BÖLÜM I: Hedef Programlama. Prof.Dr. Bilal TOKLU. HEDEF PROGRAMLAMAYA GİRİŞ HEDEF PROGRAMLAMA MODELLERİNİN ÇÖZÜMÜ

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "BÖLÜM I: Hedef Programlama. Prof.Dr. Bilal TOKLU. HEDEF PROGRAMLAMAYA GİRİŞ HEDEF PROGRAMLAMA MODELLERİNİN ÇÖZÜMÜ"

Transkript

1 Yöneylem Araştırması III Prof.Dr. Bilal TOKLU Yöneylem Araştırması III BÖLÜM I: Hedef Programlama HEDEF PROGRAMLAMAYA GİRİŞ ÖNCELİKSİZ HEDEF PROGRAMLAMA ÖNCELİKLİ HEDEF PROGRAMLAMA HEDEF PROGRAMLAMA MODELLERİNİN ÇÖZÜMÜ Yöneylem Araştırması III 1

2 Gerçek hayat problemlerinin çoğunda birden fazla amaç dikkate alınmaktadır, genellikle bu amaçlar birbirleriyle çelişirler, diğer bir deyişle bir amacın en iyilenmesi diğer bir amacın değerinin kötüleşmesi sonucunu ortaya çıkarabilir. Şimdiye kadar ele alınan konularda maliyetin en küçüklenmesi veya karın en büyüklenmesi gibi amaçlar tek başına dikkate alınmıştı ve tek amaçlı en iyileme yöntemleri diyebileceğimiz metodolojiler üzerinde durulmuştu. Yöneylem Araştırması III 3 İki veya daha fazla amacın birlikte dikkate alınmasında çok amaçlı programlama modelleri kullanılmaktadır, bunlardan birisi de bu bölüm kapsamında ele alacağımız hedef programlama tekniğidir. Hedef programlamada amaçların göreli önemlerine uygun çözümler bulunmaya çalışılmaktadır. Buradaki temel düşünce bütün amaçların tek bir amaç çatısı altında toplanmasını sağlamaktır, böylelikle çelişen amaçların birlikte en iyilenmesi sağlanabilecektir. Yöneylem Araştırması III 4 2

3 Fakat, bu durumda ise amaçlar birbirleriyle çeliştiği için, bütün amaçların hepsinin birden en iyilenmesi mümkün olamayabilir, bu nedenle hedef programlamadan elde edilen sonuçlar optimal değil etkin çözüm olarak adlandırılır. Hedef programlama, matematiksel model olarak doğrusal programlamaya benzemekle birlikte birden fazla amacın aynı zamanda sağlanmasını içerdiği için bu amaçları, karar vericinin istekleri doğrultusunda ya öncelikli yapıda ya da önceliksiz yapıda diğer deyişle ağırlıklandırarak en iyilemeye çalışır. Bu tip problemlerin çözümünde 1972 yılında Lee ve Ignizio tarafından geliştirilen amaç programlama yaklaşımı kullanılmaktadır. Yöneylem Araştırması III 5 Hedef programlama çok amaçlı en iyilemenin belki de en eski dalıdır. Çok sayıda problemin çözümünde kullanılmıştır. Hedef programlamanın genel gayesi; değerleri kesin olarak belirlenen iki veya daha fazla amacın, hedef değerlerinden sapmalarını en küçüklemektir. Orijinal amaçlar hedef değerleri ve hedeften pozitif yönde ve negatif yönde sapmaları ifade eden iki yardımcı değişkeni içeren doğrusal eşitliklerle ifade edilir. Bu yardımcı değişkenlere sapma değişkenleri adı verilir ve hedef programlama modelinde eş zamanlı olarak en küçüklenmeye çalışılır. Yöneylem Araştırması III 6 3

4 Hedef programlama modelinin temel bileşenleri aşağıdaki gibidir; Sistem Kısıtları; kaynaklarla ilgili kısıtlar yer almaktadır ve mutlaka sağlanmalıdır. Amaç Kısıtları; hedef değerlerle ilgili kısıtlar bulunmaktadır, sağlanmayabilir, burada tatmin derecesi önemlidir. Amaç Fonksiyonu; hedef değerlerden sapmaları en küçüklemek şeklinde ifade edilir. Yöneylem Araştırması III 7 Bir hedef programlama modelinin oluşturulmasında her problemde olduğu gibi öncelikle karar değişkenleri tanımlanır. İkinci olarak, verilen amaçların hedef değerlerinden sapmaları en küçükleyebilmek için sapma değişkenleri tanımlanır. Ardından problemin sistem kısıtları oluşturulur aynı zamanda verilen amaçlar hedef değerleri de dikkate alınarak kısıtlara dönüştürülür. Son olarak sapma değişkenlerini içeren amaç fonksiyonu oluşturulur. Yöneylem Araştırması III 8 4

5 Yöneylem Araştırması III 9 Yöneylem Araştırması III 10 5

6 Yöneylem Araştırması III 11 Yöneylem Araştırması III 12 6

7 Yöneylem Araştırması III 13 Yöneylem Araştırması III 14 7

8 Yöneylem Araştırması III 15 Yöneylem Araştırması III 16 8

9 Örnek Bir şirket 3 model ayakkabı üretmektedir. Her model çifti için gereken işgücü miktarı sırasıyla 2,3 ve 2 saattir. Üretim için gereken malzeme miktarı sırasıyla 3,2 ve 1 kg/çift tir. Şirketin elinde 6500 saatlik işgücü ve 8600 kg malzeme bulunmaktadır. Şirket model çiftlerinden sırasıyla 4, 3 ve 5 TL kar etmektedir. Yönetici yıllık en az TL kar ve ikinci modelden en az yıllık 860 çift üretmeyi hedeflemektedir. Yöneylem Araştırması III 17 Görüldüğü gibi yöneticinin istediği 2. Model ayakkabı üretimi hedefi karşılamıyor. Ancak ilk hedef en az TL karşılanıyor. Yöneylem Araştırması III 18 9

10 Modele 2. Model kısıtı ilave edilirse; Bu sefer yöneticinin istediği yıllık en az TL hedefi karşılanmıyor, Yöneylem Araştırması III 19 Modele 1. Model kısıtı da ilave edilirse; Çözüldüğünde, model çözümsüz çıkıyor. Buradan iki hedefin uyum içinde olmadığı birbirleriyle çeliştiği anlaşılıyor. Yöneylem Araştırması III 20 10

11 O zaman HP ile ilgili hedeflerden ne kadar sapıldığını görebiliriz. Yöneylem Araştırması III 21 HP modeli; Birinci hedeften 1 TL lik sapma var. Yani =14999 TL kar var. İkinci hedeften 26 çift sapma var. Yani =834 çift üretilmiş. Yöneylem Araştırması III 22 11

