Makine Öğrenmesi 8. hafta

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Makine Öğrenmesi 8. hafta"

Transkript

1 Makine Öğrenmesi 8. hafa Takviyeli Öğrenme (Reinforcemen Learning) Q Öğrenme (Q Learning) TD Öğrenme (TD Learning) Öğrenen Vekör Parçalama (LVQ) LVQ2 LVQ-X 1 Takviyeli Öğrenme Takviyeli öğrenme (Reinforcemen Learning), bulunduğu oramı algılayan ve kendi başına kararlar alabilen bir sisemin, hedefine ulaşabilmesinde doğru kararlar almayı nasıl öğrenebileceğini göserir. Bu yönem roboik, oyun programlama, hasalık eshisi ve fabrika oomasyonu gibi alanlarda sıklıkla kullanılır. 2 1

2 Takviyeli Öğrenme Takviyeli öğrenmede bir eğimen bulunur faka deneimli öğrenmedeki gibi siseme çok deay vermez veya veremez. Bunun yerine öğrenen sisem bir karar verdiğinde bu kararın doğru olduğu durumlar için sisemi ödüllendirir ve yanlışlar için de cezalandırır. Amaç, öğrenen sisemin denediği olası durumların hedef olup olmadığının konrolü ve denenen doğru veya yanlış üm durumların haırlanmasıdır. 3 Takviyeli Öğrenme Karar verilen durumlar ardarda gelen diziler şeklinde haırlanırsa sonunda başarıya ulaşan duruma bağlı olarak haırlanan ardışıl durumlar dizisindeki her karara büyük ödülden hisseler dağıılır. Aşağıda örnek bir durum ağacı göserilmişir. B D A 85 E 100 C F 4 2

3 Takviyeli Öğrenme Ödül veya cezayı belirleyen genellikle bir değer (amaç veya hedef de denilir) fonksiyonu ( V) vardır. Davranış poliikası ( Π ) ile anındaki durumda iken ( s ) yapılabilecek harekelerden ( a ) opimumu seçilebilir. Takviyeli öğrenme, değer fonksiyonunun üreiği en büyük ödüle sahip davranış poliikasını ercih eder. Opimum davranış poliikasının ercihi şöyle ifade edilir. Π= argmax a ( V( s, a) ) 5 Q Öğrenme Takviyeli öğrenme yaklaşımları içerisinde en çok bilineni Q-Öğrenme yönemidir. Sıklıkla labiren ve arama problemlerine uygulanır. Bu yönemi 1989 da ilk kez öneren Wakins değer fonksiyonu için Q harfini kullanması dolayısıyla yönem bu adı almışır. Kullanılacak değer fonksiyonunun (Q) maemaiksel modelinin genellikle kolayca belirlenebilir olmaması yüzünden sadece anlık duruma bağlı ödüller kullanılır. 6 3

4 Q Öğrenme Mevcu duruma sezgisel olarak veya rasgele bir değer ( r ) verilebilir. Faka ödülün gerçek değeri en büyük ödüle ulaşınca neleşir. Büyük ödüle ulaşan harekeler dizisi ödülden hareke uzaklığı oranında yararlanır. Büyük ödülden yararlanma oranı ( γ ) genelde [0 1] arasında bir değer olarak seçilir. Değer fonksiyonunun güncellenmesi aşağıdaki denklem ile gerçekleşir. Q( s, a) = r + γmaxq( s+ 1, a+ 1) a Örnek Klasik bir problem olarak bir roboun 4x4 bir maris üzerinde sol üs köşeden başlayarak sağ al köşedeki çıkışı arama adımlarını izleyelim. 8 4

5 Örnek Robo rasgele ahminlerle hücreler arasında gezinirken çıkışı keşfediyor. Çıkışa hangi hücreden geçi ise onu işareliyor. 9 Örnek Robo rasgele gezinmelere devam ederken her seferinde bulduğu 1 hücreyi işareliyor. 10 5

6 Örnek Tüm ierasyonlar biiğinde en kısa yolu aşağıdaki gibi çiziyor. 11 TD Öğrenme 1988 de Suon, Q algorimasında dela kuralını kullanarak bir iyileşme yapıp TD (Temporal Difference) öğreme adıyla sunmuşur. Dela kuralında eğim azalma için kullanılan ( η ) parameresi, büyük ödüle giden birden fazla yolun kesişimindeki durumları Q öğrenmesine göre daha değerli hale geirmekedir. Q = Q( s, a) Q = Q + η r γmaxq a Q 12 6

7 Sarsa: Akif Poliikalı TD TD öğrenme yönemi bir sonraki en iyi hareke değerine göre davranış poliikasını seçiği için pasif poliikalı yönem olarak adlandırılır. Sarsa gibi akif poliikalı yönemlerde ise bir sonraki davranış poliikası da belirlenebilir. Dolayısıyla problemin durum ağacı üzerinde 1 seviye daha derine indiği söylenebilir. 13 ÖDEV Sarsa algorimasını örnek bir uygulama için MATLAB ile hazırlayınız. 14 7

8 Takviyeli Öğrenen YSA: LVQ YSA mimarisine sahip olan LVQ (Learning Vecor Quanizaion) modeli, akviyeli öğrenmeden esinlenerek oraya konulan danışmanlı bir öğrenme yönemidir. 15 Takviyeli Öğrenen YSA: LVQ Bazen örneklere ai sınıf değeri bilinemez ve bu yüzden öğrenen modele hedef değerleri vermek mümkün olmaz. Bununla beraber modelin üreiği çıkının doğru veya yanlış olduğu belirilebiliyorsa akviyeli öğrenme ile sınıflandırma yapılabilir. 16 8

9 LVQ Ağı LVQ ağında amaç NxM boyulu bir marisi M boyulu birkaç veköre harialamakır. Öğrenme işlemi, girdi marisini emsil edecek vekörler kümesini espi emek için yürüülür. Diğer bir deyişle LVQ ağının görevi öğrenme yolu ile referans vekörler denilen bu emsilcileri belirlemekir. 17 LVQ Ağının Kamanları LVQ ağı 3 kamandan oluşmakadır: Girdi kamanı: Dışarıdan alınan örnekler (girdi vekörleri) ağa göserilir. Kohonen kamanı: Her eleman sınıflı bir referans vekörüdür. Girdi vekörüne en yakın olan referans vekörü burada belirlenir. Çıkı kamanı: Her sınıf için bir çıkış bulunur. Sadece belirlenen sınıfa ai çıkış akif yapılır. 18 9

10 LVQ Ağında Öğrenme LVQ ağında girdi vekörlerinin sınıfları, referans vekörleri üzerinde uygulanan en yakın 1 komşu kuralına göre belirlenir. Uzaklık ölçüü olarak genellikle Ökli uzaklığı kullanılır. Sonuca bağlı olarak her ierasyonda bir referans vekörü güncellenir. 19 LVQ Ağında Öğrenme Girdi vekörü ile referans vekörler arasındaki mesafeler hesaplanır. En kısa mesafeyi sağlayan referans vekör belirlenir. Bu referans vekörün sınıfı çıkışa akif edilir. Belirlenen referans vekörü, sonucun doğruluğuna göre belirli bir oranda girdi vekörüne yaklaşırılır veya uzaklaşırılır

