ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU"

Transkript

1 ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU Tek değişkenli bir f(x) fonksiyonunu ele alalım. [Bazı x ler için f (x) bulunamayabilir.] Aşağıdaki DOP modelini çözmek istediğimizi var sayalım. Max f(x) a x b f (x) bulunmayabilir veya f (x) = 0 denklemini çözmek çok zor olabilir. Bu konuda, f(x) eğer özel bir tür fonksiyon ise (unimodal fonksiyon) optimum (en iyi) değerinin nasıl bulunabileceği ele alınacaktır. Tanım: Şayet [a, b] aralığındaki bazı değerleri için f(x) [a, ] aralığında keskin bir şekilde artıyor ve [, b] aralığında ise keskin bir şekilde azalıyorsa f(x) fonksiyonu [a, b] aralığında unimodaldır. Yani bu aralıkta sadece tek bir tepe noktası bulunmaktadır. Eğer f(x) [a, b] aralığında unimodal ise [a, b] aralığında sadece bir yerel maksimum ( ) değeri vardır ve yukarıda verilen DOP modeli ile çözülür. a [a, b] aralığında unimodal bir fonksiyon = yerel maksimum değeri b [a, b] aralığında unimodal olmayan bir fonksiyon bu modelin [a, b] aralığındaki optimum çözümüdür. [a, b] aralığında iki nokta olan x 1 ve x 2 noktalarında (x 1 < x 2 ) f(x) fonksiyonunu incelediğimizde çözümü bulana kadar aralığı daraltabiliriz. f(x 1 ) ve f(x 2 ) incelendiğinde aşağıdaki üç durumdan biri meydana gelir. Her üç durumda da optimum çözümün [a, b] aralığında olacağını gösterebiliriz. Durum 1: f(x 1 ) < f(x 2 ). f(x), [x 1, x 2 ] aralığının en azından bir kısmında artmakta olduğu için f(x) in unimodal olmasından dolayı optimum çözüm [a, x 1 ] aralığında oluşamaz. Bu sebeple Durum 1 de (x 1, b] dir.

2 Eğer f(x 1 ) < f(x 2 ) ise (x 1, b] Durum 2: f(x 1 ) = f(x 2 ). [x 1, x 2 ] aralığının bir kısmında f(x) azalıyordur ve optimum çözüm a < x 2 kısmındadır. Bu sebeple Durum 2 de [a, x 2 ) dir. Eğer f(x 1 ) = f(x 2 ) ise [a, x 2) Durum 3: f(x 1 ) > f(x 2 ). Bu durumda f(x), x x 2 ye ulaşmadan önce azalmaya başlayacaktır. Bu sebeple Durum 3 de [a, x 2 ) dir. Eğer f(x 1 ) > f(x 2 ) ise [a, x 2) nin [a, x 2 ) veya (x 1, b] aralıklarından hangisinde bulunacağına belirsizlik aralığı denir. Bu belirsizlik aralığını azaltmak için çok sayıda arama algoritması bahsedilen bu fikirleri kullanmaktadır. Bu algoritmaların birçoğu aşağıdaki adımları kullanır: Adım 1: x için belirsizlik aralığı olarak [a, b] aralığı ile başla. Makul bir şekilde seçilmiş x 1 ve x 2 noktaları için f(x) i incele. Adım 2: Durum 1, 2 veya 3 ten hangisine uyduğunu belirle ve belirsizlik aralığını buna göre azalt.

3 Adım 3: İki yeni nokta için f(x) i incele (algoritma, bu iki yeni noktanın nasıl seçileceğini belirtmektedir). Belirsizlik aralığı yeterince küçük olana kadar Adım 2 ye dön. Burada bu algoritmalardan biri olan Altın Oran Arama Algoritması ele alınacaktır. Bu algoritmaya göre unimodal f(x) fonksiyonunu çözerken, Adım 3 te iki yeni noktayı seçtiğimizde noktalardan biri daima daha önce f(x) i incelediğimiz noktalardan biri olarak seçilecektir. r karesel r 2 + r = 1 denkleminin pozitif bir kökü olsun. Karesel formülden şu elde edilir: Altın oran arama algoritması x 1 ve x 2 noktalarında f(x) in incelenmesi ile başlar. x 1 = b r(b a) x 2 = a + r(b a) Şekilden de anlaşılabileceği gibi x 1 i bulmak için aralığın son noktasından aralık uzunluğu ile r nin çarpımı kadar sola gelinir. Benzer şekilde x 2 yi bulmak için aralığın başlangıç noktasından aralık uzunluğu ile r nin çarpımı kadar sağa gidilir. Altın oran arama algoritması iki yeni nokta bulmuştur. Bu noktalarda f(x) yeniden incelenmelidir. Durum 1, 2 ve 3 te bahsedildiği üzere biliyoruz ki eğer f(x 1 ) < f(x 2 ) ise (x 1, b], eğer f(x 1 ) f(x 2 ) ise [a, x 2 ) dir. Eğer f(x 1 ) < f(x 2 ) ise azaltılmış belirsizlik aralığı b x 1 = r(b a) uzunluğundadır. Eğer f(x 1 ) f(x 2 ) ise azaltılmış belirsizlik aralığı x 2 a = r(b a) uzunluğundadır. Bu sebeple f(x 1 ) ve f(x 2 ) incelendikten sonra belirsizlik aralığı r(b a) uzunluğuna indirgenmiş olur. f(x) iki noktada her incelenip belirsizlik aralığı azaltıldığında Altın Oran Arama Algoritmasının bir iterasyonu tamamlanmış olur. L k = algoritmanın k iterasyonu tamamlandığında belirsizlik aralığının uzunluğu I k = k iterasyonu sonundaki belirsizlik aralığı Buna göre L 1 = r(b a) ve I 1 = [a, x 2 ) veya (x 1, b] olur. Aşağıdaki prosedürü kullanarak iki yeni x 3 ve x 4 noktaları üretilir ve bu noktalarda f(x) incelenir. Durum 1: f(x 1 ) < f(x 2 ). Yeni belirsizlik aralığı (x 1, b] alınır. Uzunluğu b x 1 = r(b a) olacaktır.