12 Bu açıklamalar çerçevesinde hedef programlama modelinin genel yapısındaki amaç fonksiyonunda yapılabilecek değişikliklere göre hedef programlama problemleri iki ana başlık altında incelenecektir; Önceliksiz (ağırlıklı) hedef programlama (nonpreemptive goal programming) Öncelikli hedef programlama (preemptive goal programming) Her iki durumda da daha önceden görüldüğü gibi çözüm yöntemi olarak grafik ve simpleks yönteminden yararlanılmaktadır. Konu içerisinde çözüm yöntemleri verilecektir. Şimdi bu iki durumu sırasıyla inceleyelim. Yöneylem Araştırması III 23 Yöneylem Araştırması III 24 12

13 Örnek Bir makinede iki farklı ürün üretilmektedir. Makinenin aylık çalışma kapasitesi toplam 64 saattir. Bir adet A ürünü 3 saatte, bir adet B ürünü ise 2 saatte üretilmektedir. Firmanın amacı; ayda en az 20 adet A ürünü ve ayda en az 12 adet B ürünü üretmek şeklindedir. Her amacın ağırlığı birbirine eşittir. Yöneylem Araştırması III 25 Bu verilenlere göre hedef programlama modeli aşağıdaki gibi kurulur; Yöneylem Araştırması III 26 13

14 Yöneylem Araştırması III 27 Yöneylem Araştırması III 28 14

15 Hedef programlama modelinin sadece sistem kısıtları dikkate alındığında uygun çözüm bölgesi aşağıdaki gibi olacaktır; Yöneylem Araştırması III 29 Amaç kısıtları da eklendiğinde hedef programlama modeli tamamlanmış olacak ve aşağıdaki gibi ifade edilebilecektir; Yöneylem Araştırması III 30 15

16 Yöneylem Araştırması III 31 Örnek Bir firma su ve hava emişli olmak üzere 2 tip elektrik süpürgesi üretmektedir. Her iki tip içinde iki işlem gerekmektedir. Bir birim su emişli için işlem 1, 6 saat, işlem 2 ise 3 saat gerekmektedir. Hava emişli için ise ayrı ayrı 3 saat gerekmektedir. Firmanın elindeki işlem zamanı işlem 1 için 120 saat ve işlem 2 için 90 saattir. Yönetici en az 15 su emişli ve 15 hava emişli süpürge üretilmesini istemektedir. Yöneylem Araştırması III 32 16

17 Yöneylem Araştırması III 33 Yöneylem Araştırması III 34 17

18 Yöneylem Araştırması III 35 Eğer yönetici su emişli süpürgenin diğer tipe göre daha önemli olduğunu düşünüyorsa bunu modele yansıtmalıdır. Mesela 3 kat daha önemli olduğunu düşünelim. Model bu durumda; Yöneylem Araştırması III 36 18

19 ÖRNEK UYGULAMA (REKLAM ŞİRKETİ PROBLEMİ) Bir otomobil firması yeni ürettiği bir model için televizyonda reklam yayınlamayı planlamaktadır. Otomobil firmasının reklam şirketine bildirdiği hedefler: 1. reklamı en az 40 milyon yüksek gelirli izlemelidir.(yg hedefi ) 2. reklamı en az 60 milyon orta gelirli izlemelidir.( OG hedefi ) 3. reklamı en az 35 milyon düşük gelirli izlemelidir.( DG hedefi ) Reklam şirketi futbol maçı veya sinema arasında olmak üzere iki reklam kuşağını dikkate alacaktır. Otomobil şirketinin reklam bütçesi ise en fazla 600 birimdir. Reklamın kuşaklara göre bir dakikasının maliyeti ve dakikada ulaşılabilecek izleyici sayısı aşağıdaki tabloda verilmiştir. Bu verilere göre ve yukarıdaki üç hedefi dikkate alacak şekilde reklam planlaması yapılacaktır. Yöneylem Araştırması III 37 ÖRNEK UYGULAMA (REKLAM ŞİRKETİ PROBLEMİ) Karar Değişkenleri: Bu problemde hangi reklam kuşağında ne kadar süreyle reklam yayınlanacağına karar verileceğine göre karar değişkenleri ; X 1 :Futbol arasında yayınlanacak reklam süresi (dk.) X 2 :Sinema arasında yayınlanacak reklam süresi (dk. dk.) Buna göre aşağıdaki DP modelinin herhangi bir uygun çözümü otomobil firmasının hedeflerini gerçekleştirir. Yöneylem Araştırması III 38 19

20 ÖRNEK UYGULAMA (REKLAM ŞİRKETİ PROBLEMİ) MODEL: Yöneylem Araştırması III 39 ÖRNEK UYGULAMA (REKLAM ŞİRKETİ PROBLEMİ) Ancak şekilde görüldüğü gibi, hem bütçe kısıtını, hem de diğer üç hedefi ortak olarak sağlayan hiç bir nokta olmadığından bu problemin uygun çözüm bölgesi bulunmamaktadır. Bu durumda hedeflerin karşılanması mümkün olmayacaktır. Bunun üzerine reklam şirketi otomobil firmasından her hedef için, hedeften bir birim uzaklaşmanın firmayı ne kadarlık bir zarara uğratacağını bildirmesini ister. Otomobil firmasından gelen bilgiler aşağıda verilmiştir. Yöneylem Araştırması III 40 20

21 ÖRNEK UYGULAMA (REKLAM ŞİRKETİ PROBLEMİ) 1. Reklamı izlemeyen 40 milyonun altındaki her 1 milyon (YG) için, firmanın satış gelirlerinde 200 birim kayıp ortaya çıkmaktadır. 2. Reklamı izlemeyen 60 milyonun altındaki her 1 milyon (OG) için, firmanın satış gelirlerinde 100 birim kayıp ortaya çıkmaktadır. 3. Reklamı izlemeyen 35 milyonun altındaki her 1 milyon (DG) için, firmanın satış gelirlerinde 50 birim kayıp ortaya çıkmaktadır. Yöneylem Araştırması III 41 ÖRNEK UYGULAMA (REKLAM ŞİRKETİ PROBLEMİ) Sapma Değişkenleri; Firmanın hedeflerinde meydana gelebilecek istenmeyen yöndeki sapmaları minimize edecek hedef prog. modeli; ÇÖZÜM: inci hedefe ait değişkenin amaç fonksiyonu katsayısına inci hedefin ağırlığı denir ve hedefin önem derecesini gösterir. Yöneylem Araştırması III 42 21

22 ÖRNEK UYGULAMA (REKLAM ŞİRKETİ PROBLEMİ) Reklam bütçesinde ne kadarlık bir artış yapılırsa 3ncü hedef de tam olarak sağlanabilir? Bu maksatla, bütçe kısıtı da bir hedef haline dönüştürülmelidir. Burada dikkat edilmesi gereken bütçe hedefinin pozitif yöndeki sapma miktarının minimum yapılacağıdır. Ayrıca bütçe kısıtının pozitif yöndeki sapma miktarı (d + 4 ), 3ncü hedeften de önemsiz bir katsayı ile (mesela 1) amaç fonksiyonuna eklenmelidir. Bu değişikliklerden sonra elde edilen model ve optimal çözümü: OPTİMAL ÇÖZÜM: Yöneylem Araştırması III 43 Örnek Önceliksiz Hedef Programlamada Simpleks Çözüm. Aşağıdaki problemi ele alalım, Yöneylem Araştırması III 44 22