11 LVQ Ağında Öğrenme Girdi vekörüne en yakın referans vekörü şu ifadeyle belirlenir. i= argmin Çıkış doğruysa referans vekör güncellenir. v Çıkış yanlışsa; v i i = v + λ i j = v λ i x v ( x v ) ( x v ) i i j 21 LVQ Ağında Öğrenme Öğrenme kasayısı λ genelde [0 1] aralığında seçilir. YSA mimarisine sahip olan LVQ modeli aynı zamanda geriyayılımdaki eğim azalmayı da kullanır. Dolayısıyla λ değeri her ierasyonda azalılır

12 LVQ Öze Ağın öğrenmesi emel çok kamanlı ağlardan daha hızlı ve kolaydır. Doğrusal olmayan problemlerde de kullanılabilir. Öğrenme kasayısının sıfır değerine inmemesi durumunda ağ doğru ağırlık değerlerinden uzaklaşır ve öğrendiklerini unuabilir. Bazı problemlerde aynı referans vekörü ehlikeli şekilde sürekli olarak kazanır. İki sınıfın arasında veya sınırlara yakın vekörlerin sınıfı belirlenemeyebilir. 23 Örnek Kümeleme eslerinde iyi bilinen Ruspini veri kümesinde LVQ eğiimini izleyelim

13 LVQ2 Ağı LVQ ağı, farklı sınıflara ai nokaların arasında veya uç sınır bölgelerde kalan örnek nokaları sınıflandırmada zorlanır. Bu konuda bir iyileşirme olarak LVQ2 önerilmişir. Haalı sınıflandırılan örneklere en yakın iki referans vekör espi edilir. Girdi vekörü bu ikisinin sınırlandırdığı pencere içinde ise ve vekörler farklı sınıflardansa güncellenir. 25 LVQ-X Ağı LVQ2 ağının eğiiminin iyileşirilmiş halidir. Yanlış sınıflandırma yapıldığında iki referans vekörü birden güncellenir. Bu işlem, öğrenme hızını arırır, öğrenme zamanını kısalır ve ağın genelleme yeeneğini arırır

14 LVQ-X Ağı LVQ-X ağında, her ierasyonda, yarışmayı kazanan iki ane işlem elemanı bulunur. Bunlar; Global: Girdi vekörüne en yakın referans vekörüne sahip olanı gösermekedir. Yerel: Girdi ile aynı sınıfan referans vekörlerinden girdi vekörüne en yakın olanı ifade emekedir. 27 LVQ-X Ağı Girdi örneğine daha yakın olan referans vekör, örnek ile farklı sınıfandır ve bu yüzden uzaklaşırılmalıdır. Girdi, doğru sınıflandırılabilsin diye diğer vekör de örneğe daha yakın hale geirilmelidir. v v 1 2 = v 1 = v 2 + λ λ ( x v1) ( x v )

MEH535 Örüntü Tanıma

MEH535 Örüntü Tanıma MEH535 Örünü Tanıma 4. Paramerik Sınıflandırma Doç.Dr. M. Kemal GÜLLÜ Elekronik ve Haberleşme Mühendisliği Bölümü web: hp://akademikpersonel.kocaeli.edu.r/kemalg/ E-posa: kemalg@kocaeli.edu.r Paramerik

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 11 Hiperspektral Görüntülerde Kümeleme ve Sınıflandırma Alp Ertürk alp.erturk@kocaeli.edu.tr Sınıflandırma Sınıflandırma işleminin amacı, her piksel vektörüne bir ve

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Sınıflandırıcıların Değerlendirilmesi Skorlar Karışıklık matrisi Accuracy Precision Recall

Detaylı

ÖDEV SORULARI Güz Yarıyılı Öğretim Üyesi: Prof. Dr. Sedef Kent

ÖDEV SORULARI Güz Yarıyılı Öğretim Üyesi: Prof. Dr. Sedef Kent LĐNEER CEBĐR ve UYGULMLRI DERSĐ ÖDEV SORULRI 9- Güz Yarıyılı Öğreim Üyesi: Prof. Dr. Sedef Ken Ödev ile ilgili açıklamalar:. Derse ai dör bölümden oluşan ödevlerin amamı buradadır. ncak ödevler konular

Detaylı

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ YAPAY SİNİR AĞLARI Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ İÇERİK Sinir Hücreleri Yapay Sinir Ağları Yapısı Elemanları Çalışması Modelleri Yapılarına Göre Öğrenme Algoritmalarına Göre Avantaj ve

Detaylı

Su Yapıları II Aktif Hacim

Su Yapıları II Aktif Hacim 215-216 Bahar Su Yapıları II Akif Hacim Yrd. Doç. Dr. Burhan ÜNAL Bozok Üniversiesi Mühendislik Mimarlık Fakülesi İnşaa Mühendisliği Bölümü Yozga Yrd. Doç. Dr. Burhan ÜNAL Bozok Üniversiesi n aa Mühendisli

Detaylı

Diabetik Retinopatinin Otomatik Algılanması Amacıyla. Göz Görüntüsünden Kan Damarlarının Eşiklenmesi

Diabetik Retinopatinin Otomatik Algılanması Amacıyla. Göz Görüntüsünden Kan Damarlarının Eşiklenmesi Diabeik Reinopainin Oomaik Algılanması Amacıyla Göz Görünüsünden Kan Damarlarının Eşiklenmesi Vasif NABİYEV, Salih BAHÇEKAPILI Karadeniz Teknik Üniversiesi, Mühendislik Fakülesi, Bilgisayar Mühendisliği

Detaylı

BİLGİSAYAR PROGRAMLAMA Araş. Gör. Ahmet ARDAHANLI. Kafkas Üniversitesi Mühendislik Fakültesi

BİLGİSAYAR PROGRAMLAMA Araş. Gör. Ahmet ARDAHANLI. Kafkas Üniversitesi Mühendislik Fakültesi BİLGİSAYAR PROGRAMLAMA Araş. Gör. Ahmet ARDAHANLI Kafkas Üniversitesi Mühendislik Fakültesi Bu hafta? İki değişken değerinin yer değiştirilmesi (swapping) selection sort sıralama algoritması bubble sort

Detaylı

MEH535 Örüntü Tanıma. Örneklerden Sınıf Öğrenme

MEH535 Örüntü Tanıma. Örneklerden Sınıf Öğrenme MEH535 Örünü Tanıma 3. Deneimli Öğrenme Doç.Dr. M. Kemal GÜLLÜ Elekronik ve Haberleşme Mühendisliği Bölümü web: hp://akademikpersonel.kocaeli.edu.r/kemalg/ E-posa: kemalg@kocaeli.edu.r Örneklerden Sınıf

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

Veride etiket bilgisi yok Denetimsiz öğrenme (unsupervised learning) Neden gereklidir?

