Başlangıç Temel Programının Bilinmemesi Durumu

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Başlangıç Temel Programının Bilinmemesi Durumu"

Transkript

1 aşlangıç Temel Programının ilinmemesi Durumu İlgili kısıtlarda şartlar ( ) ise bunlara gevşek (slack) değişkenler eklenerek eşitliklere dönüştürülmektedir. Ancak sınırlayıcı şartlar ( ) veya ( = ) olduğu durumda bir mümkün başlangıç çözümü bulunamaz. u durumda düzeltme işlemi yapay (artificial) değişkenler yardımıyla yapılır. Yapay değişkenlerin hiçbir fiziki yorumu yoktur. unlar, sadece bir başlangıç mümkün temel çözümü elde etmek amacıyla kullanılırlar. Yapay değişkenlerin eklenmesiyle gövdenin yanında ulaşmak istediğimiz birim matrise ulaşırız. a i1 x 1 + a i2 x a in x n b i (1 denklemi) a l1 x 1 + a l2 x a ln x n = b l (2 denklemi) Kısıtlarının genel halde verildiğini varsayalım. u kısıtların simpleks yöntemde kullanılabilecek forma sokulması için (1) den x n+i değişkeni çıkarılarak eşitsizlik, eşitlik haline dönüştürülür. (2) de ise zaten eşitlik halindedir. Her iki kısıt için de eşitlik durumu gerçekleşmiş olsa da bu ifadelerden bir başlangıç mümkün temel çözümü ve gövdede oluşturmak istediğimiz birim matris oluşmaz. İşte bu noktada yapay değişkenler gerekli olup (1) ve (2) ifadeleri: a i1 x 1 + a i2 x a in x n x n+i + x n+m+k = b i (3 denklemi) a l1 x 1 + a l2 x a ln x n + x n+m+k = b l (4 denklemi) Şekline girecek ve böylece hem bir başlangıç mümkün çözümü, hem de bir birim matris oluşacaktır. u tür problemleri çözmek için iki metot kullanılır. 1. İki Safha Metodu 2. M Metodu (ig M Metodu) 1. İki Safha Metodu İki safhalı simpleks çözüm yöntemini uygulayabilmek için: 1. Orijinal kısıtlayıcı şartlar, gevşek değişkenler eklenip çıkartılarak standart şekle dönüştürülür. 2. Gereken eşitliklere yapay değişkenler eklenerek A matrisi, birim matris olan I(m) i içeren bir A* matrisi haline dönüştürülür. 3. öylece ilk program şu şekle dönüştürülür. Yapay değişkenleri x y ile göstermek üzere A* A ( x y ) =P 0 x x 0. x y 0 Maks(Min)Z = C. X programı başlangıç programı kabul edilerek simpleks yöntem uygulanır. 1.safha İlk amaç fonksiyonu yerine uygunsuzluk formu adı verilen W = x y alınmak suretiyle A ( x y ) =P 0 x x 0. x y 0

2 yardımcı programı oluşturulur. W uygunsuzluk formu, problemin bir minimiazsyon veya maksimizasyon problemine bağlı olmaksızın her zaman minimum yapılır. Simpleks problem yardımcı probleme uygulanır. Çoğunlukla bu safhada yardımcı probleme Maks(Min)Z = C. X ilk amaç fonksiyonu da eklenerek işlem yapılır. İşlemler aşağıdaki üç durumdan biri ortaya çıkıncaya kadar devam eder. Durum a. W = 0 dır. Temel çözümde yapay değişken yoktur. Elde edilen program ilk temel programıdır. 2. Safhanın a durumuna geçilir. Durum b. W = 0 dır. Fakat temel programda sıfır değerinde en az bir yapay değişken vardır. Elde edilen program ilk problemin programıdır. 2. Safhanın b durumuna geçilir. Durum c. (W j ) 0 olmasına rağmen W > 0 dır. u durumda problemin çözümü yoktur. 2.safha İlk amaç fonksiyonu göz önüne alınır. Yani; Maks(Min)Z = C. X Durum a. Optimum elde edilinceye kadar simpleks çözüm yöntemi 1.safhanın sonunda elde edilen bütün tabloya uygulanır. Durum b. Simpleks algoritması, kısıtlanmış probleme uygulanır. Yani 1.safhanın sonunda uygunsuzluk formu olan W ye karşılık gelen sıfırdan küçük W j C j lere ait y j vektörlerinden hiçbiri bir sonraki iterasyon için göz önüne alınmaz. Optimum elde edilinceye kadar iterasyonlara devam edilir. Örnek: Aşağıda verilen DP modelini iki safhalı metot ile çözünüz. Z = Max f(x) = 3x 1 + 2x 2 + x 3 + 2x 4 3x 1 + 4x 2 + 5x 3 + 4x 4 5 2x 1 + 6x 2 + x 3 + 5x 4 6 x 1 + x 2 + 5x 3 + 2x 4 = 2 x 1, x 2, x 3, x 4 0 * W j W j

3 * W j W j * W j W j

4 2. M Metodu aşlangıç temel programının bilinmemesi durumunda iki safhalı simpleks çözüm yönteminin dışında uygulanan diğer bir yöntem de M yöntemidir. Simpleks yöntemin uygulanışında elde edilecek mümkün temel çözümlerde yapay değişkenler bulunabilecektir. Ancak son simpleks tabloda hiçbir yapay değişkenin bulunmaması gerekir. unun için M çok büyük bir sayıyı temsil etmek üzere minimizasyon problemlerinde yapay değişkenlerin amaç fonksiyonundaki katsayıları M, maksimizasyon problemlerinde ise -M olarak alınır. öylece minimizasyon için toplam maliyet çok artacağı ve maksimimazsyon için toplam kar çok azalacağı için bu yöntem son tabloda hiçbir yapay değişken kalmayacağını garanti eder. Örnek: Aşağıda verilen DP modelini M metodu ile çözünüz. Z = Max f(x) = 2x 1 + 2x 2 2x 1 + 3x 2 6 4x 1 + 3x 2 8 x 1, x 2 0