23 Yöneylem Araştırması III 45 Yöneylem Araştırması III 46 23

24 Yöneylem Araştırması III 47 Yöneylem Araştırması III 48 24

25 Yöneylem Araştırması III 49 Yöneylem Araştırması III 50 25

26 Yöneylem Araştırması III 51 Yöneylem Araştırması III 52 26

27 Yöneylem Araştırması III 53 Yöneylem Araştırması III 54 27

28 Yöneylem Araştırması III 55 Yöneylem Araştırması III 56 28

29 Yöneylem Araştırması III 57 ÖRNEK UYGULAMA (TEÇHİZAT ALIM PROBLEMİ) Bir otomotiv yan sanayi firması üretiminde kullanmak üzere dört cins makina ve teçhizatın (torna tezgahı, freze tezgahı, kumpas ve rontgen cihazı) alımını planlanmakta olup bunun için toplam 3500 birim ödenek ayırmıştır. Her cins makina ve teçhizatın maliyeti (birim satış fiyatı), yıllık bakım ve işletme gideri ve sağlayacağı faydayı gösteren etkinlik puanı ile ihtiyaç miktarı aşağıdaki tabloda verilmiştir. Bu proje ile ilgili hedefler öncelik sırasına göre aşağıda verilmiştir: 1. Toplam etkinliğin en az 80 puan olması. 2. Yıllık toplam bakım ve işletme giderinin mümkün olduğu kadar 70 birimi aşmaması. 3. Torna tezgahı ihtiyacının mümkün olduğu kadar tam karşılanması. 4. Diğer makina ve teçhizat ihtiyaçlarının ise ihtiyaç miktarından az olmayacak şekilde karşılanması. Buna göre öncelikli hedef programlama modelini oluşturunuz. Yöneylem Araştırması III 58 29

30 ÖRNEK UYGULAMA (TEÇHİZAT ALIM PROBLEMİ) KARAR DEĞİŞKENLERİ: X 1 :Satın alınacak torna tezgahı miktarı. X 2 :Satın alınacak freze tezgahı miktarı. X 3 :Satın alınacak kumpas miktarı. X 4 :Satın alınacak rontgen cihazı miktarı. SAPMA DEĞİŞKENLERİ: d - i :inci hedeften negatif yönde sapma miktarı (i=1,2,,6) d + i :inci hedeften pozitif yönde sapma miktarı (i=1,2,,6) Yöneylem Araştırması III 59 ÖRNEK UYGULAMA (TEÇHİZAT ALIM PROBLEMİ) KISITLAR: Yöneylem Araştırması III 60 30

31 ÖRNEK UYGULAMA (TEÇHİZAT ALIM PROBLEMİ) AMAÇ FONKSİYONU: 1.Hedef: Toplam etkinliğin en az 80 puan olması 2.Hedef: Yıllık toplam bakım-işletme maliyetinin en fazla 70 birim olması 3.Hedef: Torna tezgahı ihtiyacının tam olarak karşılanması 4.Hedef: Diğer makina ve teçhizatların en az ihtiyaç miktarı kadar karşılanması olmak üzere problemin bütünleşik amaç fonksiyonu: Yöneylem Araştırması III 61 ÖRNEK UYGULAMA (TEÇHİZAT ALIM PROBLEMİ) HEDEF PROGRAMLAMA MODELİ VE OPTİMAL ÇÖZÜMÜ: Yöneylem Araştırması III 62 31

32 Önceliksiz hedef programlama modelinde istenmeyen sapma değişkenleri tek amaç fonksiyonu çatısı altında toplanarak en iyilemesi yapıldığı için yapı olarak doğrusal programlama modellerine çok benzemektedir. Bu nedenle bu tip problemler simpleks metodu kullanılarak rahatlıkla çözülebilir. Ayrıca LINDO, LINGO, GAMS gibi bazı bilgisayar yazılımlarının kullanılmasıyla da çözülebilir. Yöneylem Araştırması III 63 Önceliksiz hedef programlama modellerinde olduğu gibi doğrusal programlama modellerinin çözümünde kullanılan yöntemlerin doğrudan öncelikli hedef programlama modellerine uygulaması yapılamamaktadır. Bu tür hedef programlama modellerinin çözümünde bazı farklılıklar vardır. Bu bölümde öncelikli hedef programlama modellerinin simpleks algoritmasının uygulanması ele alınacaktır. Yöneylem Araştırması III 64 32

33 Yöneylem Araştırması III 65 Yöneylem Araştırması III 66 33

34 Yöneylem Araştırması III HEDEF PROGRAMLAMADA SİMPLEKS ALGORİTMASI (REKLAM ŞİRKETİ PROBLEMİ) Reklam şirketi örneğindeki hedeflerin öncelikleri sırası ile (YG) hedefi, (OG) hedefi ve (DG) hedefi olarak kabul edilirse, bu problemin öncelikli hedef programlama modeli aşağıdaki şekilde olur. Her bir hedef için amaç fonksiyonu satırı; Yöneylem Araştırması III 68 34

35 1. HEDEF PROGRAMLAMADA SİMPLEKS ALGORİTMASI (REKLAM ŞİRKETİ PROBLEMİ) XP 1 XP 2 XP 3 Yöneylem Araştırması III HEDEF PROGRAMLAMADA SİMPLEKS ALGORİTMASI (REKLAM ŞİRKETİ PROBLEMİ) 1 inci hedef elde edildi Yöneylem Araştırması III 70 35

36 1. HEDEF PROGRAMLAMADA SİMPLEKS ALGORİTMASI (REKLAM ŞİRKETİ PROBLEMİ) 3ncü hedef için X 2 nin temele girmesi, daha öncelikli bir hedef olan 2nci hedeften uzaklaşmaya yol açar. çünkü 2nci hedefin X 2 sütununda negatif kaysayı bulunmaktadır. Ayrıca 3ncü hedefin (0) satırında pozitif değere sahip başka katsayı olmadığından elde edilen bu tablo aynı zamanda optimal çözüm tablosudur. modelin optimal çözümü: Yöneylem Araştırması III 71 Örnek Yöneylem Araştırması III 72 36

37 Yöneylem Araştırması III 73 Yöneylem Araştırması III 74 37

38 Yöneylem Araştırması III 75 Yöneylem Araştırması III 76 38

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre):

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre): DP SİMPLEKS ÇÖZÜM Simpleks Yöntemi, amaç fonksiyonunu en büyük (maksimum) veya en küçük (minimum) yapacak en iyi çözüme adım adım yaklaşan bir algoritma (hesaplama yöntemi) dir. Bu nedenle, probleme bir

Detaylı

HEDEF PROGRAMLAMA. Hedef programlama yaklaşımında, sistemlerin birden fazla ve genellikle birbiriyle çatışan hedeflerinin olması durumu söz konusudur.