4 x 3 = b r(b x 1 ) = b r 2 (b a) x 4 = x 1 + r(b x 1 ) Yeni bulunan x 3 noktası, daha önce bulunan x 2 noktasına eşit olacaktır. Bunu r 2 = 1 r gerçeğinden hareketle ispatlayabiliriz. x 3 = b r 2 (b a) = b (1 r)(b a) = a + r(b a) = x 2 Durum 2: f(x 1 ) f(x 2 ). Yeni belirsizlik aralığı [a, x 2 ) alınır. Uzunluğu x 2 a = r(b a) olacaktır. x 3 = x 2 r(x 2 a) x 4 = a + r(x 2 a) = a + r 2 (b a) Yeni bulunan x 4 noktası, daha önce bulunan x 1 noktasına eşit olacaktır. Bunu r 2 = 1 r gerçeğinden hareketle ispatlayabiliriz. x 4 = a + r 2 (b a) = a + (1 r)(b a) = b r(b a) = x 1 Şimdi f(x 3 ) ve f(x 4 ) fonksiyonları belirsizlik aralığını azaltmak için kullanılabilir. Bu aşamada Altın Oran Arama Algoritmasının iki iterasyonu tamamlanmıştır. Yukarıdan anlaşıldığı gibi Altın Oran Arama Algoritmasının her iterasyonunda f(x) sadece bir yeni noktada incelenecektir. L 2 = rl 1 = r 2 (b a) olacaktır. Genel ifadesiyle; L k = rl k-1 = r k (b a) yazılabilir. Bulunacak son belirsizlik aralığı < ɛ olmalıdır. Bu sebeple kaç iterasyon Altın Oran Arama Algoritması işletileceği, aşağıdaki formülden k değeri elde edilerek bulunur. r k (b a) < ɛ Örnek: Aşağıdaki modeli, nihai belirsizlik aralığı 0,25 den küçük olacak şekilde Altın Oran Arama Algoritması ile çözelim: Max x x 0,75

5 a = 1 b = 0,75 b a = 1,75 r k (b a) < ɛ => 0,618 k * 1,75 < 0,25 => 0,618 k < 1/7 k ln (0,618) < ln (1/7) k * (-0,48) < -1,95 k > 4,06 Öyleyse 5 iterasyon Altın Oran Arama Algoritması işletilecektir. Önce x1 ve x2 bulunur. x 1 = 0,75 0,618 * 1,75 = 0,3315 x 2 = 1 + 0,618 * 1,75 = 0,0815 f(x 1 ) = ( 0,3315) 2 1 = 1,1099 f(x 2 ) = (0,0815) 2 1 = 1,0066 f(x 1 ) < f(x 2 ) olduğu için yeni belirsizlik aralığı (x 1, b] = ( 0,3315, 0,75] ve daha önce ispatlandığı üzere x 3 = x 2 olacaktır. L 1 = 0,75 ( 0,3315) = 1,0815 Yeni x3 ve x4 noktalarını bulacak olursak: x 3 = x 2 = 0,0815 x 4 = 0, ,618 * 1,0815 = 0,3369 f(x 3 ) = f(x 2 ) = 1,0066 f(x 4 ) = (0,3369) 2 1 = 1,1135 f(x 3 ) > f(x 4 ) olduğu için yeni belirsizlik aralığı [x 1, x 4 ) = [ 0,3315, 0,3369) ve daha önce ispatlandığı üzere x 6 = x 3 olacaktır. L 2 = 0,3369 ( 0,3315) = 0,6684 Yeni x5 ve x6 noktalarını bulacak olursak: x 5 = 0,3369 0,618 * 0,6684 = 0,0762 x 6 = x 3 = 0,0815

6 f(x 5 ) = ( 0,0762) 2 1 = 1,0058 f(x 6 ) = f(x 3 ) = 1,0066 f(x 5 ) > f(x 6 ) olduğu için yeni belirsizlik aralığı [x 1, x 6 ) = [ 0,3315, 0,0815) ve x 8 = x 5 olacaktır. L 3 = 0, 0815 ( 0,3315) = 0,4130 Yeni x 7 ve x 8 noktalarını bulacak olursak: x 7 = 0, ,618 * 0,4130 = 0,1737 x 8 = x 5 = 0,0762 f(x 7 ) = ( 0,1737) 2 1 = 1,0302 f(x 8 ) = f(x 5 ) = 1,0058 f(x 7 ) < f(x 8 ) olduğu için yeni belirsizlik aralığı (x 7, x 6 ] = ( 0,1737, 0,0815] ve x 9 = x 8 olacaktır. L 4 = 0,0815 ( 0,1737) = 0,2552 Yeni x9 ve x10 noktalarını bulacak olursak: x 9 = x 8 = 0,0762 x 10 = 0, ,618 * 0,2552 = 0,016 f(x 9 ) = f(x 8 ) = 1,0058 f(x 10 ) = (0,016) 2 1 = 1,0003 f(x 9 ) < f(x 10 ) olduğu için yeni belirsizlik aralığı (x 9, x 6 ] = ( 0,0762, 0,0815] olacaktır. L 5 = 0,0815 ( 0,0762) = 0,1577 < 0,25 olduğu için sonlandırılır. Sonuç olarak; Max x x 0,75 modelinin çözümü ( 0,0762, 0,0815] aralığında olacaktır. (Tabi ki gerçek maksimum = 0 da oluşacaktır.) Altın Oran Arama Algoritması, minimizasyon problemlerinde de kullanılabilir. Bunun için amaç fonksiyonu 1 ile çarpılır.

7 Ödev: 1. Altın Oran Arama Algoritmasını Excel de hazırlayın. 2. Altın Oran Arama Algoritmasının MATLAB kodlarını yazın. 3. Altın Oran Arama Algoritmasını bildiğiniz bir programlama dili ile yazın. Sorular 1. Aşağıdaki modelin optimum çözümünü 0,8 belirsizlik aralığı için çözünüz. Max. x 2 + 2x - 3 x 5 2. Aşağıdaki modelin optimum çözümünü 0,6 belirsizlik aralığı için çözünüz. Max. x e x - 1 x 3 MATLAB Uygulaması ( ) fonksiyonunun optimum noktasını [0 10] aralığında altın oran arama algoritmasının MATLAB kodları ile bulalım. Fonksiyonun grafiği aşağıda görünmektedir

