? Örnek...31 : Birbirine bğlı üç çrktn birincisi 12 kere döndüğünde ikinci 9 üçüncüsü ise 15 dönüş ypmktdır. Bu çrklrdki toplm diş syısı 2820 ise en küçük çrkın diş syısı nedir? Örnek...28 : Eşit kpsiteli 9 işçi 15 m 2 hlıyı 6 stte dokuybiliyors ynı kpsitedeki kç işçi 30 m 2 hlıyı 12 stte dokur? w w w. m t b z. c o m Örnek...32 : Bir işi Hkn 12 günde, Onur 24 günde bitiriyor. Bun göre berber 3 günde bu işin ne kdrını bitirebilirler? Örnek...33 : Bir işi birinci işçi 48 günde, ikinci işçi 16 ve 1 üçüncü işçi ise işin ini 6 günde bitiriyor. 4 Bun göre berber bu işin yrısını kç günde bitirirler? Örnek...29 : Eşit kpsiteli 8 işçi 32 prç işi günde 16 st çlışrk 18 günde ypbiliyors 12 işçi 8 prç işi günde 4 st çlışrk kç günde bitirir? Örnek...34 : Bir hvuzu birinci musluk 45 dkikd ikinci musluk ise 30 dkikd dolduruyor. Musluklr berber çıldıktn kç st sonr hvuz dolr? 9. Sınıf Mtemtik Konu Anltımı 5/6

6 DEĞERLENDİRME 1) b =3 5 ise b +b =? 6) 328 TL yşlrı 2,3 ve 7 oln üç çocuğ yşlrıyl ters orntılı bölüştürülürse en çok ln kç TL lır? 2) Bir okuld gözlüklü öğrencilerin gözlüksüz 3 öğrencilere ornı dir. Gözlüklü öğrenci 8 syısının 150 den fzl oluğu biliniyors okul mevcudu en z kçtır? 7) x+ y = x y = 1 x y 2 olduğun göre 1 x 1 y kçtır? 3), b, c pozitif syılr ise b kçtır? 3 = b 4 = c 5 ve 2 +b 2 +c 2 =8000 w w w. m t b z. c o m 8) p b c c =q b =r +b c+b +c =5 6 ve b + 1 c =8 olduğun göre p+q+r kçtır? 4) 3.b = 4 b.c = 5.c ve b+c 2=24 ise c kçtır? 9) Bir işi 60 günde ypn Kerem in hızını dört kt rttır, iş ise üç ktın çıkrs işin bitiş süresi kç gün olur? 5) 560 TL yşlrı 5,ve 9 oln krdeşlere yşlrıyl doğru orntılı olrk pylştırılırs frk ne kdr olur? 10) Bir ust 5 stte 7 m 2, çırğı ise 7 stte 5 m 2 duvr boyuybiliyor. Berber 222 m 2 duvr boydıklrınd çırk kç m 2 duvr boymıştır? 9. Sınıf Mtemtik Konu Anltımı 6/6

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında ORAN ORANTI syısının 0 dn frklı oln b syısın ornı :b vey olrk gösterilir. b İki vey dh fzl ornın eşitlenmesiyle oluşn ifdeye orntı denir. b =c d ifdesine ikili orntı denir. Bir orntı orntı sbitine eşitlenerek

Detaylı

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 PROBLEMLER İÇİNDEKİLER Syf No Test No ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 SAYI PROBLEMLERİ... 299-314... 01-08 YAŞ PROBLEMLERİ...

Detaylı

ORAN ve ORANTI-1 ORAN-ORANTI KAVRAMI. 1. = olduğuna göre, aşağıdaki ifadelerin. + c c sisteminin çözümüne. 3. olduğuna göre, nin değeri

ORAN ve ORANTI-1 ORAN-ORANTI KAVRAMI. 1. = olduğuna göre, aşağıdaki ifadelerin. + c c sisteminin çözümüne. 3. olduğuna göre, nin değeri ORAN ve ORANTI- ORAN-ORANTI KAVRAMI A) B) 9 C) 7 D) 5 E). olduğun göre, şğıdki ifdelerin hngisi d doğrudur? + d A) d + 4 + d C) 4 d E) 5 + 5 5 5 + d d + d B) n + m n + md D) d x y z. 4 5 sisteminin çözümüne

Detaylı

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı,

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı, Rsyonel Syılr. Sınıf Mtemtik Soru Bnksı TEST. Aşğıdki bilgilerden hngisi ynlıştır? A) Rsyonel syılr Q sembolü ile gösterilir. B) Her tm syı bir rsyonel syıdır. şeklinde yzıln bütün syılr rsyoneldir. b

Detaylı

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - 1-1 1 SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = 100+10+b bc = 100+10b+c bcd =1000+100b+10c+d

Detaylı

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır?

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır? RAKAM Syılrı ifde etmek için kullndığımız 0,,2,3,4,5,6,7,8,9 sembollerine rkm denir. Örnek... :, b ve c birbirlerinden frklı birer rkmdır..b+9.b c en çok kçtır? DOĞAL SAYILAR N={0,,2,3...,n,...} kümesine

Detaylı

1992 ÖYS. 1. Bir öğrenci, harçlığının 7. liralık otobüs biletinden 20 adet almıştır. Buna göre öğrencinin harçlığı kaç liradır?

1992 ÖYS. 1. Bir öğrenci, harçlığının 7. liralık otobüs biletinden 20 adet almıştır. Buna göre öğrencinin harçlığı kaç liradır? 99 ÖYS. Bir öğrenci, hrçlığının 7 si ile, 000 lirlık otobüs biletinden 0 det lmıştır. Bun göre öğrencinin hrçlığı kç lirdır? 0 000 B) 0 000 C) 60 000 D) 80 000 E) 00 000 6. Bir lstik çekilip uztıldığınd

Detaylı

1984 ÖSS. 6. a, b, c birer pozitif sayı ve. olduğuna göre, a, b, c arasındaki bağlantılardan hangisi doğrudur? 7. a, b, c birer tamsayı olmak üzere

1984 ÖSS. 6. a, b, c birer pozitif sayı ve. olduğuna göre, a, b, c arasındaki bağlantılardan hangisi doğrudur? 7. a, b, c birer tamsayı olmak üzere 984 ÖSS 033 0. = x 0 olduğun göre x in değeri nedir? A) 0063 B) 063 C) 63 D) 63 E) 630. 6. b c birer pozitif syı ve b c = = 03 04 05 olduğun göre b c rsındki bğlntılrdn hngisi doğrudur? A) c