HEDEF PROGRAMLAMA. Hedef programlama yaklaşımında, sistemlerin birden fazla ve genellikle birbiriyle çatışan hedeflerinin olması durumu söz konusudur. HEDEF PROGRAMLAMA Doç. Dr. İhsan KAYA YTU Enüstri Mühenisliği Bölümü Heef Programlama Heef programlama yaklaşımına, sistemlerin biren fazla ve genellikle birbiriyle çatışan heeflerinin olması urumu söz

Detaylı

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY)

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) 1 DOĞRUSAL PROGRAMLAMADA İKİLİK (DUALİTE-DUALITY) Doğrusal programlama modelleri olarak adlandırılır. Aynı modelin değişik bir düzende oluşturulmasıyla Dual (İkilik)

Detaylı

Temelleri. Doç.Dr.Ali Argun Karacabey

Temelleri. Doç.Dr.Ali Argun Karacabey Doğrusal Programlamanın Temelleri Doç.Dr.Ali Argun Karacabey Doğrusal Programlama Nedir? Bir Doğrusal Programlama Modeli doğrusal kısıtlar altında bir doğrusal ğ fonksiyonun değerini ğ maksimize yada minimize

Detaylı

TAMSAYILI PROGRAMLAMA

TAMSAYILI PROGRAMLAMA TAMSAYILI PROGRAMLAMA Doğrusal programlama problemlerinde sık sık çözümün tamsayı olması gereken durumlar ile karşılaşılır. Örneğin ele alınan problem masa, sandalye, otomobil vb. üretimlerinin optimum

Detaylı

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL)

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL) DOĞRUSAL PROGRAMLAMA (GENEL) Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik biçiminde verilmesi durumunda amaca

Detaylı

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem 3.2. DP Modellerinin Simpleks Yöntem ile Çözümü 3.2.1. Primal Simpleks Yöntem Grafik çözüm yönteminde gördüğümüz gibi optimal çözüm noktası, her zaman uygun çözüm alanının bir köşe noktası ya da uç noktası

Detaylı

Maksimizasyon s.t. İşçilik, saat) (Kil, kg)

Maksimizasyon s.t. İşçilik, saat) (Kil, kg) Simplex ile Çözüm Yöntemi Doç. Dr. Fazıl GÖKGÖZ 1 Doğrusal Programlama Modeli Maksimizasyon s.t. İşçilik, saat) (Kil, kg) 2 Doç. Dr. Fazıl GÖKGÖZ Yrd.Doç. Dr. Fazıl GÖKGÖZ 1 Modelin Standard Hali Maksimizasyon

Detaylı

YÖNEYLEM ARAŞTIRMALARI 1

YÖNEYLEM ARAŞTIRMALARI 1 YÖNEYLEM ARAŞTIRMALARI 1 1.HAFTA Amacı:Karar vericiler işletmelerde sahip oldukları kaynakları; insan gücü makine ve techizat sermaye kullanarak belirli kararlar almak ister. Örneğin; en iyi üretim miktarı

Detaylı

4.1. Gölge Fiyat Kavramı

4.1. Gölge Fiyat Kavramı 4. Gölge Fiyat Kavramı 4.1. Gölge Fiyat Kavramı Gölge fiyatlar doğrusal programlama modellerinde kısıtlarla açıklanan kaynakların bizim için ne kadar değerli olduklarını gösterirler. Şimdi bir örnek üzerinde

Detaylı

Yöneylem Araştırması I Dersi 2. Çalışma Soruları ve Cevapları/

Yöneylem Araştırması I Dersi 2. Çalışma Soruları ve Cevapları/ Yöneylem Araştırması I Dersi 2. Çalışma Soruları ve Cevapları/25.12.2016 1. Bir deri firması standart tasarımda el yapımı çanta ve bavul üretmektedir. Firma üretmekte olduğu her çanta başına 400TL, her

Detaylı

Simpleks Yöntemde Duyarlılık Analizleri

Simpleks Yöntemde Duyarlılık Analizleri 3.2.4. Simpleks Yöntemde Duyarlılık Analizleri Duyarlılık analizinde doğrusal programlama modelinin parametrelerindeki değişikliklerinin optimal çözüm üzerindeki etkileri araştırılmaktadır. Herhangi bir

Detaylı

Bir Doğrusal Programlama Modelinin Genel Yapısı

Bir Doğrusal Programlama Modelinin Genel Yapısı Bir Doğrusal Programlama Modelinin Genel Yapısı Amaç Fonksiyonu Kısıtlar M i 1 N Z j 1 N j 1 a C j x j ij x j B i Karar Değişkenleri x j Pozitiflik Koşulu x j >= 0 Bu formülde kullanılan matematik notasyonların

Detaylı

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez Doğrusal Programlama Prof. Dr. Ferit Kemal Sönmez Doğrusal Programlama Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik

Detaylı

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Dr. Özgür Kabak TP Çözümü TP problemlerinin çözümü için başlıca iki yaklaşım vardır kesme düzlemleri (cutting planes) dal sınır (branch and bound) tüm yaklaşımlar tekrarlı

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

DP Model Kurma (Derste Çözülecek Örnekler)

DP Model Kurma (Derste Çözülecek Örnekler) 1*. Bir tekstil firması 3 ebatta (S-M-L) gömlek üretmektedir. Her bir gömleğin üretim maliyeti sırasıyla 3 pb., 4 pb. ve 6 pb. dir. Firmanın Türkiye çapındaki bayileri; haftada en az 2000 adet S, 3000

Detaylı

ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YÖNEYLEM ARAŞTIRMASI (OPERATIONAL RESEARCH) ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ SUNUM PLANI Yöneylem araştırmasının Tanımı Tarihçesi Özellikleri Aşamaları Uygulama alanları Yöneylem

Detaylı

İbrahim Küçükkoç Arş. Gör.

İbrahim Küçükkoç Arş. Gör. Doğrusal Programlamada Karışım Problemleri İbrahim Küçükkoç Arş. Gör. Balikesir Üniversitesi Endüstri Mühendisliği Bölümü Mühendislik-Mimarlık Fakültesi Çağış Kampüsü 10145 / Balıkesir 0 (266) 6121194

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTıRMA MODELININ TANıMı Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I /0 İçerik Matematiksel Modelin Kurulması Grafik Çözüm DP Terminolojisi DP Modelinin Standart Formu DP Varsayımları 2/0 Grafik Çözüm İki değişkenli (X, X2) modellerde kullanılabilir,

Detaylı

Matematiksel modellerin elemanları

Matematiksel modellerin elemanları Matematiksel modellerin elemanları Op#mizasyon ve Doğrusal Programlama Maksimizasyon ve Minimizasyon örnekleri, Doğrusal programlama modeli kurma uygulamaları 6. DERS 1. Karar değişkenleri: Bir karar verme

Detaylı

Duyarlılık Analizi, modelde veri olarak kabul edilmiş parametrelerde meydana gelen değişimlerin optimum çözüme etkisinin incelenmesidir.

