13. Karakteristik kökler ve özvektörler



Benzer belgeler
İleri Diferansiyel Denklemler

Özdeğer ve Özvektörler

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

ÖZDEĞERLER- ÖZVEKTÖRLER

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

İleri Diferansiyel Denklemler

VEKTÖR UZAYLARI 1.GİRİŞ

. [ ] vektörünü S deki vektörlerin bir lineer

8.Konu Vektör uzayları, Alt Uzaylar

9.Konu Lineer bağımsızlık, taban, boyut Germe. 9.1.Tanım: V vektör uzayının her bir elemanı

x 0 = A(t)x + B(t) (2.1.2)

Lineer Bağımlılık ve Lineer Bağımsızlık

m=n şeklindeki matrislere kare matris adı verilir. şeklindeki matrislere ise sütun matrisi denir. şeklindeki A matrisi bir kare matristir.

İleri Diferansiyel Denklemler

Cebir 1. MIT Açık Ders Malzemeleri

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite

İleri Diferansiyel Denklemler

HOMOGEN OLMAYAN DENKLEMLER

ÖABT Lineer Cebir KONU TESTİ Matris Cebiri

Matrisler ve matris işlemleri

ii) S 2LW 2WH 2LW 2WH S 2WH 2LW S 3( x 1) 5( x 2) 5 3x 3 5x x Maliye Bölümü EKON 103 Matematik I / Mart 2018 Proje 2 CEVAPLAR C.1) C.

Cebir 1. MIT Açık Ders Malzemeleri

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

İleri Diferansiyel Denklemler

6. Ders. Mahir Bilen Can. Mayıs 16, 2016

Minör nedir? Genel olarak, n. mertebeden bir kare matris olan A matrisinin, a ij öğesinin minörünü şöyle gösterebiliriz:

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır.

Önsöz. Mustafa Özdemir Antalya 2016

10. DİREKT ÇARPIMLAR

Ders: MAT261 Konu: Matrisler, Denklem Sistemleri matrisi bulunuz. olmak üzere X = AX + B olacak şekilde bir X 1.

KUADRATİK FORM. Tanım: Kuadratik Form. Bir q(x 1,x 2,,x n ) fonksiyonu

İleri Diferansiyel Denklemler

LİNEER CEBİR. Ders Sorumlusu: Doç.Dr.Kemal HACIEFENDİOĞLU. Ders Notu: Prof. Dr. Şaban EREN

İleri Diferansiyel Denklemler

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

GEO182 Lineer Cebir. Matrisler. Matrisler. Dersi Veren: Dr. İlke Deniz Derse Devam: %70. Vize Sayısı: 1

Elementer matrisler, ters matrisi bulmak, denk matrisler

İÇİNDEKİLER. Bölüm 2 CEBİR 43

Tanım 2.1. Bir kare matrisin determinantı, o matrisi bir sayıya eşleyen fonksiyondur.

1 Vektör Uzayları 2. Lineer Cebir. David Pierce. Matematik Bölümü, MSGSÜ mat.msgsu.edu.tr/~dpierce/

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

ÖRNEKLER-VEKTÖR UZAYLARI 1. Çözüm: w=k 1 u+k 2 v olmalıdır.

Math 103 Lineer Cebir Dersi Ara Sınavı

.:: BÖLÜM I ::. MATRİS ve DETERMİNANT

İleri Diferansiyel Denklemler

Şayet bir lineer sistemin en az bir çözümü varsa tutarlı denir.

Lineer Denklem Sistemleri

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir.

için doğrudur. olmak üzere tüm r mertebeli gruplar için lemma nın doğru olduğunu kabul edelim. G grubunun mertebesi n olsun. ve olsun.

7. Ders. Mahir Bilen Can. Mayıs 17, 2016

İKİNCİ DERECEDEN DENKLEMLER

Lineer Cebir. Doç. Dr. Niyazi ŞAHİN TOBB. İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları...