Detaylı

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 7 ÖYS. 0,00 0,00 k 0,00 olduğun göre, k kçtır? 6. Bir ust günde çift ykkbı, bir klf ise günde çift ykkbı ypmktdır. İkisi birlikte, 8 çift ykkbıyı kç günde yprlr? 0 C) 0 D) 0 C) D). (0 ) ( 0) işleminin

Detaylı

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun 99 ÖYS. Bir öğrenci, hrçlığının 7 si ile, 000 lirlık otobüs biletinden 0 det lmıştır. Bun göre öğrencinin hrçlığı kç lirdır? 0 000 B) 0 000 C) 60 000 D) 80 000 E) 00 000. Bir stıcı, elindeki mlın önce

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

Öğrenci Seçme Sınavı (Öss) / 17 Haziran Matematik I Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 17 Haziran Matematik I Soruları ve Çözümleri Öğrenci Seçme Sınvı (Öss) / 7 Hzirn 007 Mtemtik I Sorulrı ve Çözümleri.. 7 işleminin sonucu kçtır? A) B) 9 C) D) E) Çözüm. 7..9.. + işleminin sonucu kçtır? 4 8 A) 8 B) 8 C) 8 D) 4 E) 4 Çözüm + 4 8 8 4+

Detaylı

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER TEOG Tm Syılr ve Mutlk Değer TAMSAYILAR Eksi sonsuzdn gelip, rtı sonsuz giden syılr tm syılr denir ve tm syılr kümesi Z ile gösterilir. Z = {...,,, 1,0,1,,,... } Tmsyılr kümesi ikiye yrılır: ) Negtif Tmsyılr:

Detaylı

(bbb) üç basamaklı sayılardır. x ile y arasında kaç tane asal sayı vardır? A)0 B)1 C) 2 D) 3 E) x, y, z reel sayılar olmak üzere, ifadesinin

(bbb) üç basamaklı sayılardır. x ile y arasında kaç tane asal sayı vardır? A)0 B)1 C) 2 D) 3 E) x, y, z reel sayılar olmak üzere, ifadesinin 4 () ve (bb) iki bsmklı syılr, () ve 1 x=15! +1 y=15!+16 olmk üzere, (bbb) üç bsmklı syılrdır x ile y rsınd kç tne sl syı vrdır? A)0 B)1 C) D) 3 E) 4 b + bb + bbb = 6 olduğun göre, b çrpımı en çok kçtır?

Detaylı

1987 ÖSS A) 0 B) 2. A) a -2 B) (-a) 3 C) a -3 D) a -1 E) (-a) 2 A) 1 B) 10 C) 10 D) 5 10 E) a+b+c=6 olduğuna göre a 2 +b 2 +c 2 toplamı kaçtır?

1987 ÖSS A) 0 B) 2. A) a -2 B) (-a) 3 C) a -3 D) a -1 E) (-a) 2 A) 1 B) 10 C) 10 D) 5 10 E) a+b+c=6 olduğuna göre a 2 +b 2 +c 2 toplamı kaçtır? 987 ÖSS. Yukrıdki çıkrm işlemine göre, K+L+M toplmı şğıdkilerden hngisine dim eşittir? A) M B) L C) K M K 5. 4 işleminin sonucu kçtır? A) 0 B) C) 5 4 5. Aşğıdki toplm işleminde her hrf sıfırın dışınd fklı

Detaylı

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57 99 ÖYS. si oln si kçtır? A) 9 B) 8 C) D) 6 E) 5 6. Bir nın yşı, iki çocuğunun yşlrı toplmındn üyüktür. yıl sonr nın yşı, çocuklrının yşlrı toplmının ktı olcğın göre ugün kç yşınddır? A) 5 B) 5 C) 55 D)

Detaylı

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT DENKLEM ve EŞİTSİZLİKLER ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT BİRİNCİ DERECEDEN DENKLEM ve EŞİTSİZLİKLER. Kznım : Gerçek syılr kümesinde birinci dereceden eşitsizliğin özelliklerini belirtir.. Kznım : Gerçek

Detaylı

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır.

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır. gösterilir. MUTLAK DEĞER Syı doğrusu üzerinde syısının sıfır oln uzklığın in mutlk değeri denir ve ile B O A 0 OA = OB =, 0 =, < 0 olrk tnımlnır. < 0 < y için y = y işleminin eşitini bulunuz. < 0 için

Detaylı

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7.

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7. MC. + + +.. Rsyonel Syılr TEST I sonsuz kesrinin eşiti kçtır? A) B) C) D) E) 4 www.mtemtikclu.com, 006 Ceir Notlrı. 8. Gökhn DEMĐR, gdemir@yhoo.com.tr 0;0 0;0008 = 0; x ise x kçtır? A) 0,0 B) 0,000 C)

Detaylı

ÜNİTE - 7 POLİNOMLAR

ÜNİTE - 7 POLİNOMLAR ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri

Detaylı

1986 ÖSS. olduğuna göre, aşağıdakilerden hangisi doğrudur?

1986 ÖSS. olduğuna göre, aşağıdakilerden hangisi doğrudur? 986 ÖSS. (0,78+0,8).(0,3+0,7) Yukrıdki işlemin sonucu nedir? B) C) 0, D) 0, E) 0,0. doğl syısı 4 ile bölünebildiğine göre şğıdkilerden hngisi tek syı olbilir? Yukrıdki çrpm işleminde her nokt bir rkmın

Detaylı

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ Ö.Y.S. 998 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Üç bsmklı bir doğl syısının ktı, iki bsmklı bir y doğl syısın eşittir. 7 Bun göre, y doğl syısı en z kç olbilir? A) B) C) 8 D) E) Çözüm y 7 7y (, en küçük bsmklı,

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 27 Kasım Matematik Sorularının Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 27 Kasım Matematik Sorularının Çözümleri Akdemik Personel ve Lisnsüstü Eğitimi Giriş Sınvı ALES / Sonbhr / Syısl I / 7 Ksım 011 Mtemtik Sorulrının Çözümleri 1 1 1 1. 1. + + 1 1. + 3 6 1 3 1 + 3 6 3 1. + + 1 1 1 6+ + 3 1. 1 13 1. 1 13. 5.10 +

Detaylı

SAYI ÖRÜNTÜLERİ VE CEBİRSEL İFADELER

SAYI ÖRÜNTÜLERİ VE CEBİRSEL İFADELER ÖRÜNTÜLER VE İLİŞKİLER Belirli bir kurl göre düzenli bir şekilde tekrr eden şekil vey syı dizisine örüntü denir. ÖRNEK: Aşğıdki syı dizilerinin kurlını bulunuz. 9, 16, 23, 30, 37 5, 10, 15, 20 bir syı

Detaylı

14) ( 2) 6 üslü sayısının kesir olarak yazılışı A) ) 2 3 sayısı aşağıdakilerden hangisine eşittir? 16) -6 2 üslü sayısının eşiti kaçtır?

