TAMSAYILI DOĞRUSAL PROGRAMLAMA PROBLEMLERİNİN ÇÖZÜMÜNDE LAGRANGE YÖNTEMİ (LAGRANGE RELAXATION)

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "TAMSAYILI DOĞRUSAL PROGRAMLAMA PROBLEMLERİNİN ÇÖZÜMÜNDE LAGRANGE YÖNTEMİ (LAGRANGE RELAXATION)"

Transkript

1 î. Ü. İşletme Fakültesi Dergisi, C: 23, S; 1, j Nisan TAMSAYILI DOĞRUSAL PROGRAMLAMA PROBLEMLERİNİN ÇÖZÜMÜNDE LAGRANGE YÖNTEMİ (LAGRANGE RELAXATION) Dr. Mehpare TİMOR 1- Giriş Optimizasyon problemleri genel olarak iki kategori içinde ele alınmaktadır. Problemlerin bir kısmı "kolay" olarak adlandırılan ve çözüm süreleri polinom zamanla sınırlanan problemler olup, geriye kalan büyük bir grup "zor" olarak adlandırılan ve üstel zaman gerektiren problemlerden oluşmaktadır. Tamsayılı programlama problemlerinin büyük bir 1 kısmı zor olarak adlandırılan ikinci grup içinde yer almaktadır. Lagrange yöntemi ile problem çözme yaklaşımının 1970'te Held-Karp'm birlikte geliştirdikleri Minimum Maliyetli Ağaç-Gezen Satıcı Problemi uygulaması ile doğduğu kabul edilmektedir. 1970'ten itibaren birçok çalışma 2 v e 3 gerçekleştirilmiş olup, bu çalışmalarda optimizasyon problemlerinin büyük bir kısmı için, problemi güçleştiren kısıtların çok az sayıda kısıttan ibaret olduğu, bu kısıtların bulunmaması halinde problemin kolayca çözülebilen problemler sınıfına girebileceği ifade edilmiştir. 1974'teki çalış- (1) Polinom ve üstel zamanlı problemler hakkında ayrıntılı bilgi içinbkz. GAREY M.R., JOHNSON D.S., Computers and Tractability-A Guide to the Theory of NP- Completeness, (USA: Bell Teleph.Lab.Inc., 1979} (2) HELD M., KARP R.M., "The Traveling Salesman Problem and Minimum Spanning Trees", Operations Research, (V. 18, 1970), SS (3) HELD M., KARP R.M., "The Traveling Salesman Problem and Minimum Spanning Trees, Part-H", Mathematical Prograraıning, (V.l, 1971), SS

2 186 /, Ü. İşletme Fakültesi Dergisi, C:23, S: 1, / Nisan 1994 masında Geoffrion, kısıtların dualize edilmesi olarak ifade edilen yönteme Lagrange Yöntemi (Lagrange Relaxation) adını vermiştir. 4 Lagrange Yöntemi ile karmaşık olan orjinal problemi çözümü daha kolay olan bir probleme indirgenmektedir. 2- Lagrange Yönteminin Temel Yapısı Bir doğrusal programlama probleminin modelinde yer alan karmaşık kısıtların, kısıtlar arasından çıkartılarak amaç fonksiyonuna ilave edilmesi tekniği Lagrange Yöntemi (Lagrange Relaxation) olarak adlandırılmaktadır. 5 Karmaşık kısıtlardan arındırılmış olan yeni problemin çözümü, orjinal probleme göre daha kolaydır. Tamsayılı programlama problemlerinde (daha ziyade sıfır-bir programlama problemlerinde) çözümü güçleştiren karmaşık kısıtlar çıkarıldığında, kalan kısıtlar ile problemi çözmek, problemin orjinal halini çözmekten daha kolaydır. 6 Karmaşık bir tamsayılı doğrusal programlama problemi aşağıdaki şekilde formüle edilmiş olsun; Z: min cx Ax=b Dx<e e>0 ve tamsayı x, n değişkenden, b, m kısıttan ve e, k kısıttan oluşmaktadır. (P) problemine ait kısıtlar; Ax~b ve Dx<e olmak üzere iki ayrı grup halinde ele alınmaktadır. (P) probleminin çözümünü güçleştiren kısıtlar grubu, Ax=b şeklindeki ilk kısıt grubudur. Çözümü kol aylaş tır malt için probleme Lagrange Yöntemi uygulanırsa; Zrj(u): min cx+u (Ax-b) Dx<e > < ") LR x>0 ve tamsayı J elde edilir. u=(u1?, ıv) vektörü ile ifade edilmek üzere, u Lagrange çarpanları olarak adlandırılmaktadır. 7 (LRu) problemini çözmek, (P) probleminin çözümüne göre "göreceli olarak" daha kolaydır. (4) GEOFFRİON A.M., "Lagrangian Relaxation and ils Uses in Integer Programın i ng", MathematicalProgramming Study, (V ), SS (5) N13MHAUSER G.L., WOLS13Y L.A., Integer and Combinatorial Optimization, (N.York: J. Wiley & Sons, Inc., 1988), S (6) îbid., S (7) FISHER M.L., "The Lağrangion Relaxation Method for Solving Integer Prograınming Problems", Management Science, (USA: V, 27, No: 1, Jan. 1981), S. 2.

3 I. U. işletme Fakültesi Dergisi, C: 23, S: 1, / Nisan ZD(u)<Z olduğu bilindiğinden, x* (P) probleminin optimum çözümü olmak üzere, Zrj(u)<cx*+u(Ax*-b)=Z şeklinde ifade edilirse, bu eşitsizlikten yola çıkılarak, Z=cx*, Ax*-b=0 olduğu ifade edilebilir. Problemdeki Ax=b eşitliği Ax<b ile değiştirilirse, u>0 için; ZD(u) < cx*+u(ax*-b)<z elde edilir. Z=cx*, u>0 ve Ax*-b<0 olmalıdır. ZD(u)=Z eşitliğini sağlayan u değerlerinin tespit edilmesi her zaman mümkün olmamaktadır. Bazı problem Örneklerinde ZD(u)=Z şartının sağlandığı görülmekte ise de bu tür örneklerle her zaman karşılaşılamamaktadır. (P) problemi için uygun çözüm değerleri üretebilmek için, (LRJ'nun uygun çözüm civarındaki değerlerinden yararlanılmaktadır. Tamsayılı doğrusal programlama problemlerinin Özel bir şekli olan sıfır-bir programlama problemi için genel formülasyon; Z: min cx Ax<b x=(0 veya 1) şeklinde verilmiş olsun. Problemdeki Ax<b kısıtı, u ile çarpılarak amaç fonksiyonuna ilave edilirse; LRu=cx-ı-u (Ax-b)~(c+uA)x-ub x=(0 veya 1) elde edilir. r 0,c+ua>0 x = < 0 veya 1, c-f-ua=0 V 1,c+ua<0 alınarak LI^ problemine ait x değerleri tespit edilmeye çalışılır. 8 Tamsayılı doğrusal programlama problemi olan sıfır-bir programlama problemlerinin en iyi örneğini atama problemi oluşturmaktadır: (8) SHAPIRO J.F., "A Survey of Lagrangean Techmques for Discrete Optinıizatioıı", Annals of Discrete Matkematics, {5, 1979), SS