1 (c) herhangi iki kompleks sayı olmak üzere

Nazım K. Ekinci Matematiksel İktisat Notları ax 1 + bx 2 = α cx 1 + dx 2 =

3. BÖLÜM MATRİSLER 1

30 NİSAN-14 MAYIS ZEYNEP KAYAR. 1) L : R 3 R 2, L(x 1, x 2, x 3 ) = ( 3x 1 + 2x 3 4x 2, 2x 1 + x 2 3x 3 )

Matris Cebiriyle Çoklu Regresyon Modeli

İkinci Mertebeden Lineer Diferansiyel Denklemler

28/04/2014 tarihli LYS-1 Matematik-Geometri Testi konu analizi SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 1 / 31

Ç NDEK LER II. C LT KONULAR Sayfa Öz De er Öz Vektör.. 2. Lineer Cebir ve Sistem Analizi...

Yrd. Doç. Dr. A. Burak İNNER

DERS NOTLARI. Yrd. Doç. Dr. Hüseyin BİLGİÇ. Kahramanmaraş Sütçü İmam Üniversitesi Fen-Edebiyat Fakültesi Matematik Bölümü Ağustos 2015

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c

Salim. Yüce LİNEER CEBİR

Ders 9: Bézout teoremi

Math 103 Lineer Cebir Dersi Final Sınavı

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

Math 103 Lineer Cebir Dersi Ara Sınavı

4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ

Normal Alt Gruplar ve Bölüm Grupları...37

kpss Önce biz sorduk 50 Soruda SORU Güncellenmiş Yeni Baskı ÖABT LİSE MATEMATİK SOYUT CEBİR LİNEER CEBİR

BÖLÜM 24 PAULI SPİN MATRİSLERİ

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48

Eigenvalue-Eigenvector Problemleri

İleri Diferansiyel Denklemler

1 Lineer Diferansiyel Denklem Sistemleri

Math 103 Lineer Cebir Dersi Final Sınavı

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu;

Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR

Ders 8: Konikler - Doğrularla kesişim

Zaman Domeninde Modelleme Transfer Fonksiyonu Durum Uzay Dönüşümü Durum Uzay Transfer Fonksiyonu DönüşümÜ

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu

Motivasyon Matrislerde Satır İşlemleri Eşelon Matris ve Uygulaması Satırca İndirgenmiş Eşelon Matris ve Uygulaması Matris Tersi ve Uygulaması Gauss

DEĞİŞMELİ BANACH CEBİRLERİNİN GELFAND SPEKTRUMLARI ÜZERİNE

İleri Diferansiyel Denklemler

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

6 Devirli Kodlar. 6.1 Temel Tan mlar

Math 103 Lineer Cebir Dersi Final Sınavı

Math 103 Lineer Cebir Dersi Final Sınavı

Transkript:

13. Karakteristik kökler ve özvektörler 13.1 Karakteristik kökler 1.Tanım: A nxn tipinde matris olmak üzere parametrisinin n.dereceden bir polinomu olan şeklinde gösterilen polinomuna A matrisin karakteristik polinomu denir. karakteristik matrisi. 2.Tanım: A matrisin karakteristik polinomunun sıfıra eşitlemekle elde edilen denklemine karakteristik denklemi denir. 3.Tanım: A matrisin karakteristik denkleminin köklerine A matrisin karakteristik kökleri veya özdeğerleri denir. 4.Tanım: A matrisin karakteristik köküne karşılık gelen denklemin aşikar olmayan çözüm vektörüne vektörü veya değişmez vektörü denir. 1.Ö.: karakteristik köküne karşılık gelen öz natrisinin karakterisrik köklerini ve her bir köke karşılık gelen değişmez uzayı bulunuz. Ç.: A matrisinin karaktetistik köklerini bulmak için önce polinomonu elde edelim. karakteristik olup karakteristik kökleri Şimdi A matrisinin değişmez uzaylarını bulalım. karakteristik köklerine karşılık gelen lineer denklem sisteminin genel çözümü 1