14) ( 2) 6 üslü sayısının kesir olarak yazılışı A) ) 2 3 sayısı aşağıdakilerden hangisine eşittir? 16) -6 2 üslü sayısının eşiti kaçtır? ÜSLÜ SAYILAR KAZANIM PEKİŞTİRME SORULARI ) üslü syısı şğıdkilerden hngisine eşittir? 6 9 7 ) +++++++ işleminin sonucu şğıdkilerden hngisi ile ifde edilebilir?. + )... işleminin sonucu şğıdkilerden hngisi

Detaylı

ORAN ORANTI ORAN ORANTI ORANTININ ÖZELLİKLERİ ÖRNEK - 1 TANIM. x ve y tamsayıdır. x y

ORAN ORANTI ORAN ORANTI ORANTININ ÖZELLİKLERİ ÖRNEK - 1 TANIM. x ve y tamsayıdır. x y ORAN ORANTI TANIM Anı irimden iki çokluğun iririle krşılştırılmsın orn denir. ornınd ve nı irimden olduğu için nin irimi oktur. ÖRNEK - 1 ve tmsıdır. = ve + = 0 olduğun göre, kçtır? A) 1 B) C) 0 9 D) 1

Detaylı

Öğrenci Seçme Sınavı (Öss) / 17 Haziran Matematik I Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 17 Haziran Matematik I Soruları ve Çözümleri Öğrenci Seçme Sınvı (Öss) / 7 Hzirn 007 Mtemtik I Sorulrı ve Çözümleri.. 7 işleminin sonucu kçtır? A) B) 9 C) D) E) Çözüm. 7..9.. + işleminin sonucu kçtır? 4 8 A) 8 B) 8 C) 8 D) 4 E) 4 Çözüm + 4 8 8 4+

Detaylı

G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90

G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90 G O M T R İ. ÖLÜM Üçgende çılr. ÜÇGN oğrusl olmyn üç noktyı birleştiren doğru prçlrının birleşim kümesine üçgen denir. ış çı ış çı ış çı. ÇILRIN GÖR ÜÇG N ÇŞİTLR İ r çılı Üçgen Üç çının ölçüsü de 90 den

Detaylı

4. x ve y pozitif tam sayıları için,

4. x ve y pozitif tam sayıları için, YGS MTEMTİK ENEMESİ., b ve c pozitif tm syılrı için, b c b b c c biçiminde tnımlnıyor. un göre, işleminin sonucu kçtır? ) 6 ) 4 ) 0 ) 6 E) 8. Rkmlrı frklı dört bsmklı doğl syısının ilk iki bsmğı ile son

Detaylı

MATEMATİK TESTİ. 5. a, b birer gerçek sayı ve a + b < 3tür. Bu sayıların sayı doğrusunda gösterilişi aşağıdakilerden hangisindeki gibi olabilir?

MATEMATİK TESTİ. 5. a, b birer gerçek sayı ve a + b < 3tür. Bu sayıların sayı doğrusunda gösterilişi aşağıdakilerden hangisindeki gibi olabilir? MTEMTİK TESTİ 1 1 1 1 1. + 4 4 1 ) 0 ) 4 işleminin sonucu kçtır? ) 1 ) 1., irer gerçek syı ve + < 3tür. u syılrın syı doğrusund gösterilişi şğıdkilerden hngisindeki gii olilir? ) -3 - -1 0 1 3 ) -3 - -1

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal II / 27 Kasım Matematik Sorularının Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal II / 27 Kasım Matematik Sorularının Çözümleri Akdemik Personel ve Lisnsüstü Eğitimi Giriş Sınvı ALES / Sonbhr / Syısl II / 7 Ksım 0 Mtemtik Sorulrının Çözümleri. Bölüm şeklindeki kreköklü ifdenin pydsını krekökten kurtrmk için py ve pydyı, pydnın

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 19. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 19. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI OKULLAR ARASI 9. MATEMATİK YARIŞMASI. 700 doğl syısı için şğıdkilerden kç tnesi doğrudur? I. Asl çrpnı tnedir. II. Asl çrpnlrının çrpımı 0 dir. III. Tmsyı bölenlerinin toplmı 0 dır. IV. Asl çrpnlrının

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

Cevap D. 6. x = 3, y = 7, z = 9 olduğundan x + y < y ve. Cevap C. 7. x ile y aralarında asal olduğundan x 2 ile y sayıları da. Cevap A.

Cevap D. 6. x = 3, y = 7, z = 9 olduğundan x + y < y ve. Cevap C. 7. x ile y aralarında asal olduğundan x 2 ile y sayıları da. Cevap A. eneme - / Mt MTEMTİK ENEMESİ. c - m. c - m -.., bulunur. y. 7, + 7 y + + 00 y + + + y + +, y lınr ı.. ^ - h. ^ + h. ^ + h ^ - h. ^ + h - & & bulunur.. ΩΩΩΩΔφφφ ΩΩφφ ΩΩΔφ 0 evp. ise ^ h ^h 7 ise ^ 7h b

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI EGE BÖLGESİ OKULLAR ARASI 7. MATEMATİK YARIŞMASI. SINIF TEST SORULARI. + işleminin sonucu kçtır? 5 5 A) 0 B) 0 C) 0 7 D) 0 9 E). y = x x + prbolünün y = x doğrusun en ykın noktsının koordintlrı toplmı

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI ., ÖZEL EGE LİSESİ OKULLR RSI 8. MTEMTİK YRIŞMSI 8. SINI TEST SORULRI 5. 0,0008.0 b 0,0000.0 ise; b.0 kç bsmklı bir sıdır? olduğun göre, ifdesinin değeri şğıdkilerden hngisine eşittir? ) 80 ) 8 ) 8 ) 8

Detaylı

RASYONEL SAYILAR. ÖRNEK: a<0<b<c koşulunu sağlayan a, b, c reel sayıları. tan ımsız. belirsiz. basit kesir