4 188 /. Ü. İşletme Fakültesi Dergisi, C:23, S: 1, / Nisan 1994 m n Z: min X X Xjj i=l j=l m i=l ıı (j=l,...,n) X aijxij<bi (i=l,...,m) xij=(0 veya 1) Yukarıda tanımlanan atama probleminde, u>0 olmak üzere ilk kısıt dualize edilirse; m n n ra Xa i jx j<b i (i^l,...,m) xy = (0 veya 1) elde edilir. Amaç fonksiyonu yeniden düzenlenirse; m n ıı ZD1(u): min X X (Cjj-ru,-) x i r X u elde edilir. Aynı atama probleminde, ilk kısıt yerine ikinci kısıt dualize edilerek problemin yeni şekli aşağıdaki şekilde ifade edilebilmektedir; m n m n ZD2(v): min X ey xy + Xvı ( Sa^ s» - bi) ı=l j=l i=l j=l m X Xij = 1 (j=l,...,n) Xjj=(0 veya 1) Amaç fonksiyonu yeniden düzenlenirse; ura m ZD2(V): min X ( S (c-y + vs a^) x«) - Xv, b; elde edilecektir. Farklı kısıtlar dualize edilebildiğinden, Lagrange yöntemi için sırasıyla aşağıdaki soruların cevaplandırılması gerekmektedir: Z problemi için birbirinden farklı dualizasyonlar mümkünse bunlardan hangisi tercih edilmelidir? Farklı kısıtların dualize edilebilmesi halinde farklı Lagrange problemleri elde edildiğinden, hangi problem ile daha iyi sınır değerleri elde edilebiliyor ise o model tercih edilmelidir. Ancak bu noktada dikkat edilmesi gereken husus, daha iyi sınır değerleri üreten problemin çözümünün daha uzun süre gerektirdiği, bu nedenle iyi sınır değerleri ile hesaplama süresi arasında bir tercih yapılması gerekeceğidir. 9 (9) FISHER, op.cit, S. 12.

5 /. Ü. İşletme Fakültesi Dergisi, C: 23, S: 1, / Nisan Lagrange çarpanları olarak adlandırılan parametreler için (u veya v) uygun değerler ne şekilde tespit edilebilir? Lagrange çarpanlarının tespiti için birden fazla yöntem geliştirilmiş olup,bu yöntemler üçüncü bölüm içinde ele alınmaktadır. Orjinal probleme (P problemine) uygun çözüm değerleri üretmek için dualize edilmiş olan problemden (LRu'dan) ne şekilde yararlanılabilir? Orjinal problemdeki karmaşık kısıtlar amaç fonksiyonuna ilave edildiğinden, elde edilen Lagrange probleminin çözümü, orjinal problemin optimum değeri için bir sınır değeri (minimizasyon problemleri için bir alt sınır) oluşturmaktadır. B u nedenle Lagrange problemleri esas problem için sınır değerleri üretmede kullanılmaktadır. Lagrange Yöntemi ile birlikte çalışan Sezgisel Yöntem kullanılarak, uygulanan çözüm yönteminin her aşamasında orjinal problem için (Problem-P) bir uygun çözüm değeri üretilmeye çalışılmaktadır. 10 Lagrange Yöntemi ile problem çözümünün sonunda, iki çözüm değeri arasında Dual Aralığı (Duality Gap) olarak adlandırılan bir fark kalabilmektedir. Dual aralığının küçük olması istenmekle birlikte, aralığın aldığı değerin problemin güçlüğünün göstergesi olduğu bilindiğinden iki çözüm arasıda fark (dual arahğı)kalmasına izin verilmektedir Lagrange Problemindeki Çarpanların Belirlenmesi Optimizasyon problemlerinde, sinirli sayıdaki kısıtm son derece karmaşık olması çözümü zorlaştırmaya yetmektedir. Lagrange Yöntemi ile, karmaşık olarak adlandırılan kısıtların dualize edilmesi sonucu elde edilen problemin çözümü orijinal probleme göre göreceli olarak daha kolaydır. Yeni problemin optimum çözüm değeri, primal problemin optimum değerine bir sınır teşkil etmektedir. Lagrange yöntemi, bu noktada orjinal problemi sağlamada kullanılmaktadır. Lagrange çarpanlarının belirlenmesi için üç farklı yaklaşım geliştirilmiştir. 1) Aşamalı Optimizasyon Yöntemi (Subgradient Optimization), 2) Simpleks yöntem esasları uyarınca çalışan kolon üretme tekniği (Boxstep Method) 3) Çarpan Ayarlama Yöntemi (Multiplier Adjustment Method). ' (10) CUREENT J., PIRKUL H., ROLLAND E., "Efficient Algorithms for Solvirtg The Shortest Coverhıg Path Problems," The Ohio State University Working Paper, WPS 90-56, 1990, S. 18. (11) GONDRANM., MINOUX M., VAJDA S., Graphs and Algorithms, (New York: John Wüey & Sons, Inc., 1990), SS

6 190 /. Ü. İşletme Fakültesi Dergisi, C:23, S: 1, / Nisan Aşamalı Optimizasyon Yöntemi (Subgradient Optimization) Verilen bir doğrusal programlama probleminden Lagrange yöntemi uygulanarak elde edilen Lagrange problemi konkav ise her yerel optimum aynı zamanda bir global optimumdur. Zrj(u) her noktada türevi alınamayan bir fonksiyon olduğundan, klasik-doğrusal olmayan programlamaya ait yöntemler (gradient yöntem) uygulanamaz. Ancak, genel gradient yöntemden yola çıkılarak, her aşamada hareket yönünü (gradient'ı) belirleyecek bir yöntem geliştirilmiştir. Aşamalı Optimizasyon Yöntemi (Subgradient Optimization) olarak adlandırılan bu yöntemin adımları aşağıda tanımlanmaktadır: Başlangıç aşaması için bir x değeri seçilir, iterasyon sayısı başlangıç için k=l'dir. 2- ZD(u) değeri hesaplanır, bir subgradient (st) seçilir, eğer Sk=0 ise bulunan çözüm optimumdur, aksi takdirde; 3- x k + 1 =x k +tksk değeri hesaplanır, dlt (Z* - Z) Z*: En iyi uygun çözüm değeri Z: k. iterasyonda hesaplanan sınır (bound) değeri dk=2 (0<dk<2 olup, başlangıçta 2 seçilen d^ değeri ilerleme kaydedilmeyen 15 iterasyon sonunda ilciye bölünmektedir. ) k=k+l alınıp ikinci aşamaya dönerek işlemlere devam edilir. I I. I i: Euclidien normu temsil etmektedir. 14 (12) İbid., SS (13) GAVISH B., PİRKUL H., "Efficient Algorithms For Solving Multiconstraint Zero-One Knapsack Problems to Optimaİity", Mathematical Programmig, (V. 31, 1985), S. 81. (14) VYTODER D. V., Advanced Calculus, (New Delhi: Prentice-Hall of India Private Ltd, 1968), S. 314.

7 /. U. işletme Fakültesi Dergisi, C: 23, S: 1, / Nisan Z* bir uygun çözüm değeri olup, primal probleme sezgisel yöntem uygulanmak suretiyle hesaplanmaktadır. 15 k=<*> için tk değerinin 0 olduğu, S tk = olduğu gösterilmiştir. 16 k=l Aşamalı optimizasyon algoritması, normalde sk=0 olduğunda sona ermelidir. Ancak, uygulamada bu durum çok nadir olarak ortaya çıktığından, algoritma Önceden belirtilen sabit sayıdaki iterasyondan sonra sona erdirilmektedir. 17 (Problemin güçlük derecesine göre, bazı kaynaklara göre işlemlerin 200 iterasyona 18, bazı kaynaklara göre ise 500 iterasyona kadar sürdürülmesi gerekmektedir. 19 ) Z* uygun çözüm değeri ile Z sınır değeri arasında, önceden belirlenmiş olan belirli bir aralık (gap) kaldığında algoritma sona erdirilebilmektedir. Bu aralık yüzde olarak aşağıdaki formüle göre hesaplanmaktadır. 20 (Z* - Z) Aralık (%)= * 100 Z 3.2. Boxstep Yöntemi (Bosstep Method) Lagrange probleminin çözümüne yönelik olarak geliştirilen bir diğer yöntem de, Marsten-Hogan-Blankenship tarafından primal-dual simpleks yöntemin değiştirilmesi suretiyle uygulanmış olan Boxstep Yöntemidir (Boxstep method). Yöntem, başlangıçta bir u değeri ile başlayıp, ardışık olarak u değerleri üretilmesi şeklinde çalışmaktadır. u değerinin hesaplanabilmesi için dual problem aşağıda belirtilen ilave kısıt kul k k + 1 lanılarak çözülmektedir.- 23 (15) PİRKUL H., NARASİMHAN S., DE P., "Locating Concentrators for Primary and Secondary Coverage in a Computer Communications Network", IEEE Transactions, (V. 36, N. 4, Aprü 1988), S (16) CONDRAN, MİNOUX, VAJDA, op. cit., S (17) NEMHAUSER, WOLSEY, op. cit., S. 46. (18) CURRENT, PİRKUL, ROLAND, op. cil.. S, 15. (19) GAVISH B., PİRKUL H., "Algorithms for the Multi-Resource Gencralized Assignmcnt Problem", Management Science, (USA: V. 37, No: 6, June 1991), S (20) PİRKUL, NARASİMHAN, DE, op. cit., S (21) HU T.C., Integer Programming and Network PIows, {USA: Addison-Wesley Publishing Com. Inc., 1970), SS (22) MARSTEN R.E., HOGAN W.W., BLANKENSHIP J.W., "The Boxstep Method for Large-Scale OptimizaLion", Operations Research, (V. 23, No. 3, May-June 1975), SS (23) FISHER, op.cit., S. 8.