Veride etiket bilgisi yok Denetimsiz öğrenme (unsupervised learning) Neden gereklidir? MEH535 Örünü Tanıma 7. Kümeleme (Cluserng) Doç.Dr. M. Kemal GÜLLÜ Elekronk ve Haberleşme Mühendslğ Bölümü web: hp://akademkpersonel.kocael.edu.r/kemalg/ E-posa: kemalg@kocael.edu.r Verde eke blgs yok Denemsz

Detaylı

ÇOKLU DOĞRUSAL BAĞLANTI

ÇOKLU DOĞRUSAL BAĞLANTI ÇOKLU DOĞRUSAL BAĞLANTI ÇOKLU DOĞRUSALLIĞIN ANLAMI Çoklu doğrusal bağlanı; Bağımsız değişkenler arasında doğrusal (yada doğrusala yakın) ilişki olmasıdır... r xx i j paramereler belirlenemez hale gelir.

Detaylı

Özörgütlemeli Öğrenme (SOM) A. Cumhur KINACI

Özörgütlemeli Öğrenme (SOM) A. Cumhur KINACI Özörgütlemeli Öğrenme (SOM) A. Cumhur KINACI Öğrenme Türleri Eğiticili Öğrenme Eğiticisiz Öğrenme: Ağın verilerin sınıflandırmasını dışarıdan yardım almadan kendi başına yapmasıdır. Bunun olabilmesi için

Detaylı

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Kümeleme İşlemleri Kümeleme Tanımı Kümeleme Uygulamaları Kümeleme Yöntemleri Kümeleme (Clustering) Kümeleme birbirine

Detaylı

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI TERS PERSPEKTİF DÖNÜŞÜM İLE YÜZEY DOKUSU ÜRETİMİ

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI TERS PERSPEKTİF DÖNÜŞÜM İLE YÜZEY DOKUSU ÜRETİMİ İANBUL İCARE ÜNİERİEİ BİLGİAAR MÜHENDİLİĞİ BÖLÜMÜ BİLGİAAR İEMLERİ LABORAUARI ER PERPEKİF DÖNÜŞÜM İLE ÜZE DOKUU ÜREİMİ Bu deneyde, genel haları ile herhangi bir yüzeye bir dokunun kopyalanması üzerinde

Detaylı

GELİŞTİRİLMİŞ DGA İŞARETLERİNİN PIC MİKRODENETLEYİCİLERLE ÜRETİLMESİ

GELİŞTİRİLMİŞ DGA İŞARETLERİNİN PIC MİKRODENETLEYİCİLERLE ÜRETİLMESİ GELİŞTİRİLMİŞ DGA İŞARETLERİNİN PIC MİKRODENETLEYİCİLERLE ÜRETİLMESİ Tarık ERFİDAN Saılmış ÜRGÜN Bekir ÇAKIR Yakup KARABAG Kocaeli Üniversiesi Müh.Fak. Elekrik Mühendisliği Bölümü, 41100, İzmi/Kocaeli

Detaylı

BİRİM KÖK TESTLERİNDE YAPISAL KIRILMA ZAMANININ İÇSEL OLARAK BELİRLENMESİ PROBLEMİ: ALTERNATİF YAKLAŞIMLARIN PERFORMANSLARI

BİRİM KÖK TESTLERİNDE YAPISAL KIRILMA ZAMANININ İÇSEL OLARAK BELİRLENMESİ PROBLEMİ: ALTERNATİF YAKLAŞIMLARIN PERFORMANSLARI BİRİM KÖK TESTLERİNDE YAPISAL KIRILMA ZAMANININ İÇSEL OLARAK BELİRLENMESİ PROBLEMİ: ALTERNATİF YAKLAŞIMLARIN PERFORMANSLARI Arş. Gör. Furkan EMİRMAHMUTOĞLU Yrd. Doç. Dr. Nezir KÖSE Arş. Gör. Yeliz YALÇIN

Detaylı

Esnek Hesaplamaya Giriş

Esnek Hesaplamaya Giriş Esnek Hesaplamaya Giriş J E O L O J İ M Ü H E N D İ S L İ Ğ İ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R İ - I DOÇ. DR. ERSAN KABALCI Esnek Hesaplama Nedir? Esnek hesaplamanın temelinde yatan

Detaylı

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#9: AÇGÖZLÜ ALGORİTMALAR

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#9: AÇGÖZLÜ ALGORİTMALAR YZM 3207- ALGORİTMA ANALİZİ VE TASARIM DERS#9: AÇGÖZLÜ ALGORİTMALAR Aç Gözlü (Hırslı) Algoritmalar (Greedy ) Bozuk para verme problemi Bir kasiyer 48 kuruş para üstünü nasıl verir? 25 kuruş, 10 kuruş,

Detaylı

Eş Zamanlı Yazılımlarda Güvenilirlik Analizi : Literatür Taraması

Eş Zamanlı Yazılımlarda Güvenilirlik Analizi : Literatür Taraması Eş Zamanlı Yazılımlarda Güvenilirlik Analizi : Lieraür Taraması Erku Tekeli Çukurova Üniversiesi, Kozan Meslek Yüksekokulu, Adana eekeli@cu.edu.r Öze: Son yıllarda yüksek başarımlı hesaplamalara olan ihiyaçlar

Detaylı

13 Hareket. Test 1 in Çözümleri. 4. Konum-zaman grafiklerinde eğim hızı verir. v1 t

13 Hareket. Test 1 in Çözümleri. 4. Konum-zaman grafiklerinde eğim hızı verir. v1 t 3 Hareke Tes in Çözümleri X Y. cisminin siseme er- diği döndürme ekisi 3mgr olup yönü saa ibresinin ersinedir. cisminin siseme erdiği döndürme ekisi mgr olup yönü saa ibresi yönündedir. 3mgr daha büyük

Detaylı

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM Yavaş değişen akımların analizinde kullanılacak genel denklem bir kanal kesitindeki toplam enerji yüksekliği: H = V g + h + z x e göre türevi alınırsa: dh d V = dx dx

Detaylı

127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ

127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ 127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ Veri Madenciliği : Bir sistemin veri madenciliği sistemi olabilmesi

Detaylı

Ders Adı : Nesne Tabanlı Programlama-I Ders No : Teorik : 3 Pratik : 1 Kredi : 3.5 ECTS : 4. Ders Bilgileri.