RASYONEL SAYILAR. ÖRNEK: a<0<b<c koşulunu sağlayan a, b, c reel sayıları. tan ımsız. belirsiz. basit kesir RASYONEL SAYILAR 0 ve, Z olmk üzere şeklindeki syılr rsyonel syı denir. 0 0 tn ımsız 0 0 elirsiz 0 sit kesir ileşik kesir Genişletilerek vey sdeleştirilerek elde edilen kesirlere denk kesirler denir. Sıfır

Detaylı

1982 ÖSS =3p olduğuna göre p kaçtır? A) 79 B) 119 C) 237 E) A) 60 B) 90 C) 120 D) 150 E) 160

1982 ÖSS =3p olduğuna göre p kaçtır? A) 79 B) 119 C) 237 E) A) 60 B) 90 C) 120 D) 150 E) 160 8 ÖSS. Bir çiftlikte 800 koun 00 inek ve 600 mnd vrdır. Bu hvnlrın tümü bir dire grfikle gösterilirse ineklerle ilgili dilimin merkez çısı kç derece olur? A) 60 B) 0 C) 0 D) 0 E) 60 6. 0 - =p olduğun göre

Detaylı

11. BÖLÜM. Paralelkenar ve Eşkenar Dörtgen A. PARALELKENAR B. PARALELKENARIN ÖZEL LİKLERİ ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK

11. BÖLÜM. Paralelkenar ve Eşkenar Dörtgen A. PARALELKENAR B. PARALELKENARIN ÖZEL LİKLERİ ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK G O M T R İ www.kdemivizyon.com.tr. ÖÜM Prlelkenr ve şkenr örtgen. PRNR rşılıklı kenrlrı prlel oln dörtgenlere prlelkenr denir. [] // [] [] // [] = =. PRNRIN ÖZ İRİ. rşılıklı çılr eş ve rdışık çılr ütünlerdir.

Detaylı

8. sınıf ders notları zfrcelikoz@yahoo.com

8. sınıf ders notları zfrcelikoz@yahoo.com III - SAYI ÖRÜNTÜLERİ Htırltm: Syılrı virgülle yrılrk, birbirii rdı dizilmesie syı dizisi, dizideki her bir syıy d terim deir. hrfi verile örütüde syılrı sırsıı belirte semboldür ve ici syıy örütüü geel

Detaylı

ORAN VE ORANTI Tekrar Zamanı Çözümlü Test 1 Çözümlü Test 2 Uygulama Zamanı 1 Tekrar Zamanı Çözümlü Test 1 Çözümlü Test 2 KESİR PROBLEMLERİ

ORAN VE ORANTI Tekrar Zamanı Çözümlü Test 1 Çözümlü Test 2 Uygulama Zamanı 1 Tekrar Zamanı Çözümlü Test 1 Çözümlü Test 2 KESİR PROBLEMLERİ İÇİNDEKİLER ORAN VE ORANTI Orn Kvrmı... Orntı Kvrmı... Orntı Elemnlrının Yer Değiştirmesi... İçler Dışlr Çrpımı Prolemleri...4 Orntıyı Sitleme-I... Orntıyı Sitleme-II...6 Orntıyı Sitleme-III...7 Uygulm

Detaylı

sayısından en az kaç çıkarmalıyız ki kalan sayı 6,9,12 ve 15 ile kalansız bölünebilsin? ()

sayısından en az kaç çıkarmalıyız ki kalan sayı 6,9,12 ve 15 ile kalansız bölünebilsin? () 1. x,y,z,t rdışık çift syılrdır. Bun göre (xy)-(zt)=. İki smklı () syısının değeri, rkmlrı toplmının 7 ktıdır. Üç smklı () syısının ile ölümünden elde edilen ölüm kçtır. En z dört smklı ir doğl syının

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER TANIMLAR :, b, R ve 0 olmk üzere denklem denir. b = 0 denklemine, ikini dereeden bir bilinmeyenli Bu denklemde, b, gerçel syılrın

Detaylı

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK MTEMTİK KPSS ÇEVİR KONU - ÇEVİR SORU MTEMTİK EDİTÖR Turgut MEŞE YZR İdris DOĞN ütün hklrı Editör Yyınlrın ittir. Yyınevinin izni olmksızın, kitbın tümünün vey bir kısmının bsımı, çoğltılmsı ve dğıtımı

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

Taşkın, Çetin, Abdullayeva

Taşkın, Çetin, Abdullayeva 1 BÖLÜM 1 KÜMELER VE SAYILAR 1.1 KÜMELER 1.1.1. TEMEL TANIMLAR Kesi ir tımı ypılmmkl erer,sezgisel olrk,kümeye iyi tımlmış iri iride frklı eseler topluluğudur diyeiliriz. Kümeyi meyd getire eselere kümei

Detaylı

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır.

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır. LYS- MTEMTİK MTEMTİK TESTİ. u testte Mtemtik lnın it toplm 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için yrıln kısmın işretleyiniz.. = 5! +! olduğun göre,! syısının türünden eşiti şğıdkilerden

Detaylı

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS)

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS) ÇMR ÖSS SRULRI 1., ve noktlrı merkezli çember üzerinde m( ) = m( ) =. ir dik üçgeni için, = cm ve = 4 cm olrk veriliyor. Merkezi, yrıçpı [] oln bir çember, üçgenin kenrını ve noktlrınd kesiyor. un göre,

Detaylı

ege yayıncılık Oran Orant Özellikleri TEST : 91 a + 3b a b = 5 2 0,44 0,5 = 0,22 oldu una göre, a + b en az kaçt r? A) 3 B) 11 C) 14 D) 15 E) 16

ege yayıncılık Oran Orant Özellikleri TEST : 91 a + 3b a b = 5 2 0,44 0,5 = 0,22 oldu una göre, a + b en az kaçt r? A) 3 B) 11 C) 14 D) 15 E) 16 Orn Ornt Özellikleri TEST : 91 1. 0,44 0,5 = 0,22 5. + 3 = 5 2 2. 3. 4. oldu un göre, kçt r? A) 0,2 B) 0,25 C) 0,5 D) 0,6 E) 0,75 y = 3 4 + y oldu un göre, y orn kçt r? A) 7 B) 1 C) 1 D) 7 E) 10 oldu un

Detaylı

Üslü Sayılar MATEMATİK. 5.Hafta. Hedefler. Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK. Bu üniteyi çalıştıktan sonra;

Üslü Sayılar MATEMATİK. 5.Hafta. Hedefler. Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK. Bu üniteyi çalıştıktan sonra; MATEMATİK Üslü Syılr Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK 5.Hft Hedefler Bu üniteyi çlıştıktn sonr; Gerçel syılrd üslü işlemler ypbilecek, Üslü denklem ve üslü eşitsizlikleri çözebileceksiniz.