Duyarlılık Analizi, modelde veri olarak kabul edilmiş parametrelerde meydana gelen değişimlerin optimum çözüme etkisinin incelenmesidir. ISLE 403 YÖNEYLEM ARAŞTIRMASI I DERS IV NOTLAR Bağlayıcı Kısıtlar ve Bağlayıcı Olmayan Kısıtlar: Bağlayıcı Kısıtlar, denklemleri optimum çözüm noktasında kesişen kısıtlardır. Bağlayıcı-Olmayan Kısıtlar,

Detaylı

Standart modellerde öncelikle kısıt denklemleri eşitlik haline çevrilmelidir. Öncelikle ilk kısıta bakalım.

Standart modellerde öncelikle kısıt denklemleri eşitlik haline çevrilmelidir. Öncelikle ilk kısıta bakalım. 3. Simpleks Yöntem Doğrusal programlama modelleri grafik yöntem dışında simpleks yöntem adı altında özel bir yöntemle çözülebilir. Bu yöntem Simple Matrix kelimlerinin kısaltmasıdır ve bir çeşit matris

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTIRMA MODELİNİN TANIMI Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

Duyarlılık analizi, bir doğrusal programlama probleminde belirlenen katsayı değerlerinin

Duyarlılık analizi, bir doğrusal programlama probleminde belirlenen katsayı değerlerinin DUYARLILIK ANALİZİ Duyarlılık analizi, bir doğrusal programlama probleminde belirlenen katsayı değerlerinin değişmesinin problemin optimal çözümü üzerine etkisini incelemektedir. Oluşturulan modeldeki

Detaylı

SİMPLEKS ALGORİTMASI Yapay değişken kullanımı

SİMPLEKS ALGORİTMASI Yapay değişken kullanımı Fen Bilimleri Enstitüsü Endüstri Mühendisliği Anabilim Dalı ENM53 Doğrusal Programlamada İleri Teknikler SİMPLEKS ALGORİTMASI Yapay değişken kullanımı Hazırlayan: Doç. Dr. Nil ARAS, 6 AÇIKLAMA Bu sununun

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Quadratic Programming Bir karesel programlama modeli aşağıdaki gibi tanımlanır. Amaç fonksiyonu: Maks.(veya Min.) z

Detaylı

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2 OPTIMIZASYON.... Bir Değişkenli Fonksiyonların Maksimizasyonu.... Türev...3.. Bir noktadaki türevin değeri...4.. Maksimum için Birinci Derece Koşulu...4.3. İkinci Derece Koşulu...5.4. Türev Kuralları...5

Detaylı

Çözümlemeleri" adlı yüksek lisans tezini başarıyla tamamlayarak 2001'de mezun oldu.

Çözümlemeleri adlı yüksek lisans tezini başarıyla tamamlayarak 2001'de mezun oldu. Dersi Veren Öğretim Üyesi: Doç. Dr. Mehmet KORKMAZ Özgeçmişi Mehmet KORKMAZ, 1975 yılında Malatya da doğdu. İlkokul, ortaokul ve liseyi memleketi olan Isparta da tamamladı. 1996 yılında İ.Ü. Orman Fakültesi,

Detaylı

4. Gölge Fiyat Kavramı ve Duyarlılık Analizleri:

4. Gölge Fiyat Kavramı ve Duyarlılık Analizleri: 4. Gölge Fiyat Kavramı ve Duyarlılık Analizleri: 4.1. Gölge Fiyat Kavramı Gölge fiyatlar doğrusal programlama modellerinde kısıtlarla açıklanan kaynakların bizim için ne kadar değerli olduklarını gösterirler.

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -I-

DOĞRUSAL OLMAYAN PROGRAMLAMA -I- DOĞRUSAL OLMAYAN PROGRAMLAMA -I- Dışbükeylik / İçbükeylik Hazırlayan Doç. Dr. Nil ARAS Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü İST38 Yöneylem Araştırması Dersi 0-0 Öğretim Yılı Doğrusal olmayan

Detaylı

Total Contribution. Reduced Cost. X1 37,82 480 18.153,85 0 basic 320 512. X2 22,82 320 7.302,56 0 basic 300 M. Slack or

Total Contribution. Reduced Cost. X1 37,82 480 18.153,85 0 basic 320 512. X2 22,82 320 7.302,56 0 basic 300 M. Slack or HRS şirketi BRN Endüstrileri ile bir anlaşma yapmış ve her ay BRN ye üretebildiği kadar A ürününden sağlamayı garanti etmiştir. HRS de vasıflı ustalar ve çıraklar çalışmaktadır. Bir usta, bir saatte 3

Detaylı

Ders 10. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay. Simpleks Yöntemine Giriş Alıştırmalar 10

Ders 10. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay. Simpleks Yöntemine Giriş Alıştırmalar 10 Bölüm 10 Ders 10 Simpleks Yöntemine Giriş 10.1 Alıştırmalar 10 Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay 197 198 BÖLÜM 10. DERS 10 1. Soru 1 1. Aşağıda verilen simpleks tablolarında temel, temel olmayan,

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Bu bölümde eşitsizlik kısıtlarına bağlı bir doğrusal olmayan kısıta sahip problemin belirlenen stasyoner noktaları

Detaylı

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü OYUN TEORİSİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü TANIM ''Oyun Teorisi'', iki yada daha fazla rakibi belirli kurallar altında birleştirerek karşılıklı olarak çelişen olasılıklar

Detaylı

Ders 12. Karma Kısıtlamalı Doğrusal programlama problemleri Alıştırmalar 12. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay 1...

Ders 12. Karma Kısıtlamalı Doğrusal programlama problemleri Alıştırmalar 12. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay 1... 114 Bölüm 12 Ders 12 Karma Kısıtlamalı Doğrusal programlama problemleri 12.1 Alıştırmalar 12 Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay 1.... 1. Aşağıdaki problemlerde; (i) Aylak, artık ve yapay değişkenleri

Detaylı

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI PROJE ADI: TÜRKİYE DEKİ GELECEKTEKİ DOKTOR İHTİYACINI YÖNEYLEM ARASTIRMASI İLE BELİRLEMEK MEV KOLEJİ BASINKÖY OKULLARI

Detaylı

Her bir polis devriyesi ancak bir çağrıyı cevaplayabilir. Bir çağrıya en fazla bir devriye atanabilir.