Ders Adı : Nesne Tabanlı Programlama-I Ders No : Teorik : 3 Pratik : 1 Kredi : 3.5 ECTS : 4. Ders Bilgileri. Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : Nesne Tabanlı Programlama-I Ders No : 0690130114 Teorik : 3 Pratik : 1 Kredi : 3.5 ECTS : 4 Ders Bilgileri Ders Türü Öğretim

Detaylı

Ters Perspektif Dönüşüm ile Doku Kaplama

Ters Perspektif Dönüşüm ile Doku Kaplama KRDENİZ EKNİK ÜNİERSİESİ BİLGİSR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSR GRFİKLERİ LBORURI ers Perspekif Dönüşüm ile Doku Kaplama 1. Giriş Bu deneyde, genel haları ile paralel ve perspekif izdüşüm eknikleri, ers perspekif

Detaylı

Fonksiyon Minimizasyonunda Simulated Annealing Yöntemi

Fonksiyon Minimizasyonunda Simulated Annealing Yöntemi 07-04-006 Ümit Akıncı Fonksiyon Minimizasyonunda Simulated Annealing Yöntemi İçindekiler Fonksiyon Minimizasyonu Metropolis Algoritması. Algoritma.......................................... Bir boyutlu

Detaylı

İlk Yapay Sinir Ağları. Dr. Hidayet Takçı

İlk Yapay Sinir Ağları. Dr. Hidayet Takçı İlk Yapay Sinir Ağları Dr. Hidayet htakci@gmail.com http://htakci.sucati.org Tek katmanlı algılayıcılar (TKA) Perceptrons (Rosenblat) ADALINE/MADALINE (Widrow and Hoff) 2 Perseptron eptronlar Basit bir

Detaylı

Dizi Antenler. Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır.

Dizi Antenler. Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır. Dizi Antenler Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır. 1. Dizi antenin geometrik şekli (lineer, dairesel, küresel..vs.) 2. Dizi elemanları arasındaki

Detaylı

4) Seyrek rastlanılan bir hastalık için belli bir zaman araalığında bu hastalığa yakalananların sayısının gözlenmesi,

4) Seyrek rastlanılan bir hastalık için belli bir zaman araalığında bu hastalığa yakalananların sayısının gözlenmesi, POĐSSON DAĞILIMI Poisson Dağılımı sürekli oramlarda (zaman, alan, hacim, ) kesikli sonuçlar veren ve aşağıda a),b),c) şıklarında belirilen özelliklere sahip deneylerin modellenmesinde kullanılan bir dağılım

Detaylı

İnönü Bulvarı No:27, 06490, Bahçelievler / Ankara-Türkiye hasan.tiryaki@euas.gov.tr, mehmet.bulut@euas.gov.tr. ikocaarslan@kku.edu.

İnönü Bulvarı No:27, 06490, Bahçelievler / Ankara-Türkiye hasan.tiryaki@euas.gov.tr, mehmet.bulut@euas.gov.tr. ikocaarslan@kku.edu. Termik Sanralların Konrol Sisemlerinde Teknolojik Gelişmeler ve Verimlilik Technologic Developmens on Conrol Sysems of Thermal Power Plans and Efficiency Hasan TİRYAKİ 1, Mehme BULUT 2, İlhan KOCAARSLAN

Detaylı

Çift Üstel Düzeltme (Holt Metodu ile)

Çift Üstel Düzeltme (Holt Metodu ile) Tahmin Yönemleri Çif Üsel Düzelme (Hol Meodu ile) Hol meodu, zaman serilerinin, doğrusal rend ile izlenmesi için asarlanmış bir yönemdir. Yönem (seri için) ve (rend için) olmak üzere iki düzelme kasayısının

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

SORU SETİ 02 (REVİZE EDİLDİ) FİNAL KONULARI

SORU SETİ 02 (REVİZE EDİLDİ) FİNAL KONULARI Ekonomeri 8 Ocak, 0 Gazi Üniversiesi İkisa Bölümü SORU SETİ 0 (REVİZE EDİLDİ) FİNAL KONULARI PROBLEM Aşağıda verilen avuk ei alebi fonksiyonunu düşününüz (960-98): lny = β + β ln X + β ln X + β ln X +

Detaylı

Dolar Kurundaki Günlük Hareketler Üzerine Bazı Gözlemler

Dolar Kurundaki Günlük Hareketler Üzerine Bazı Gözlemler Dolar Kurundaki Günlük Harekeler Üzerine Bazı Gözlemler Türkiye Bankalar Birliği Ekonomi Çalışma Grubu Toplanısı 28 Nisan 2008, İsanbul Doç. Dr. Cevde Akçay Koç Finansal Hizmeler Baş ekonomis cevde.akcay@yapikredi.com.r

Detaylı

İş Zekası. Hafta 6 Kestirimci Modelleme Teknikleri. Yrd. Doç. Dr. H. İbrahim CEBECİ

İş Zekası. Hafta 6 Kestirimci Modelleme Teknikleri. Yrd. Doç. Dr. H. İbrahim CEBECİ İş Zekası Hafta 6 Kestirimci Modelleme Teknikleri Business Intelligence and Analytics: Systems for Decision Support 10e isimli eserden adapte edilmiştir Bölüm Amaçları Yapay Sinir Ağları (YSA) kavramını

Detaylı

Box-Jenkıns Modelleri ile Aylık Döviz Kuru Tahmini Üzerine Bir Uygulama

Box-Jenkıns Modelleri ile Aylık Döviz Kuru Tahmini Üzerine Bir Uygulama Kocaeli Üniversiesi Sosyal Bilimler Ensiüsü Dergisi (6) 2003 / 2 : 49-62 Box-Jenkıns Modelleri ile Aylık Döviz Kuru Tahmini Üzerine Bir Uygulama Hüdaverdi Bircan * Yalçın Karagöz ** Öze: Bu çalışmada geleceği

Detaylı

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI Lineer Ayrılabilen Paternlerin Yapay Sinir Ağı ile Sınıflandırılması 1. Biyolojik Sinirin Yapısı Bilgi işleme

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

Bahadır KARASULU, Aybars UĞUR Ege Üniversitesi, Bilgisayar Mühendisliği Bölümü

Bahadır KARASULU, Aybars UĞUR Ege Üniversitesi, Bilgisayar Mühendisliği Bölümü ÖZÖRGÜTLEMELİ YAPAY SİNİR AĞI MODELİ NİN KULLANILDIĞI KUTUP DENGELEME PROBLEMİ İÇİN PARALEL HESAPLAMA TEKNİĞİ İLE BİR BAŞARIM ENİYİLEŞTİRME YÖNTEMİ Bahadır KARASULU, Aybars UĞUR Ege Üniversitesi, Bilgisayar

Detaylı

Yapay Sinir Ağları. (Artificial Neural Networks) DOÇ. DR. ERSAN KABALCI

Yapay Sinir Ağları. (Artificial Neural Networks) DOÇ. DR. ERSAN KABALCI Yapay Sinir Ağları (Artificial Neural Networks) J E O L O J İ M Ü H E N D İ S L İ Ğ İ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R İ - I DOÇ. DR. ERSAN KABALCI Yapay Sinir Ağları Tarihçe Biyolojik

Detaylı

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Doç.Dr.Mehmet Hakan Satman mhsatman@istanbul.edu.tr İstanbul Üniversitesi 2014.10.22 Doç.Dr.Mehmet Hakan Satmanmhsatman@istanbul.edu.tr Tedarik Zinciri

