Tahmin Edici Elde Etme Yöntemleri



Benzer belgeler
5. Ders Yeterlilik. f(x 1 ; x 2 ; :::; x n ; ) = g (T (x 1 ; x 2 ; :::; x n ); ) h(x 1 ; x 2 ; :::; x n )

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler

4. Ders Fisher informasyonu s f rdan büyük ve sonlu, yani 0 < I() < 1; R f(x; )dx (kesikli da¼g l mlarda R yerine P.

4/16/2013. Ders 9: Kitle Ortalaması ve Varyansı için Tahmin

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI.

AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI. için. 01 olaslk younluk fonksiyonu aa daki seçeneklerden hangisinde yer.

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı)

İSTATİSTİKSEL TAHMİN. Prof. Dr. Levent ŞENYAY VIII - 1 İSTATİSTİK II

ˆp x p p(1 p)/n. Ancak anakütle oranı p bilinmediğinden bu ilişki doğrudan kullanılamaz.

Bağımsızlık özelliğinden hareketle Ortak olasılık fonksiyonu (sürekli ise

Veri nedir? p Veri nedir? p Veri kalitesi p Veri önişleme. n Geometrik bir bakış açısı. n Olasılıksal bir bakış açısı

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testlerine Giriş Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

2016 YILI I.DÖNEM AKTÜERLİK SINAVLARI RİSK ANALİZİ VE AKTÜERYAL MODELLEME. aşağıdaki seçeneklerden hangisinde verilmiştir? n exp 1.

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

Bir Rasgele Değişkenin Fonksiyonunun Olasılık Dağılımı

BEKLENEN DEĞER. 6. Ders. Tanım: X, bir rasgele değişken ve g : R R, B B R için x : g x B B R özelliğine sahip bir fonksiyon olmak üzere:

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

İleri Diferansiyel Denklemler

EME 3117 SİSTEM SIMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9

6. Uygulama. dx < olduğunda ( )

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi,

LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI


2.2. Fonksiyon Serileri

İSTATİSTİK DERS NOTLARI

İstatistik Nedir? Sistem-Model Kavramı

Tahmin teorisinde amaç örneklem (sample) bilgisine dayanarak anakütleye. (population) ilişkin çıkarsamalar yapmaktır. Bu çıkarsamalar örneklem

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ

7. Ders. Bazı Kesikli Olasılık Dağılımları

İstatistik Ders Notları 2018 Cenap Erdemir BÖLÜM 5 ÖRNEKLME DAĞILIMLARI. 5.1 Giriş

AKT201 MATEMATİKSEL İSTATİSTİK I ÖDEV 6 ÇÖZÜMLERİ

NOT: BU DERS NOTLARI TEMEL EKONOMETRİ-GUJARATİ KİTABINDAN DERLENMİŞTİR. HAFTA 1 İST 418 EKONOMETRİ

BİR ÇUBUĞUN MODAL ANALİZİ. A.Saide Sarıgül

LİNEER CEBİR DERS NOTLARI. Ayten KOÇ

Analiz II Çalışma Soruları-2

A= {1,2,3}, B={1,3,5,7}kümeleri veriliyor. A dan B ye tanımlanan aşağıdaki bağıntılardan hangisi fonksiyon değildir?

İstatistik ve Olasılık

6. BÖLÜM VEKTÖR UZAYLARI

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

ÖZET Doktora Tezi KISITLI DURUM KALMAN FİLTRESİ VE BAZI UYGULAMALARI Esi KÖKSAL BABACAN Akara Üiversitesi Fe Bilimleri Estitüsü İstatistik Aabilim Dal

BAĞINTI VE FONKSİYON

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LISANS TEZİ MARKOV ZİNCİRLERİNDE BOOTSTRAP. Serhat DUMAN İSTATİSTİK ANABİLİM DALI ANKARA 2006

Bu bölümde kan tlayaca m z teoremi, artan ve üstten s -

TOPOLOJİK TEMEL KAVRAMLAR

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

0 1 2 n 1. Doğu Akdeniz Üniversitesi Matematik Bölümü Mate 322

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R

Bileşik faiz hesaplamalarında kullanılan semboller basit faizdeki ile aynıdır. Temel formüller ise şöyledir:

x 2$, X nın bir tahminidir. Bu durumda x ile X arasındaki farka bu örnek için örnekleme hatası x nın örnekleme hatasıdır. X = x - (örnekleme hatası)

altında ilerde ele alınacaktır.

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİKLERİ ) ... BOŞ KÜME. w w w. m a t b a z.