5

6 Soru: Aşağıda verilen DP modelini iki safhalı metot ile çözünüz. Z = Min f(x) = 2x 1 + x 2 3x 1 + x 2 3 4x 1 + 3x 2 6 x 1 + 2x 2 2 x 1, x 2 0 Soru: Aşağıda verilen DP modelini M metodu ile çözünüz. Z = Min f(x) = 4x 1 + x 2 3x 1 + x 2 = 3 4x 1 + 3x 2 6 x 1 + 2x 2 4 x 1, x 2 0

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre):

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre): DP SİMPLEKS ÇÖZÜM Simpleks Yöntemi, amaç fonksiyonunu en büyük (maksimum) veya en küçük (minimum) yapacak en iyi çözüme adım adım yaklaşan bir algoritma (hesaplama yöntemi) dir. Bu nedenle, probleme bir

Detaylı

Yöneylem Araştırması II

Yöneylem Araştırması II Yöneylem Araştırması II Öğr. Gör. Dr. Hakan ÇERÇİOĞLU cercioglu@gazi.edu.tr BÖLÜM I: Doğrusal Programlama Tekrarı Doğrusal Programlama Tanımı Doğrusal Programlama Varsayımları Grafik Çözüm Metodu Simpleks

Detaylı

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY)

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) 1 DOĞRUSAL PROGRAMLAMADA İKİLİK (DUALİTE-DUALITY) Doğrusal programlama modelleri olarak adlandırılır. Aynı modelin değişik bir düzende oluşturulmasıyla Dual (İkilik)

Detaylı

MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ

MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ SİMPLEKS TABLONUN YORUMU MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ Şu ana kadar verilen bir DP probleminin çözümünü ve çözüm şartlarını inceledik. Eğer orijinal modelin parametrelerinde bazı değişiklikler

Detaylı

KISITLI OPTİMİZASYON

KISITLI OPTİMİZASYON KISITLI OPTİMİZASYON SİMPLEKS YÖNTEMİ Simpleks Yöntemi Simpleks yöntemi iteratif bir prosedürü gerektirir. Bu iterasyonlar ile gerçekçi çözümlerin olduğu bölgenin (S) bir köşesinden başlayarak amaç fonksiyonunun

Detaylı

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL)

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL) DOĞRUSAL PROGRAMLAMA (GENEL) Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik biçiminde verilmesi durumunda amaca

Detaylı

KONU 4: DOĞRUSAL PROGRAMLAMA MODELİ İÇİN ÇÖZÜM YÖNTEMLERİ I

KONU 4: DOĞRUSAL PROGRAMLAMA MODELİ İÇİN ÇÖZÜM YÖNTEMLERİ I KONU 4: DOĞRUSAL PROGRAMLAMA MODELİ İÇİN ÇÖZÜM YÖNTEMLERİ I 4.1. Dışbükeylik ve Uç Nokta Bir d.p.p. de model kısıtlarını aynı anda sağlayan X X X karar değişkenleri... n vektörüne çözüm denir. Eğer bu

Detaylı

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez Doğrusal Programlama Prof. Dr. Ferit Kemal Sönmez Doğrusal Programlama Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik

Detaylı

28 C j -Z j /2 0

28 C j -Z j /2 0 3.2.6. Dual Problem ve Ekonomik Yorumu Primal Model Z maks. = 4X 1 + 5X 2 (kar, pb/gün) X 1 + 2X 2 10 6X 1 + 6X 2 36 8X 1 + 4X 2 40 (işgücü, saat/gün) (Hammadde1, kg/gün) (Hammadde2, kg/gün) 4 5 0 0 0

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Bu bölümde eşitsizlik kısıtlarına bağlı bir doğrusal olmayan kısıta sahip problemin belirlenen stasyoner noktaları

Detaylı

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem 3.2. DP Modellerinin Simpleks Yöntem ile Çözümü 3.2.1. Primal Simpleks Yöntem Grafik çözüm yönteminde gördüğümüz gibi optimal çözüm noktası, her zaman uygun çözüm alanının bir köşe noktası ya da uç noktası

Detaylı

SİMPLEKS ALGORİTMASI Yapay değişken kullanımı

SİMPLEKS ALGORİTMASI Yapay değişken kullanımı Fen Bilimleri Enstitüsü Endüstri Mühendisliği Anabilim Dalı ENM53 Doğrusal Programlamada İleri Teknikler SİMPLEKS ALGORİTMASI Yapay değişken kullanımı Hazırlayan: Doç. Dr. Nil ARAS, 6 AÇIKLAMA Bu sununun

Detaylı

Maksimizasyon s.t. İşçilik, saat) (Kil, kg)

Maksimizasyon s.t. İşçilik, saat) (Kil, kg) Simplex ile Çözüm Yöntemi Doç. Dr. Fazıl GÖKGÖZ 1 Doğrusal Programlama Modeli Maksimizasyon s.t. İşçilik, saat) (Kil, kg) 2 Doç. Dr. Fazıl GÖKGÖZ Yrd.Doç. Dr. Fazıl GÖKGÖZ 1 Modelin Standard Hali Maksimizasyon