olur. Yani, {}. lineer denklem sisteminin genel çözümü olur. Yani, {}. lineer denklem sisteminin genel çözümü olur. Yani, {}. 13.2 Temel teoremler 1.Teorem: (Cayley-Hamilton) Her kare matrisi karakteristik denklemin köküdür. İspat: A bir kare matris ve bu matrisin karakteristik polinomu olsun. karakteristik matrisinin adjointini ile gösterelim. matrisinin elemanları matrisinin kofaktörü olduğundan parametrisinin ençok (n-1). dereceden polinomlardır. Bu durumda değişkeni ihtiva etmeyen n-kare matrisler olmak üzere yazabiliriz. Böylece adjoint matris hakkındaki temel teoremden, eşitliğine sahip oluruz. Eşitlğin her iki tarafını açıp, bir matris polinomu olarak düzenledikten sonra aynı dereceden parametrelerinin katsayılarını eşitlediğimiz zaman matris denklemlerinden ibaret 2

{ sistemini elde ederiz. Bu sistemdeki denklemleri, sırasıyla, çarptıktan sonra topladığımızda ile matris denklemini elde ederiz. Yani, denklemine ulaşırız. Demek ki keyfi aldığımız A matrisi, kendi karakteristik denklemini sağlamaktadır. Bu teorem singuler olmayan matrisin tersini bulmakta ve benzer işlemlerde oldukça kullanışlıdır. 2.Ö.: matrisin tersini Cayley-Hamilton Teoremini kullanarak bulunuz. Ç.: =3 olduğundan A matrisinin tersi mencuttur. A matrisinin karakteristik polinomu olup, C-H Teorem dolaysıyla matris denklemi geçerlidir. B denklemi ters matris ile çarpar ve sonucu düzenlersek, ters matrisini olarak elde ederiz. 2.Teorem: lar bir A matrisinin farklı karakteristik kökleri ve sırası ile vektörleri de bu köklere karşılık gelen özvektörler ise, bu durumda { } kümesi lineer bağımsızdır. İspat: Teoremi k ya göre tümevarım ile ispat edelim. k=1 için { } kümesi lineer bağımsız olduğundan teoremin geçerliği aşikardır. k>1 alalım. Bu durumda, lar skalar olmak üzere { } için, vektörlerinin (1) vektör denklemine A matrisini uygulayalım. Böylece, { } için, olduğunu da aklımızda tutarak, (2) elde ederiz. (1) eşitiğini çarpıp, (2) eşitliğinden çıkardığımızda elde ederiz. 3

Burada hipotezden dolayı { } için, ve olduğundan her bir terim sıfır yapılmakla ve dolaysıyla (1) eşitliğinde çıkar ki bu da { } kümesinin lineer bağımsız olması demektir. 3.Teorem: İspat: matrislerinin karakteristik kökleri aynıdır. matrislerinin asli minörleri aynı olduğundan teorem elde edilir. 4.Teorem: ler bir n-kare A matrisinin karakteristik kökleri ise bir skalar olmak üzere ler de matrisinin karakteristik kökleridir. İspat: ler n-kare A matrisinin karakteristik kökleri olduklarından, denklemi sağlanır. matrisinin karakteristik denklemi ise olduğundan şeklindedir. Böylece karakteristik denklemlerin karşılaşmasından olduğu anlaşılır. Böylece, denkleminden elde edilir ki buradan sonuçları okunur. 5.Teorem: bir skalar olmak üzere, ler n-kare A matrisinin karakteristik kökleri ise lar da matrisinin karakteristik kökleridir. İspat: ler n-kare A matrisinin karakteristik kökleri olduklarından denklemi sağlanır. matrisinin karakteristik denklemi ise şeklinde olup, böylece eşitliğine sahip oluruz. Buradan 4