Her bir polis devriyesi ancak bir çağrıyı cevaplayabilir. Bir çağrıya en fazla bir devriye atanabilir. 7. Atama Modelleri: Atama modelleri belli işlerin veya görevlerin belli kişi veya kurumlara atanması ile alakalıdır. Doğrusal programlama modellerinin bir türüdür ve yapı itibariyle ulaştırma modellerine

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I 1/19 İçerik Yöneylem Araştırmasının Dalları Kullanım Alanları Yöneylem Araştırmasında Bazı Yöntemler Doğrusal (Lineer) Programlama, Oyun Teorisi, Dinamik Programlama, Tam Sayılı

Detaylı

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR Kısıtlı ve kısıtsız fonksiyonlar için maksimum veya minimum (ekstremum) noktalarının belirlenmesinde diferansiyel hesabı kullanarak çeşitli

Detaylı

Yıldız Teknik Üniversitesi Endüstri Mühendisliği Bölümü KARAR TEORİSİ. Oyun Teorisi Yaklaşımı

Yıldız Teknik Üniversitesi Endüstri Mühendisliği Bölümü KARAR TEORİSİ. Oyun Teorisi Yaklaşımı Yıldız Teknik Üniversitesi Endüstri Mühendisliği Bölümü KARAR TEORİSİ Oyun Teorisi Yaklaşımı Doç. Dr. İhsan KAYA Oyun Teorisi-Doç. Dr. İhsan KAYA 1 Tanım: Oyun teorisi «Birbiriyle rekabet halinde olan

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Hessien Matris-Quadratik Form Mutlak ve Bölgesel Maksimum-Minimum Noktalar Giriş Kısıtlı ve kısıtsız fonksiyonlar için

Detaylı

Tarımda Mühendislik Düşünce Sistemi. Prof. Dr. Ferit Kemal SÖNMEZ

Tarımda Mühendislik Düşünce Sistemi. Prof. Dr. Ferit Kemal SÖNMEZ Tarımda Mühendislik Düşünce Sistemi Prof. Dr. Ferit Kemal SÖNMEZ Sistem Aralarında ilişki veya bağımlılık bulunan elemanlardan oluşan bir yapı veya organik bütündür. Bir sistem alt sistemlerden oluşmuştur.

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik (Eşitlik Kısıtlı Türevli Yöntem) Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde

Detaylı

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER LAGRANGE YÖNTEMİ Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde değişkenler ve kısıtlar genel olarak şeklinde gösterilir. fonksiyonlarının

Detaylı

ĐST 349 Doğrusal Programlama ARA SINAV I 15 Kasım 2006

ĐST 349 Doğrusal Programlama ARA SINAV I 15 Kasım 2006 ĐST 49 Doğrusal Programlama ARA SINAV I 15 Kasım 006 Adı Soyadı:KEY No: 1. Aşağıdaki problemi grafik yöntemle çözünüz. Đkinci kısıt için marjinal değeri belirleyiniz. Maximize Z X 1 + 4 X subject to: X

Detaylı

yöneylem araştırması Nedensellik üzerine diyaloglar I

yöneylem araştırması Nedensellik üzerine diyaloglar I yöneylem araştırması Nedensellik üzerine diyaloglar I i Yayın No : 3197 Eğitim Dizisi : 149 1. Baskı Ocak 2015 İSTANBUL ISBN 978-605 - 333-225 1 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 3519

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 3519 Dersi Veren Birim: Endüstri Mühendisliği Dersin Türkçe Adı: YÖNEYLEM ARAŞTIRMASI I Dersin Orjinal Adı: YÖNEYLEM ARAŞTIRMASI I Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu:

Detaylı

Önsöz... XIII Önsöz (Hava Harp Okulu Basımı)...XV BÖLÜM 1 1. YÖNEYLEM ARAŞTIRMASINA GİRİŞ... 1

Önsöz... XIII Önsöz (Hava Harp Okulu Basımı)...XV BÖLÜM 1 1. YÖNEYLEM ARAŞTIRMASINA GİRİŞ... 1 İÇİNDEKİLER Önsöz... XIII Önsöz (Hava Harp Okulu Basımı)...XV BÖLÜM 1 1. YÖNEYLEM ARAŞTIRMASINA GİRİŞ... 1 1.1. Yöneticilik / Komutanlık İşlevi ve Gerektirdiği Nitelikler... 2 1.1.1. Yöneticilik / Komutanlık

Detaylı

ATAMA (TAHSİS) MODELİ

ATAMA (TAHSİS) MODELİ ATAMA (TAHSİS) MODELİ ATAMA (TAHSİS) MODELİ Doğrusal programlamada kullanılan bir başka hesaplama yöntemidir. Atama problemleri, doğrusal programlama (simpleks yöntem) veya transport probleminin çözüm

Detaylı

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma 2 13.1 Normal Dağılımın Standartlaştırılması Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma değerleriyle normal

Detaylı

II DP Model Kurma (Derste Çözülecek Örnekler)

II DP Model Kurma (Derste Çözülecek Örnekler) 1. Bir ayakkabı üretim firması 2 tür (kadın ve erkek) ayakkabı üretmektedir. Her bir ayakkabının üretim maliyeti sırasıyla 10 pb. ve 7 pb. dir. Firmanın Türkiye çapındaki bayileri; toplam olarak haftada

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I 1/71 İçerik n Bulunması Kuzey-Batı Köşe Yöntemi En Küçük Maliyetli Göze Yöntemi Sıra / Sütun En Küçüğü Yöntemi Vogel Yaklaşım Metodu (VAM) Optimum Çözümün Bulunması Atlama Taşı

Detaylı

MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ

MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ SİMPLEKS TABLONUN YORUMU MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ Şu ana kadar verilen bir DP probleminin çözümünü ve çözüm şartlarını inceledik. Eğer orijinal modelin parametrelerinde bazı değişiklikler

Detaylı

KARAR TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü

KARAR TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü KARAR TEORİSİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü Karar Ortamları Karar Analizi, alternatiflerin en iyisini seçmek için akılcı bir sürecin kullanılması ile ilgilenir. Seçilen

Detaylı

Applied Management Science: Modeling, Spreadsheet Analysis, and Communication for Decision Making

Applied Management Science: Modeling, Spreadsheet Analysis, and Communication for Decision Making YÖNEYLEM ARAŞTIRMASI (Ders Akış Programı) Ders Sorumlusu : Y.Doç. Dr. Fazıl GÖKGÖZ, İletişim Bilgileri : 595 13 37, e-posta: fgokgoz@politics.ankara.edu.tr tr Applied Management Science: Modeling, Spreadsheet

Detaylı

Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması

Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması Projenin Amacı : YGS de başarılı olmak isteyen bir öğrencinin, istatistiksel yöntemler çerçevesinde, sınavda çıkan soru sayısını,

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri

Detaylı

Yöneylem Araştırması

Yöneylem Araştırması Yöneylem Araştırması Çok sayıda teknik ve bilimsel yaklaşımı içeren Yöneylem Araştırması, genellikle kıt kaynakların paylaşımının söz konusu olduğu sistemlerin en iyi şekilde tasarlanması ve işletilmesine

Detaylı

TP SORUNLARININ ÇÖZÜMLERİ

TP SORUNLARININ ÇÖZÜMLERİ TP SORUNLARININ ÇÖZÜMLERİ (Bu notlar Doç.Dr. Şule Önsel tarafıdan hazırlanmıştır) TP problemlerinin çözümü için başlıca iki yaklaşım vardır. İlk geliştirilen yöntem kesme düzlemleri (cutting planes) olarak

Detaylı

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER HEDEFLER İÇİNDEKİLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER Özdeşlikler Birinci Dereceden Bir Bilinmeyenli Denklemler İkinci Dereceden Bir Bilinmeyenli Denklemler Yüksek Dereceden Denklemler Eşitsizlikler