8 192 /. Ü. İşletme Fakültesi Dergisi, C:23, S: 1, / Nisan 1994 I urui I < 8 (8>0 olmak üzere) problemin optimum çözümünü temsil etmek üzere, bütün (i) değerleri için; I Ujk-u k I < 5 ise Ui k optimaldir. Aksi takdirde, u k+1 =u k +tk (u k -u k )'dan u k + 1 değerleri hesaplanır. Boxstep yöntemi, çözümü güç olan tek bir problemi, sonlu, ardışık basit problemlere dönüştürme yöntemi olarak tanımlanmaktadır. Boxstep Yöntemi, simpleks esaslı bir yöntem olup, simpleks esaslı yöntemlerin programlanması güçtür. Ayrıca, Boxstep Yöntemi hesaplama süresi açısından da aşamalı optimizasyon yöntemi kadar iyi performans göstermediğinden uygulamada yaygın biçimde kullanılmamaktadır Çarpan Ayarlama Yöntemi (Multiplier Adjustment Method) Lagrange Yöntemiyle ele alman problemleri çözme yaklaşımlarından olan Çarpan Ayarlama Yöntemi (Multiplier Adjustment Method), ilk olarak 1978'de Erlenkotter'ın çalışması ile ortaya konmuştur 24. Daha sonra yöntem çeşitli problemleri çözmede kullanılmıştır. Bu konudaki en iyi örneklerden biri Fisher-Jaikumar-Wassenhoveın birlikte gerçekleştirdikleri çalışmadır 25. Çarpan ayarlama yönteminin esasları aşağıda verilmiştir: tk pozitif bir sayı ve d^ hareket yönü olmak üzere, u değerleri bir Önceki u değerleri kullanılarak aşağıdaki formül yardımıyla ardışık olarak hesaplanmaktadır 26 : u W +t kd k + k k dk'in belirlenebilmesi için, dual problem esas alınarak, sonlu ve küçük bir set olmak üzere hareket yönleri tayin edilir. Yönler değiştirilirken, bir aşamada sadece bir veya iki çarpan değiştirilmektedir. Daha 27 (24) ERLENKOTTER D., "A Dual-Based Procedure for Uncapacitated Facility Location", Operations Research, (V. 26, No. 6, November-December 1978), SS (25) FTSHER M.L., JA1KUMAR R., WASSENHOVE N.V., "A Multiplier Adjustment Method for The Generalized Assingmeııt Problem", Management Science, (V. 32, N. 9, September 1986), SS (26) FISHER, op.cit., S. 9. (27) GAVISH, PİRKUL, op.cit., S. 699.

9 /. Ü. İşletme Fakültesi Dergisi, C: 23, S: 1, / Nisan sonra sırasıyla baştan sona incelenen bütün yönler için, dk ya dual değerinde artış sağlayan önceki yönün aynı olarak kalmakta veya en fazla değişme sağlayan yön seçilmektedir. İlerleme kaydedilebilecek bir yön tayin edilemediğinde algortima sona erdirilmektedir. Aşamalı optimizasyon yöntemi ve Çarpan ayarlama yöntemlerinin her ikisi de denenmiş oldukları problemlerde oldukça iyi sonuç vermektedir. Aşamalı optimizasyon yöntemi, göreceli olarak daha fazla zaman gerektirmesine karşılık oldukça iyi sınır değerleri üretmektedir. Aşamalı optimizasyon yöntemi anlaşılması ve uygulanmasındaki kolaylık açısmdanda sıklıkla kullanılmaktadır Sonuç Optimizasyon problemlerinde, problemin yapısı veya ölçeği nedeniyle çözümü zor olan problemler için Lagrange Yönteminin kullanılması tavsiye edilmektedir. Kısıtların dualize edilerek amaç fonksiyonuna ilave edildiği yöntem ile, çözümü zor olan orjinal problem için bir sınır değeri üretilmektedir. Aynı zamanda orjinal problem için her problemin yapısına bağlı olarak tasarlanan bir Sezgisel Yöntem kullanılarak uygun çözüm değerleri üretilmeye çalışılmaktadır. Lagrange Yöntemi ile birlikte çalışan Sezgisel Yöntemle uygun çözüm değerleri üretilmeye çalışılırken Aşamalı Optimizasyon, Boxstep veya Çarpan Ayarlama yöntemlerinden biri kullanılmaktadır. Belirli sayıdaki iterasyon sonunda sınır ve uygun çözüm değerleri arasında bir fark (gap) kalabilmektedir. Optimum çözüm değerinin bu aralık içinde yer aldığı bilindiğinden, çözümü zor olan bir optimizasyon problemi için uygun bir hesaplama zamanı içinde optimum olmasa da optimumduk civarında bir çözüm değerinde ulaşılması mümkün olabilmektedir. (28) GAVISH, PİRKUL, "Efficient Algorithnıs For Solving Multiconstraint Zero-One Knapsack Problems to Optimality", S. 81.

28 C j -Z j /2 0

28 C j -Z j /2 0 3.2.6. Dual Problem ve Ekonomik Yorumu Primal Model Z maks. = 4X 1 + 5X 2 (kar, pb/gün) X 1 + 2X 2 10 6X 1 + 6X 2 36 8X 1 + 4X 2 40 (işgücü, saat/gün) (Hammadde1, kg/gün) (Hammadde2, kg/gün) 4 5 0 0 0

Detaylı

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY)

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) 1 DOĞRUSAL PROGRAMLAMADA İKİLİK (DUALİTE-DUALITY) Doğrusal programlama modelleri olarak adlandırılır. Aynı modelin değişik bir düzende oluşturulmasıyla Dual (İkilik)

Detaylı

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Dr. Özgür Kabak TP Çözümü TP problemlerinin çözümü için başlıca iki yaklaşım vardır kesme düzlemleri (cutting planes) dal sınır (branch and bound) tüm yaklaşımlar tekrarlı

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Quadratic Programming Bir karesel programlama modeli aşağıdaki gibi tanımlanır. Amaç fonksiyonu: Maks.(veya Min.) z

Detaylı

İleri Yöneylem Araştırması Uygulamaları Tam Sayılı Programlama

İleri Yöneylem Araştırması Uygulamaları Tam Sayılı Programlama İleri Yöneylem Araştırması Uygulamaları Tam Sayılı Programlama Dr. Özgür Kabak 2016-2017 Güz } Gerçek hayattaki bir çok problem } tam sayılı değişkenlerin ve } doğrusal kısıt ve amaç fonksiyonları ile

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Bu bölümde eşitsizlik kısıtlarına bağlı bir doğrusal olmayan kısıta sahip problemin belirlenen stasyoner noktaları