8 Önce bu fonksiyonu tanımlayacağımız fx.m isimli dosyayı aşağıdaki gibi hazırlarız. function g = fx(c) g = 2*c./(4+0.8*c+c.^2+0.2*c.^3); Daha sonra yukarıda tanımlan fonksiyonu çağırarak çalışan altın oran arama algoritmasının kodları altin.m dosyasında oluşturulur. Bu kodlar aşağıda verilmiştir. function [p, yp]=golden(func,a,b,eps,delta) % verilen argüman (girdi) sayısına göre eps/delta değerlerini otomatik al if (nargin<5) delta = 1.0e-10; end if (nargin<4) delta = 1.0e-10; eps = 1.0e-10; end r=(sqrt(5)-1)/2; h=b-a; c=b-r*h; d=a+r*h; ya=feval(func,a); yb=feval(func,b); yd=feval(func,d); yc=feval(func,c); maxit=200; k=1; while (abs(yb-ya) > eps & (h > delta) & (k < maxit)) k=k+1; if (yc >= yd) b = d; yb = yd; d = c; yd = yc; h = b - a; c = b - r*h; yc = feval(func,c); else a = c; ya = yc; c = d; yc = yd; h = b - a; d = a + r*h; yd = feval(func,d); end end dp = abs(b-a); dy = abs(yb-ya); p = a; yp = ya; if (yb < ya) p = b; yp = yb; end if (k > maxit) uyari = 'Maksimum iterasyon aşıldı. Sonuç doğru olmayabilir' end

9 Yukarıdaki iki.m dosyası hazırlandıktan sonra MATLAB komut ekranında aşağıdaki gibi altın oran arama algoritması çalıştırılır ve sonuç elde edilir. >> [x 0, 10) x = fdeg = Kaynak 1. Wayne Winston, Operations Research Applications and Algorithms 4th. Edition, MATLAB: Yapay Zekâ ve Mühendislik Uygulamaları, Prof. Dr. C. Kubat, Beşiz Yayınları- 1.Basım, Aralık M. Turhan Çoban, Optimizasyon Ders Notları

Altın Oran Arama Metodu(Golden Search)

Altın Oran Arama Metodu(Golden Search) Altın Oran Arama Metodu(Golden Search) Bir f(x) (tek değişkenli) fonksiyonunu ele alalım. [Bazı x ler için f (x) bulunamayabilir.] Aşağıdaki DOP modelini çözmek istediğimizi var sayalım. Max f(x) a x b

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik İkiye Bölme / Yarılama Yöntemi Genel olarak f x = 0 gerek şartını sağlamak oldukça doğrusal olmayan ve bu sebeple çözümü

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Bu bölümde eşitsizlik kısıtlarına bağlı bir doğrusal olmayan kısıta sahip problemin belirlenen stasyoner noktaları

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik (Eşitlik Kısıtlı Türevli Yöntem) Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Quadratic Programming Bir karesel programlama modeli aşağıdaki gibi tanımlanır. Amaç fonksiyonu: Maks.(veya Min.) z

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Hessien Matris-Quadratik Form Mutlak ve Bölgesel Maksimum-Minimum Noktalar Giriş Kısıtlı ve kısıtsız fonksiyonlar için

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 4. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem 3.2. DP Modellerinin Simpleks Yöntem ile Çözümü 3.2.1. Primal Simpleks Yöntem Grafik çözüm yönteminde gördüğümüz gibi optimal çözüm noktası, her zaman uygun çözüm alanının bir köşe noktası ya da uç noktası

Detaylı

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR Kısıtlı ve kısıtsız fonksiyonlar için maksimum veya minimum (ekstremum) noktalarının belirlenmesinde diferansiyel hesabı kullanarak çeşitli

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

ALGORİTMA ANALİZİ. Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü

ALGORİTMA ANALİZİ. Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü ALGORİTMA ANALİZİ Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü 2 Özyinelemeler veya artık teknik Türkçeye girmiş olan rekürsiflik en çok duyulan fakat kullanımında zorluklar görülen tekniklerdendir.

Detaylı

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER LAGRANGE YÖNTEMİ Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde değişkenler ve kısıtlar genel olarak şeklinde gösterilir. fonksiyonlarının

Detaylı

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM EŞİTSİZLİKLER A. TANIM f(x)>0, f(x) - eşitsizliğinin

Detaylı

OPTİMİZASYON TEKNİKLERİ-2. Hafta

OPTİMİZASYON TEKNİKLERİ-2. Hafta GİRİŞ OPTİMİZASYON TEKNİKLERİ-2. Hafta Mühendislik açısından bir işin tasarlanıp, gerçekleştirilmesi yeterli değildir. İşin en iyi çözüm yöntemiyle en verimli bir şekilde yapılması bir anlam ifade eder.

Detaylı

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL)

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL) DOĞRUSAL PROGRAMLAMA (GENEL) Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik biçiminde verilmesi durumunda amaca

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 3519

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 3519 Dersi Veren Birim: Endüstri Mühendisliği Dersin Türkçe Adı: YÖNEYLEM ARAŞTIRMASI I Dersin Orjinal Adı: YÖNEYLEM ARAŞTIRMASI I Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu:

Detaylı

TAMSAYILI PROGRAMLAMA

TAMSAYILI PROGRAMLAMA TAMSAYILI PROGRAMLAMA Doğrusal programlama problemlerinde sık sık çözümün tamsayı olması gereken durumlar ile karşılaşılır. Örneğin ele alınan problem masa, sandalye, otomobil vb. üretimlerinin optimum

Detaylı

2012-2013 BAHAR YARIYILI MAK1010 MAKİNE MÜHENDİSLİĞİNDE BİLGİSAYAR UYGULAMALARI DERSİ FİNAL SINAV SORULARI

2012-2013 BAHAR YARIYILI MAK1010 MAKİNE MÜHENDİSLİĞİNDE BİLGİSAYAR UYGULAMALARI DERSİ FİNAL SINAV SORULARI ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 2012-2013 BAHAR YARIYILI MAK1010 MAKİNE MÜHENDİSLİĞİNDE BİLGİSAYAR UYGULAMALARI DERSİ FİNAL SINAV SORULARI Prof. Dr. İbrahim

Detaylı

GÜMÜŞHANE ÜNĐVERSĐTESĐ MÜHENDĐSLĐK VE DOĞA BĐLĐMLERĐ FAKÜLTESĐ ELEKTRĐK-ELEKTRONĐK MÜHENDĐSLĐĞĐ EEM 114 ALGORĐTMA TASARIMI VE PROGRAMLAMA DĐLLERĐ

GÜMÜŞHANE ÜNĐVERSĐTESĐ MÜHENDĐSLĐK VE DOĞA BĐLĐMLERĐ FAKÜLTESĐ ELEKTRĐK-ELEKTRONĐK MÜHENDĐSLĐĞĐ EEM 114 ALGORĐTMA TASARIMI VE PROGRAMLAMA DĐLLERĐ GÜMÜŞHANE ÜNĐVERSĐTESĐ MÜHENDĐSLĐK VE DOĞA BĐLĐMLERĐ FAKÜLTESĐ ELEKTRĐK-ELEKTRONĐK MÜHENDĐSLĐĞĐ EEM 114 ALGORĐTMA TASARIMI VE PROGRAMLAMA DĐLLERĐ DERS 1 PROGRAM GELĐŞTĐRME PROGRAM GELĐŞTĐRME VERĐ ĐŞLEME(DATA

