MEH535 Örüntü Tanıma

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "MEH535 Örüntü Tanıma"

Transkript

1 MEH535 Örünü Tanıma 4. Paramerik Sınıflandırma Doç.Dr. M. Kemal GÜLLÜ Elekronik ve Haberleşme Mühendisliği Bölümü web: hp://akademikpersonel.kocaeli.edu.r/kemalg/ E-posa: Paramerik Yoğunluk Kesirimi Paramerik Kesirim: Verilen eğiim kümesinden bir olasılıksal model kesirerek belirsizliği modelleme ve en iyi kararı verme problemi: Paramerik, yarı-paramerik ve paramerik olmayan yoğunluk kesirimi Paramerik sınıflandırmada örneklerden paramere kesirme (örn; Gauss modeli için or, değişini) X = { x } =1 N örnekleri x ~p(x) yoğunluğundan gelsin p(x θ) için bir yapı kabul edip X üzerinden θ yı kesirmek örn; N ( μ, σ 2 ) θ = { μ, σ 2 } paramereleri 2 1

2 Paramerik Yoğunluk Kesirimi Eğiim verisinden P(ω i ) ve P(x ω i ) sınıf yoğunluklarını kesirme problemi Eğer kesirilebilir ise P(ω i x) sonsalı hesaplanarak sınıf kararı verilebilir! En Büyük Olabilirlik Kesirimi (Maximum Likelihood Esimaion-MLE) Örnek veri kümesinin üm elemanları için olabilirliği en büyükleyen θ parameresi? 3 En Büyük Olabilirlik Kesirimi (MLE) Bağımsız ve eş dağılımlı (iid) örnek kümesi X = { x } =1 N x bilindik bir θ paramereli p(x θ) olasılık yoğunluğundan gelsin (x ~p(x θ)) Amaç: x nin olabildiğince p(x θ) dan örneklendiği θ parameresini bulmak x iid olduğundan, X kümesinin θ parameresi için olabilirliği (likelihood): l(θ X) = p(x θ) = p(x θ) Lecure Noes for E Alpaydın 2004 Inroducion o Machine Learning The MIT Press (V1.1) 4 2

3 En Büyük Olabilirlik Kesirimi (MLE) Veri kümesi hangi dağılımdan gelmiş olabilir? 5 En Büyük Olabilirlik Kesirimi (MLE) Log olabilirlik: L(θ X) = log l(θ X) = log p(x θ) MLE kesirici: θ * = argmax θ L(θ X) Örnek (Bernoulli D): iki durum x={0,1} P(x) = p x o (1 p o ) (1 x) L (p o X) = log p x o (1 p o ) (1 x ) dl (p o X)/dp o =0 MLE: p o = x / N Lecure Noes for E Alpaydın 2004 Inroducion o Machine Learning The MIT Press (V1.1) 6 3

4 En Büyük Olabilirlik Kesirimi (MLE) Örnek (Çok Terimli D): K>2 çıkı durumu P (x 1,x 2,...,x K ) = i p i x i L(p 1,p 2,...,p K X) = log i p i x i MLE: p i = x i / N Lecure Noes for E Alpaydın 2004 Inroducion o Machine Learning The MIT Press (V1.1) 7 En Büyük Olabilirlik Kesirimi (MLE) Gauss Dağılımı: px 2 1 x exp p(x) = N ( μ, σ 2 ) 1 x 2 exp p x Log Olabilirlik: L(μ,σ X) = -(N/2)log2π Nlogσ - (x -μ) 2 /2σ 2 μ ve σ 2 için MLE: m Lecure Noes for E Alpaydın 2004 Inroducion o Machine Learning The MIT Press (V1.1) N x s 2 x m 2 N 8 4

5 Kesirici Performansı Kesirici: d i = d(x i ) Yanlılık (Bias): b θ (d) = E[d] θ b θ (d) = 0 (yansız) Değişini (Variance): E[(d E[d]) 2 ] Or. Karesel Haa: r (d,θ) = E[(d-θ) 2 ] = (E[d]-θ) 2 + E[(d-E[d]) 2 ] = Bias 2 + Variance Lecure Noes for E Alpaydın 2004 Inroducion o Machine Learning The MIT Press (V1.1) 9 Kesirici Performansı Örnek: Oralama ve değişini kesiricilerinin yansızlığı m N x yansız s 2 x m 2 N yanlı 10 5