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

SİMPLEKS ALGORİTMASI Yapay değişken kullanımı

SİMPLEKS ALGORİTMASI Yapay değişken kullanımı Fen Bilimleri Enstitüsü Endüstri Mühendisliği Anabilim Dalı ENM53 Doğrusal Programlamada İleri Teknikler SİMPLEKS ALGORİTMASI Yapay değişken kullanımı Hazırlayan: Doç. Dr. Nil ARAS, 6 AÇIKLAMA Bu sununun

Detaylı

Simpleks Yöntemde Duyarlılık Analizleri

Simpleks Yöntemde Duyarlılık Analizleri 3.2.4. Simpleks Yöntemde Duyarlılık Analizleri Duyarlılık analizinde doğrusal programlama modelinin parametrelerindeki değişikliklerinin optimal çözüm üzerindeki etkileri araştırılmaktadır. Herhangi bir

Detaylı

T.C. DOKUZ EYLÜL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI EKONOMETRİ DOKTORA PROGRAMI

T.C. DOKUZ EYLÜL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI EKONOMETRİ DOKTORA PROGRAMI T.C. DOKUZ EYLÜL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI EKONOMETRİ DOKTORA PROGRAMI Genişletilmiş Lagrange Yöntemi Hazırlayan: Nicat GASIM Öğretim Üyesi Prof. Dr. İpek Deveci KARAKOÇ

Detaylı

Başlangıç Temel Programının Bilinmemesi Durumu

Başlangıç Temel Programının Bilinmemesi Durumu aşlangıç Temel Programının ilinmemesi Durumu İlgili kısıtlarda şartlar ( ) ise bunlara gevşek (slack) değişkenler eklenerek eşitliklere dönüştürülmektedir. Ancak sınırlayıcı şartlar ( ) veya ( = ) olduğu

Detaylı

DERS BİLGİLERİ. Ders Kodu Yarıyıl T+U Saat Kredi AKTS KOMBİNATORİK ENİYİLEME ESYE

DERS BİLGİLERİ. Ders Kodu Yarıyıl T+U Saat Kredi AKTS KOMBİNATORİK ENİYİLEME ESYE DERS BİLGİLERİ Ders Kodu Yarıyıl T+U Saat Kredi AKTS KOMBİNATORİK ENİYİLEME ESYE621 3+0 3 7 Ön Koşul Dersleri ISE222 veya eşdeğer bir optimizasyona giriş dersi Dersin Dili Dersin Seviyesi Dersin Türü İngilizce

Detaylı

EM302 Yöneylem Araştırması 2 Çok değişkenli DOP ların çözümü. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Çok değişkenli DOP ların çözümü. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Çok değişkenli DOP ların çözümü Dr. Özgür Kabak Doğrusal olmayan programlama Tek değişkenli DOP ların çözümü Uç noktaların analizi Altın kesit Araması Çok değişkenli DOP ların

Detaylı

KOMBİNATORYAL OPTİMİZASYON

KOMBİNATORYAL OPTİMİZASYON KOMBİNATORYAL OPTİMİZASYON İnsanların, daha iyi nasıl olabilir ya da nasıl elde edilebilir?, sorusuna cevap aramaları, teknolojinin gelişmesini sağlayan en önemli etken olmuştur. Gerçek hayatı daha kolay

Detaylı

KONU 4: DOĞRUSAL PROGRAMLAMA MODELİ İÇİN ÇÖZÜM YÖNTEMLERİ I

KONU 4: DOĞRUSAL PROGRAMLAMA MODELİ İÇİN ÇÖZÜM YÖNTEMLERİ I KONU 4: DOĞRUSAL PROGRAMLAMA MODELİ İÇİN ÇÖZÜM YÖNTEMLERİ I 4.1. Dışbükeylik ve Uç Nokta Bir d.p.p. de model kısıtlarını aynı anda sağlayan X X X karar değişkenleri... n vektörüne çözüm denir. Eğer bu

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Tabu Arama (Tabu Search) Doç.Dr. M. Ali Akcayol Tabu Arama 1986 yılında Glover tarafından geliştirilmiştir. Lokal minimum u elimine edebilir ve global minimum u bulur. Değerlendirme

Detaylı

Maksimizasyon s.t. İşçilik, saat) (Kil, kg)

Maksimizasyon s.t. İşçilik, saat) (Kil, kg) Simplex ile Çözüm Yöntemi Doç. Dr. Fazıl GÖKGÖZ 1 Doğrusal Programlama Modeli Maksimizasyon s.t. İşçilik, saat) (Kil, kg) 2 Doç. Dr. Fazıl GÖKGÖZ Yrd.Doç. Dr. Fazıl GÖKGÖZ 1 Modelin Standard Hali Maksimizasyon

Detaylı

Yöneylem Araştırması II

Yöneylem Araştırması II Yöneylem Araştırması II Öğr. Gör. Dr. Hakan ÇERÇİOĞLU cercioglu@gazi.edu.tr BÖLÜM I: Doğrusal Programlama Tekrarı Doğrusal Programlama Tanımı Doğrusal Programlama Varsayımları Grafik Çözüm Metodu Simpleks

Detaylı

Genel Graf Üzerinde Mutlak 1-merkez

Genel Graf Üzerinde Mutlak 1-merkez Genel Graf Üzerinde Mutlak 1-merkez Çözüm yöntemine geçmeden önce bazı tanımlara ihtiyaç vardır. Dikkate alınan G grafındaki düğümleri 1 den n e kadar numaralandırın. Uzunluğu a(i, j)>0 olarak verilen

Detaylı

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL)

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL) DOĞRUSAL PROGRAMLAMA (GENEL) Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik biçiminde verilmesi durumunda amaca

Detaylı

Tek Değişkenli Optimizasyon OPTİMİZASYON. Gradient Tabanlı Yöntemler. Bisection (İkiye Bölme) Yöntemi

Tek Değişkenli Optimizasyon OPTİMİZASYON. Gradient Tabanlı Yöntemler. Bisection (İkiye Bölme) Yöntemi OPTİMİZASYON Gerçek hayatta, çok değişkenli optimizasyon problemleri karmaşıktır ve nadir olarak problem tek değişkenli olur. Bununla birlikte, tek değişkenli optimizasyon algoritmaları çok değişkenli

Detaylı

TAMSAYILI PROGRAMLAMA

TAMSAYILI PROGRAMLAMA TAMSAYILI PROGRAMLAMA Doğrusal programlama problemlerinde sık sık çözümün tamsayı olması gereken durumlar ile karşılaşılır. Örneğin ele alınan problem masa, sandalye, otomobil vb. üretimlerinin optimum

Detaylı

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI Hatice YANIKOĞLU a, Ezgi ÖZKARA a, Mehmet YÜCEER a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği

Detaylı

GEOMETRİK PROGRAMLAMADA GEOMETRİK-HARMONİK ORTALAMA EŞİTSİZLİGİNİN ROLÜ VE FONKSİYONEL

GEOMETRİK PROGRAMLAMADA GEOMETRİK-HARMONİK ORTALAMA EŞİTSİZLİGİNİN ROLÜ VE FONKSİYONEL M.Ü.İ.İ.B.F. Dergisi Prof.Dr.Kenan ERKURAL'a Armağan Yıl:J998, Cilt: XIV, Say. ı:2, s.53-59. GEOMETRİK PROGRAMLAMADA GEOMETRİK-HARMONİK ORTALAMA EŞİTSİZLİGİNİN ROLÜ VE FONKSİYONEL 1-GİRİŞ DÖNÜŞÜMLER Tuncay

Detaylı

Türk-Alman Üniversitesi. Ders Bilgi Formu

Türk-Alman Üniversitesi. Ders Bilgi Formu Türk-Alman Üniversitesi Ders Bilgi Formu Dersin Adı Dersin Kodu Dersin Yarıyılı Yöneylem Araştırması WNG301 5 ECTS Ders Uygulama Laboratuar Kredisi (saat/hafta) (saat/hafta) (saat/hafta) 6 2 2 0 Ön Koşullar