Detaylı

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2 OPTIMIZASYON.... Bir Değişkenli Fonksiyonların Maksimizasyonu.... Türev...3.. Bir noktadaki türevin değeri...4.. Maksimum için Birinci Derece Koşulu...4.3. İkinci Derece Koşulu...5.4. Türev Kuralları...5

Detaylı

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta:

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta: Genetik Algoritmalar Bölüm 1 Optimizasyon Yrd. Doç. Dr. Adem Tuncer E-posta: adem.tuncer@yalova.edu.tr Optimizasyon? Optimizasyon Nedir? Eldeki kısıtlı kaynakları en iyi biçimde kullanmak olarak tanımlanabilir.

Detaylı

BİLGİSAYAR PROGRAMLAMA DERSİ

BİLGİSAYAR PROGRAMLAMA DERSİ BİLGİSAYAR PROGRAMLAMA DERSİ Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü DERS NOTU 5 KONU: Matlab de Diziler ve Matrisler İÇ İÇE FOR DÖNGÜSÜ

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri

Detaylı

BİLGİSAYAR PROGRAMLAMA Araş. Gör. Ahmet ARDAHANLI. Kafkas Üniversitesi Mühendislik Fakültesi

BİLGİSAYAR PROGRAMLAMA Araş. Gör. Ahmet ARDAHANLI. Kafkas Üniversitesi Mühendislik Fakültesi BİLGİSAYAR PROGRAMLAMA Araş. Gör. Ahmet ARDAHANLI Kafkas Üniversitesi Mühendislik Fakültesi Bu hafta? İki değişken değerinin yer değiştirilmesi (swapping) selection sort sıralama algoritması bubble sort

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Tabu Arama (Tabu Search) Doç.Dr. M. Ali Akcayol Tabu Arama 1986 yılında Glover tarafından geliştirilmiştir. Lokal minimum u elimine edebilir ve global minimum u bulur. Değerlendirme

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Genetik Algoritma (Genetic Algorithm) Doç.Dr. M. Ali Akcayol Genetik Algoritma 1970 li yıllarda John Holland tarafından geliştirilmiştir. 1989 yılında David E. Goldberg Genetik

Detaylı

Bilgisayar Programlama

Bilgisayar Programlama Bilgisayar Programlama M Dosya Yapısı Kontrol Yapıları Doç. Dr. İrfan KAYMAZ Matlab Ders Notları M-dosyası Genel tanıtımı : Bir senaryo dosyası (script file) özel bir görevi yerine getirmek için gerekli

Detaylı

MATLAB. Fen ve Mühendislik Uygulamaları ile. Prof. Dr. M. Akif CEVİZ. M-Dosyaları, Şart İfadeleri

MATLAB. Fen ve Mühendislik Uygulamaları ile. Prof. Dr. M. Akif CEVİZ. M-Dosyaları, Şart İfadeleri Fen ve Mühendislik Uygulamaları ile MATLAB Prof. Dr. M. Akif CEVİZ Atatürk Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümü M-Dosyaları Kontrol İfadeleri - İlişkisel ve Mantıksal Operatörler

Detaylı

Türk-Alman Üniversitesi. Ders Bilgi Formu

Türk-Alman Üniversitesi. Ders Bilgi Formu Türk-Alman Üniversitesi Ders Bilgi Formu Dersin Adı Dersin Kodu Dersin Yarıyılı Yöneylem Araştırması WNG301 5 ECTS Ders Uygulama Laboratuar Kredisi (saat/hafta) (saat/hafta) (saat/hafta) 6 2 2 0 Ön Koşullar

Detaylı

Çok katmanlı ileri sürümlü YSA da standart geri yayıyım ve momentum geri yayılım algoritmalarının karşılaştırılması. (Eğitim/Hata geri yayılım)

Çok katmanlı ileri sürümlü YSA da standart geri yayıyım ve momentum geri yayılım algoritmalarının karşılaştırılması. (Eğitim/Hata geri yayılım) Çok katmanlı ileri sürümlü YSA da standart geri yayıyım ve momentum geri yayılım algoritmalarının karşılaştırılması (Eğitim/Hata geri yayılım) Özetçe Bu çalışmada çok katmanlı ve ileri sürümlü bir YSA

Detaylı

Dr. Musa KILIÇ Öğretim Görevlisi http://kisi.deu.edu.tr/musa.kilic

Dr. Musa KILIÇ Öğretim Görevlisi http://kisi.deu.edu.tr/musa.kilic Dr. Musa KILIÇ Öğretim Görevlisi http://kisi.deu.edu.tr/musa.kilic BİLGİSAYAR DONANIM Donanım birimleri ekran, klavye, harddisk, ram YAZILIM Yazılımlar ise bilgisayarın donanım yapısını kullanılır hale

Detaylı

ÖZEL EGE LİSESİ FİBONACCİ DİZİLERİ YARDIMIYLA DEĞERİNİ HESAPLAYAN BİR FORMÜL

ÖZEL EGE LİSESİ FİBONACCİ DİZİLERİ YARDIMIYLA DEĞERİNİ HESAPLAYAN BİR FORMÜL ÖZEL EGE LİSESİ FİBONACCİ DİZİLERİ YARDIMIYLA DEĞERİNİ HESAPLAYAN BİR FORMÜL HAZIRLAYAN ÖĞRENCİ: Tilbe GÖKÇEL DANIŞMAN ÖĞRETMEN: Emel ERGÖNÜL İZMİR 2013 İÇİNDEKİLER 1. PROJENİN AMACI... 3 2. GİRİŞ... 3

Detaylı

SİMPLEKS ALGORİTMASI Yapay değişken kullanımı

SİMPLEKS ALGORİTMASI Yapay değişken kullanımı Fen Bilimleri Enstitüsü Endüstri Mühendisliği Anabilim Dalı ENM53 Doğrusal Programlamada İleri Teknikler SİMPLEKS ALGORİTMASI Yapay değişken kullanımı Hazırlayan: Doç. Dr. Nil ARAS, 6 AÇIKLAMA Bu sununun