Detaylı

GEFRAN PID KONTROL CİHAZLARI

GEFRAN PID KONTROL CİHAZLARI GEFRAN PID KONTROL CİHAZLARI GENEL KONTROL YÖNTEMLERİ: ON - OFF (AÇIK-KAPALI) KONTROL SİSTEMLERİ: Bu eknik en basi konrol ekniğidir. Ölçülen değer (), se değerinin () üzerinde olduğunda çıkış sinyali açılır,

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan

Detaylı

YABANCI ZİYARETÇİ SAYISININ TAHMİNİNDE BOX- JENKINS MODELİ, WINTERS YÖNTEMİ VE YAPAY SİNİR AĞLARIYLA ZAMAN SERİSİ ANALİZİ

YABANCI ZİYARETÇİ SAYISININ TAHMİNİNDE BOX- JENKINS MODELİ, WINTERS YÖNTEMİ VE YAPAY SİNİR AĞLARIYLA ZAMAN SERİSİ ANALİZİ YABANCI ZİYARETÇİ SAYISININ TAHMİNİNDE BOX- JENKINS MODELİ, WINTERS YÖNTEMİ VE YAPAY SİNİR AĞLARIYLA ZAMAN SERİSİ ANALİZİ 62 Arş. Grv. Emrah ÖNDER İsanbul Üniversiesi İşleme Fakülesi Arş. Grv. Özlem HASGÜL

Detaylı

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Sınıflandırma yöntemleri Karar ağaçları ile sınıflandırma Entropi Kavramı ID3 Algoritması C4.5

Detaylı

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü OYUN TEORİSİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü TANIM ''Oyun Teorisi'', iki yada daha fazla rakibi belirli kurallar altında birleştirerek karşılıklı olarak çelişen olasılıklar

Detaylı

FİZİK-II DERSİ LABORATUVARI ( FL 2 4 )

FİZİK-II DERSİ LABORATUVARI ( FL 2 4 ) FİZİK-II DERSİ LABORATUVARI ( FL 2 4 ) KURAM: Kondansaörün Dolma ve Boşalması Klasik olarak bildiğiniz gibi, iki ileken paralel plaka arasına dielekrik (yalıkan) bir madde konulursa kondansaör oluşur.

Detaylı

YAPAY SİNİR AĞLARI İLE DOĞALGAZ TÜKETİM TAHMİNİ

YAPAY SİNİR AĞLARI İLE DOĞALGAZ TÜKETİM TAHMİNİ Aaürk Ü. İİBF Dergisi, 0. Ekonomeri ve İsaisik Sempozyumu Özel Sayısı, 20 463 YAPAY SİNİR AĞLARI İLE DOĞALGAZ TÜKETİM TAHMİNİ Oğuz KAYNAR Serkan TAŞTAN 2 Ferhan DEMİRKOPARAN 3 Öze: Doğalgaz emini nokasında

Detaylı

Algoritmalar. Arama Problemi ve Analizi. Bahar 2016 Doç. Dr. Suat Özdemir 1

Algoritmalar. Arama Problemi ve Analizi. Bahar 2016 Doç. Dr. Suat Özdemir 1 Algoritmalar Arama Problemi ve Analizi Bahar 2016 Doç. Dr. Suat Özdemir 1 Arama Problemi Sıralama algoritmaları gibi arama algoritmaları da gerçek hayat bilgisayar mühendisliği problemlerinin çözümünde

Detaylı

Tam Öğrenme Kuramı -2-

Tam Öğrenme Kuramı -2- Tam Öğrenme Modeli Tam Öğrenme Kuramı Okulda öğrenme (Tam öğrenme) kuramı, başarıyı normal dağılım eğrisinden üçgen dağılıma götüren ya da okuldaki % 20 oranındaki beklendik başarıyı % 75 ile % 90'a hatta

Detaylı

PAZARLAMA ARAŞTIRMA SÜRECİ

PAZARLAMA ARAŞTIRMA SÜRECİ PAZARLAMA ARAŞTIRMA SÜRECİ Pazarlama araştırması yapılırken belirli bir sıra izlenir. Araştırmada her aşama, birbirinden bağımsız olmayıp biri diğeri ile ilişkilidir. Araştırma sürecinde başlıca aşağıdaki

Detaylı

Algoritma Geliştirme ve Veri Yapıları 10 Graf Veri Modeli. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 10 Graf Veri Modeli. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 10 Graf Veri Modeli Graf, matematiksel anlamda, düğümler ve bu düğümler arasındaki ilişkiyi gösteren kenarlardan oluşan bir kümedir; mantıksal ilişki düğüm ile düğüm

Detaylı

YAPAY SİNİR AĞLARI İLE TÜRKİYE ELEKTRİK ENERJİSİ TÜKETİMİNİN 2010 YILINA KADAR TAHMİNİ

YAPAY SİNİR AĞLARI İLE TÜRKİYE ELEKTRİK ENERJİSİ TÜKETİMİNİN 2010 YILINA KADAR TAHMİNİ Gazi Üniv. Müh. Mim. Fak. Der. J. Fac. Eng. Arch. Gazi Univ. Cil 19, No 3, 7-33, 004 Vol 19, No 3, 7-33, 004 YAPAY SİNİR AĞLARI İLE TÜRKİYE ELEKTRİK ENERJİSİ TÜKETİMİNİN 010 INA KADAR TAHMİNİ Coşkun HAMZAÇEBİ

Detaylı

GRAF MATRİSLERİ Giriş

GRAF MATRİSLERİ Giriş Giriş Bir graf (sisem) için Kirchhoff akım ve gerilim denklemleri marissel olarak yazılırsa, bu denklemlerde karşılaşılan marislere Graf Marisleri denir Bilindiği üzere KAY dan düğüm veya kesileme denklemleri,

Detaylı

BÖLÜM-7 YÜZEYSEL AKIŞ (SURFACE RUNOFF)

BÖLÜM-7 YÜZEYSEL AKIŞ (SURFACE RUNOFF) BÖÜM-7 YÜZEYSE KIŞ (SURFCE RUNOFF) 7.1 GİRİŞ Yağışan (kar, yağmur) sızma, yüzeysel birikirme ve yüzeyalı akışı çıkıkan sonra ara kalan kısma yüzeysel akış denir. Kısaca yüzeysel akışa yağış fazlası denilebilir.