Detaylı

METASEZGİSEL YÖNTEMLER

METASEZGİSEL YÖNTEMLER METASEZGİSEL YÖNTEMLER Ara sınav - 30% Ödev (Haftalık) - 20% Final (Proje Sunumu) - 50% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn: Zaman çizelgeleme, en kısa yol bulunması,

Detaylı

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre):

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre): DP SİMPLEKS ÇÖZÜM Simpleks Yöntemi, amaç fonksiyonunu en büyük (maksimum) veya en küçük (minimum) yapacak en iyi çözüme adım adım yaklaşan bir algoritma (hesaplama yöntemi) dir. Bu nedenle, probleme bir

Detaylı

Kısıtsız Optimizasyon OPTİMİZASYON Kısıtsız Optimizasyon

Kısıtsız Optimizasyon OPTİMİZASYON Kısıtsız Optimizasyon OPTİMİZASYON Bu bölümde çok değişkenli kısıtsız optimizasyon problemlerinin çözüm yöntemleri incelenecektir. Bu bölümde anlatılacak yöntemler, kısıtlı optimizasyon problemlerini de çözebilmektedir. Bunun

Detaylı

TESİS YERLEŞİM PROBLEMLERİNE SEZGİSEL METOTLARLA YAKLAŞIM

TESİS YERLEŞİM PROBLEMLERİNE SEZGİSEL METOTLARLA YAKLAŞIM Gazi Üniv. Müh. Mim. Fak. Der. J. Fac. Eng. Arch. Gazi Univ. Cilt 18, No 4, 45-56, 2003 Vol 18, No 4, 45-56, 2003 TESİS YERLEŞİM PROBLEMLERİNE SEZGİSEL METOTLARLA YAKLAŞIM Vecihi YİĞİT ve Orhan TÜRKBEY

Detaylı

TP SORUNLARININ ÇÖZÜMLERİ

TP SORUNLARININ ÇÖZÜMLERİ TP SORUNLARININ ÇÖZÜMLERİ (Bu notlar Doç.Dr. Şule Önsel tarafıdan hazırlanmıştır) TP problemlerinin çözümü için başlıca iki yaklaşım vardır. İlk geliştirilen yöntem kesme düzlemleri (cutting planes) olarak

Detaylı

KISITLI OPTİMİZASYON

KISITLI OPTİMİZASYON KISITLI OPTİMİZASYON SİMPLEKS YÖNTEMİ Simpleks Yöntemi Simpleks yöntemi iteratif bir prosedürü gerektirir. Bu iterasyonlar ile gerçekçi çözümlerin olduğu bölgenin (S) bir köşesinden başlayarak amaç fonksiyonunun

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I 1/19 İçerik Yöneylem Araştırmasının Dalları Kullanım Alanları Yöneylem Araştırmasında Bazı Yöntemler Doğrusal (Lineer) Programlama, Oyun Teorisi, Dinamik Programlama, Tam Sayılı

Detaylı

MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ

MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ SİMPLEKS TABLONUN YORUMU MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ Şu ana kadar verilen bir DP probleminin çözümünü ve çözüm şartlarını inceledik. Eğer orijinal modelin parametrelerinde bazı değişiklikler

Detaylı

Kesikli Programlama (IE 506) Ders Detayları

Kesikli Programlama (IE 506) Ders Detayları Kesikli Programlama (IE 506) Ders Detayları Ders Adı Ders Dönemi Ders Uygulama Laboratuar Kredi AKTS Kodu Saati Saati Saati Kesikli Programlama IE 506 Güz 3 0 0 3 7.5 Ön Koşul Ders(ler)i Dersin Dili Dersin

Detaylı

Yöneylem Araştırması II (IE 323) Ders Detayları

Yöneylem Araştırması II (IE 323) Ders Detayları Yöneylem Araştırması II (IE 323) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Yöneylem Araştırması II IE 323 Güz 3 2 0 4 5.5 Ön Koşul Ders(ler)i IE 222

Detaylı

TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ

TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ Kenan KILIÇASLAN Okul No:1098107203 1. DESTEK VEKTÖR MAKİNELER

Detaylı

Montaj Hatti Tasarımı ve Analizi - 5

Montaj Hatti Tasarımı ve Analizi - 5 Balıkesir Universitesi, Endustri Muhendisligi Bolumu 2017-2018 Bahar Yariyili Montaj Hatti Tasarımı ve Analizi - 5 Yrd. Doç. Dr. Ibrahim Kucukkoc http://ikucukkoc.baun.edu.tr 2 En Erken ve En Gec Istasyon

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: IND 3907

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: IND 3907 Dersi Veren Birim: Endüstri Mühendisliği Dersin Türkçe Adı: MATEMATİKSEL MODELLEME ve UYGULAMALARI Dersin Orjinal Adı: MATHEMATICAL MODELING AND APPLICATIONS Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans,

Detaylı

Üretim Sistemleri (IE 509) Ders Detayları

Üretim Sistemleri (IE 509) Ders Detayları Üretim Sistemleri (IE 509) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Üretim Sistemleri IE 509 Seçmeli 3 0 0 3 7.5 Ön Koşul Ders(ler)i Dersin Dili Dersin

Detaylı

Z c 0 ise, problem için en iyilik koşulları (dual. X b 0 oluyorsa, aynı zamanda primal

Z c 0 ise, problem için en iyilik koşulları (dual. X b 0 oluyorsa, aynı zamanda primal KONU 12: DUAL SİMPLEKS YÖNTEM P: min Z cx AX b X (121) biçiminde tanımlı bir dpp de, B herhangi bir temel olsun Bu temel için, simpleks tabloda tüm temel dışı değişkenlere ilişkin tüm Z c ise, problem

Detaylı

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem 3.2. DP Modellerinin Simpleks Yöntem ile Çözümü 3.2.1. Primal Simpleks Yöntem Grafik çözüm yönteminde gördüğümüz gibi optimal çözüm noktası, her zaman uygun çözüm alanının bir köşe noktası ya da uç noktası

Detaylı

Türk-Alman Üniversitesi İktisadi ve İdari Bilimler Fakültesi İşletme Bölümü Ders Bilgi Formu

Türk-Alman Üniversitesi İktisadi ve İdari Bilimler Fakültesi İşletme Bölümü Ders Bilgi Formu Türk-Alman Üniversitesi İktisadi ve İdari Bilimler Fakültesi İşletme Bölümü Ders Bilgi Formu Dersin Adı Dersin Kodu Dersin Yarıyılı Yöneylem Araştırması BWL315 5 ECTS Ders Uygulama Laboratuar Kredisi (saat/hafta)

Detaylı

Kalkülüs II (MATH 152) Ders Detayları

Kalkülüs II (MATH 152) Ders Detayları Kalkülüs II (MATH 152) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Kalkülüs II MATH 152 Güz 4 2 0 5 7.5 Ön Koşul Ders(ler)i Math 151 Kalkülüs I Dersin

Detaylı

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez Doğrusal Programlama Prof. Dr. Ferit Kemal Sönmez Doğrusal Programlama Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik

Detaylı

OPTİMUM GÜÇ AKIŞININ YAPAY ARI KOLONİSİ İLE SAĞLANMASI

OPTİMUM GÜÇ AKIŞININ YAPAY ARI KOLONİSİ İLE SAĞLANMASI OPTİMUM GÜÇ AKIŞININ YAPAY ARI KOLONİSİ İLE SAĞLANMASI A. Doğan 1 M. Alçı 2 Erciyes Üniversitesi Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü 1 ahmetdogan@erciyes.edu.tr 2 malci@erciyes.edu.tr

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

BİR MONTAJ HATTI ÜRETİM SİSTEMİNDE OPTİMAL İŞGÜCÜ DAĞILIMININ ARENA PROCESS ANALYZER (PAN) VE OPTQUEST KULLANILARAK BELİRLENMESİ