Detaylı

ÜNİTE. MATEMATİK-1 Doç.Dr.Murat SUBAŞI İÇİNDEKİLER HEDEFLER TÜREV UYGULAMALARI-I

ÜNİTE. MATEMATİK-1 Doç.Dr.Murat SUBAŞI İÇİNDEKİLER HEDEFLER TÜREV UYGULAMALARI-I HEDEFLER İÇİNDEKİLER TÜREV UYGULAMALARI-I Artan ve Azalan Fonksiyonlar Fonksiyonların Maksimum ve Minimumu Birinci Türev Testi İkinci Türev Testi Türevin Geometrik Yorumu Türevin Fiziksel Yorumu MATEMATİK-1

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 4- LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ Matematikte veya hidrolik, dinamik, mekanik, elektrik

Detaylı

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre):

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre): DP SİMPLEKS ÇÖZÜM Simpleks Yöntemi, amaç fonksiyonunu en büyük (maksimum) veya en küçük (minimum) yapacak en iyi çözüme adım adım yaklaşan bir algoritma (hesaplama yöntemi) dir. Bu nedenle, probleme bir

Detaylı

MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ

MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ SİMPLEKS TABLONUN YORUMU MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ Şu ana kadar verilen bir DP probleminin çözümünü ve çözüm şartlarını inceledik. Eğer orijinal modelin parametrelerinde bazı değişiklikler

Detaylı

BİLGİSAYAR PROGRAMLAMA DERSİ

BİLGİSAYAR PROGRAMLAMA DERSİ BİLGİSAYAR PROGRAMLAMA DERSİ 4. DERS NOTU Konu: M-dosya yapısı ve Kontrol Yapıları Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU 1 M-Dosya Yapısı Bir senaryo dosyası (script file) özel bir görevi yerine getirmek

Detaylı

HEDEF ARA ve ÇÖZÜCÜ HEDEF ARA

HEDEF ARA ve ÇÖZÜCÜ HEDEF ARA HEDEF ARA ve ÇÖZÜCÜ HEDEF ARA Hedef ara komutu bir fonksiyonun tersinin bulunmasında kullanılır. Hedef ara işlemi, y=f(x) gibi bir fonksiyonda y değeri verildiğinde x değerinin bulunmasıdır. Bu işlem,

Detaylı

DENİZ HARP OKULU ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

DENİZ HARP OKULU ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ DENİZ HARP OKULU ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati (T+U+L) Kredi AKTS YÖNEYLEM ARAŞTIRMA - EN-3 3/ 3+0 3 Dersin Dili : Türkçe Dersin Seviyesi

Detaylı

Fen ve Mühendislik Uygulamaları ile MATLAB

Fen ve Mühendislik Uygulamaları ile MATLAB Fen ve Mühendislik Uygulamaları ile MATLAB Doç. Dr. M. Akif CEVİZ Atatürk Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümü M-Dosyaları Kontrol İfadeleri - İlişkisel ve Mantıksal Operatörler

Detaylı

Bilgisayar Programlamaya Giriş I KAREKÖK BULMA Acaba hesap makinesi bir sayının karekökünü nasıl buluyor? başlangıç değeri olmak üzere,

Bilgisayar Programlamaya Giriş I KAREKÖK BULMA Acaba hesap makinesi bir sayının karekökünü nasıl buluyor? başlangıç değeri olmak üzere, KAREKÖK BULMA Acaba hesap makinesi bir sayının karekökünü nasıl buluyor? başlangıç değeri olmak üzere, dizisi değerine yakınsar. Yani; olur. Burada birinci sorun başlangıç değerinin belirlenmesidir. İkinci

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

BİLGİSAYAR PROGRAMLAMA DERSİ

BİLGİSAYAR PROGRAMLAMA DERSİ BİLGİSAYAR PROGRAMLAMA DERSİ Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü DERS NOTU 3 KONU: M-dosya yapısı ve Kontrol Yapıları M-Dosya Yapısı

Detaylı

BİLGİSAYAR PROGRAMLAMA MATLAB

BİLGİSAYAR PROGRAMLAMA MATLAB BİLGİSAYAR PROGRAMLAMA MATLAB Arş. Gör. Ahmet ARDAHANLI Kafkas Üniversitesi Mühendislik Fakültesi Ders Bilgileri Dersin Hocası: Araş. Gör. Ahmet Ardahanlı E-posta: ahmet.ardahanli@hotmail.com Oda: DZ-33

Detaylı

Yrd. Doç. Dr. A. Burak İNNER

Yrd. Doç. Dr. A. Burak İNNER Yrd. Doç. Dr. A. Burak İNNER Kocaeli Üniversitesi Bilgisayar Mühendisliği Yapay Zeka ve Benzetim Sistemleri Ar-Ge Lab. http://yapbenzet.kocaeli.edu.tr Doğrusal programlama, karar verici konumundaki kişilerin

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: IND 3907

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: IND 3907 Dersi Veren Birim: Endüstri Mühendisliği Dersin Türkçe Adı: MATEMATİKSEL MODELLEME ve UYGULAMALARI Dersin Orjinal Adı: MATHEMATICAL MODELING AND APPLICATIONS Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans,

Detaylı

MATLAB a GİRİŞ. Doç. Dr. Mehmet İTİK. Karadeniz Teknik Üniversitesi Makine Mühendisliği Bölümü

MATLAB a GİRİŞ. Doç. Dr. Mehmet İTİK. Karadeniz Teknik Üniversitesi Makine Mühendisliği Bölümü MATLAB a GİRİŞ Doç. Dr. Mehmet İTİK Karadeniz Teknik Üniversitesi Makine Mühendisliği Bölümü İçerik: MATLAB nedir? MATLAB arayüzü ve Bileşenleri (Toolbox) Değişkenler, Matris ve Vektörler Aritmetik işlemler

Detaylı

4- Turbo Pascal Bilgisayar Programlamada Kullanılan Şart Yapıları

4- Turbo Pascal Bilgisayar Programlamada Kullanılan Şart Yapıları 4- Turbo Pascal Bilgisayar Programlamada Kullanılan Şart Yapıları Şart yapıları bir bilgisayar programının olmazsa olmazlarındandır. Şart yapıları günlük hayatımızda da çok fazla karşılaştığımız belirli

Detaylı

diff Türev Alma Fonksiyonu. >> syms x >> A=3*x^4+x^2-3*x A = 3*x^4+x^2-3*x. >> diff(a) // A fonksiyonunun türevini alır. ans = 12*x^3+2*x-3

diff Türev Alma Fonksiyonu. >> syms x >> A=3*x^4+x^2-3*x A = 3*x^4+x^2-3*x. >> diff(a) // A fonksiyonunun türevini alır. ans = 12*x^3+2*x-3 7.4.. diff Türev Alma Fonksiyonu >> syms x >> A=3*x^4+x^-3*x A = 3*x^4+x^-3*x >> diff(a) // A fonksiyonunun türevini alır. 1*x^3+*x-3 >> diff(a,) // A fonksiyonunun türevini kere alır. 36*x^+ ÖRNEK: >>