Detaylı

KONU 8: SİMPLEKS TABLODA KARŞILAŞILAN BAZI DURUMLAR - II 8.1. İki Evreli Yöntem Standart biçime dönüştürülmüş min /max Z cx (8.1)

KONU 8: SİMPLEKS TABLODA KARŞILAŞILAN BAZI DURUMLAR - II 8.1. İki Evreli Yöntem Standart biçime dönüştürülmüş min /max Z cx (8.1) KONU 8: SİMPLEKS ABLODA KARŞILAŞILAN BAZI DURUMLAR - II 8.. İki Evreli Yöntem Standart biçime dönüştürülmüş min /max Z cx AX b X (8.) biçiminde tanımlı d.p.p. nin en ii çözüm değerinin elde edilmesinde,

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Altın Oran (Golden Section Search) Arama Metodu Tek değişkenli bir f(x) fonksiyonunu ele alalım. [Bazı x ler için f

Detaylı

Duyarlılık analizi, bir doğrusal programlama probleminde belirlenen katsayı değerlerinin

Duyarlılık analizi, bir doğrusal programlama probleminde belirlenen katsayı değerlerinin DUYARLILIK ANALİZİ Duyarlılık analizi, bir doğrusal programlama probleminde belirlenen katsayı değerlerinin değişmesinin problemin optimal çözümü üzerine etkisini incelemektedir. Oluşturulan modeldeki

Detaylı

TAMSAYILI PROGRAMLAMA

TAMSAYILI PROGRAMLAMA TAMSAYILI PROGRAMLAMA Doğrusal programlama problemlerinde sık sık çözümün tamsayı olması gereken durumlar ile karşılaşılır. Örneğin ele alınan problem masa, sandalye, otomobil vb. üretimlerinin optimum

Detaylı

4.1. Gölge Fiyat Kavramı

4.1. Gölge Fiyat Kavramı 4. Gölge Fiyat Kavramı 4.1. Gölge Fiyat Kavramı Gölge fiyatlar doğrusal programlama modellerinde kısıtlarla açıklanan kaynakların bizim için ne kadar değerli olduklarını gösterirler. Şimdi bir örnek üzerinde

Detaylı

ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU

ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU Tek değişkenli bir f(x) fonksiyonunu ele alalım. [Bazı x ler için f (x) bulunamayabilir.] Aşağıdaki DOP modelini çözmek istediğimizi var sayalım. Max f(x)

Detaylı

Altın Oran Arama Metodu(Golden Search)

Altın Oran Arama Metodu(Golden Search) Altın Oran Arama Metodu(Golden Search) Bir f(x) (tek değişkenli) fonksiyonunu ele alalım. [Bazı x ler için f (x) bulunamayabilir.] Aşağıdaki DOP modelini çözmek istediğimizi var sayalım. Max f(x) a x b

Detaylı

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER LAGRANGE YÖNTEMİ Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde değişkenler ve kısıtlar genel olarak şeklinde gösterilir. fonksiyonlarının

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTıRMA MODELININ TANıMı Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Quadratic Programming Bir karesel programlama modeli aşağıdaki gibi tanımlanır. Amaç fonksiyonu: Maks.(veya Min.) z

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTIRMA MODELİNİN TANIMI Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

ÖRNEKLER-VEKTÖR UZAYLARI 1. Çözüm: w=k 1 u+k 2 v olmalıdır.

ÖRNEKLER-VEKTÖR UZAYLARI 1. Çözüm: w=k 1 u+k 2 v olmalıdır. ÖRNEKLER-VEKTÖR UZAYLARI. vektör uzayında yer alan w=(9 7) vektörünün, u=( -), v=(6 ) vektörlerinin doğrusal bir kombinasyonu olduğunu ve z=( - 8) vektörünün ise bu vektörlerin doğrusal bir kombinasyonu

Detaylı

İkinci dersin notlarında yer alan Gepetto Marangozhanesi örneğini hatırlayınız.

İkinci dersin notlarında yer alan Gepetto Marangozhanesi örneğini hatırlayınız. ISLE 403 YÖNEYLEM ARAŞTIRMASI DERS 3 NOTLAR DP Modellerinin Standart Biçimde Gösterimi: İkinci dersin notlarında yer alan Gepetto Marangozhanesi örneğini hatırlayınız. Gepetto Marangozhanesi için DP modeli

Detaylı

Bir Doğrusal Programlama Modelinin Genel Yapısı

Bir Doğrusal Programlama Modelinin Genel Yapısı Bir Doğrusal Programlama Modelinin Genel Yapısı Amaç Fonksiyonu Kısıtlar M i 1 N Z j 1 N j 1 a C j x j ij x j B i Karar Değişkenleri x j Pozitiflik Koşulu x j >= 0 Bu formülde kullanılan matematik notasyonların

Detaylı

4. Gölge Fiyat Kavramı ve Duyarlılık Analizleri:

4. Gölge Fiyat Kavramı ve Duyarlılık Analizleri: 4. Gölge Fiyat Kavramı ve Duyarlılık Analizleri: 4.1. Gölge Fiyat Kavramı Gölge fiyatlar doğrusal programlama modellerinde kısıtlarla açıklanan kaynakların bizim için ne kadar değerli olduklarını gösterirler.