Detaylı

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4.

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4. IV. HTTİN TTIŞ MTEMTİK YRIŞMSI u test 30 sorudn oluşmktdır. İREYSEL YRIŞM SORULRI 1. 4 3 + 1 4. 3 3 + = + 1 + 1 denkleminin çözüm kümesi şğıdkilerden hngisidir? ) 5 3 ) ) 3 D) 13 3 ) { 0 } ) { 1} ) { }

Detaylı

7.SINIF: ÇOKGENLER ÇOKGENDE AÇILAR. Doğrusal olmayan üç veya daha fazla noktanın birleşmesiyle oluşan kapalı geometrik şekillere çokgen denir.

7.SINIF: ÇOKGENLER ÇOKGENDE AÇILAR. Doğrusal olmayan üç veya daha fazla noktanın birleşmesiyle oluşan kapalı geometrik şekillere çokgen denir. 7.SINIF: ÇOKGNLR oğrusl olmyn üç vey dh fzl noktnın birleşmesiyle oluşn kplı geometrik şekillere çokgen denir. n kenrlı bir çokgenin bir dış çısının ölçüsü 360/n dir. n kenrlı bir çokgenin bir iç çısının

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

Örnek...1 : Örnek...2 : DÜZGÜN BEŞGEN DÜZGÜN BEŞGEN ÖZELLİK 3 TANIM VE ÖZELLİKLERİ ÖZELLİK 1 ÖZELLİK 2. A Köşe. köşeleri A, B, C, D ve E dir, β θ

Örnek...1 : Örnek...2 : DÜZGÜN BEŞGEN DÜZGÜN BEŞGEN ÖZELLİK 3 TANIM VE ÖZELLİKLERİ ÖZELLİK 1 ÖZELLİK 2. A Köşe. köşeleri A, B, C, D ve E dir, β θ ÜZGÜN ŞGN ( ÜZGÜN ŞGN TNII, ÖZİRİ ĞRNİRR ) ÜZGÜN ŞGN ÖZİ 3 TNI V ÖZİRİ enr syısı 5 oln düzgün çokgene öşe düzgün beşgen denir. üzgün beşgenin; köşeleri,,, ve dir, kenrlrı [], [], β θ [], [] ve [] dır,

Detaylı

MATEMATİK 1 TESTİ (Mat 1)

MATEMATİK 1 TESTİ (Mat 1) ÖSS MT-1 / 008 MTMTİK 1 TSTİ (Mt 1) 1. u testte 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik 1 Testi için yrıln kısmın işretleyiniz. 1. 1 + 4 1 ( ) 4. syısı b 0 ) b syısının kç ktıdır? ) b ) b işleminin

Detaylı

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır?

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır? 988 ÖYS. Toplmlrı 4 oln gerçel iki syıdn üyüğü küçüğüne ölündüğünde ölüm 4, kln dir. Küçük syı kçtır? A) 56 B) 5 C) 48 D) 44 E) 40. 0,5 6 devirli (peryodik) ondlık syısı şğıdkilerden hngisine eşittir?

Detaylı

ASAL SAYILAR. Asal Sayılar YILLAR MATEMATĐK ĐM

ASAL SAYILAR. Asal Sayılar YILLAR MATEMATĐK ĐM YILLAR 00 003 004 00 006 007 008 009 00 0 ÖSS-YGS - - - - - - - ASAL SAYILAR ve kendisinden bşk pozitif böleni olmyn den büyük tmsyılr sl syı denir Negtif ve ondlıklı syılr sl olmz Asl syılrı veren bir

Detaylı

ÜSLÜ SAYILAR. (-2) 3 = (-2). (-2). (-2) = (-8) Kuvvet Tek; NEGATİF. (-2) 4 = (-2). (-2). (-2). (-2) = 16 Kuvvet Çift; POZİTİF.

ÜSLÜ SAYILAR. (-2) 3 = (-2). (-2). (-2) = (-8) Kuvvet Tek; NEGATİF. (-2) 4 = (-2). (-2). (-2). (-2) = 16 Kuvvet Çift; POZİTİF. SINIF ÜSLÜ SAYILAR www.tyfuolcu.co Üslü Syı : ifdesi ı te çrpıı lı gelektedir. =.... te =.. = 8 =. = 4 =. = 9 4 =... = 81 10 6 = 10.10.10.10.10.10 Teel Kvrlr ile. ifdeleri çok sık krıştırıl ifdelerdeir.

Detaylı

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu OĞRU ÇILR Temel Kvrmlr ve oğrud çılr Nokt: Nokt geometrinin en temel terimidir. ni, boyu vey yüksekliği yoktur. İnce uçlu bir klemin kğıt üzerinde bırktığı iz olrk düşünebilirsiniz. oğru: üz, klınlığı

Detaylı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı Ankr Üniversitesi Mühendislik Fkültesi, Fizik Mühendisliği Bölümü FZM207 Temel ElektronikI Doç. Dr. Hüseyin Srı 2. Bölüm: Dirençli Devreler İçerik Temel Yslrın Doğrudn Uygulnışı Kynk Gösterimi ve Dönüşümü

Detaylı

YÜZDE VE FAĐZ PROBLEMLERĐ

YÜZDE VE FAĐZ PROBLEMLERĐ YILLAR 00 003 00 00 006 007 008 009 010 011 ÖSS-YGS 3 1 1 1 3 YÜZDE VE FAĐZ PROBLEMLERĐ YÜZDE: Bir syının yüzde sı= dır ÖRNEK(1) % i 0 oln syıyı bullım syımız olsun 1 = 0 = 0 ÖRNEK() 800 ün % ini bullım

Detaylı

2002 ORTA ÖĞRETİM KURUMLARI ÖĞRENCİ SEÇME VE YERLEŞTİRME SINAVI MATEMATİK TESTİ 10. 10 10. aşağıdakilerden hangisidir? A) 0,01 B) 0,1 C) 10 D) 100

2002 ORTA ÖĞRETİM KURUMLARI ÖĞRENCİ SEÇME VE YERLEŞTİRME SINAVI MATEMATİK TESTİ 10. 10 10. aşağıdakilerden hangisidir? A) 0,01 B) 0,1 C) 10 D) 100 22 ORTA ÖĞRETİ URUARI ÖĞRECİ EÇE VE YEREŞTİRE IAVI ATEATİ TETİ 1. 3 2 1 1. 1 1. 1 : işleminin sonucu 7 1. 1 1 şğıdkilerden hngisidir? A),1 B),1 C) 1 D) 1 2. O P R T U V Yukrıdki syı doğrusund birbirine

Detaylı

a üstel fonksiyonunun temel özellikleri şunlardır:

a üstel fonksiyonunun temel özellikleri şunlardır: 1 Üstel Fonksiyon: >o, 1 ve herhngi bir reel syı olmk üzere f: fonksiyon denir. R fonksiyonun üstel R, f()= 1 2, f()= ve f()= f()= gibi tbnı sbit syı (pozitif ve 1 den frklı) ve üssü 4 değişken oln bu

Detaylı

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24.