Ölçme Hataları, Hata Hesapları. Ölçme Hataları, Hata Hesapları 2/22/2010. Ölçme... Ölçme... Yrd. Doç. Dr. Elif SERTEL

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİK- LERİ ) ... BOŞ KÜME. w w w. m a t b a z.

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri,

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ İSTATİSTİKSEL YAKINSAK ALT DİZİLER. Tuğba YURDAKADİM MATEMATİK ANABİLİM DALI

TÜMEVARIM. kavrayabilmek için sonsuz domino örneği iyi bir modeldir. ( ) domino taşını devirmek gibidir. P ( k ) Önermesinin doğru olması halinde ( 1)

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ

Görüntü Stabilizasyonu İçin Paralel İşlev Gören İki Kalman Filtresiyle İşlem Gürültü Varyansının Adaptifleştirilmesi

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY FÖYÜ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

Ki- kare Bağımsızlık Testi

İstatistik ve Olasılık

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

Bölüm 5: Hareket Kanunları

MEKANİK TESİSATTA EKONOMİK ANALİZ

5. Ders. Dağılımlardan Rasgele Sayı Üretilmesi Ters Dönüşüm Yöntemi

ÖRNEKLEME VE ÖRNEKLEME DAĞILIŞLARI

Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması Güz Dönemi

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir.

Burçin Gonca OKATAN YÜKSEK LİSANS TEZİ İSTATİSTİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AĞUSTOS 2007 ANKARA

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

WEIBULL DAĞILIM PARAMETRELERİNİ BELİRLEME METODLARININ KARŞILAŞTIRILMASI

SİSTEMLERİN ZAMAN CEVABI

Vektör bileşenleri için dikey eksende denge denklemi yazılırak, aşağıdaki eşitlik elde edilir. olarak elde edilir. 2

MÜHENDİSLİK MEKANİĞİ (STATİK)

Standart Formun Yapısı. Kanonik Form. DP nin Formları SİMPLEX YÖNTEMİ DP nin Düzenleniş Şekilleri. 1) Optimizasyonun anlamını değiştirme

Tek Bir Sistem için Çıktı Analizi

f n dµ = lim gerçeklenir. Gösteriniz (Bu teorem Monoton yakınsaklık teoreminde yakınsaklık f n = f ve (f n ) monoton artan dizi

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ

Üstel Dağılım Babam: - Şu ampullerin hangisinin ömrünün daha kısa olduğu hiç belli olmuyor. Bazen yeni alınanlar eskilerden daha önce yanıyor.

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

18.06 Professor Strang FİNAL 16 Mayıs 2005

32. Kardinal Say lar, Tan m ve lk Özellikler

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 6 Sayı: 1 sh Ocak 2004

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri

Transkript:

6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme akla gele adaylar aras da yer alm şt. Hatta öreklem stadart sapmas p ile çarp m da tahmi edici olarak düşüülmüştü. T = X () T = X _ T 3 = Öreklem Ortacas T 4 = + X () T 5 = X () + X () T 6 = p S istatistikleri içi tahmi edici olarak öerilebilir. Başkalar da öerilebilir. Bular aras da T 4 yas z tahmi edicisi düzgu e küçük varyasl yas z tahmi edicidir, çükü, yeterli ve tam ola X () istatisti¼gii bir foksiyoudur (Lehma-Sche e Teoremi). Baz durumlarda tahmi edici öermek o kadar kolay olmamaktad r. Öre¼gi, kitle da¼g l m Gamma ( (; )) oldu¼guda, parametreleri kedileri içi tahmi edici öermek sezgisel olarak kolay olmamaktad r. Kitle ortlamas içi tahmi edici olarak X () öreklem ortalamas öerilebilir. Kitle varyas içi tahmi edici olarak S öreklem varyas öerilebilir. Acak ; parametrelerii kedileri içi tahmi ediciler öermek kolay de¼gildir.

Mometler Yötemi Mometler yötemi, 800 lü y llar solar da Karl Pearso a dayaa e eski yötemlerde birisidir. = ( ; ; :::; r ) 0 R r olmak üzere, r (r ) bileşeli parametre vektörüü tahmi etmek isteyelim. X ; X ; :::; X olas l k yo¼guluk foksiyou f(; ); ola da¼g l mda bir öreklem olmak üzere, var olmas halide, kitle da¼g l m mometleri, ve öreklem mometleri, k = E (X k ) ; k = ; ; 3; ::: k = X Xi k ; k = ; ; 3; ::: olsu. Kitle mometleri ile öreklem mometleride ilk r taesii eşitlemesiyle elde edile ve ; ; :::; r bilimeyelerie göre r tae deklemde oluşa deklem sistemii çözümü ola, (X ; X ; :::; X ) ; (X ; X ; :::; X ) ; :::; istatistiklerie mometler yötemi tahmi edicileri deir. Örek: X ; X ; :::; X olas l k yo¼guluk foksiyou, r (X ; X ; :::; X ) f(x; ; ) = ( ) x e x ; x > 0; ; (0; ) ola da¼g l mda bir öreklem olsu. Kitle ve öreklem mometleride ilk iki taesii eşitlemesiyle, X : = : + : = X X i X i