Detaylı

ELN1001 BİLGİSAYAR PROGRAMLAMA I

ELN1001 BİLGİSAYAR PROGRAMLAMA I ELN1001 BİLGİSAYAR PROGRAMLAMA I DEPOLAMA SINIFLARI DEĞİŞKEN MENZİLLERİ YİNELEMELİ FONKSİYONLAR Depolama Sınıfları Tanıtıcılar için şu ana kadar görülmüş olan özellikler: Ad Tip Boyut Değer Bunlara ilave

Detaylı

YAPAY SİNİR AĞLARI İLE NİĞDE BÖLGESİNİN ELEKTRİK YÜK TAHMİNİ

YAPAY SİNİR AĞLARI İLE NİĞDE BÖLGESİNİN ELEKTRİK YÜK TAHMİNİ YAPAY SİNİR AĞLARI İLE NİĞDE BÖLGESİNİN ELEKRİK YÜK AHMİNİ anku YALÇINÖZ Saadedin HERDEM Ulaş EMİNOĞLU Niğde Üniversiesi, Mühendislik-Mimarlık Fakülesi Elekrik-Elekronik Mühendisliği Bölümü, Niğde 5 /

Detaylı

= t. v ort. x = dx dt

= t. v ort. x = dx dt BÖLÜM.4 DOĞRUSAL HAREKET 4. Mekanik Mekanik konusu, kinemaik ve dinamik olarak ikiye ayırmak mümkündür. Kinemaik cisimlerin yalnızca harekei ile ilgilenir. Burada cismin hareke ederken izlediği yol önemlidir.

Detaylı

mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar

mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar Algoritma ve Programlamaya Giriş mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar İçerik Algoritma Akış Diyagramları Programlamada İşlemler o o o Matematiksel Karşılaştırma Mantıksal Programlama

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Yapay Sinir Ağları (Artificial Neural Network) Doç.Dr. M. Ali Akcayol Yapay Sinir Ağları Biyolojik sinir sisteminden esinlenerek ortaya çıkmıştır. İnsan beyninin öğrenme, eski

Detaylı

Eğitsel Oyun Projesi Raporu. Otizm Kavram Öğretimi Mustafa UZUN

Eğitsel Oyun Projesi Raporu. Otizm Kavram Öğretimi Mustafa UZUN Bilgisayar ve Öğretim Teknolojileri Eğitimi Bölümü 2016-2017 Güz Dönemi - Bilişim Teknolojileri ve Öğretmen Yeterlikleri Dersi Eğitsel Oyun Projesi Raporu Otizm Kavram Öğretimi Mustafa UZUN 160805061 mustafa-uzun06@hotmail.com

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Tabu Arama (Tabu Search) Doç.Dr. M. Ali Akcayol Tabu Arama 1986 yılında Glover tarafından geliştirilmiştir. Lokal minimum u elimine edebilir ve global minimum u bulur. Değerlendirme

Detaylı

Türkiye Cumhuriyet Merkez Bankası Sayı: 2010-8 / 24 Mayıs 2010 EKONOMİ NOTLARI

Türkiye Cumhuriyet Merkez Bankası Sayı: 2010-8 / 24 Mayıs 2010 EKONOMİ NOTLARI Türkiye Cumhuriye Merkez Bankası Sayı: 2010-8 / 24 Mayıs 2010 EKONOMİ NOTLARI TCMB Faiz Kararlarının Piyasa Faizleri Ve Hisse Senedi Piyasaları Üzerine Ekisi Mura Duran Refe Gürkaynak Pınar Özlü Deren

Detaylı

TÜRKİYE DE 1963 2006 DÖNEMİNDE KAMU VE ÖZEL SEKTÖR ÜCRETLERİ ÜZERİNE AMPİRİK BİR UYGULAMA

TÜRKİYE DE 1963 2006 DÖNEMİNDE KAMU VE ÖZEL SEKTÖR ÜCRETLERİ ÜZERİNE AMPİRİK BİR UYGULAMA TÜRKİYE DE 1963 2006 DÖNEMİNDE KAMU VE ÖZEL SEKTÖR ÜCRETLERİ ÜZERİNE AMPİRİK BİR UYGULAMA Mura ASLAN Eskişehir Osmangazi Üniversiesi H. Kürşad ASLAN Ken Sae Üniversiesi Öze İskandinav ücre modelinden hareke

Detaylı

Hızlı Düzey Küme Yöntemine Bağlı Retinal Damar Bölütlemesi. Bekir DİZDAROĞLU. KTÜ Bilgisayar Mühendisliği Bölümü

Hızlı Düzey Küme Yöntemine Bağlı Retinal Damar Bölütlemesi. Bekir DİZDAROĞLU. KTÜ Bilgisayar Mühendisliği Bölümü Bekir DİZDAROĞLU KTÜ Bilgisayar Mühendisliği Bölümü bekir@ktu.edu.tr 1/29 Tıbbi imge bölütleme klasik yaklaşımları a) Piksek tabanlı b) Kenar tabanlı c) Bölge tabanlı d) Watershed (sınır) tabanlı e) Kenar

Detaylı

DA-DA DÖNÜŞTÜRÜCÜLER (DA Kıyıcı, DA Gerilim Ayarlayıcı) DA gerilimi bir başka DA gerilim seviyesine dönüştüren devrelerdir.

DA-DA DÖNÜŞTÜRÜCÜLER (DA Kıyıcı, DA Gerilim Ayarlayıcı) DA gerilimi bir başka DA gerilim seviyesine dönüştüren devrelerdir. DADA DÖNÜŞÜRÜCÜLER (DA Kıyıcı, DA Gerilim Ayarlayıcı) DA gerilimi bir başka DA gerilim seviyesine dönüşüren devrelerdir. Uygulama Alanları 1. DA moor konrolü 2. UPS 3. Akü şarjı 4. DA gerilim kaynakları

Detaylı

YZM 3217 YAPAY ZEKA DERS#10: KÜMELEME

YZM 3217 YAPAY ZEKA DERS#10: KÜMELEME YZM 317 YAPAY ZEKA DERS#10: KÜMELEME Sınıflandırma (Classification) Eğiticili (supervised) sınıflandırma: Sınıflandırma: Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğunu bilinir Eğiticisiz (unsupervised)

Detaylı

Öğrenci İşleri Bilgi Sistemi Öğretim Elemanı - Sınav Sonuç Giriş İşlemleri

Öğrenci İşleri Bilgi Sistemi Öğretim Elemanı - Sınav Sonuç Giriş İşlemleri Öğrenci İşleri Bilgi Sistemi Öğretim Elemanı - Sınav Sonuç Giriş İşlemleri Öğrenci İşleri Bilgi Sisteminde, Öğretim Elemanı yetkisi kapsamında aşağıdaki ekran (Ekran 1) açılır. Bu belgede genel kullanım

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

BÖLÜM 12 STUDENT T DAĞILIMI

BÖLÜM 12 STUDENT T DAĞILIMI 1 BÖLÜM 12 STUDENT T DAĞILIMI 'Student t dağılımı' ya da kısaca 't dağılımı'; normal dağılım ve Z dağılımının da içerisinde bulunduğu 'sürekli olasılık dağılımları' ailesinde yer alan dağılımlardan bir

Detaylı

SAYISAL KONTROL 2 PROJESİ

SAYISAL KONTROL 2 PROJESİ SAYISAL KONTROL 2 PROJESİ AUTOMATIC CONTROL TELELAB (ACT) ile UZAKTAN KONTROL DENEYLERİ Automatic Control Telelab (ACT), kontrol deneylerinin uzaktan yapılmasını sağlayan web tabanlı bir sistemdir. Web

Detaylı

Veri ve Metin Madenciliği

Veri ve Metin Madenciliği Veri ve Metin Madenciliği Zehra Taşkın Veri Madenciliği Bir kutu toplu iğne İçine 3 boncuk düşürdünüz Nasıl alacağız? Fikirler? Veri Madenciliği Data Information Knowledge Veri madenciliği; Büyük yoğunluklu

Detaylı

Graflar bilgi parçaları arasındaki ilişkileri gösterirler.