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

Matematiksel modellerin elemanları

Matematiksel modellerin elemanları Matematiksel modellerin elemanları Op#mizasyon ve Doğrusal Programlama Maksimizasyon ve Minimizasyon örnekleri, Doğrusal programlama modeli kurma uygulamaları 6. DERS 1. Karar değişkenleri: Bir karar verme

Detaylı

EM302 Yöneylem Araştırması 2 Çok değişkenli DOP ların çözümü. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Çok değişkenli DOP ların çözümü. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Çok değişkenli DOP ların çözümü Dr. Özgür Kabak Doğrusal olmayan programlama Tek değişkenli DOP ların çözümü Uç noktaların analizi Altın kesit Araması Çok değişkenli DOP ların

Detaylı

Kısıtsız Optimizasyon OPTİMİZASYON Kısıtsız Optimizasyon

Kısıtsız Optimizasyon OPTİMİZASYON Kısıtsız Optimizasyon OPTİMİZASYON Bu bölümde çok değişkenli kısıtsız optimizasyon problemlerinin çözüm yöntemleri incelenecektir. Bu bölümde anlatılacak yöntemler, kısıtlı optimizasyon problemlerini de çözebilmektedir. Bunun

Detaylı

Tek Değişkenli Optimizasyon OPTİMİZASYON. Gradient Tabanlı Yöntemler. Bisection (İkiye Bölme) Yöntemi

Tek Değişkenli Optimizasyon OPTİMİZASYON. Gradient Tabanlı Yöntemler. Bisection (İkiye Bölme) Yöntemi OPTİMİZASYON Gerçek hayatta, çok değişkenli optimizasyon problemleri karmaşıktır ve nadir olarak problem tek değişkenli olur. Bununla birlikte, tek değişkenli optimizasyon algoritmaları çok değişkenli

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Dr. Özgür Kabak TP Çözümü TP problemlerinin çözümü için başlıca iki yaklaşım vardır kesme düzlemleri (cutting planes) dal sınır (branch and bound) tüm yaklaşımlar tekrarlı

Detaylı

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta:

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta: Genetik Algoritmalar Bölüm 1 Optimizasyon Yrd. Doç. Dr. Adem Tuncer E-posta: adem.tuncer@yalova.edu.tr Optimizasyon? Optimizasyon Nedir? Eldeki kısıtlı kaynakları en iyi biçimde kullanmak olarak tanımlanabilir.

Detaylı

BAZI ÖZEL TİP İRRASYONEL DENKLEMLERİN ÇÖZÜM TEKNİKLERİ

BAZI ÖZEL TİP İRRASYONEL DENKLEMLERİN ÇÖZÜM TEKNİKLERİ BAZI ÖZEL TİP İRRASYONEL DENKLEMLERİN ÇÖZÜM TEKNİKLERİ www.sbelian.wordpress.com Gerek lise müfredatında gerekse Tübitak İlköğretim ve Lise sınavlarında, sıkça karşılaşılan soru tiplerinde biri de irrasyonel

Detaylı

Genel Graf Üzerinde Mutlak 1-merkez

Genel Graf Üzerinde Mutlak 1-merkez Genel Graf Üzerinde Mutlak 1-merkez Çözüm yöntemine geçmeden önce bazı tanımlara ihtiyaç vardır. Dikkate alınan G grafındaki düğümleri 1 den n e kadar numaralandırın. Uzunluğu a(i, j)>0 olarak verilen

Detaylı

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 Bölüm 2 STATİK DENGE ANALİZİ 19 2.1 İktisatta Denge Kavramı 20 2.1.1.

Detaylı

ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ YÖNEYLEM ARAŞTIRMASI DERSİ LINDO

ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ YÖNEYLEM ARAŞTIRMASI DERSİ LINDO ÜRİ MÜHİSLİĞİ BÖLÜMÜ YÖNEYLEM ARAŞTIRMASI DERSİ LINDO Hazırlayanlar Prof. Dr. Bilal TOKLU Arş. Gör. Talip KELLEGÖZ KASIM 2004 1. Giriş 1 LINDO (Linear, INteractive, and Discrete Optimizer) doğrusal ve

Detaylı

0.1 Zarf Teoremi (Envelope Teorem)

0.1 Zarf Teoremi (Envelope Teorem) Ankara Üniversitesi, Siyasal Bilgiler Fakültesi Prof. Dr. Hasan Şahin 0.1 Zarf Teoremi (Envelope Teorem) Bu kısımda zarf teoremini ve iktisatta nasıl kullanıldığını ele alacağız. bu bölüm Chiang 13.5 üzerine

Detaylı

T.C. DOKUZ EYLÜL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI EKONOMETRİ DOKTORA PROGRAMI

T.C. DOKUZ EYLÜL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI EKONOMETRİ DOKTORA PROGRAMI T.C. DOKUZ EYLÜL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI EKONOMETRİ DOKTORA PROGRAMI Genişletilmiş Lagrange Yöntemi Hazırlayan: Nicat GASIM Öğretim Üyesi Prof. Dr. İpek Deveci KARAKOÇ

Detaylı

Duyarlılık Analizi, modelde veri olarak kabul edilmiş parametrelerde meydana gelen değişimlerin optimum çözüme etkisinin incelenmesidir.

Duyarlılık Analizi, modelde veri olarak kabul edilmiş parametrelerde meydana gelen değişimlerin optimum çözüme etkisinin incelenmesidir. ISLE 403 YÖNEYLEM ARAŞTIRMASI I DERS IV NOTLAR Bağlayıcı Kısıtlar ve Bağlayıcı Olmayan Kısıtlar: Bağlayıcı Kısıtlar, denklemleri optimum çözüm noktasında kesişen kısıtlardır. Bağlayıcı-Olmayan Kısıtlar,

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I 1/36 İçerik Optimalliği etkileyen değişimler 2/36 (Optimallik Sonrası Analiz): Eğer orijinal modelin parametrelerinde bazı değişiklikler meydana gelirse optimal çözüm değişecek

Detaylı

Standart modellerde öncelikle kısıt denklemleri eşitlik haline çevrilmelidir. Öncelikle ilk kısıta bakalım.