Detaylı

İleri Yöneylem Araştırması Uygulamaları Tam Sayılı Programlama

İleri Yöneylem Araştırması Uygulamaları Tam Sayılı Programlama İleri Yöneylem Araştırması Uygulamaları Tam Sayılı Programlama Dr. Özgür Kabak 2016-2017 Güz } Gerçek hayattaki bir çok problem } tam sayılı değişkenlerin ve } doğrusal kısıt ve amaç fonksiyonları ile

Detaylı

VERİ KÜMELERİNİ BETİMLEME

VERİ KÜMELERİNİ BETİMLEME BETİMLEYİCİ İSTATİSTİK VERİ KÜMELERİNİ BETİMLEME Bir amaç için derlenen verilerin tamamının olduğu, veri kümesindeki birimlerin sayısal değerlerinden faydalanarak açık ve net bir şekilde ilgilenilen özellik

Detaylı

DOĞRUSAL PROGRAMLAMANIN ÖZEL TÜRLERİ

DOĞRUSAL PROGRAMLAMANIN ÖZEL TÜRLERİ DOĞRUSAL PROGRAMLAMANIN ÖZEL TÜRLERİ TRANSPORTASYON (TAŞIMA, ULAŞTIRMA) TRANSİT TAŞIMA (TRANSSHIPMENT) ATAMA (TAHSİS) TRANSPORTASYON (TAŞIMA) (ULAŞTIRMA) TRANSPORTASYON Malların birden fazla üretim (kaynak,

Detaylı

GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI. Prof. Dr. Nezir KÖSE

GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI. Prof. Dr. Nezir KÖSE GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI Prof. Dr. Nezir KÖSE 30.12.2013 S-1) Ankara ilinde satın alınan televizyonların %40 ı A-firması tarafından üretilmektedir.

Detaylı

IKT Kasım, 2008 Gazi Üniversitesi, İktisat Bölümü. DERS NOTU 5 (Bölüm 7-8) ÜRETİCİ TEORİSİ

IKT Kasım, 2008 Gazi Üniversitesi, İktisat Bölümü. DERS NOTU 5 (Bölüm 7-8) ÜRETİCİ TEORİSİ DERS NOTU 5 (Bölüm 7-8) ÜRETİCİ TEORİSİ Bugünkü ders planı: 1. Kârını Maksimize Eden Firma Davranışı...1 2. Üretim Fonksiyonu ve Üretici Dengesi...5 3. Maliyeti Minimize Eden Denge Koşulu...15 4. Maliyet

Detaylı

YÖNEYLEM ARAŞTIRMASI YÜKSEK LİSANS DERSİ

YÖNEYLEM ARAŞTIRMASI YÜKSEK LİSANS DERSİ LINDO (Linear Interactive and Discrete Optimizer) YÖNEYLEM ARAŞTIRMASI YÜKSEK LİSANS DERSİ 2010-2011 Güz-Bahar Yarıyılı YRD.DOÇ.DR.MEHMET TEKTAŞ ÖRNEK 6X 1 + 3X 2 96 X 1 + X 2 18 2X 1 + 6X 2 72 X 1, X

Detaylı

Yrd. Doç. Dr. Caner ÖZCAN

Yrd. Doç. Dr. Caner ÖZCAN Yrd. Doç. Dr. Caner ÖZCAN Derse Giriş Ders Web Sitesi: www.canerozcan.net Ofis Saatleri: Salı 11:00-13:00 Perşembe 15:30-17:30 ya da email ile randevu alınız: canerozcan@karabuk.edu.tr Kaynak Kitaplar:

Detaylı

EM302 Yöneylem Araştırması 2 TP Modelleme. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 TP Modelleme. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 TP Modelleme Dr. Özgür Kabak Çek Tahsilatı Ofisi Örneği Bir Amerikan şirketinin Birleşik Devletlerdeki müşterilerinin ödemelerini gönderdikleri çekler ile topladığını varsayalım.

Detaylı

Kaynak: A. İŞLİER, TESİS PLANLAMASI, 1997

Kaynak: A. İŞLİER, TESİS PLANLAMASI, 1997 Mühendislik Fakültesi Endüstri Mühendisliği Bölümü Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2016-2017 Güz Dönemi Kaynak: A. İŞLİER, TESİS PLANLAMASI, 1997 2 Tesis Yer Seçimi Problemi (TYSP) TEK AMAÇLI

Detaylı

UZMANLAR İÇİN MODELLEME. Doç.Dr.Aydın ULUCAN

UZMANLAR İÇİN MODELLEME. Doç.Dr.Aydın ULUCAN UZMANLAR İÇİN MODELLEME Doç.Dr.Aydın ULUCAN Karar Modellerinin Temel Bileşenleri Karar Değişkenleri: Amaca ulaşmak için kontrol edilen faktörler. Amaç Fonksiyonu: Ulaşılmak istenen hedefin karar değişkenlerinin

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ BİR AKARYAKIT DAĞITIM DİZGESİNİN ULAŞTIRMA GİDERİNİN DOĞRUSAL PROGRAMLAMA YOLUYLA EN AZA İNDİRGENMESİ Mihrican KOCAOĞLU KİMYA MÜHENDİSLİĞİ

Detaylı

YÖNEYLEM ARAŞTIRMASI - II

YÖNEYLEM ARAŞTIRMASI - II YÖNEYLEM ARAŞTIRMASI - II Araş. Gör. Murat SARI 1/35 I Giriş Biri diğerini izleyen ve karşılıklı etkileri olan bir dizi kararın bütünüyle ele alındığı problemler için geliştirilen karar modelleri ve bunların

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

Ulaştırma ve Atama. Konu 2. Ulaştırma Modeli. Doç. Dr. Fazıl GÖKGÖZ

Ulaştırma ve Atama. Konu 2. Ulaştırma Modeli. Doç. Dr. Fazıl GÖKGÖZ Ulaştırma ve Atama Modelleri Konu 2 Ulaştırma Modeli 1. Farklı kaynaklardan temin edilen bir ürün, mümkün olan minimum maliyetle farklı istikametlere taşınmaktadır. 2. Her kaynak noktası sabit sayıda ürün

Detaylı

SİMPLEKS ALGORİTMASI! ESASLARI!