6 Bayes Kesirici θ parameresi ile ilgili önsel bilgi mevcu Bu bilgi kısılı sayıda örneke kesirim yaparken faydalı olabilir! θ, p(θ) önselli bir rassal değişken olsun Bayes kuralı: p(θ X) = p(x θ)p(θ)/p(x) Full: p(x X) = p(x θ) p(θ X) dθ Maximum a Poseriori (MAP): θ MAP = argmax θ p(θ X) Maximum Likelihood (ML): θ ML = argmax θ p(x θ) Bayes: θ Bayes = E[θ X] = θp(θ X)dθ Lecure Noes for E Alpaydın 2004 Inroducion o Machine Learning The MIT Press (V1.1) 11 Bayes Kesirici x ~N (θ,σ o2 ) ve θ~n (μ,σ 2 ) θ ML = m θ MAP = θ Bayes = E X N / 1/ N / 1/ / 1/ m N 0 Lecure Noes for E Alpaydın 2004 Inroducion o Machine Learning The MIT Press (V1.1) 12 6

7 Normal Dağılımlı Sınıflar için Bayes Sınıflandırıcıları: MAP karar kuralı: Çok Değişkenli Gauss Yoğunluğu (Mulivariae GD): MAP ayıraç fonksiyonu: 13 Sabi erimler aıldığında: Üsel ifadeden kurulmak için fonksiyonun logariması alındığında: Karesel ayıraç fonksiyonu (quadraic discriminan funcion) 14 7

8 DURUM-1: Öznielikler isaisiksel bağımsız ve değişiniler sabi (Σ i = σ 2 I) Göserim açıldığında: 15 Sabi x T x aıldığında: Ayıraç doğrusal olduğundan, karar sınırları (g i (x)=g j (x)) hiper düzlem (hyperplane) şeklindedir. Önseller eşi kabul edildiğinde En küçük uzaklık/en yakın oralama sınıflandırıcı (minimum disance/neares mean classifier) 16 8

9 En yakın oralama sınıflandırıcıda σ 2 = 1 alındığında uzaklık Euclidean uzaklığına dönüşmekedir. En yakın oralama sınıflandırıcı: 17 Örnek: 2-boyulu uzayda 3-sınıf problemi Sınıf bölgeleri 18 9

10 DURUM-2: Öznielikler isaisiksel bağımsız ve değişinileri farklı (Σ i = Σ, Σ: köşegen) x 2 [k] erimi sabi, aılabilir: 19 Ayıraç doğrusaldır Her eksenin mesafesi değişinisi ile normalize edilmişir Örnek: 20 10

11 DURUM-3: Değişiniler birbirinden, orak değişiniler sıfırdan farklı (Σ i = Σ, Σ: köşegen değil) log Σ erimi aıldığında: Karesel erim Mahalanobis Uzaklığı olarak adlandırılır. 21 Mahalanobis uzaklığı Σ -1 normunu kullanan bir vekör uzaklığıdır Σ -1 uzayda yayma fakörünü anımlar Σ = I durumunda Euclidean uzaklığına dönüşür 22 11

12 Ayıraçaki karesel erim açıldığında: x T Σ -1 x orak, aılabilir: Ayıraç doğrusal olduğundan karar sınırları hiper düzlemdir 23 Önsel olasılıklar eşi alındığında: Örnek: En küçük uzaklık (Mahalanobis) sınıflandırıcı 24 12

13 DURUM-4: Orak değişini marisleri farklı faka durum-1 deki yapıda (Σ i = σ i2 I) İfade karesel olduğundan karar sınırları da kareseldir (hyper-ellipses) 25 Örnek: 26 13

14 DURUM-5: Orak değişini marisleri farklı (Σ i farklı) Karar sınırları karesel: hiper-elips ya da hiper-parabol Ayıraçaki karesel göserim Mahalanobis uzaklığı ile oranılıdır 27 Örnek: 28 14

15 Sonuçlar: Normal dağılımlı sınıflar için Bayes sınıflandırıcı genel durumda karesel sınıflandırıcıdır Normal dağılımlı sınıflar için Bayes sınıflandırıcı eşi orak değişini marisi durumda doğrusal sınıflandırıcıdır En küçük Mahalanobis uzaklığı sınıflandırıcı en uygundur: Normal dağılımlı sınıflarda Eşi orak değişini marisinde Eşi önsellerde En küçük Euclidean uzaklığı sınıflandırıcı en uygundur: Normal dağılımlı sınıflarda Birim maris ile oranılı eşi orak değişini marisinde Eşi önsellerde 29 15

MEH535 Örüntü Tanıma. Örneklerden Sınıf Öğrenme

MEH535 Örüntü Tanıma. Örneklerden Sınıf Öğrenme MEH535 Örünü Tanıma 3. Deneimli Öğrenme Doç.Dr. M. Kemal GÜLLÜ Elekronik ve Haberleşme Mühendisliği Bölümü web: hp://akademikpersonel.kocaeli.edu.r/kemalg/ E-posa: kemalg@kocaeli.edu.r Örneklerden Sınıf

Detaylı

Veride etiket bilgisi yok Denetimsiz öğrenme (unsupervised learning) Neden gereklidir?