Standart modellerde öncelikle kısıt denklemleri eşitlik haline çevrilmelidir. Öncelikle ilk kısıta bakalım. 3. Simpleks Yöntem Doğrusal programlama modelleri grafik yöntem dışında simpleks yöntem adı altında özel bir yöntemle çözülebilir. Bu yöntem Simple Matrix kelimlerinin kısaltmasıdır ve bir çeşit matris

Detaylı

KISALTILMIŞ SİMPLEKS YÖNTEMİ

KISALTILMIŞ SİMPLEKS YÖNTEMİ KISALTILMIŞ SİMPLEKS YÖNTEMİ Öğr. Görv. Dr. Orhan İDİL (İ.Ü. İşletme Fakültesi) İstatistik Demografi ve İktisadi Analizler Kürsüsü l.l. Doğrusal Programlama Problemleri : Doğrusal programlama problemlerinde

Detaylı

yöneylem araştırması Nedensellik üzerine diyaloglar I

yöneylem araştırması Nedensellik üzerine diyaloglar I yöneylem araştırması Nedensellik üzerine diyaloglar I i Yayın No : 3197 Eğitim Dizisi : 149 1. Baskı Ocak 2015 İSTANBUL ISBN 978-605 - 333-225 1 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları

Detaylı

YÖNEYLEM ARAŞTIRMASI YÜKSEK LİSANS DERSİ

YÖNEYLEM ARAŞTIRMASI YÜKSEK LİSANS DERSİ LINDO (Linear Interactive and Discrete Optimizer) YÖNEYLEM ARAŞTIRMASI YÜKSEK LİSANS DERSİ 2010-2011 Güz-Bahar Yarıyılı YRD.DOÇ.DR.MEHMET TEKTAŞ ÖRNEK 6X 1 + 3X 2 96 X 1 + X 2 18 2X 1 + 6X 2 72 X 1, X

Detaylı

ĐST 349 Doğrusal Programlama ARA SINAV I 15 Kasım 2006

ĐST 349 Doğrusal Programlama ARA SINAV I 15 Kasım 2006 ĐST 49 Doğrusal Programlama ARA SINAV I 15 Kasım 006 Adı Soyadı:KEY No: 1. Aşağıdaki problemi grafik yöntemle çözünüz. Đkinci kısıt için marjinal değeri belirleyiniz. Maximize Z X 1 + 4 X subject to: X

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik (Eşitlik Kısıtlı Türevli Yöntem) Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde

Detaylı

Ders 11. Kısıtlamalı Minimizasyon Problemleri Alıştırmalar 11. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay

Ders 11. Kısıtlamalı Minimizasyon Problemleri Alıştırmalar 11. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay Bölüm 11 Ders 11 Kısıtlamalı Minimizasyon Problemleri 11.1 Alıştırmalar 11 Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay 1. Soru 1 Aşağıdaki problemlerde, dual problemi yazınız; dual problemi simpleks yöntemi

Detaylı

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR Kısıtlı ve kısıtsız fonksiyonlar için maksimum veya minimum (ekstremum) noktalarının belirlenmesinde diferansiyel hesabı kullanarak çeşitli

Detaylı

Simpleks Yöntemde Duyarlılık Analizleri

Simpleks Yöntemde Duyarlılık Analizleri 3.2.4. Simpleks Yöntemde Duyarlılık Analizleri Duyarlılık analizinde doğrusal programlama modelinin parametrelerindeki değişikliklerinin optimal çözüm üzerindeki etkileri araştırılmaktadır. Herhangi bir

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Tabu Arama (Tabu Search) Doç.Dr. M. Ali Akcayol Tabu Arama 1986 yılında Glover tarafından geliştirilmiştir. Lokal minimum u elimine edebilir ve global minimum u bulur. Değerlendirme

Detaylı

METASEZGİSEL YÖNTEMLER

METASEZGİSEL YÖNTEMLER METASEZGİSEL YÖNTEMLER Ara sınav - 30% Ödev (Haftalık) - 20% Final (Proje Sunumu) - 50% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn: Zaman çizelgeleme, en kısa yol bulunması,

Detaylı

Yrd. Doç. Dr. A. Burak İNNER

Yrd. Doç. Dr. A. Burak İNNER Yrd. Doç. Dr. A. Burak İNNER Kocaeli Üniversitesi Bilgisayar Mühendisliği Yapay Zeka ve Benzetim Sistemleri Ar-Ge Lab. http://yapbenzet.kocaeli.edu.tr Lineer bir denklem sisteminin çözülerek bilinmeyen

Detaylı

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2 OPTIMIZASYON.... Bir Değişkenli Fonksiyonların Maksimizasyonu.... Türev...3.. Bir noktadaki türevin değeri...4.. Maksimum için Birinci Derece Koşulu...4.3. İkinci Derece Koşulu...5.4. Türev Kuralları...5

Detaylı

Yrd. Doç. Dr. A. Burak İNNER

Yrd. Doç. Dr. A. Burak İNNER Yrd. Doç. Dr. A. Burak İNNER Kocaeli Üniversitesi Bilgisayar Mühendisliği Yapay Zeka ve Benzetim Sistemleri Ar-Ge Lab. http://yapbenzet.kocaeli.edu.tr DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

SİMPLEKS ALGORİTMASI! ESASLARI!