BİR MONTAJ HATTI ÜRETİM SİSTEMİNDE OPTİMAL İŞGÜCÜ DAĞILIMININ ARENA PROCESS ANALYZER (PAN) VE OPTQUEST KULLANILARAK BELİRLENMESİ BİR MONTAJ HATTI ÜRETİM SİSTEMİNDE OPTİMAL İŞGÜCÜ DAĞILIMININ ARENA PROCESS ANALYZER (PAN) VE OPTQUEST KULLANILARAK BELİRLENMESİ Özgür ARMANERİ Dokuz Eylül Üniversitesi Özet Bu çalışmada, bir montaj hattı

Detaylı

YZM 5257 YAPAY ZEKA VE UZMAN SİSTEMLER DERS#6: GENETİK ALGORİTMALAR

YZM 5257 YAPAY ZEKA VE UZMAN SİSTEMLER DERS#6: GENETİK ALGORİTMALAR YZM 5257 YAPAY ZEKA VE UZMAN SİSTEMLER DERS#6: GENETİK ALGORİTMALAR Sınıflandırma Yöntemleri: Karar Ağaçları (Decision Trees) Örnek Tabanlı Yöntemler (Instance Based Methods): k en yakın komşu (k nearest

Detaylı

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER LAGRANGE YÖNTEMİ Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde değişkenler ve kısıtlar genel olarak şeklinde gösterilir. fonksiyonlarının

Detaylı

Ders Kodu Dersin Adı Yarıyıl Teori Uygulama Lab Kredisi AKTS IND 621 Stokastik Süreçler

Ders Kodu Dersin Adı Yarıyıl Teori Uygulama Lab Kredisi AKTS IND 621 Stokastik Süreçler İçerik Ders Kodu Dersin Adı Yarıyıl Teori Uygulama Lab Kredisi AKTS IND 621 Stokastik Süreçler 1 3 0 0 3 8 Ön Koşul Derse Kabul Koşulları Dersin Dili Türü Dersin Düzeyi Dersin Amacı İngilizce Zorunlu Doktora

Detaylı

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 Bölüm 2 DOĞRUSAL PROGRAMLAMA 21 2.1 Doğrusal Programlamanın

Detaylı

KONU 8: SİMPLEKS TABLODA KARŞILAŞILAN BAZI DURUMLAR - II 8.1. İki Evreli Yöntem Standart biçime dönüştürülmüş min /max Z cx (8.1)

KONU 8: SİMPLEKS TABLODA KARŞILAŞILAN BAZI DURUMLAR - II 8.1. İki Evreli Yöntem Standart biçime dönüştürülmüş min /max Z cx (8.1) KONU 8: SİMPLEKS ABLODA KARŞILAŞILAN BAZI DURUMLAR - II 8.. İki Evreli Yöntem Standart biçime dönüştürülmüş min /max Z cx AX b X (8.) biçiminde tanımlı d.p.p. nin en ii çözüm değerinin elde edilmesinde,

Detaylı

YÖNEYLEM ARAŞTIRMASI - II

YÖNEYLEM ARAŞTIRMASI - II YÖNEYLEM ARAŞTIRMASI - II Araş. Gör. Murat SARI 1/35 I Giriş Biri diğerini izleyen ve karşılıklı etkileri olan bir dizi kararın bütünüyle ele alındığı problemler için geliştirilen karar modelleri ve bunların

Detaylı

OPTİMİZASYON TEKNİKLERİ. Kısıtsız Optimizasyon

OPTİMİZASYON TEKNİKLERİ. Kısıtsız Optimizasyon OPTİMİZASYON TEKNİKLERİ Kısıtsız Optimizasyon Giriş Klasik optimizasyon yöntemleri minimum veya maksimum değerlerini bulmak için türev gerektiren ve gerektirmeyen teknikler olarak bilinirler. Bu yöntemler

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 13 Sayı:1 sh.1-8 Ocak 2011

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 13 Sayı:1 sh.1-8 Ocak 2011 DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 13 Sayı:1 sh.1-8 Ocak 011 BİR KAMPÜS AĞINDA ACİL TELEFON MERKEZLERİ YERLEŞTİRİLMESİ PROBLEMİNİN MATEMATİKSEL MODELLEMESİ (MATHEMATICAL MODELLING

Detaylı

Doğrusal Programlamada Grafik Çözüm

Doğrusal Programlamada Grafik Çözüm Doğrusal Programlamada Grafik Çözüm doğrusal programlama PROBLEMİN ÇÖZÜLMESİ (OPTİMUM ÇÖZÜM) Farklı yöntemlerle çözülebilir Grafik çözüm (değişken sayısı 2 veya 3 olabilir) Simpleks çözüm Bilgisayar yazılımlarıyla

Detaylı

Bir Doğrusal Programlama Modelinin Genel Yapısı

Bir Doğrusal Programlama Modelinin Genel Yapısı Bir Doğrusal Programlama Modelinin Genel Yapısı Amaç Fonksiyonu Kısıtlar M i 1 N Z j 1 N j 1 a C j x j ij x j B i Karar Değişkenleri x j Pozitiflik Koşulu x j >= 0 Bu formülde kullanılan matematik notasyonların

Detaylı

10.Hafta Minimum kapsayan ağaçlar Minimum spanning trees (MST)

10.Hafta Minimum kapsayan ağaçlar Minimum spanning trees (MST) 1 10.Hafta Minimum kapsayan ağaçlar Minimum spanning trees (MST) Kapsayan ağaç Spanning Tree (ST) Bir Kapsayan Ağaç (ST); G, grafındaki bir alt graftır ve aşağıdaki özelliklere sahiptir. G grafındaki tüm

Detaylı

TAŞ DOLGU DALGAKIRANLARIN GENETİK ALGORİTMA İLE GÜVENİRLİK ANALİZİ. M. Levent Koç* Can E. Balas**

TAŞ DOLGU DALGAKIRANLARIN GENETİK ALGORİTMA İLE GÜVENİRLİK ANALİZİ. M. Levent Koç* Can E. Balas** TAŞ DOLGU DALGAKIRANLARIN GENETİK ALGORİTMA İLE GÜVENİRLİK ANALİZİ M. Levent Koç* Can E. Balas** (*) Yrd. Doç. Dr., Cumhuriyet Üniversitesi, Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Sivas Tel:

Detaylı

Yöneylem Araştırması I (IE 222) Ders Detayları

Yöneylem Araştırması I (IE 222) Ders Detayları Yöneylem Araştırması I (IE 222) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Yöneylem Araştırması I IE 222 Güz 3 2 0 4 5 Ön Koşul Ders(ler)i Math 275 Doğrusal

Detaylı

BÖLÜM I: Hedef Programlama. Prof.Dr. Bilal TOKLU. HEDEF PROGRAMLAMAYA GİRİŞ HEDEF PROGRAMLAMA MODELLERİNİN ÇÖZÜMÜ

BÖLÜM I: Hedef Programlama. Prof.Dr. Bilal TOKLU. HEDEF PROGRAMLAMAYA GİRİŞ HEDEF PROGRAMLAMA MODELLERİNİN ÇÖZÜMÜ Yöneylem Araştırması III Prof.Dr. Bilal TOKLU btoklu@gazi.edu.tr Yöneylem Araştırması III BÖLÜM I: Hedef Programlama HEDEF PROGRAMLAMAYA GİRİŞ ÖNCELİKSİZ HEDEF PROGRAMLAMA ÖNCELİKLİ HEDEF PROGRAMLAMA HEDEF

Detaylı

Yöneylem Araştırması III

Yöneylem Araştırması III Yöneylem Araştırması III Doç. Dr. Hakan ÇERÇİOĞLU cercioglu@gazi.edu.tr Yöneylem Araştırması III 1 BÖLÜM I: Hedef Programlama HEDEF PROGRAMLAMAYA GİRİŞ ÖNCELİKSİZ HEDEF PROGRAMLAMA ÖNCELİKLİ HEDEF PROGRAMLAMA

Detaylı

Üstel Öğrenme ve Genel Bozulma Etkili Akış Tipi Çizelgeleme Problemi: Maksimum Tamamlanma Zamanı Minimizasyonu