Veride etiket bilgisi yok Denetimsiz öğrenme (unsupervised learning) Neden gereklidir? MEH535 Örünü Tanıma 7. Kümeleme (Cluserng) Doç.Dr. M. Kemal GÜLLÜ Elekronk ve Haberleşme Mühendslğ Bölümü web: hp://akademkpersonel.kocael.edu.r/kemalg/ E-posa: kemalg@kocael.edu.r Verde eke blgs yok Denemsz

Detaylı

altında ilerde ele alınacaktır.

altında ilerde ele alınacaktır. YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 1 NOKTA TAHMİN YÖNTEMLERİ Şimdiye kadar verilmiş tahmin edicilerin sonlu örneklem ve asimptotik özelliklerini inceledik. Acaba bilinmeyen anakütle parametrelerini

Detaylı

Makine Öğrenmesi 8. hafta

Makine Öğrenmesi 8. hafta Makine Öğrenmesi 8. hafa Takviyeli Öğrenme (Reinforcemen Learning) Q Öğrenme (Q Learning) TD Öğrenme (TD Learning) Öğrenen Vekör Parçalama (LVQ) LVQ2 LVQ-X 1 Takviyeli Öğrenme Takviyeli öğrenme (Reinforcemen

Detaylı

MEH535 Örüntü Tanıma. 6. Boyut Azaltımı (Dimensionality Reduction)

MEH535 Örüntü Tanıma. 6. Boyut Azaltımı (Dimensionality Reduction) MEH535 Örüntü anıma 6. Boyut Azaltımı (Dimensionality Reduction) Doç.Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Bölümü web: http://akademikpersonel.kocaeli.edu.tr/kemalg/ E-posta: kemalg@kocaeli.edu.tr

Detaylı

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21 İçindekiler Önsöz İkinci Basım için Önsöz Türkçe Çeviri için Önsöz Gösterim xiii xv xvii xix 1 Giriş 1 1.1 Yapay Öğrenme Nedir?......................... 1 1.2 Yapay Öğrenme Uygulamalarına Örnekler...............

Detaylı

Dolar Kurundaki Günlük Hareketler Üzerine Bazı Gözlemler

Dolar Kurundaki Günlük Hareketler Üzerine Bazı Gözlemler Dolar Kurundaki Günlük Harekeler Üzerine Bazı Gözlemler Türkiye Bankalar Birliği Ekonomi Çalışma Grubu Toplanısı 28 Nisan 2008, İsanbul Doç. Dr. Cevde Akçay Koç Finansal Hizmeler Baş ekonomis cevde.akcay@yapikredi.com.r

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 7 SIFT ve Öznitelik Eşleme Alp Ertürk alp.erturk@kocaeli.edu.tr Panorama Oluşturma Görüntü mozaikleme, panorama oluşturma gibi tüm uygulamalar için öncelikle ilgili görüntülerin

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 10 Nesne / Yüz Tespiti ve Tanıma Alp Ertürk alp.erturk@kocaeli.edu.tr Nesne Tespiti Belirli bir nesnenin sahne içindeki konumunun tespitidir Tespit edilecek nesne önceden

Detaylı

İL - İLÇE MERKEZLERİNDEKİ ÖLÜMLERE UYGULANMASI MORTALITY FORECASTING METHODS AND APPLICATION TO DEATHS IN PROVINCE - DISTRICT CENTERS OF TURKEY

İL - İLÇE MERKEZLERİNDEKİ ÖLÜMLERE UYGULANMASI MORTALITY FORECASTING METHODS AND APPLICATION TO DEATHS IN PROVINCE - DISTRICT CENTERS OF TURKEY ÖLÜM ORANI PROJEKSİYON YÖNTEMLERİ VE TÜRKİYE İL - İLÇE MERKEZLERİNDEKİ ÖLÜMLERE UYGULANMASI MORTALITY FORECASTING METHODS AND APPLICATION TO DEATHS IN PROVINCE - DISTRICT CENTERS OF TURKEY TUNA GENÇ Haceepe