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24. DENKLEM ÇÖZME + + = 0 + = 0 + = 0 + y = 0 İkinci dereceden ir ilinmeyenli denklemdir. İkinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden İki ilinmeyenli

Detaylı

2011 RASYONEL SAYILAR

2011 RASYONEL SAYILAR 011 RASYONEL SAYILAR AKDENİZ ÜNİVERSİTESİ 06.01.011 A.Tnım 3 B.Kesir 3 C.Kesir çeşitleri 3 1.Bsit kesirler 3.Birleşik kesirler 3 3. Tm syılr 3 D.Rsyonel syılrı sırlm 4 E.Rsyonel syılrd işlemler 5 1.Rsyonel

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı 8. sısının pozitif tek tmsı bölenlerinin sısı kçtır? 8. olmk üzere; kesrinin değeri şğıdkilerden hngisi olmz?. (8!) sısının sondn kç bsmğı sıfırdır? 8. ifdesinin sonucu kçtır? (

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı. İki bsmklı bir sının rkmlrı toplmı dir. Rkmlrı er değiştirdiğinde elde edilen sı, ilk sının sinden fzldır.. Birbirinden frklı tne pozitif tmsının OKEK i olduğun göre, en çok kçtır?

Detaylı

Işığın Yansıması ve Düzlem Ayna Çözümleri

Işığın Yansıması ve Düzlem Ayna Çözümleri 2 şığın Ynsımsı ve Düzlem Ayn Çözümleri 1 Test 1 1. 38 38 52 52 Ynsıyn ışının yüzeyin normli ile yptığı çıy ynsım çısı denir. Bu durumd ynsım çısı şekilde gösterildiği gibi 38 dir. 4. şıklı cisminin ve

Detaylı

İkinci Dereceden Denklemler

İkinci Dereceden Denklemler İkini Dereeden Denkleler İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER TANIMLAR :,, R ve olk üzere + + denkleine, ikini dereeden ir ilineyenli denkle denir Bu denkledeki,, gerçel syılrın ktsyılr, e ilineyen

Detaylı

( ) ( ) ( ) Üslü Sayılar (32) 2. ( ) ( 2 (2) 3. ( ) ( ) 3 4. ( 4 9 ) eşitliğini sağlayan a değeri kaçtır? (0) 0,6 0,4 : 4,9 =?

( ) ( ) ( ) Üslü Sayılar (32) 2. ( ) ( 2 (2) 3. ( ) ( ) 3 4. ( 4 9 ) eşitliğini sağlayan a değeri kaçtır? (0) 0,6 0,4 : 4,9 =? Üslü Sılr. +.4 8 (8) 4. ( ) (. ). ( ) 4 6 ( ) :( ) () + + 5..4. ( ) ( ) () 4. 5 5 ( 4 9 ) 5. 9 + + 9 = + eşitliğini sğln değeri kçtır (0) 6. ( ) ( ) ( ) 0,6 0,4 : 4,9 (-6) 4 8.. c 7. 4.. c ( c ) 8. 6 8

Detaylı

Uzunluklar Ölçme. Çevre. Alan. Zaman Ölçme. S v lar Ölçme. Hacmi Ölçme

Uzunluklar Ölçme. Çevre. Alan. Zaman Ölçme. S v lar Ölçme. Hacmi Ölçme MTEMT K Uzunluklr Ölçme Çevre ln Zmn Ölçme S v lr Ölçme Hcmi Ölçme Temel Kynk 5 Uzunluklr Ölçme UZUNLUKLRI ÖLÇME Çevremizde metre, sntimetre, milimetre vey bunlr n herhngi ikisi ile söyledi imiz uzunluklr

Detaylı

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik)

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik) ÜÇGN LN Üçgende ln Şekilde verilen üçgeninde,, üçgenin köşeleri, [], [], [] üçgenin kenrlrıdır. c b üçgeninin kenrlrı dlndırılırken, her kenr krşısınd bulunn köşenin hrfi ile isimlendirilir. üçgeninin

Detaylı

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR Vektörler zr rd.doç.dr.nevin MAHİR ÜNİTE 3 Amçlr Bu üniteyi çlıştıktn sonr; Düzlemde vektör kvrmını öğrenecek, İki vektörün eşitliği, toplmı, doğrusl bğımlılığı ile bir vektörün bir gerçel syı ile çrpımı,

Detaylı

1996 ÖYS. Çözüm 1: Çözüm 3: 1. gün x a 2.gün x+5 kitap a sayfa ise 3x+15= 3 3.gün x+10 4.gün x+15 5.gün x+20 Ve 6.gün x+25 hepsi 6x+75=a oluyor.

1996 ÖYS. Çözüm 1: Çözüm 3: 1. gün x a 2.gün x+5 kitap a sayfa ise 3x+15= 3 3.gün x+10 4.gün x+15 5.gün x+20 Ve 6.gün x+25 hepsi 6x+75=a oluyor. 99 ÖYS. Bir sınıftki örencilerin 5 nin fzlsı kız örencidir. Sınıft erkek öğrenci olduğun göre, kız öğrencilerin syısı kçtır? A) B) 8 C) D) E) Çözüm : Sınıftki öğrencilere 5x dersek x+ kızlr ve geri klnlr

Detaylı

Öğrenci Seçme Sınavı (Öss) / 7 Nisan Matematik Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 7 Nisan Matematik Soruları ve Çözümleri Öğrenci Seçme Sınvı (Öss) / 7 Nisn 99 Mtemtik Sorulrı ve Çözümleri (0,0 0,8) işleminin sonucu kçtır? 0,00 A) 00 B) 0 C) D), E) 0, Çözüm (0,0 0,00 0,8) 0, 0,00 0, 0,00 0 işleminin sonucu kçtır? A) B) C)

Detaylı

A A A A A TEMEL MATEMAT K TEST. + Bu bölümdeki cevaplar n z cevap ka d ndaki "TEMEL MATEMAT K TEST " bölümüne iflaretleyiniz. 4.