Üstel Öğrenme ve Genel Bozulma Etkili Akış Tipi Çizelgeleme Problemi: Maksimum Tamamlanma Zamanı Minimizasyonu Üstel Öğrenme ve Genel Bozulma Etkili Akış Tipi Çizelgeleme Problemi: Maksimum Tamamlanma Zamanı Minimizasyonu Tamer Eren Kırıkkale Üniversitesi, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü, 71451,

Detaylı

Ulaştırma Problemleri

Ulaştırma Problemleri Ulaştırma Problemleri Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir. Bu modelde, malların kaynaklardan (fabrika gibi )hedeflere (depo gibi) taşınmasıyla ilgilenir. Buradaki amaç

Detaylı

Hızlı Düzey Küme Yöntemine Bağlı Retinal Damar Bölütlemesi. Bekir DİZDAROĞLU. KTÜ Bilgisayar Mühendisliği Bölümü

Hızlı Düzey Küme Yöntemine Bağlı Retinal Damar Bölütlemesi. Bekir DİZDAROĞLU. KTÜ Bilgisayar Mühendisliği Bölümü Bekir DİZDAROĞLU KTÜ Bilgisayar Mühendisliği Bölümü bekir@ktu.edu.tr 1/29 Tıbbi imge bölütleme klasik yaklaşımları a) Piksek tabanlı b) Kenar tabanlı c) Bölge tabanlı d) Watershed (sınır) tabanlı e) Kenar

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

BULANIK AMAÇ KATSAYILI DOĞRUSAL PROGRAMLAMA. Ayşe KURUÜZÜM (*)

BULANIK AMAÇ KATSAYILI DOĞRUSAL PROGRAMLAMA. Ayşe KURUÜZÜM (*) D.E.Ü.İ.İ.B.F. Dergisi Cilt:14, Sayı:1, Yıl:1999, ss:27-36 BULANIK AMAÇ KATSAYILI DOĞRUSAL PROGRAMLAMA Ayşe KURUÜZÜM (*) ÖZET Çalışmada bulanık ( fuzzy ) katsayılı amaç fonksiyonuna sahip doğrusal programlama

Detaylı

Gezgin Satıcı Probleminin Benzetilmiş Tavlama Yöntemiyle Çözümünde Paralel Hesaplamanın Kullanılması

Gezgin Satıcı Probleminin Benzetilmiş Tavlama Yöntemiyle Çözümünde Paralel Hesaplamanın Kullanılması Gezgin Satıcı Probleminin Benzetilmiş Tavlama Yöntemiyle Çözümünde Paralel Hesaplamanın Kullanılması Emrullah SONUÇ1, Baha ŞEN2,Şafak BAYIR3 1 Karabük Üniversitesi, Bilgisayar Mühendisliği Bölümü, Karabük

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1 Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı Mart 2015 0 SORU 1) Bulanık Küme nedir? Bulanık Kümenin (fuzzy

Detaylı

Doğrusal Programlama (IE 502) Ders Detayları

Doğrusal Programlama (IE 502) Ders Detayları Doğrusal Programlama (IE 502) Ders Detayları Ders Adı Ders Dönemi Ders Uygulama Laboratuar Kredi AKTS Kodu Saati Saati Saati Doğrusal Programlama IE 502 Güz 3 0 0 3 7.5 Ön Koşul Ders(ler)i Dersin Dili

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik (Eşitlik Kısıtlı Türevli Yöntem) Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde

Detaylı

ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ YÖNEYLEM ARAŞTIRMASI DERSİ LINDO

ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ YÖNEYLEM ARAŞTIRMASI DERSİ LINDO ÜRİ MÜHİSLİĞİ BÖLÜMÜ YÖNEYLEM ARAŞTIRMASI DERSİ LINDO Hazırlayanlar Prof. Dr. Bilal TOKLU Arş. Gör. Talip KELLEGÖZ KASIM 2004 1. Giriş 1 LINDO (Linear, INteractive, and Discrete Optimizer) doğrusal ve

Detaylı

TİPİK MODELLEME UYGULAMALARI

TİPİK MODELLEME UYGULAMALARI MODELLEME Matematik modelleme yaklaşımı sistemlerin daha iyi anlaşılması, analiz edilmesi ve tasarımının etkin ve ekonomik bir yoludur. Modelleme karmaşık parametrelerin belirlenmesi için iyi tanımlamalara

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 3519

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 3519 Dersi Veren Birim: Endüstri Mühendisliği Dersin Türkçe Adı: YÖNEYLEM ARAŞTIRMASI I Dersin Orjinal Adı: YÖNEYLEM ARAŞTIRMASI I Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu:

Detaylı

PARÇACIK SÜRÜ OPTİMİZASYONU BMÜ-579 METASEZGİSEL YÖNTEMLER YRD. DOÇ. DR. İLHAN AYDIN

PARÇACIK SÜRÜ OPTİMİZASYONU BMÜ-579 METASEZGİSEL YÖNTEMLER YRD. DOÇ. DR. İLHAN AYDIN PARÇACIK SÜRÜ OPTİMİZASYONU BMÜ-579 METASEZGİSEL YÖNTEMLER YRD. DOÇ. DR. İLHAN AYDIN 1995 yılında Dr.Eberhart ve Dr.Kennedy tarafından geliştirilmiş popülasyon temelli sezgisel bir optimizasyon tekniğidir.

Detaylı

LOGİSTİC DAĞILIM VE RANDOM SAYI ÜRETİMİ

LOGİSTİC DAĞILIM VE RANDOM SAYI ÜRETİMİ C.Ü. İktisadi ve İdari Bilimler Dergisi, Cilt 3, Sayı, 9 LOGİSTİC DAĞILIM VE RANDOM SAYI ÜRETİMİ Yalçın KARAGÖZ Cumhuriyet Üniversitesi, İ.İ.B.F. İşletme Bölümü Özet Bu çalışmada logistic dağılım hakkında

Detaylı

ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati Kredi AKTS (T+U+L) ŞEBEKE MODELLERİ EN-413 4/I 3+0+0 3 5 Dersin Dili : İngilizce Dersin Seviyesi : Lisans

Detaylı

Hatalar ve Bilgisayar Aritmetiği

Hatalar ve Bilgisayar Aritmetiği Hatalar ve Bilgisayar Aritmetiği Analitik yollardan çözemediğimiz birçok matematiksel problemi sayısal yöntemlerle bilgisayarlar aracılığı ile çözmeye çalışırız. Bu şekilde Sayısal yöntemler kullanarak

Detaylı

GECİKEN İŞ SAYISI VE GECİKME ARALIĞI ÖLÇÜTLÜ ZAMANA-BAĞIMLI ÖĞRENME ETKİLİ ÇİZELGELEME PROBLEMİNİN ÇÖZÜMÜ

GECİKEN İŞ SAYISI VE GECİKME ARALIĞI ÖLÇÜTLÜ ZAMANA-BAĞIMLI ÖĞRENME ETKİLİ ÇİZELGELEME PROBLEMİNİN ÇÖZÜMÜ Gazi Üniv. Müh. Mim. Fak. Der. Journal of the Faculty of Engineering and Architecture of Gazi University Cilt 27, No 4, 875-879, 2012 Vol 27, No 4, 875-879, 2012 GECİKEN İŞ SAYISI VE GECİKME ARALIĞI ÖLÇÜTLÜ

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. ALGORİTMA ANALİZİ VE TASARIMI Ders Saati (T+U+L) Kredi AKTS BG-315 3/1 3+0+0 3+0 5 Dersin Dili : TÜRKÇE Dersin

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Hessien Matris-Quadratik Form Mutlak ve Bölgesel Maksimum-Minimum Noktalar Giriş Kısıtlı ve kısıtsız fonksiyonlar için

Detaylı

SİMPLEKS ALGORİTMASI! ESASLARI!