Detaylı

MEH535 Örüntü Tanıma

MEH535 Örüntü Tanıma MEH535 Örüntü Tanıma 1. Örüntü Tanımaya Giriş Doç.Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Bölümü web: http://akademikpersonel.kocaeli.edu.tr/kemalg/ E-posta: kemalg@kocaeli.edu.tr Değerlendirme

Detaylı

4) Seyrek rastlanılan bir hastalık için belli bir zaman araalığında bu hastalığa yakalananların sayısının gözlenmesi,

4) Seyrek rastlanılan bir hastalık için belli bir zaman araalığında bu hastalığa yakalananların sayısının gözlenmesi, POĐSSON DAĞILIMI Poisson Dağılımı sürekli oramlarda (zaman, alan, hacim, ) kesikli sonuçlar veren ve aşağıda a),b),c) şıklarında belirilen özelliklere sahip deneylerin modellenmesinde kullanılan bir dağılım

Detaylı

BAYES ÖĞRENMESİ BİLECİK ÜNİVERSİTESİ. Araş. Gör. Nesibe YALÇIN. Yapay Zeka-Bayes Öğrenme

BAYES ÖĞRENMESİ BİLECİK ÜNİVERSİTESİ. Araş. Gör. Nesibe YALÇIN. Yapay Zeka-Bayes Öğrenme BAYES ÖĞRENMESİ Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ Yapay Zeka-Bayes Öğrenme 1 İÇERİK Bayes Teoremi Bayes Sınıflandırma Örnek Kullanım Alanları Avantajları Dezavantajları Yapay Zeka-Bayes Öğrenme

Detaylı

White ın Heteroskedisite Tutarlı Kovaryans Matrisi Tahmini Yoluyla Heteroskedasite Altında Model Tahmini

White ın Heteroskedisite Tutarlı Kovaryans Matrisi Tahmini Yoluyla Heteroskedasite Altında Model Tahmini Ekonomeri ve İsaisik Sayı:4 006-1-8 İSTANBUL ÜNİVERSİTESİ İKTİSAT FAKÜLTESİ EKONOMETRİ VE İSTATİSTİK DERGİSİ Whie ın Heeroskedisie Tuarlı Kovaryans Marisi Tahmini Yoluyla Heeroskedasie Alında Model Tahmini

Detaylı

ĐST 474 Bayesci Đstatistik

ĐST 474 Bayesci Đstatistik ĐST 474 Bayesci Đstatistik Ders Sorumlusu: Dr. Haydar Demirhan haydarde@hacettepe.edu.tr Đnternet Sitesi: http://yunus.hacettepe.edu.tr/~haydarde Đçerik: Olasılık kuramının temel kavramları Bazı özel olasılık

Detaylı

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz...

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... 1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... CABİR VURAL BAHAR 2006 Açıklamalar

Detaylı

Ayhan Topçu Accepted: January 2012. ISSN : 1308-7304 ayhan_topcu@hotmail.com 2010 www.newwsa.com Ankara-Turkey

Ayhan Topçu Accepted: January 2012. ISSN : 1308-7304 ayhan_topcu@hotmail.com 2010 www.newwsa.com Ankara-Turkey ISSN:136-3111 e-journal of New World Sciences Academy 212, Volume: 7, Number: 1, Aricle Number: 3A47 NWSA-PHYSICAL SCIENCES Received: December 211 Ayhan Toçu Acceed: January 212 Fahrein Arslan Series :

Detaylı

KONYA İLİ SICAKLIK VERİLERİNİN ÇİFTDOĞRUSAL ZAMAN SERİSİ MODELİ İLE MODELLENMESİ

KONYA İLİ SICAKLIK VERİLERİNİN ÇİFTDOĞRUSAL ZAMAN SERİSİ MODELİ İLE MODELLENMESİ KONYA İLİ SICAKLIK VERİLERİNİN ÇİFTDOĞRUSAL ZAMAN SERİSİ MODELİ İLE MODELLENMESİ İsmail KINACI 1, Aşır GENÇ 1, Galip OTURANÇ, Aydın KURNAZ, Şefik BİLİR 3 1 Selçuk Üniversiesi, Fen-Edebiya Fakülesi İsaisik

Detaylı

Kredi Onayı İçin Bir Sınıflandırma Algoritması Önerisi A Classification Algorithm Advice for Credit Approval

Kredi Onayı İçin Bir Sınıflandırma Algoritması Önerisi A Classification Algorithm Advice for Credit Approval Kredi Onayı İçin Bir Sınıflandırma Algoritması Önerisi A Classification Algorithm Advice for Credit Approval İsmail Haberal Bilgisayar Mühendisliği Bölümü Başkent Üniversitesi ihaberal@baskent.edu.tr Umut

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN İç-Çarpım Uzayları Yazar Öğr. Grv. Dr. Nevin ORHUN ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; R n, P n (R), M nxn vektör uzaylarında iç çarpım kavramını tanıyacak ve özelliklerini görmüş olacaksınız.