Graflar bilgi parçaları arasındaki ilişkileri gösterirler. Graflar (Graphs) Graf gösterimi Uygulama alanları Graf terminolojisi Depth first dolaşma Breadth first dolaşma Topolojik sıralama Yrd.Doç.Dr. M. Ali Akcayol Graflar Graflar bilgi parçaları arasındaki ilişkileri

Detaylı

MATEMATiKSEL iktisat

MATEMATiKSEL iktisat DİKKAT!... BU ÖZET 8 ÜNİTEDİR BU- RADA İLK ÜNİTE GÖSTERİLMEKTEDİR. MATEMATiKSEL iktisat KISA ÖZET KOLAY AOF Kolayaöf.com 0362 233 8723 Sayfa 2 içindekiler 1.ünite-Türev ve Kuralları..3 2.üniteTek Değişkenli

Detaylı

Teknolojik bir değişiklik veya üretim arttırıcı bir yatırımın sonucunda ihracatta, üretim miktarında vs. önemli artışlar olabilir.

Teknolojik bir değişiklik veya üretim arttırıcı bir yatırımın sonucunda ihracatta, üretim miktarında vs. önemli artışlar olabilir. YAPISAL DEĞİŞİKLİK Zaman serileri bazı nedenler veya bazı fakörler arafından ekilenerek zaman içinde değişikliklere uğrayabilirler. Bu değişim ikisadi kriz, ikisa poliikalarında yapılan değişiklik, eknolojik

Detaylı

BÜYÜK VERI UYGULAMALARı DERS 7. Doç. Dr. Yuriy Mishchenko

BÜYÜK VERI UYGULAMALARı DERS 7. Doç. Dr. Yuriy Mishchenko 1 BÜYÜK VERI UYGULAMALARı DERS 7 Doç. Dr. Yuriy Mishchenko PLAN Azure ML hizmeti kullanılmasına bir pratik giriş 2 3 MS AZURE ML 4 MS AZURE ML Azure Microsoft tarafından sağlanan bulut hesaplama hizmetleri

Detaylı

EEM211 ELEKTRİK DEVRELERİ-I

EEM211 ELEKTRİK DEVRELERİ-I EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siirt Üniversitesi Elektrik-Elektronik Mühendisliği Kaynak (Ders Kitabı): Fundamentals of Electric Circuits Charles K. Alexander Matthew N.O. Sadiku

Detaylı

12. Ders Sistem-Model-Simülasyon Güvenilirlik Analizi ve Sistem Güvenilirliği

12. Ders Sistem-Model-Simülasyon Güvenilirlik Analizi ve Sistem Güvenilirliği . Ders Sisem-Model-Simülasyon Güvenilirlik Analizi ve Sisem Güvenilirliği Sisem-Model-Simülasyon Kaynak:F.Özürk ve L. Özbek,, Maemaiksel Modelleme ve Simülasyon, sayfa -9. Aklımız ile gerçek dünyadaki

Detaylı

NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜH. BÖLÜMÜ HABERLEŞME TEORİSİ FİNAL SINAVI SORU-CEVAPLARI

NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜH. BÖLÜMÜ HABERLEŞME TEORİSİ FİNAL SINAVI SORU-CEVAPLARI NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜH. BÖLÜMÜ HABERLEŞME TEORİSİ FİNAL SINAVI SORU-CEVAPLARI Tarih: 4-0-008 Adı Soyadı : No : Soru 3 4 TOPLAM Puan 38 30 30 30 8 Soru

Detaylı

BÖLÜM-9 TAŞKIN ÖTELENMESİ (FLOOD ROUTING)

BÖLÜM-9 TAŞKIN ÖTELENMESİ (FLOOD ROUTING) BÖLÜM-9 TAŞKIN ÖTELENMEİ (FLD RUTING) 9. GİRİŞ Tarih göseriyor ki pek çok medeniye kurulurken, insanlar için suyun vazgeçilmez öneminden dolayı akarsu kenarları ercih edilmişir. Bunun içme ve sulama suyunu

Detaylı

Elektrik Devre Temelleri 3

Elektrik Devre Temelleri 3 Elektrik Devre Temelleri 3 TEMEL KANUNLAR-2 Doç. Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Kocaeli Üniversitesi ÖRNEK 2.5 v 1 ve v 2 gerilimlerini bulun. (KGK) PROBLEM 2.5 v 1 ve v 2 gerilimlerini

Detaylı

F frame prop acl. F frame. 1.1 Dur ve bekle (stop & wait) kullanım oranı. 1 = olarak ifade edilebilecektir. a = dersek; L R.

F frame prop acl. F frame. 1.1 Dur ve bekle (stop & wait) kullanım oranı. 1 = olarak ifade edilebilecektir. a = dersek; L R. 1.1 Dur ve bekle (sop & wai) kullanım oranı Herhangi bir akış konrol ekniğinin ne derece ekin olduğunu ölçebilmek üzere ha kullanım oranının incelenmesi gereklidir. Dur ve bekle akış konrol ekniğinde haın

Detaylı

Bölüm 9 FET li Yükselteçler

Bölüm 9 FET li Yükselteçler Bölüm 9 FET li Yükseleçler DENEY 9-1 Orak-Kaynaklı (CS) JFET Yükseleç DENEYİN AMACI 1. Orak kaynaklı JFET yükselecin öngerilim düzenlemesini anlamak. 2. Orak kaynaklı JFET yükselecin saik ve dinamik karakerisiklerini

Detaylı

Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması

Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması 1 Emre DANDIL Bilecik Ş. Edebali Üniversitesi emre.dandil@bilecik.edu.tr +90228 214 1613 Sunum İçeriği Özet Giriş

Detaylı

DENEY 2 SABİT İVME İLE DÜZGÜN DOĞRUSAL HAREKET VE DÜZLEMDE HAREKET

DENEY 2 SABİT İVME İLE DÜZGÜN DOĞRUSAL HAREKET VE DÜZLEMDE HAREKET DENEY 2 SABİT İVME İLE DÜZGÜN DOĞRUSAL HAREKET VE DÜZLEMDE HAREKET AMAÇ: Sabit ivme ile düzgün doğrusal hareket çalışılıp analiz edilecek ve eğik durumda bulunan hava masasındaki diskin hareketi incelenecek