SİMPLEKS ALGORİTMASI! ESASLARI! Fen ilimleri Enstitüsü Endüstri Mühendisliği Anabilim Dalı ENM53 Doğrusal Programlamada İleri Teknikler SİMPLEKS ALGORİTMASI ESASLARI Hazırlayan: Doç. Dr. Nil ARAS AÇIKLAMA n n u sununun hazırlanmasında,

Detaylı

DENEY 3: DTMF İŞARETLERİN ÜRETİLMESİ VE ALGILANMASI

DENEY 3: DTMF İŞARETLERİN ÜRETİLMESİ VE ALGILANMASI DENEY 3: DTMF İŞARETLERİN ÜRETİLMESİ VE ALGILANMASI AMAÇ: DTMF işaretlerin yapısının, üretim ve algılanmasının incelenmesi. MALZEMELER TP5088 ya da KS58015 M8870-01 ya da M8870-02 (diğer eşdeğer entegreler

Detaylı

YÖNEYLEM ARAŞTIRMASI YÜKSEK LİSANS DERSİ

YÖNEYLEM ARAŞTIRMASI YÜKSEK LİSANS DERSİ LINDO (Linear Interactive and Discrete Optimizer) YÖNEYLEM ARAŞTIRMASI YÜKSEK LİSANS DERSİ 2010-2011 Güz-Bahar Yarıyılı YRD.DOÇ.DR.MEHMET TEKTAŞ ÖRNEK 6X 1 + 3X 2 96 X 1 + X 2 18 2X 1 + 6X 2 72 X 1, X

Detaylı

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces TANIM n bir doğal sayı ve a 0, a 1, a 2,..., a n 1, a n birer gerçel sayı olmak üzere, P(x) = a 0 + a 1 x + a 2 x 2 +... + a n 1 x n 1 +a n x n biçimindeki ifadelere x değişkenine bağlı, gerçel (reel)

Detaylı

Kalkülüs II (MATH 152) Ders Detayları

Kalkülüs II (MATH 152) Ders Detayları Kalkülüs II (MATH 152) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Kalkülüs II MATH 152 Güz 4 2 0 5 7.5 Ön Koşul Ders(ler)i Math 151 Kalkülüs I Dersin

Detaylı

DOĞRUSAL PROGRAMLAMA TEKNİĞİ İLE KÖMÜR DAĞITIM OPTİMİZASYONU COAL DISTRIBUTION OPTIMIZATION BY UTILIZING LINEAR PROGRAMMING

DOĞRUSAL PROGRAMLAMA TEKNİĞİ İLE KÖMÜR DAĞITIM OPTİMİZASYONU COAL DISTRIBUTION OPTIMIZATION BY UTILIZING LINEAR PROGRAMMING Eskişehir Osmangazi Üniversitesi Müh.Mim.Fak.Dergisi C.XX, S.1, 2007 Eng&Arch.Fac. Eskişehir Osmangazi University, Vol..XX, No:1, 2007 Makalenin Geliş Tarihi : 17.02.2006 Makalenin Kabul Tarihi : 16.11.2006

Detaylı

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#9: AÇGÖZLÜ ALGORİTMALAR

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#9: AÇGÖZLÜ ALGORİTMALAR YZM 3207- ALGORİTMA ANALİZİ VE TASARIM DERS#9: AÇGÖZLÜ ALGORİTMALAR Aç Gözlü (Hırslı) Algoritmalar (Greedy ) Bozuk para verme problemi Bir kasiyer 48 kuruş para üstünü nasıl verir? 25 kuruş, 10 kuruş,

Detaylı

FİBONACCİ ARAMA YÖNTEMİ KULLANILARAK BROWN'UN TEK PARAMETRELİ ÜSTEL DÜZGÜNLEŞTİRME YÖNTEMİ'NDE OPTİMUM DÜZGÜNLEŞTİRME SABİTİNİN SEÇİMİ

FİBONACCİ ARAMA YÖNTEMİ KULLANILARAK BROWN'UN TEK PARAMETRELİ ÜSTEL DÜZGÜNLEŞTİRME YÖNTEMİ'NDE OPTİMUM DÜZGÜNLEŞTİRME SABİTİNİN SEÇİMİ /. 0. İsletme Fakültesi Dergisi Nisan 2006 C:35 Sayı: I Sayfa 69-83 FİBONACCİ ARAMA YÖNTEMİ KULLANILARAK BROWN'UN TEK PARAMETRELİ ÜSTEL DÜZGÜNLEŞTİRME YÖNTEMİ'NDE OPTİMUM DÜZGÜNLEŞTİRME SABİTİNİN SEÇİMİ

Detaylı

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta:

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta: Genetik Algoritmalar Bölüm 1 Optimizasyon Yrd. Doç. Dr. Adem Tuncer E-posta: adem.tuncer@yalova.edu.tr Optimizasyon? Optimizasyon Nedir? Eldeki kısıtlı kaynakları en iyi biçimde kullanmak olarak tanımlanabilir.

Detaylı

DOĞRUSAL PROGRAMLAMANIN ÖZEL TÜRLERİ

DOĞRUSAL PROGRAMLAMANIN ÖZEL TÜRLERİ DOĞRUSAL PROGRAMLAMANIN ÖZEL TÜRLERİ TRANSPORTASYON (TAŞIMA, ULAŞTIRMA) TRANSİT TAŞIMA (TRANSSHIPMENT) ATAMA (TAHSİS) TRANSPORTASYON (TAŞIMA) (ULAŞTIRMA) TRANSPORTASYON Malların birden fazla üretim (kaynak,

Detaylı

SİMETRİK ŞİFRELEME. DES (Veri Şifreleme Standardı, Data Encryption Standard)

SİMETRİK ŞİFRELEME. DES (Veri Şifreleme Standardı, Data Encryption Standard) SİMETRİK ŞİFRELEME DES (Veri Şifreleme Standardı, Data Encryption Standard) DES, veri şifrelemek (encryption) ve şifrelenmiş verileri açmak (decryption) için geliştirilmiş bir standarttır. Esas olarak

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2 OPTIMIZASYON.... Bir Değişkenli Fonksiyonların Maksimizasyonu.... Türev...3.. Bir noktadaki türevin değeri...4.. Maksimum için Birinci Derece Koşulu...4.3. İkinci Derece Koşulu...5.4. Türev Kuralları...5

Detaylı

Mesleki Terminoloji. Sayısal Analiz DERSİ VEREN: ARŞ. GRV. DR. GÖKSEL BİRİCİK MEHMET EMRE ÖNDER DOĞAÇ CEM İŞOĞLU

Mesleki Terminoloji. Sayısal Analiz DERSİ VEREN: ARŞ. GRV. DR. GÖKSEL BİRİCİK MEHMET EMRE ÖNDER DOĞAÇ CEM İŞOĞLU Mesleki Terminoloji DERSİ VEREN: ARŞ. GRV. DR. GÖKSEL BİRİCİK Sayısal Analiz MEHMET EMRE ÖNDER - 12011061 DOĞAÇ CEM İŞOĞLU - 11011074 Sayısal Analiz Nedir? Sayısal analiz, yada diğer adıyla numerik analiz,

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Altın Oran (Golden Section Search) Arama Metodu Tek değişkenli bir f(x) fonksiyonunu ele alalım. [Bazı x ler için f

Detaylı

Doğrusal olmayan programlama. Suat ATAN

Doğrusal olmayan programlama. Suat ATAN Doğrusal olmayan programlama Suat ATAN İçindekiler 1 Giriş 2 2 Optimizasyon 2 3 Doğrusal olmayan programlama 4 3.1 Tek değişkenli fonksiyonun optimumluk şartları.................. 6 3.2 Çok Değişkenli

Detaylı

Matematiksel modellerin elemanları

Matematiksel modellerin elemanları Matematiksel modellerin elemanları Op#mizasyon ve Doğrusal Programlama Maksimizasyon ve Minimizasyon örnekleri, Doğrusal programlama modeli kurma uygulamaları 6. DERS 1. Karar değişkenleri: Bir karar verme

Detaylı