deklem sistemi elde edilir. Burada, ve i mometler yötemi tahmi edicileri, 3 olarak buluur. = X P _ (X i X) ; = P _ (X i X) X Örek: X ; X ; :::; X ler U( ; ) ; ; R; < da¼g l m da bir öreklem olsu. U( ; ) düzgü da¼g l m olas l k yo¼guluk foksiyou, f(x; ; ) = ; x 0 ; d:y: olup, birici mometi, ikici mometi, = + = + + olmak üzere, kitle ile öreklem mometlerii eşitlemesiyle, + + + 3 = = deklem sistemi elde edilir. Burada ve i mometler yötemi tahmi edicileri, v u P _ t (X i X) e = X 3 olarak buluur. X X X i X i v u P _ t (X i X) ; e = X + 3

4 E Çok Olabilirlik Yötemi Ta m: X = (X ; X ; :::; X ) öreklemii olas l k (yo¼guluk) foksiyou, f(x;) = f( ; ) olmak Q üzere, L(; x) = f(x; ) ; foksiyoua, gözlee x =(x ; x ; :::; x ) içi olabilirlik foksiyou veya k saca olabilirlik foksiyou deir. Geelde, L(; x) olabilirlik foksiyou bir olas l k yo¼guluk foksiyou de¼gildir, çükü bir foksiyou ola L(; x) foksiyou içi R L(; x)d de¼geri bire eşit olmayabilir. Olabilirlik Ilkesi: Bir deeyde (gözlemde) hakk da elde edilebilecek tüm bilgi, verile x = (x ; x ; :::; x ) gözlem vektörü içi olabilirlik foksiyouda içerilmektedir. x; y X olmak üzere her içi, L(; x) = c(x; y)l(; y) oldu¼guda, hakk da x; y gözlemleride ç kar lacak souçlar ay olmal d r. c(x; y) = durumuda Olabilirlik Ilkesi, ay olabilirlik de¼gerlerie sahip gözlemleri hakk da ay bilgiyi içerdiklerii söylemektedir. Acak Olabilirlik Ilkesi daha ileriye gitmektedir. Farkl iki gözlemi olabilirlikleri orat l ise hakk da ay bilgiyi içerdiklerii de ifade etmektedir. Öre¼gi, X gözlem vektörü içi L( ; x) = L( ; x) ise ; e göre iki kat daha caziptir deir. L(; x) = c(x; y)l(; y) de sa¼gla yorsa L( ; y) = L( ; y) olur. Böylece le y de hagisi gözleirse gözlesi, e göre iki kat daha caziptir soucua var l r. E çok olabilirlik yötemi, tahmi edicileri elde etme yötemleri aras da e popüler ola d r. Ta m: X = (X ; X ; :::; X ) öreklemii olas l k (yo¼guluk) foksiyou, f(x;) = f( ; ) olmak üzere X = x olarak gözledi¼gide Q bir foksiyou ola, L(; x) = f(x; ) ;

olabilirlik foksiyouu parametre kümesi üzeride maksimum yapa (x) de¼gerie, var olmas halide e çok olabilirlik tahmii ve ( X) istatisti¼gie de e çok olabilirlik tahmi edicisi deir. Kar ş kl ¼ga yol açmad ¼g takdirde e çok olabilirlik tahmii ile e çok olabilirlik tahmi edicisii ay sembolü ile gösterece¼giz. Bua göre, L( ; x) = max Y f( ; ) d r. Logaritma foksiyouu mootolu¼gu gözöüe al d ¼g da, l L( ; x) = max X l f( ; ) P yaz labilir. Baz durumlarda max l f( ; ) optimizasyo problemii çözmek daha kolay olmaktad r. Bu sebepte dolay geellikle, olabilirlik foksiyou yerie ou do¼gal logaritmas ola ve log-olabilirlik foksiyou da dee foksiyo maksimize edilmektedir. Baz durumlarda (x ; x ; :::; x ) çözümüü x ; x ; :::; x ler ciside ifade etmek, başka bir deyişle aalitik çözüm elde etmek mümkü olmakta, baz durumlarda da mümkü olmamaktad r. Aalitik çözüm elde edilemedi¼gide e çok olabilirlik tahmi edicisi biçimsel olarak bilimemekte, yai öreklemi bir foksiyou olarak aç k bir biçimde yaz lamamaktad r. Böyle durumlarda, optimizasyo problemi belli bir say sal algoritma ile çözülüp parametrei tahmii elde edilmektedir. Örek: X ; X ; :::; X ler N(; ) ; R ormal da¼g l m da bir öreklem olsu. 5 L(; x) = ( ) e l L(; x) = P ( ) l() X ( ) olmak üzere, max l L(; x) optimizasyo problemii çözümü, R