denklemine ulaşılır. Artık eşitliğinden aradığımız sonucu elde edilir. 6.Teorem: ler n-kare A matrisinin karakteristik kökleri ise ler de matrisinin karakteristik kökleridir. İspat: n-kare A matrisinin bir karakteristik kökü ise o zaman eşitliğini sağlayan bir sıfır olmayan vektörü vardır. Böylece olacağından da matrisinin bir karakteristik köküdür. Şimdi, (3) karakteristik polinomunda yerine koymakla elde edilen (4) eşitliğini göz önüne alalım. (3) ve (4) eşitliklerini çarpıp, koyarak elde ederiz. Bu ise istenendir. 7.Teorem: Singuler olmayan A matrisinin bir karakteristik kökü ise o zaman da matrisinin bir karakteristik köküdür. İspat: singuler olmayan A matrisinin bir karakteristik kökü ve de bu köke karşılık gelen özvektör olsun. O zaman matris denklemini soldan ile çarparak elde ederiz. Burada ( ) olduğunu aklımızda tutarak eşitliği düzenlediğimizde eşitliğine sahip oluruz ki bu da nın gösterir. matrisinin bir karakteristi kökü olduğunu 3.Ö.: Bir A matrisin karakteristik köküne karşılık gelen özvektörü bir birim vektör ise, o zaman olduğunu gösteriniz. Ç.: A matrisinin bir karakteristik kökü, de karakteristik köküne karşılık gelen bir özvektör ve üstelik olsun. Bu durumda olduğunu aklımızda tutarak sonucuna kolayca ulaşırız. 5

4.Ö.: p-indeksli bir nilpotent matrisin karakteristik köklerinin sıfır olduğunu gösteriniz. Ç.: p-indeksli bir nilpotent matrisi ise olur. A matrisinin bir karakteristik kökü ise eşitliği geçerlidir. Bu eşitlik soldan A ile çarpıldığından elde edilir. Bu işlem p defa tekrarlandığı zaman bulunur. Burada kabulü dikkate alındığında elde edilir. Böylece, olduğundan ve dolaysıyla bulunur. 5.Ö.: İdempotent bir matrisin karakteristik köklerinin 0 veya 1 olduğunu gösteriniz. Ç.: idempotent matrisi ise olur. O zaman A matrisinin bir karakteristik kökü ise matris denklemi geçerlidir. Bu denklemi soldan A ile çarparak elde edilir. Böylece, olduğu hesaba katılarak bulunur. olduğundan elde edilir. Buradan veya olduğu anlaşılır. 6.Ö.: Bir köşegen matrisin karakteristik kökleri, matrisin köşegen elemanları ve bu köklere karşılık gelen özvektörlerin de, yani, standart ortonormal bazın vektörler olduğunu gösteriniz. Ç.: Bu durumda =0 olduğundan A matrisinin karakteristik kökleri, { } için, bulunur. Şimdi, - i. bileşen vektörünün görelim. karakteristik köküne karşılık gelen bir özvektör olduğunu 6

olmak üzere homojen sistemin çözüm vektörü bulunur. olduğundan istediğimiz alınır. 7

13.KONU: Ödevler 1. matrisinin karakterisrik köklerini ve her bir köke karşılık gelen değişmez uzayı bulunuz. 2. matrisinin karakterisrik köklerini ve her bir köke karşılık gelen değişmez uzayı bulunuz. 3. matrisinin karakterisrik köklerini bulunuz. 4. matrisin tersini Cayley-Hamilton Teoremini kullanarak bulunuz. 5. matrisin tersini Cayley-Hamilton Teoremini kullanarak bulunuz. 6. p-indeksli bir nilpotent matrisin karakteristik köklerinin sıfır olduğunu gösteriniz. 7. İdempotent bir matrisin karakteristik köklerinin 0 veya 1 olduğunu gösteriniz. 8. Bir A matrisin karakteristik köküne karşılık gelen özvektörü bir birim vektör ise, o zaman olduğunu gösteriniz. 9. A ve B, n-kare matrisler ve A singuler değilse ve matrislerinin aynı karakteristik köklerine sahip olduklarını gösteriniz. 10. A ve B, n-kare matrisler olmak üzere ve matrislerinin aynı karakteristik köklerine sahip olduklarını gösteriniz. 8