Detaylı

Konular. Hafta 5 Veri Tipleri (Devam) BLG339 PROGRAMLAMA DİLLERİ KAVRAMI

Konular. Hafta 5 Veri Tipleri (Devam) BLG339 PROGRAMLAMA DİLLERİ KAVRAMI BLG339 PROGRAMLAMA DİLLERİ KAVRAMI Hafta 5 Veri Tipleri (Devam) Yrd. Doç. Dr. Melike Şah Direkoğlu Konular Dizi Tipleri Kayıt Tipleri Birleşik Tipler Küme Tipleri İşaretçi ve Referans Tipleri Alındığı

Detaylı

ZAMAN SERİLERİ TAHMİNİNDE ARIMA-MLP MELEZ MODELİ

ZAMAN SERİLERİ TAHMİNİNDE ARIMA-MLP MELEZ MODELİ Aaürk Üniversiesi İkisadi ve İdari Bilimler Dergisi, Cil: 23, Sayı: 3, 2009 4 ZAMAN SERİLERİ TAHMİNİNDE ARIMA-MLP MELEZ MODELİ Oğuz KAYNAR (*) Serkan TAŞTAN (**) Öze: Bu çalışmada zaman serilerinin ahmini

Detaylı

MAK 305 MAKİNE ELEMANLARI-1

MAK 305 MAKİNE ELEMANLARI-1 MAK 305 MAKİNE ELEMANLARI-1 Toleranslar ve Yüzey Kalitesi Doç. Dr. Ali Rıza Yıldız 1 BU DERS SUNUMUNDAN EDİNİLMESİ BEKLENEN BİLGİLER Tolerans kavramının anlaşılması ISO Tolerans Sistemi Geçmeler Toleransın

Detaylı

DEĞİŞKENLER ARASINDAKİ GECİKMELİ İLİŞKİLER: Dağıtılmış Gecikme ve Otoregresiv Modeller

DEĞİŞKENLER ARASINDAKİ GECİKMELİ İLİŞKİLER: Dağıtılmış Gecikme ve Otoregresiv Modeller DEĞİŞKENLER ARASINDAKİ GECİKMELİ İLİŞKİLER: Dağıılmış Gecikme ve Ooregresiv Modeller 1 Zaman serisi modellerinde, bağımlı değişken Y nin zamanındaki değerleri, bağımsız X değişkenlerinin zamanındaki cari

Detaylı

TÜRKİYE DE REEL DÖVİZ KURU İLE KISA VE UZUN VADELİ SERMAYE HAREKETLERİ İLİŞKİSİ

TÜRKİYE DE REEL DÖVİZ KURU İLE KISA VE UZUN VADELİ SERMAYE HAREKETLERİ İLİŞKİSİ Marmara Üniversiesi İ.İ.B.F. Dergisi YIL 2007, CİLT XXII, SAYI 1 TÜRKİYE DE REEL DÖVİZ KURU İLE KISA VE UZUN VADELİ SERMAYE HAREKETLERİ İLİŞKİSİ Araş. Gör. Burcu KIRAN * Öze Bu çalışmada, reel döviz kuru

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

Ağaç (Tree) Veri Modeli

Ağaç (Tree) Veri Modeli Ağaç (Tree) Veri Modeli 1 2 Ağaç Veri Modeli Temel Kavramları Ağaç, bir kök işaretçisi, sonlu sayıda düğümleri ve onları birbirine bağlayan dalları olan bir veri modelidir; aynı aile soyağacında olduğu

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

İMKB NİN LATİN AMERİKA BORSALARIYLA İLİŞKİSİ ÜZERİNE ÇOK DEĞİŞKENLİ GARCH MODELLEMESİ

İMKB NİN LATİN AMERİKA BORSALARIYLA İLİŞKİSİ ÜZERİNE ÇOK DEĞİŞKENLİ GARCH MODELLEMESİ Sosyal Bilimler Dergisi 2010, (4), 25-32 İMKB NİN LATİN AMERİKA BORSALARIYLA İLİŞKİSİ ÜZERİNE ÇOK DEĞİŞKENLİ GARCH MODELLEMESİ Özlem YORULMAZ - Oya EKİCİ İsanbul Üniversiesi İkisa Fakülesi Ekonomeri Bölümü

Detaylı

MÜZĐK VE KONUŞMA ĐŞARETLERĐNĐN DALGACIK ÖZNĐTELĐKLERĐ ĐLE SINIFLANDIRILMASI

MÜZĐK VE KONUŞMA ĐŞARETLERĐNĐN DALGACIK ÖZNĐTELĐKLERĐ ĐLE SINIFLANDIRILMASI MÜZĐK VE KOUŞMA ĐŞARETLERĐĐ DALGACIK ÖZĐTELĐKLERĐ ĐLE SIIFLADIRILMASI Timur Düzenli alan Özkur 2.2 Elekrik-Elekronik Mühendisliği Bölümü, Dokuz Eylül Üniversiesi, Đzmir e-posa: imurduzenli@gmail.com 2

Detaylı

Deney 6: Ardışıl Devre Analizi

Deney 6: Ardışıl Devre Analizi Deney 6: Ardışıl Devre Analizi Genel Bilgiler: Lojik devre derslerinde de görüldüğü gibi bir ardışıl devrenin analizi matematiksel model, durum tablosu veya durum diyagramı yardımıyla üç farklı biçimde

Detaylı

Yrd. Doç. Dr. A. Burak İNNER

Yrd. Doç. Dr. A. Burak İNNER Yrd. Doç. Dr. A. Burak İNNER Kocaeli Üniversitesi Bilgisayar Mühendisliği Yapay Zeka ve Benzetim Sistemleri Ar-Ge Lab. http://yapbenzet.kocaeli.edu.tr Doğrusal programlama, karar verici konumundaki kişilerin

Detaylı

BÖLÜM12. 2- FORMÜLLER ve OTOMATİK TOPLAM. 2.1. Formüller

BÖLÜM12. 2- FORMÜLLER ve OTOMATİK TOPLAM. 2.1. Formüller BÖLÜM12 2- FORMÜLLER ve OTOMATİK TOPLAM 2.1. Formüller Formül, bir sayfadaki verilerin aritmetiksel, mantıksal, istatistiksel vb. işlemleri yapması için kullanılan denklemlerdir ve bize sonuç bildirirler.

Detaylı

BSM-767 MAKİNE ÖĞRENMESİ. Doğrusal Ayırıcılar (Linear Discriminants)

BSM-767 MAKİNE ÖĞRENMESİ. Doğrusal Ayırıcılar (Linear Discriminants) BSM-767 MAKİNE ÖĞRENMESİ Doğrusal Ayırıcılar (Linear Discriminants) Yrd. Doç. Dr. Ümit ATİLA umitatila@karabuk.edu.tr http://web.karabuk.edu.tr/umitatilla/ Perceptron Perceptron, bir giriş kümesinin ağırlıklandırılmış

Detaylı