SİMPLEKS ALGORİTMASI! ESASLARI! Fen ilimleri Enstitüsü Endüstri Mühendisliği Anabilim Dalı ENM53 Doğrusal Programlamada İleri Teknikler SİMPLEKS ALGORİTMASI ESASLARI Hazırlayan: Doç. Dr. Nil ARAS AÇIKLAMA n n u sununun hazırlanmasında,

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Hessien Matris-Quadratik Form Mutlak ve Bölgesel Maksimum-Minimum Noktalar Giriş Kısıtlı ve kısıtsız fonksiyonlar için

Detaylı

Z c 0 ise, problem için en iyilik koşulları (dual. X b 0 oluyorsa, aynı zamanda primal

Z c 0 ise, problem için en iyilik koşulları (dual. X b 0 oluyorsa, aynı zamanda primal KONU 12: DUAL SİMPLEKS YÖNTEM P: min Z cx AX b X (121) biçiminde tanımlı bir dpp de, B herhangi bir temel olsun Bu temel için, simpleks tabloda tüm temel dışı değişkenlere ilişkin tüm Z c ise, problem

Detaylı

DOĞRUSAL PROGRAMLAMANIN ÖZEL TÜRLERİ

DOĞRUSAL PROGRAMLAMANIN ÖZEL TÜRLERİ DOĞRUSAL PROGRAMLAMANIN ÖZEL TÜRLERİ TRANSPORTASYON (TAŞIMA, ULAŞTIRMA) TRANSİT TAŞIMA (TRANSSHIPMENT) ATAMA (TAHSİS) TRANSPORTASYON (TAŞIMA) (ULAŞTIRMA) TRANSPORTASYON Malların birden fazla üretim (kaynak,

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I /0 İçerik Matematiksel Modelin Kurulması Grafik Çözüm DP Terminolojisi DP Modelinin Standart Formu DP Varsayımları 2/0 Grafik Çözüm İki değişkenli (X, X2) modellerde kullanılabilir,

Detaylı

Optimizasyon İçin Kök(Generic) Model (Doğrusal-Olmayan Programlama Modeli)

Optimizasyon İçin Kök(Generic) Model (Doğrusal-Olmayan Programlama Modeli) ISLE 403 YÖNEYLEM ARAŞTIRMASI I DERS 2 NOTLAR Optimizasyon İçin Kök(Generic) Model (Doğrusal-Olmayan Programlama Modeli) X, karar değişkenlerinin bir vektörü olsun. z, g 1, g 2,...,g m fonksiyonlardır.

Detaylı

Doğrusal Programlamada Grafik Çözüm

Doğrusal Programlamada Grafik Çözüm Doğrusal Programlamada Grafik Çözüm doğrusal programlama PROBLEMİN ÇÖZÜLMESİ (OPTİMUM ÇÖZÜM) Farklı yöntemlerle çözülebilir Grafik çözüm (değişken sayısı 2 veya 3 olabilir) Simpleks çözüm Bilgisayar yazılımlarıyla

Detaylı

OPTİMİZASYON TEKNİKLERİ. Kısıtsız Optimizasyon

OPTİMİZASYON TEKNİKLERİ. Kısıtsız Optimizasyon OPTİMİZASYON TEKNİKLERİ Kısıtsız Optimizasyon Giriş Klasik optimizasyon yöntemleri minimum veya maksimum değerlerini bulmak için türev gerektiren ve gerektirmeyen teknikler olarak bilinirler. Bu yöntemler

Detaylı

PARÇACIK SÜRÜ OPTİMİZASYONU BMÜ-579 METASEZGİSEL YÖNTEMLER YRD. DOÇ. DR. İLHAN AYDIN

PARÇACIK SÜRÜ OPTİMİZASYONU BMÜ-579 METASEZGİSEL YÖNTEMLER YRD. DOÇ. DR. İLHAN AYDIN PARÇACIK SÜRÜ OPTİMİZASYONU BMÜ-579 METASEZGİSEL YÖNTEMLER YRD. DOÇ. DR. İLHAN AYDIN 1995 yılında Dr.Eberhart ve Dr.Kennedy tarafından geliştirilmiş popülasyon temelli sezgisel bir optimizasyon tekniğidir.

Detaylı

SİMPLEKS METODU simpleks metodu

SİMPLEKS METODU simpleks metodu 3 SİMPLEKS METODU Önceki bölümlerde doğrusal programlamanın temel kavramlarını ve prensiplerini öğrendik. İşletmenin üretim seçeneklerinin, eşitlikler sistemi ile ifade edildiğini gördük. Daha kârlı olan

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

OPTİMİZASYON TEKNİKLERİ-2. Hafta

OPTİMİZASYON TEKNİKLERİ-2. Hafta GİRİŞ OPTİMİZASYON TEKNİKLERİ-2. Hafta Mühendislik açısından bir işin tasarlanıp, gerçekleştirilmesi yeterli değildir. İşin en iyi çözüm yöntemiyle en verimli bir şekilde yapılması bir anlam ifade eder.