SİMPLEKS ALGORİTMASI! ESASLARI! Fen ilimleri Enstitüsü Endüstri Mühendisliği Anabilim Dalı ENM53 Doğrusal Programlamada İleri Teknikler SİMPLEKS ALGORİTMASI ESASLARI Hazırlayan: Doç. Dr. Nil ARAS AÇIKLAMA n n u sununun hazırlanmasında,

Detaylı

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN KORELASYON VE REGRESYON ANALİZİ Doç. Dr. Bahar TAŞDELEN Günlük hayattan birkaç örnek Gelişim dönemindeki bir çocuğun boyu ile kilosu arasındaki ilişki Bir ailenin tükettiği günlük ekmek sayısı ile ailenin

Detaylı

Türk-Alman Üniversitesi. Ders Bilgi Formu

Türk-Alman Üniversitesi. Ders Bilgi Formu Türk-Alman Üniversitesi Ders Bilgi Formu Dersin Adı Dersin Kodu Dersin Yarıyılı Yöneylem Araştırması WNG301 5 ECTS Ders Uygulama Laboratuar Kredisi (saat/hafta) (saat/hafta) (saat/hafta) 6 2 2 0 Ön Koşullar

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

Tesadüfi Değişken. w ( )

Tesadüfi Değişken. w ( ) 1 Tesadüfi Değişken Tesadüfi değişkenler gibi büyük harflerle veya gibi yunan harfleri ile bunların aldığı değerler de gibi küçük harflerle gösterilir. Tesadüfi değişkenler kesikli veya sürekli olmak üzere

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

SİSTEM MÜHENDİSLİĞİ DOĞRUSAL PROGRAMLAMA MODEL KURMA ÖRNEKLERİ

SİSTEM MÜHENDİSLİĞİ DOĞRUSAL PROGRAMLAMA MODEL KURMA ÖRNEKLERİ SİSTEM MÜHENDİSLİĞİ DOĞRUSAL PROGRAMLAMA MODEL KURMA ÖRNEKLERİ Örnek (2-5) Güzel-Giyim konfeksiyon piyasaya ceket, etek ve elbise yapmaktadır. Konfeksiyoncu, ceketi, eteği ve elbiseyi kendisinin A1, A2

Detaylı

Adı Soyadı: No: 05.04.2010 Saat: 08:30

Adı Soyadı: No: 05.04.2010 Saat: 08:30 Adı Soyadı: No: 05.04.2010 Saat: 08:30 ID: Z Mikro 2 Ara 2010 Çoktan Seçmeli Sorular Cümleyi en iyi biçimde tamamlayan veya sorunun yanıtı olan seçeneği yanıt anahtarına işaretleyiniz. 1. Çapraz satış

Detaylı

ELEKTRİK MAKİNELERİ (MEP 112) Yazar: Yrd. Doç. Dr. Mustafa Turan S1

ELEKTRİK MAKİNELERİ (MEP 112) Yazar: Yrd. Doç. Dr. Mustafa Turan S1 ELEKTRİK MAKİNELERİ (MEP 112) Yazar: Yrd. Doç. Dr. Mustafa Turan S1 SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

Tıbbi kaynakların son derece kısıtlı olması var olan kaynaklarında etkin

Tıbbi kaynakların son derece kısıtlı olması var olan kaynaklarında etkin GİRİŞ: Tıbbi kaynakların son derece kısıtlı olması var olan kaynaklarında etkin Kullanılmaması sonucu her yıl yüz binlerce kişi hayatını kaybediyor. Tıpta ve sağlık Sistemlerinde sayısal tekniklerin kullanılması

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 12 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım Mehmet Ali Aytekin Tahir Emre Kalaycı Gündem Gezgin Satıcı Problemi GSP'yi Çözen Algoritmalar Genetik Algoritmalar

Detaylı

Yöneylem Araştırması I (IE 222) Ders Detayları

Yöneylem Araştırması I (IE 222) Ders Detayları Yöneylem Araştırması I (IE 222) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Yöneylem Araştırması I IE 222 Güz 3 2 0 4 5 Ön Koşul Ders(ler)i Math 275 Doğrusal

Detaylı

YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER

YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER I. ATAMA PROBLEMLERİ PROBLEM 1. Bir isletmenin en kısa sürede tamamlamak istediği 5 işi ve bu işlerin yapımında kullandığı 5 makinesi vardır. Aşağıdaki

Detaylı

ÇOK KRİTERLİ KARAR VERME HEDEF PROGRAMLAMA

ÇOK KRİTERLİ KARAR VERME HEDEF PROGRAMLAMA ÇOK KRİTERLİ KARAR VERME HEDEF PROGRAMLAMA KONU 10 Doç. Dr. Fazıl GÖKGÖZ 1 Genel Bilgiler Lineer programlama kapsamına tek bir amaç fonksiyonu uruma göre maksimize veya minimize eilmekteir. Ancak, gerçek

Detaylı

Ölçme ve Değerlendirme

Ölçme ve Değerlendirme Ölçme ve Değerlendirme Z Puanı T Puanı Yrd. Doç. Dr. Yetkin Utku KAMUK Standart Puan Herhangi bir ölçüm sonucunda elde edilen ve farklı birimlere sahip ham puanların, standart bir dağılım haline dönüştürülmesi

Detaylı

4- Turbo Pascal Bilgisayar Programlamada Kullanılan Şart Yapıları

4- Turbo Pascal Bilgisayar Programlamada Kullanılan Şart Yapıları 4- Turbo Pascal Bilgisayar Programlamada Kullanılan Şart Yapıları Şart yapıları bir bilgisayar programının olmazsa olmazlarındandır. Şart yapıları günlük hayatımızda da çok fazla karşılaştığımız belirli

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde

Detaylı

EĞİTİM KURUMLARINDA KARŞILAŞILAN NÖBET ÇİZELGESİ HAZIRLAMA PROBLEMİNDE KARAR MODELİ KULLANIMI

EĞİTİM KURUMLARINDA KARŞILAŞILAN NÖBET ÇİZELGESİ HAZIRLAMA PROBLEMİNDE KARAR MODELİ KULLANIMI EĞİTİM KURUMLARINDA KARŞILAŞILAN NÖBET ÇİZELGESİ HAZIRLAMA PROBLEMİNDE KARAR MODELİ KULLANIMI Özgür Kakmacı Hv.K.K., Lojistik Plan Koordinasyon Daire Başkanlığı, 06100, Bakanlıklar, Ankara. Servet Hasgül

Detaylı

Tablo7.1.1 Bismarck için Kaynak Gereksinimleri Ürün İşçilik (Saat) Kumaş (Yard Kare) Gömlek 3 4 Şort 2 3 Pantolon 6 4

Tablo7.1.1 Bismarck için Kaynak Gereksinimleri Ürün İşçilik (Saat) Kumaş (Yard Kare) Gömlek 3 4 Şort 2 3 Pantolon 6 4 ISLE403 YÖNEYLEM ARAŞTIRMASI I DERS VII NOTLAR Günümüzün iş dünyasında şirketler sermaye mallarını satın almak yerine finansal kiralama yoluyla edinmeyi değerlendiriyorlar. Finansal kiralama sabit maliyetler

Detaylı

Tam ve Karma Stratejili Oyunlar. İki Kişili Oyunlar için

Tam ve Karma Stratejili Oyunlar. İki Kişili Oyunlar için Tam ve Karma Stratejili Oyunlar İki Kişili Oyunlar için İki kişili-sıfır toplamlı oyunlar Sabit toplamlı oyunların bir türüdür, Sabit olan toplam 0 a eşittir. Temel Özellikleri Oyunculardan birinin kazancı

Detaylı