Detaylı

Algoritma Analizi ve Büyük O Notasyonu. Şadi Evren ŞEKER YouTube: Bilgisayar Kavramları

Algoritma Analizi ve Büyük O Notasyonu. Şadi Evren ŞEKER YouTube: Bilgisayar Kavramları Algoritma Analizi ve Büyük O Notasyonu Şadi Evren ŞEKER YouTube: Bilgisayar Kavramları Algoritmaların Özellikleri Algoritmalar Input Girdi, bir kümedir, Output ÇıkF, bir kümedir (çözümdür) Definiteness

Detaylı

1. ÇÖZÜM YOLU: (15) 8 = = 13 13:2 = :2 = :2 = 1.2+1

1. ÇÖZÜM YOLU: (15) 8 = = 13 13:2 = :2 = :2 = 1.2+1 . ÇÖZÜM YOLU: (5) 8 =.8+5 = 3 3:2 = 6.2+ 6:2 = 3.2+0 3:2 =.2+ En son bölümden başlayarak kalanları sıralarız. (5) 8 = (0) 2 2. ÇÖZÜM YOLU: 8 sayı tabanında verilen sayının her basamağını, 2 sayı tabanında

Detaylı

YUVARLAMA FONKSİYONLARI

YUVARLAMA FONKSİYONLARI YUVARLAMA FONKSİYONLARI Fonksiyon Çalışma Prensibi fix(x) x ondalık sayısını sıfır yönündeki ilk tamsayıya round(x) x ondalık sayısını kisine en yakın ilk tamsayıya ceil(x) x ondalık sayısını + yönündeki

Detaylı

T.C. DOKUZ EYLÜL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI EKONOMETRİ DOKTORA PROGRAMI

T.C. DOKUZ EYLÜL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI EKONOMETRİ DOKTORA PROGRAMI T.C. DOKUZ EYLÜL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI EKONOMETRİ DOKTORA PROGRAMI Genişletilmiş Lagrange Yöntemi Hazırlayan: Nicat GASIM Öğretim Üyesi Prof. Dr. İpek Deveci KARAKOÇ

Detaylı

BMT 101 Algoritma ve Programlama I 3. Hafta. Yük. Müh. Köksal GÜNDOĞDU 1

BMT 101 Algoritma ve Programlama I 3. Hafta. Yük. Müh. Köksal GÜNDOĞDU 1 BMT 101 Algoritma ve Programlama I 3. Hafta Yük. Müh. Köksal GÜNDOĞDU 1 Akış Diyagramları ve Sözde Kodlar Yük. Müh. Köksal GÜNDOĞDU 2 Sözde Kodlar (pseudo-code) Yük. Müh. Köksal GÜNDOĞDU 3 Sözde Kod Sözde

Detaylı

PROGRAMLAMA ve YAZILIM. Sayısal Analiz Yrd.Doç.Dr. Zekeriya PARLAK

PROGRAMLAMA ve YAZILIM. Sayısal Analiz Yrd.Doç.Dr. Zekeriya PARLAK PROGRAMLAMA ve YAZILIM Sayısal Analiz Yrd.Doç.Dr. Zekeriya PARLAK PROGRAMLAMA ve YAZILIM Paraçütçünü düşme hızını belirlemek için geliştirdiğimiz model diferansiyel bir denklem şeklini almıştı dv dt =

Detaylı

Erzurum Teknik Üniversitesi Mühendislik Mimarlık Fakültesi Bilgisayar Programlama Dersi Ödevi Soru

Erzurum Teknik Üniversitesi Mühendislik Mimarlık Fakültesi Bilgisayar Programlama Dersi Ödevi Soru Adı: Soyadı: Numara: Bölümü: Erzurum Teknik Üniversitesi Mühislik Mimarlık Fakültesi Bilgisayar Programlama Dersi Ödevi 15.11.2015 Soru 1 2 3 4...... Toplam Puanlar Soru-1: Yandaki kısımda verilen terimlerin

Detaylı

Algoritma ve Akış Diyagramları

Algoritma ve Akış Diyagramları Algoritma ve Akış Diyagramları Bir problemin çözümüne ulaşabilmek için izlenecek ardışık mantık ve işlem dizisine ALGORİTMA, algoritmanın çizimsel gösterimine ise AKIŞ DİYAGRAMI adı verilir 1 Akış diyagramları

Detaylı

MATEMATiKSEL iktisat

MATEMATiKSEL iktisat DİKKAT!... BU ÖZET 8 ÜNİTEDİR BU- RADA İLK ÜNİTE GÖSTERİLMEKTEDİR. MATEMATiKSEL iktisat KISA ÖZET KOLAY AOF Kolayaöf.com 0362 233 8723 Sayfa 2 içindekiler 1.ünite-Türev ve Kuralları..3 2.üniteTek Değişkenli

Detaylı

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere,

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere, Bölüm 33 Denklemler 33.1 İkinci Dereceden Denklemler İkinci dereceden Bir Bilinmeyenli Denklemler a,b,c IR ve a 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

Karar değişkenlere ilişkin fonksiyonların ve bu fonksiyonlara ilişkin sınırlamaların tanımlanması

Karar değişkenlere ilişkin fonksiyonların ve bu fonksiyonlara ilişkin sınırlamaların tanımlanması İNŞAAT PROJELERİNİN PROGRAMLAMA, TASARIM VE YAPIM SÜRECİNDE OPTİMİZASYON Doğrusal Optimizasyon Optimizasyon Kuramı (Eniyileme Süreci) Doğrusal Olmayan Optimizasyon Optimizasyon en iyi çözümü bulma sürecidir.