Detaylı

İktisat bilimi açısından optimizasyon, amacımıza en uygun olan. seçeneğin belirlenmesidir. Örneğin bir firmanın kârını

İktisat bilimi açısından optimizasyon, amacımıza en uygun olan. seçeneğin belirlenmesidir. Örneğin bir firmanın kârını OPTİMİZASYON İktisat bilimi açısından optimizasyon, amacımıza en uygun olan seçeneğin belirlenmesidir. Örneğin bir firmanın kârını maksimize edecek olan üretim miktarının belirlenmesi; bir bireyin toplam

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Kümeleme İşlemleri Kümeleme Tanımı Kümeleme Uygulamaları Kümeleme Yöntemleri Kümeleme (Clustering) Kümeleme birbirine

Detaylı

Temelleri. Doç.Dr.Ali Argun Karacabey

Temelleri. Doç.Dr.Ali Argun Karacabey Doğrusal Programlamanın Temelleri Doç.Dr.Ali Argun Karacabey Doğrusal Programlama Nedir? Bir Doğrusal Programlama Modeli doğrusal kısıtlar altında bir doğrusal ğ fonksiyonun değerini ğ maksimize yada minimize

Detaylı

EKON 305 Yöneylem Araştırması I. Doğrusal Programlama. Doç. Dr. Murat ATAN 1

EKON 305 Yöneylem Araştırması I. Doğrusal Programlama. Doç. Dr. Murat ATAN 1 EKON 305 Yöneylem Araştırması I Doğrusal Programlama Doç. Dr. Murat ATAN 1 Doğrusal Programlama Karar Verme ve Modeller Algılanan ihtiyaçlara özgü kasıtlı ve düşünceli seçim (Kleindorfer ve diğ., 1993)

Detaylı

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 Bölüm 2 DOĞRUSAL PROGRAMLAMA 21 2.1 Doğrusal Programlamanın

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -I-

DOĞRUSAL OLMAYAN PROGRAMLAMA -I- DOĞRUSAL OLMAYAN PROGRAMLAMA -I- Dışbükeylik / İçbükeylik Hazırlayan Doç. Dr. Nil ARAS Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü İST38 Yöneylem Araştırması Dersi 0-0 Öğretim Yılı Doğrusal olmayan

Detaylı

Yrd. Doç. Dr. A. Burak İNNER

Yrd. Doç. Dr. A. Burak İNNER Yrd. Doç. Dr. A. Burak İNNER Kocaeli Üniversitesi Bilgisayar Mühendisliği Yapay Zeka ve Benzetim Sistemleri Ar-Ge Lab. http://yapbenzet.kocaeli.edu.tr Doğrusal Ara Değer Hesabı Lagrance Polinom İnterpolasyonu

Detaylı

Lineer Programlama. Doğrusal terimi, hem amaç hem de kısıtları temsil eden matematiksel fonksiyonların doğrusal olduğunu gösterir.

Lineer Programlama. Doğrusal terimi, hem amaç hem de kısıtları temsil eden matematiksel fonksiyonların doğrusal olduğunu gösterir. LİNEER PROGRAMLAMA Giriş Uygulamada karşılaşılan birçok optimizasyon problemi kısıtlar içerir. Yani optimizasyon probleminde amaç fonksiyonuna ilave olarak çözümü kısıtlayıcı ek denklemler mevcuttur. Bu

Detaylı

YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER

YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER I. ATAMA PROBLEMLERİ PROBLEM 1. Bir isletmenin en kısa sürede tamamlamak istediği 5 işi ve bu işlerin yapımında kullandığı 5 makinesi vardır. Aşağıdaki

Detaylı

(AYIRIM) DENLİ. Emre KUZUGÜDENL. Doç.Dr.Serdar CARUS

(AYIRIM) DENLİ. Emre KUZUGÜDENL. Doç.Dr.Serdar CARUS DİSKRİMİNANT ANALİZİ (AYIRIM) Emre KUZUGÜDENL DENLİ Doç.Dr.Serdar CARUS Bu analiz ile; Bir bireyin hangi gruptan geldiği (p değişkeni kullanarak, bireyi uygun bir gruba atar ) Her bir değişkenin atama

Detaylı

Özyineleme (Recursion)

Özyineleme (Recursion) C PROGRAMLAMA Özyineleme (Recursion) Bir fonksiyonun kendisini çağırarak çözüme gitmesine özyineleme (recursion), böyle çalışan fonksiyonlara da özyinelemeli (recursive) fonksiyonlar denilir. Özyineleme,

Detaylı

Doğrusal olmayan programlama. Suat ATAN

Doğrusal olmayan programlama. Suat ATAN Doğrusal olmayan programlama Suat ATAN İçindekiler 1 Giriş 2 2 Optimizasyon 2 3 Doğrusal olmayan programlama 4 3.1 Tek değişkenli fonksiyonun optimumluk şartları.................. 6 3.2 Çok Değişkenli

Detaylı

fonksiyonu aralığında sürekli bir fonksiyon ve için ise olur. Eğer bu aralıktaki bütün x ler için ise bu fonksiyonun noktasında bir minimumu vardır.

fonksiyonu aralığında sürekli bir fonksiyon ve için ise olur. Eğer bu aralıktaki bütün x ler için ise bu fonksiyonun noktasında bir minimumu vardır. TÜREV UYGULAMALARI Bölüm içinde maksimum, minimum, artan ve azalan fonksiyonlar, büküm noktası, teğet, normal ve belirsizliğin türev yardımıyla giderilmesi işlenmektedir. 11.1 Maksimum ve Minimum (Ekstremum)