A A A A A TEMEL MATEMAT K TEST. + Bu bölümdeki cevaplar n z cevap ka d ndaki TEMEL MATEMAT K TEST  bölümüne iflaretleyiniz. 4. TEMEL MTEMT K TEST KKT! + u bölümde cevplyc n z soru sy s 40 t r + u bölümdeki cevplr n z cevp k d ndki "TEMEL MTEMT K TEST " bölümüne iflretleyiniz.. ( + )y + = 0 (b ) + 4y 6 = 0 denklem sisteminin çözüm

Detaylı

1. BÖLÜM: KÜMELERDE TEMEL KAVRAMLAR, KÜMELERDE İŞLEMLER BÖLÜM: KARTEZYEN ÇARPIM, KÜME PROBLEMLERİ BÖLÜM: GERÇEK SAYILAR...

1. BÖLÜM: KÜMELERDE TEMEL KAVRAMLAR, KÜMELERDE İŞLEMLER BÖLÜM: KARTEZYEN ÇARPIM, KÜME PROBLEMLERİ BÖLÜM: GERÇEK SAYILAR... İçindekiler 1. BÖLÜM: KÜMELERDE TEMEL KVRMLR, KÜMELERDE İŞLEMLER... 10. KÜMELERDE TEMEL KVRMLR... 10 B. SONLU, SONSUZ VE BOŞ KÜME... 12 C. KÜMELERİN EŞİTLİĞİ... 14 D. LT KÜME, ÖZ LT KÜME... 14 E. KÜMELERDE

Detaylı

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları...

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları... İÇİNDEKİLER Ön Söz... Mtris Cebiri... Elementer İşlemler... Determinntlr...7 Lineer Denklem Sistemleri...8 Vektör Uzylrı...6 Lineer Dönüşümler...48 Özdeğerler - Özvektörler ve Köşegenleştirme...55 Genel

Detaylı

1981 ÜYS Soruları. 1. Bir top kumaşın önce i, sonra da kalanın ü. satılıyor. Geriye 26 m kumaş kaldığına göre, kumaşın tümü kaç metredir?

1981 ÜYS Soruları. 1. Bir top kumaşın önce i, sonra da kalanın ü. satılıyor. Geriye 26 m kumaş kaldığına göre, kumaşın tümü kaç metredir? 98 ÜYS Sorulrı. r top kumşın önce, sonr d klnın ü 5 stılıor. Gere 6 m kumş kldığın göre, kumşın tümü kç metredr? ) 7 ) 65 ) 6 ) 55 ) 5 4. r şekln, u brm uzunluğun göre ln ölçüsü, v brm uzunluğun göre ln

Detaylı

Trigonometri - I. Isınma Hareketleri. 1 Aşağıda verilenleri inceleyiniz. 2 Uygun eşleştirmeleri yapınız. 3 Uygun eşleştirmeleri yapınız.

Trigonometri - I. Isınma Hareketleri. 1 Aşağıda verilenleri inceleyiniz. 2 Uygun eşleştirmeleri yapınız. 3 Uygun eşleştirmeleri yapınız. Isınm Hreketleri şğıd verilenleri inceleyiniz. Yönlü çı: Trigonometrik irim Çember: Merkezi orjin, yrıçpı br oln çemberdir. O + yön éo Pozitif yönlü (Stin tersi) O yön éo Negtif yönlü (St yönü) O y x Denklemi:

Detaylı

İntegral Uygulamaları

İntegral Uygulamaları İntegrl Uygulmlrı Yzr Prof.Dr. Vkıf CAFEROV ÜNİTE Amçlr Bu üniteyi çlıştıktn sonr; düzlemsel ln ve dönel cisimlerin cimlerinin elirli integrl yrdımı ile esplnileceğini, küre, koni ve kesik koninin cim

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VEKTÖRLER. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. YÖNLÜ

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi Kesir.. Trlı lnı gösteren kesri bulunuz. kesrini ile genişlettiğimizde elde edilecek kesri bulunuz.. Yndki şekilde bir bütün 8 eş prçy bölünmüş ve bu prçlrdn tnesi trnmıştır. Trlı lnı gösteren kesir syısı

Detaylı

ÜÇGEN VE PİSAGOR BAĞINTISI

ÜÇGEN VE PİSAGOR BAĞINTISI ÜÇGEN VE PİSGOR ĞINTISI KZNIMLR Üçgen kvrmı Üçgen çizimi Üçgenin kenrlrı rsındki ğıntılr Üçgen eşitsizliği Üçgenlerde yükseklik Üçgenlerde kenrorty Üçgenlerde çıorty Kenr ort dikme kvrmı Pisgor ğıntısı

Detaylı

MATEMATİK BÖLME BÖLÜNE BİLME RASYONEL VE ONDALIK SAYI BÖLÜNEBİ LME KURA LLARI 4 İ LE BÖLÜNE Bİ LME 5 İ LE BÖLÜNEBİ LME ÖRNEK ÇÖZÜM ÖRNEK ÖRNEK ÖRNEK

MATEMATİK BÖLME BÖLÜNE BİLME RASYONEL VE ONDALIK SAYI BÖLÜNEBİ LME KURA LLARI 4 İ LE BÖLÜNE Bİ LME 5 İ LE BÖLÜNEBİ LME ÖRNEK ÇÖZÜM ÖRNEK ÖRNEK ÖRNEK MATEMATİK BÖLME BÖLÜNE BİLME RASYONEL VE ONDALIK SAYI BÖLÜNEBİ LME KURA LLARI İ LE BÖ LÜNEBİ LME Syımızın irler smğı çift (son rkmı 0) ise syımız iki ile tm ölünür. 0 0 v. iki ile ölünür. syısı iki ile

Detaylı

12-A. Çarpanlara Ayırma - 1 TEST. a $ işleminin sonucu aşağıdakilerden hangisidir? işleminin sonucu aşağıdakilerden hangisidir?