Detaylı

Fonksiyon Optimizasyonunda Genetik Algoritmalar

Fonksiyon Optimizasyonunda Genetik Algoritmalar 01-12-06 Ümit Akıncı Fonksiyon Optimizasyonunda Genetik Algoritmalar 1 Fonksiyon Optimizasyonu Fonksiyon optimizasyonu fizikte karşımıza sık çıkan bir problemdir. Örneğin incelenen sistemin kararlı durumu

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 3620

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 3620 Dersi Veren Birim: Endüstri Mühendisliği Dersin Türkçe Adı: YÖNEYLEM ARAŞTIRMASI II Dersin Orjinal Adı: YÖNEYLEM ARAŞTIRMASI II Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu:

Detaylı

Yöneylem Araştırması I (IE 222) Ders Detayları

Yöneylem Araştırması I (IE 222) Ders Detayları Yöneylem Araştırması I (IE 222) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Yöneylem Araştırması I IE 222 Güz 3 2 0 4 5 Ön Koşul Ders(ler)i Math 275 Doğrusal

Detaylı

ÇARPANLAR ve KATLAR ASAL SAYILAR. Örnek-2 : 17 ve 27 sayılarının asal sayı olup olmadığını inceleyelim.

ÇARPANLAR ve KATLAR ASAL SAYILAR. Örnek-2 : 17 ve 27 sayılarının asal sayı olup olmadığını inceleyelim. SINIF ÇARPANLAR ve KATLAR www.tayfunolcum.com 8.1.1.1: Verilen pozitif tam sayıların çarpanlarını bulur; pozitif tam sayıları üslü ifade ya da üslü ifadelerin çarpımı seklinde yazar. Çarpan ( bölen ) Her

Detaylı

Özyineleme (Recursion)

Özyineleme (Recursion) Özyineleme tanımlamaları Özyineleme çağırma Tail özyineleme Nontail özyineleme Dolaylı (Indirect) özyineleme İçiçe (Nested) özyineleme Yrd.Doç.Dr. M. Ali Akcayol Kendi kendisini doğrudan veya dolaylı olarak

Detaylı

EŞİTSİZLİKLER. 5. x 2 + 4x + 4 > x 2 0. eşitsizliğinin çözüm kümesi. eşitsizliğinin çözüm kümesi. aşağıdakilerden hangisidir?

EŞİTSİZLİKLER. 5. x 2 + 4x + 4 > x 2 0. eşitsizliğinin çözüm kümesi. eşitsizliğinin çözüm kümesi. aşağıdakilerden hangisidir? 1. 36 x A) [- 6, ] B) [- 6, 6 ] C) [, 36] D) [, 36 ] E) [- 36, ] 5. x + 4x + 4 > A) (, ) B) - } C) D) R E) R - {- } 6. x + 8x + 16. x x 8 < aşağıdalerden hangisidir? A) (- 4, ) B) (-, ) C) (- 4, ) A) {

Detaylı

Fen ve Mühendislik Uygulamalarında MATLAB

Fen ve Mühendislik Uygulamalarında MATLAB Fen ve Mühendislik Uygulamalarında MATLAB Dosya Yönetimi Fonksiyon Yapısı Doç. Dr. İrfan KAYMAZ MATLAB Ders Notları DOSYA YÖNETİMİ Şu ana kadar bir programda hesaplanan veya elde edilen veriler RAM de

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 4- LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ SORULAR ÇÖZÜMLER & MATLAB PROGRAMLAMA Doç. Dr. Ali Rıza YILDIZ Arş. Gör. Emre DEMİRCİ 1 4.1: Aşağıdaki verilen fonksiyonun belirten aralıklarda

Detaylı

ÇARPANLAR ve KATLAR. Uygulama-1. Asal Sayılar. Pozitif Bir Tam Sayının Çarpanlarını Bulma. Aşağıdaki sayıların çarpanlarını (bölenlerini) bulunuz.

ÇARPANLAR ve KATLAR. Uygulama-1. Asal Sayılar. Pozitif Bir Tam Sayının Çarpanlarını Bulma. Aşağıdaki sayıların çarpanlarını (bölenlerini) bulunuz. Asal Sayılar Sadece kendisine ve sayısına bölünebilen 'den büyük tam sayılara asal sayı denir. En küçük asal sayı 2'dir ÇARPANLAR ve KATLAR Uygulama- Aşağıdaki sayıların çarpanlarını (bölenlerini) 36=

Detaylı

- 2-1 0 1 2 + 4a a 0 a 4a

- 2-1 0 1 2 + 4a a 0 a 4a İKİNCİ DERECEDEN FNKSİYNLARIN GRAFİKLERİ a,b,c,z R ve a 0 olmak üzere, F : R R f() = a + b + c şeklinde tanımlanan fonksionlara ikinci dereceden bir değişkenli fonksionlar denir. Bu tür fonksionların grafikleri

Detaylı

Anadolu Üniversitesi Endüstri Mühendisliği Bölümü İST328 Yöneylem Araştırması 2 Dersi Bahar Dönemi. Hazırlayan: Doç. Dr.

Anadolu Üniversitesi Endüstri Mühendisliği Bölümü İST328 Yöneylem Araştırması 2 Dersi Bahar Dönemi. Hazırlayan: Doç. Dr. Anadolu Üniversitesi Endüstri Mühendisliği Bölümü İST8 Yöneylem Araştırması Dersi 00-0 Bahar Dönemi Hazırlayan: Doç. Dr. Nil ARAS AÇIKLAMA Bu sunu izleyen kaynaklardaki örnek ve bilgilerden faydalanarak

Detaylı

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER MATEMATİK Taşkın, Çetin, Abdullayeva BÖLÜM. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER. ÖZDEŞLİKLER İki cebirsel ifade içerdikleri değişkenlerin (veya bilinmeyenlerin) her değeri içinbirbirine eşit oluyorsa,

Detaylı

Yöneylem Araştırması II (IE 323) Ders Detayları

Yöneylem Araştırması II (IE 323) Ders Detayları Yöneylem Araştırması II (IE 323) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Yöneylem Araştırması II IE 323 Güz 3 2 0 4 5.5 Ön Koşul Ders(ler)i IE 222

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I /0 İçerik Matematiksel Modelin Kurulması Grafik Çözüm DP Terminolojisi DP Modelinin Standart Formu DP Varsayımları 2/0 Grafik Çözüm İki değişkenli (X, X2) modellerde kullanılabilir,

Detaylı

Otomatik Kontrol (Doğrusal sistemlerde Kararlılık Kriterleri) - Ders sorumlusu: Doç.Dr.HilmiKuşçu

Otomatik Kontrol (Doğrusal sistemlerde Kararlılık Kriterleri) - Ders sorumlusu: Doç.Dr.HilmiKuşçu 1 2 1 3 4 2 5 6 3 7 8 4 9 10 5 11 12 6 K 13 Örnek Kararlılık Tablosunu hazırlayınız 14 7 15 Kapalı çevrim kutupları ve kararlıkları a. Kararlı sistem; b. Kararsız sistem 2000, John Wiley & Sons, Inc. Nise/Cotrol