6 (x ; x ; :::; x ) = ve e çok olabilirlik tahmi edicisi, ( X ; X ; :::; X ) = d r. K saca = X olarak gösterebiliriz. P P X i Örek: X ; X ; :::; X ler N( ; ) ; R; (0; ) ormal da¼g l m da bir öreklem olsu. olmak üzere L( ; ; x) = ( ) e l L( ; ; x) = l( ) P ( ) X ( ) max l L( ; ; x) optimizasyo problemii çözümü, R; (0;) (x ; x ; :::; x ) = x P (x i x) (x ; x ; :::; x ) = ve ile parametrelerii e çok olabilirlik tahmi edicileri, d r. ( X ; X ; :::; X ) = X P (X i X) ( X ; X ; :::; X ) =

Örek: X ; X ; :::; X ler U( ; ) ; ; R; < düzgü da¼g l m da bir öreklem olsu. 8 < ( ) ; ; i = ; ; :::; L( ; ; x) = : 0 ; d.y. olmak üzere max l L( ; ; x) optimizasyo problemi aşa¼g daki ; R; < miimizasyo problemie eşde¼gerdir. 7 problemii çözümü, Amaç : mi ; ( ) K s t : x () < x () < ::: < x () = x () = x () olmak üzere ile parametrelerii e çok olabilirlik tahmi edicileri, d r. ( X ; X ; :::; X ) = X () ( X ; X ; :::; X ) = X () X ; X ; :::; X ler olas l k yo¼guluk foksiyou f(x; ) ; ola da¼g l mda bir öreklem ve T istatisti¼gi içi yeterli bir istatistik olmak üzere, e çok olabilirlik tahmi edicisi mevcut ve tek oldu¼guda T i bir foksiyoudur. Bu durumda L(; x ; x ; :::; x ) = k(t (x ; x ; :::; x ); ):h(x ; x ; :::; x ) biçimide olup, max l L(; x ; x ; :::; x ) problemi max k(t (x ; x ; :::; x ); ) problemie döüşüp e çok olabilirlik tahmi edicisi T i bir foksiyou olmaktad r.

8 E çok olabilirlik tahmi edicileri geellikle yal tahmi edicilerdir. Olabilirlik fosiyou ile ilgili baz düzgülük şartlar alt da e çok olabilirlik tahmi edicileri tutarl d rlar. Bir parametresii e çok olabilirlik tahmi edicisi ola ( X ; X ; :::; X ) asimptotik ormal da¼g l ma sahiptir. ( X ; X ; :::; X ) AN(; I() ) d r. E çok olabilirlik tahmi edicileri, parametre üzeride yap la döüşümlere göre de¼gişmez kalmaktad rlar, yai e çok olabilirlik tahmi edicisi ola parametresii g() gibi bir döüşümüü e çok olabilirlik tahmi edicisi g( ) d r. Örek: Belli bir tür elektroik parça içi dayama süresii üstel da¼g l ma sahip oldu¼gu bilisi. Dayama süresii varyas tahmi edilmek istesi. Kitle da¼g l m olas l k yo¼guluk foksiyou, f X (x; ) = e x ; x > 0 beklee de¼geri ve varyas d r. X ; X ; :::; X ler bir öreklem olsu. olmak üzere, max (0;) L(; x) = ( ) e P P l L(; x) = l l L(; x) optimizasyo problemii çözümü, @ l L(; x) @ P + = = 0 P (x ; x ; :::; x ) = + P

9 ve e çok olabilirlik tahmi edicisi, ( X ; X ; :::; X ) = P X i d r. = X olmak üzere, i e çok olabilirlik tahmi edicisi, b = b = X d r. X ( =, = ) olmak üzere, E(X ) = V ar(x ) + = + = + d r. X ; e çok olabilirlik tahmi edicisi yas z de¼gildir. T = + X tahmi edicisi, i yas zl ¼g düzeltilmiş e çok olabilirlik tahmi edicisidir.