12-A. Çarpanlara Ayırma - 1 TEST. a $ işleminin sonucu aşağıdakilerden hangisidir? işleminin sonucu aşağıdakilerden hangisidir? -A TEST Çrpnlr Ayırm -. - + b $ b - b + b işleminin sonucu şğıdkilerden hngisidir? 4 - B) b C) b - D) E) b b b 4. - y y - + y işleminin sonucu şğıdkilerden hngisidir? + y B) + y C) - y D) + y E) + y. +

Detaylı

DİNAMİK BÖLÜM 7 MODEL SORU 1 DEK SORULARIN ÇÖZÜMLER. Hız-zaman grafiğinin eğimi ivmeyi verir. L cisminin ivmesi, al = = 3a

DİNAMİK BÖLÜM 7 MODEL SORU 1 DEK SORULARIN ÇÖZÜMLER. Hız-zaman grafiğinin eğimi ivmeyi verir. L cisminin ivmesi, al = = 3a DİNAİ BÖÜ 7 ODE SORU 1 DE SORUARIN ÇÖZÜER h z 1 h z V V V θ V V 0 t t t, ve cisilerinin iveleri; V V V t 0 t V 0 V t 0 t zn 0 θ t zn Hız-zn rğinin eğii iveyi verir V V V cisinin ivesi, t t V cisinin ivesi,

Detaylı

Vektör - Kuvvet. Test 1 in Çözümleri 5. A) B) C) I. grubun oyunu kazanabilmesi için F 1. kuvvetinin F 2

Vektör - Kuvvet. Test 1 in Çözümleri 5. A) B) C) I. grubun oyunu kazanabilmesi için F 1. kuvvetinin F 2 7 Vektör - uvvet 1 Test 1 in Çözümleri 5. A) B) C) 1. 1 2 I. grubun oyunu kznbilmesi için 1 kuvvetinin 2 den büyük olmsı gerekir. A seçeneğinde her iki grubun uyguldığı kuvvetler eşittir. + + + D) E) 2.

Detaylı

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise;

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise; 4- SAYISAL İNTEGRAL c ϵ R olmk üzere F() onksiyonunun türevi () ise ( F () = () ); Z ` A d F ` c eşitliğindeki F()+c idesine, () onksiyonunun elirsiz integrli denir. () onksiyonu [,] R için sürekli ise;

Detaylı

DRC. 4. Sekiz basamaklı herhangi bir özel sayı x = abcdefgh olsun. Deneme - 2 / Mat. c m. m m. y Cevap A. Cevap D 21, 25, = = =. 21.

DRC. 4. Sekiz basamaklı herhangi bir özel sayı x = abcdefgh olsun. Deneme - 2 / Mat. c m. m m. y Cevap A. Cevap D 21, 25, = = =. 21. Deneme - / Mt MATMATİK DNMSİ. - + -. 0,.., f -, 0, p. 0,. c- m.,,. ^- h.. 7. ^- h 7 - ulunur. +. c m olur.. + + ulunur. ( ) c m + c m. cc m m. c m.. ulunur. evp evp. Sekiz smklı herhngi ir özel syı cdefgh

Detaylı

Öğrenci Seçme Sınavı (Öss) / 29 Mart Matematik Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 29 Mart Matematik Soruları ve Çözümleri Öğrenci Seçme Sınvı (Öss) / 9 Mrt 998 Mtemtik Sorulrı ve Çözümleri. Rkmlrı sıfırdn frklı, eş smklı ir syının yüzler ve inler smğındki rkmlr yer değiştirildiğinde elde edilen yeni syı ile eski syı rsındki

Detaylı

SAYILAR TEMEL KAVRAMLAR

SAYILAR TEMEL KAVRAMLAR YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - - 1-1 - 1 Pozitif tmsyılr,negtif tmsyılr ve 0 ın ererce oluşturduğu kümeye Tmsyılr kümesi denir Z ile gösterilir SAYILAR TEMEL KAVRAMLAR Temel

Detaylı

Cebir Notları Mustafa YAĞCI, Eşitsizlikler

Cebir Notları Mustafa YAĞCI, Eşitsizlikler www.mustfygci.com.tr, 4 Cebir Notlrı Mustf YAĞCI, ygcimustf@yhoo.com Eşitsizlikler S yılr dersinin sonund bu dersin bşını görmüştük. O zmnlr dın sdece birinci dereceden denklemleri içeren mnsınd Bsit Eşitsizlikler

Detaylı

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir.

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir. LOGARİTMA I. Üstl Fonksiyonlr v Logritmik Fonksiyonlr şitliğini sğlyn dğrini bulmk için ypıln işlm üs lm işlmi dnir. ( =... = 8) y şitliğini sğlyn y dğrini bulmk için ypıln işlm üslü dnklmi çözm dnir.

Detaylı

Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2015-2016 Güz Dönemi

Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2015-2016 Güz Dönemi Andolu Üniversitesi Mühendislik Fkültesi Endüstri Mühendisliği Bölümü Doç. Dr. Nil ARAS ENM411 Tesis Plnlmsı 2015-2016 Güz Dönemi 2 Tesis (fcility) Tesis : Belli bir iş için kurulmuş ypı Tesis etmek :

Detaylı

MATEMATİK.

MATEMATİK. MTEMTİK www.e-ershne.iz. s( \ ) = 6, s( \ ) = 8 tür. kümesinin lt küme syısı ise, kümesinin elemn syısı kçtır?... D. 7 Ynıt:. s( ) =? s( ) = = s( ) = 6 8 s( ) = 6 + + 8 =. Rkmlrı frklı üç smklı üç oğl

Detaylı

c

c Mtemt ık Ol ımp ıytı Çlışm Sorulrı c www.sbelin.wordpress.com sbelinwordpress@gmil.com Bu çlışm kğıdınd mtemtik olimpiytlrı sınvlrın hzırlnn öğrenciler ve öğretmenler için hzırlnmış sorulr bulunmktdır.

Detaylı

1. x 1 x. Çözüm : (x 1 x. (x 1 x )2 = 3 2 x 2 2x = 1 x + 1 x2 = 9. x x2 = 9 x2 + 1 x2. 2. x + 1 x = 8 ise x 1 x

1. x 1 x. Çözüm : (x 1 x. (x 1 x )2 = 3 2 x 2 2x = 1 x + 1 x2 = 9. x x2 = 9 x2 + 1 x2. 2. x + 1 x = 8 ise x 1 x MC www.mtemtikclub.com, 006 Cebir Notlrı Çrpnlr Ayırm Gökhn DEMĐR, gdemir3@yhoo.com.tr Đki ifdenin çrpımı ypılırken, sonuc çbuk ulşmk için, bzı özel çrpımlrın eşitini klımızd tutr ve bundn yrrlnırız. Bu

Detaylı