Detaylı

Ş İ ç İ İ Ş ç ç ç ç Ö İ ç İ Ö İ ç ğ ç ç ç ç ç ğ Ö ç ğ ç ç ç ğ ç ç ç ğ ç ç ğ ğ ç ç ç ğ ç ğ ğ ç İ Ç İ ğ ç ç ç ğ Ç ğ ç ç ç ğ Ö ğ İğ ç ğ ğ ç ğ ğ ğ ğ ç ğ ğ ğ ğ ğ ğ ğ ğ ç ğ ç ç ç ç ç ğ ç ç ç ğ ç ç ğ ç ğ ğ ğ

Detaylı

ç ç ç ç ç İ ç ç ç ç ç ç

ç ç ç ç ç İ ç ç ç ç ç ç İ Ğİ Ş «Ü İ Ç Ç İ İ Ş İ ç İ ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç İ ç ç ç ç ç ç ç ç Ü Ö ç ç İ ç ç ç ç ç İ İ ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç Ç ç ç ç ç ç ç ç İç ç ç ç ç

Detaylı

bir sonraki deneme değerinin tayin edilmesi için fonksiyonun X e göre türevi kullanılır. Aşağıdaki şekil X e karşı f(x) i göstermektedir.

bir sonraki deneme değerinin tayin edilmesi için fonksiyonun X e göre türevi kullanılır. Aşağıdaki şekil X e karşı f(x) i göstermektedir. 37 Newton-Raphson Yöntemi İle Çözüme Ulaşma Bu yöntem özellikle fonksiyonun türevinin analitik olarak elde edilebildiği durumlarda kullanışlıdır. Fonksiyonel ilişkinin ifade edilmesinde daha uygun bir

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

GAMS Kullanım Notları

GAMS Kullanım Notları GAMS Kullanım Notları Dilay Çelebi İstanbul Teknik Üniversitesi 1. Giriş Aşağıdaki DP problemini ele aldığımızı varsayalım. Z min = 4x 1 + 2x 2 + 33x 3 (1) x 1 4x 2 + x 3 12 (2) 9x 1 + 6x 2 = 15 (3) 5x

Detaylı

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI PROJE ADI: TÜRKİYE DEKİ GELECEKTEKİ DOKTOR İHTİYACINI YÖNEYLEM ARASTIRMASI İLE BELİRLEMEK MEV KOLEJİ BASINKÖY OKULLARI

Detaylı

KOMBİNATORYAL OPTİMİZASYON

KOMBİNATORYAL OPTİMİZASYON KOMBİNATORYAL OPTİMİZASYON İnsanların, daha iyi nasıl olabilir ya da nasıl elde edilebilir?, sorusuna cevap aramaları, teknolojinin gelişmesini sağlayan en önemli etken olmuştur. Gerçek hayatı daha kolay

Detaylı

GÜZ DÖNEMİ ARASINAV SORULARI. 1. Sayısal çözümleme ve fonksiyonu tanımlayarak kullanıldığı alanları kısaca açıklayınız?

GÜZ DÖNEMİ ARASINAV SORULARI. 1. Sayısal çözümleme ve fonksiyonu tanımlayarak kullanıldığı alanları kısaca açıklayınız? MAK 05 SAYISAL ÇÖZÜMLEME S Ü L E Y M A N D E M Ġ R E L Ü N Ġ V E R S Ġ T E S Ġ M Ü H E N D Ġ S L Ġ K F A K Ü L T E S Ġ M A K Ġ N A M Ü H E N D Ġ S L Ġ Ğ Ġ B Ö L Ü M Ü I. öğretim II. öğretim A şubesi B

Detaylı

END331 YÖNEYLEM ARAŞTIRMASI I DERS NOTLARI

END331 YÖNEYLEM ARAŞTIRMASI I DERS NOTLARI END33 YÖNEYLEM ARAŞTIRMASI I DERS NOTLARI İKİNCİ BÖLÜM (208-209) Dr. Y. İlker Topcu & Dr. Özgür Kabak Teşekkür: Prof. W.L. Winston'ın "Operations Research: Applications and Algorithms" kitabı ile Prof.

Detaylı

KONU 13: GENEL UYGULAMA

KONU 13: GENEL UYGULAMA KONU : GENEL UYGULAMA Kahve üretimi apan bir şirket anı zamanda cezve ve fincan üretmektedir. Üretilen cezveler ve fincanlar boama kısmında işlem görmekte ve arıca fincanlar kaplanmaktadır. Bir cezve apımı

Detaylı

GEOMETRİK PROGRAMLAMADA GEOMETRİK-HARMONİK ORTALAMA EŞİTSİZLİGİNİN ROLÜ VE FONKSİYONEL

GEOMETRİK PROGRAMLAMADA GEOMETRİK-HARMONİK ORTALAMA EŞİTSİZLİGİNİN ROLÜ VE FONKSİYONEL M.Ü.İ.İ.B.F. Dergisi Prof.Dr.Kenan ERKURAL'a Armağan Yıl:J998, Cilt: XIV, Say. ı:2, s.53-59. GEOMETRİK PROGRAMLAMADA GEOMETRİK-HARMONİK ORTALAMA EŞİTSİZLİGİNİN ROLÜ VE FONKSİYONEL 1-GİRİŞ DÖNÜŞÜMLER Tuncay

Detaylı

Yöneylem Araştırması III

Yöneylem Araştırması III Yöneylem Araştırması III Doç. Dr. Hakan ÇERÇİOĞLU cercioglu@gazi.edu.tr Yöneylem Araştırması III 1 BÖLÜM I: Hedef Programlama HEDEF PROGRAMLAMAYA GİRİŞ ÖNCELİKSİZ HEDEF PROGRAMLAMA ÖNCELİKLİ HEDEF PROGRAMLAMA

Detaylı