Detaylı

BİLGİSAYAR PROGRAMLAMA DERSİ

BİLGİSAYAR PROGRAMLAMA DERSİ BİLGİSAYAR PROGRAMLAMA DERSİ 5. DERS NOTU Konu: Döngü Yapıları Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU DÖNGÜ YAPILARI Birçok uygulamada bazı işlemlerin tekrar tekrar gerçekleştirilmesi gerekir. Bizlere bu

Detaylı

Temelleri. Doç.Dr.Ali Argun Karacabey

Temelleri. Doç.Dr.Ali Argun Karacabey Doğrusal Programlamanın Temelleri Doç.Dr.Ali Argun Karacabey Doğrusal Programlama Nedir? Bir Doğrusal Programlama Modeli doğrusal kısıtlar altında bir doğrusal ğ fonksiyonun değerini ğ maksimize yada minimize

Detaylı

VERİ TABANI ve YÖNETİMİ

VERİ TABANI ve YÖNETİMİ VERİ TABANI ve YÖNETİMİ Maltepe Üniversitesi Bilgisayar Mühendisliği Bölümü 2 BÖLÜM -10- FONKSİYONLAR 3 Giriş Geçen haftaki derslerimizde Görünümleri (View) ve Stored Procedure (SP) leri öğrendik. Bu hafta

Detaylı

Olimpiyat Soruları. sonuçları tekrar fonksiyonda yerine koyup çıkan tüm sonuçları toplayan program (iterasyon sayısı girilecek)

Olimpiyat Soruları. sonuçları tekrar fonksiyonda yerine koyup çıkan tüm sonuçları toplayan program (iterasyon sayısı girilecek) HAZIRLAYAN MUSA DEMIRELLI BISHKEK KYRGYZ TURKISH BOYS HIGH SCHOOL education.online.tr.tc compsources0.tripod.com Olimpiyat Soruları 1- Bir diziyi ters çeviren algoritma ve program 2- Bir diziyi sıralayan

Detaylı

6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.5. Doğrusal olmayan fonksiyonların eğimi Doğrusal fonksiyonlarda eğim her noktada sabittir

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

Lambda, Map, Filter ve Dizi Tamamlama

Lambda, Map, Filter ve Dizi Tamamlama Lambda, Map, Filter ve Dizi Tamamlama Prof.Dr. Bahadır AKTUĞ JFM212 Python ile Mühendislik Uygulamaları *Kaynakça bölümünde verilen kaynaklardan derlenmiştir. Lambda Lambda fonksiyonu veya Lambda operatörü

Detaylı

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez Doğrusal Programlama Prof. Dr. Ferit Kemal Sönmez Doğrusal Programlama Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik

Detaylı

GEDİZ ÜNİVERSİTESİ SİSTEM MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI SMY 544 ALGORİTMALAR GÜZ 2015

GEDİZ ÜNİVERSİTESİ SİSTEM MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI SMY 544 ALGORİTMALAR GÜZ 2015 GEDİZ ÜNİVERSİTESİ SİSTEM MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI SMY 544 ALGORİTMALAR GÜZ 2015 Algoritmalar Ders 9 Dinamik Programlama SMY 544, ALGORİTMALAR, Güz 2015 Ders#9 2 Dinamik Programlama Böl-ve-fethet

Detaylı

Bilgisayar Programı Nedir?

Bilgisayar Programı Nedir? BİL1002 Bilgisayar Programlama PROF.DR.TOLGA ELBİR Bilgisayar Programı Nedir? Program, bilgisayarda i belirli libir amacı gerçekleştirmek için geliştirilmiş yöntemlerin ve verilerin, bilgisayarındonanımınınyerine

Detaylı

Ayrık Fourier Dönüşümü

Ayrık Fourier Dönüşümü Ayrık Fourier Dönüşümü Tanım: 0 n N 1 aralığında tanımlı N uzunluklu bir dizi x[n] nin AYRIK FOURIER DÖNÜŞÜMÜ (DFT), ayrık zaman Fourier dönüşümü (DTFT) X(e jω ) nın0 ω < 2π aralığında ω k = 2πk/N, k =

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

ÖSS MATEMATİK TÜREV FASİKÜLÜ

ÖSS MATEMATİK TÜREV FASİKÜLÜ ÖSS MATEMATİK TÜREV FASİKÜLÜ GRAFİK ÇİZİMİ Bir fonksiyonun denklemi verilip grafiği istendiğinde aşağıdaki yolu izlemeliyiz. ) Fonksiyonun en geniş tanım kümesi bulunur. ) ± için fonksiyonun limiti bulunur.

Detaylı

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Kümeleme İşlemleri Kümeleme Tanımı Kümeleme Uygulamaları Kümeleme Yöntemleri Kümeleme (Clustering) Kümeleme birbirine

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İLERİ ALGORİTMA ANALİZİ TABU ARAMA ALGORİTMASI (TABU SEARCH)

İLERİ ALGORİTMA ANALİZİ TABU ARAMA ALGORİTMASI (TABU SEARCH) İLERİ ALGORİTMA ANALİZİ TABU ARAMA ALGORİTMASI (TABU SEARCH) Tabu Arama Algoritması, optimizasyon problemlerinin çözümü için F.Glover tarafından geliştirilmiş iteratif bir araştırma algoritmasıdır. Temel

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Matlab Programlama BIL449 7 3+0 3 5 Ön Koşul Dersleri Yok Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Seçmeli / Yüz Yüze Dersin

Detaylı

Prof.Dr. ÜNAL ERKAN MUMCUOĞLU. merkan@metu.edu.tr

Prof.Dr. ÜNAL ERKAN MUMCUOĞLU. merkan@metu.edu.tr Ders Bilgisi Ders Kodu 9060528 Ders Bölüm 1 Ders Başlığı BİLİŞİM SİSTEMLERİ İÇİN MATEMATİĞİN TEMELLERİ Ders Kredisi 3 ECTS 8.0 Katalog Tanımı Ön koşullar Ders saati Bu dersin amacı altyapısı teknik olmayan

Detaylı

TEMEL BİLGİSAYAR BİLİMLERİ. Programcılık, problem çözme ve algoritma oluşturma

TEMEL BİLGİSAYAR BİLİMLERİ. Programcılık, problem çözme ve algoritma oluşturma TEMEL BİLGİSAYAR BİLİMLERİ Programcılık, problem çözme ve algoritma oluşturma Programcılık, program çözme ve algoritma Program: Bilgisayara bir işlemi yaptırmak için yazılan komutlar dizisinin bütünü veya

Detaylı