Detaylı

İMKB NİN LATİN AMERİKA BORSALARIYLA İLİŞKİSİ ÜZERİNE ÇOK DEĞİŞKENLİ GARCH MODELLEMESİ

İMKB NİN LATİN AMERİKA BORSALARIYLA İLİŞKİSİ ÜZERİNE ÇOK DEĞİŞKENLİ GARCH MODELLEMESİ Sosyal Bilimler Dergisi 2010, (4), 25-32 İMKB NİN LATİN AMERİKA BORSALARIYLA İLİŞKİSİ ÜZERİNE ÇOK DEĞİŞKENLİ GARCH MODELLEMESİ Özlem YORULMAZ - Oya EKİCİ İsanbul Üniversiesi İkisa Fakülesi Ekonomeri Bölümü

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

KAHKAHA TANIMA İÇİN RASSAL ORMANLAR

KAHKAHA TANIMA İÇİN RASSAL ORMANLAR KAHKAHA TANIMA İÇİN RASSAL ORMANLAR Heysem Kaya, A. Mehdi Erçetin, A. Ali Salah, S. Fikret Gürgen Bilgisayar Mühendisliği Bölümü Boğaziçi Üniversitesi / Istanbul Akademik Bilişim'14, Mersin, 05.02.2014

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

Kolektif Öğrenme Metotları

Kolektif Öğrenme Metotları Kolektif Öğrenme Metotları Kolektif öğrenme algoritmalarına genel bakış 1-Bagging 2-Ardışık Topluluklarla Öğrenme (Boosting) 3-Rastsal Altuzaylar 4-Rastsal Ormanlar 5-Aşırı Rastsal Ormanlar 6-Rotasyon

Detaylı

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 Bölüm 2 DOĞRUSAL PROGRAMLAMA 21 2.1 Doğrusal Programlamanın

Detaylı

İstatistik I Ders Notları

İstatistik I Ders Notları İstatistik I Ders Notları Sürekli Rassal Değişkenler Hüseyin Taştan Kasım 2, 26 İçindekiler Sürekli Rassal Değişkenlerin Özellikleri 2 2 Olasılık Yoğunluk Fonksiyonu 2 Birikimli Olasılık Fonksiyonu 6 4

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

Bu durumu, konum bazında bileşenlerini, yani dalga fonksiyonunu, vererek tanımlıyoruz : ) 1. (ikx x2. (d)

Bu durumu, konum bazında bileşenlerini, yani dalga fonksiyonunu, vererek tanımlıyoruz : ) 1. (ikx x2. (d) Ders 10 Metindeki ilgili bölümler 1.7 Gaussiyen durum Burada, 1-d de hareket eden bir parçacığın önemli Gaussiyen durumu örneğini düşünüyoruz. Ele alış biçimimiz kitaptaki ile neredeyse aynı ama bu örnek

Detaylı

DERS BİLGİLERİ. Ders Kodu Yarıyıl T+U Saat Kredi AKTS İSTATİSTİKSEL KESTİRİM ESYE647 3+0 3 7

DERS BİLGİLERİ. Ders Kodu Yarıyıl T+U Saat Kredi AKTS İSTATİSTİKSEL KESTİRİM ESYE647 3+0 3 7 DERS BİLGİLERİ Ders Kodu Yarıyıl T+U Saat Kredi AKTS İSTATİSTİKSEL KESTİRİM ESYE647 3+0 3 7 Ön Koşul Dersleri ISE252 seviyesinde istatistik bilgisi. Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Doktora

Detaylı

İSTATİSTİK I KAVRAMLARININ

İSTATİSTİK I KAVRAMLARININ YTÜ-İktisat İstatistik II İstatistik I Gözden Geçirme İSTATİSTİK I KAVRAMLARININ GÖZDEN GEÇİRİLMESİ Hüseyin Taştan Yıldız Teknik Üniversitesi, İktisat Bölümü, email: tastan@yildiz.edu.tr YTÜ-İktisat İstatistik

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

Elektrik Devre Temelleri

Elektrik Devre Temelleri Elektrik Devre Temelleri 2. TEMEL KANUNLAR Doç. Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Kocaeli Üniversitesi Bu bölümde Ohm Kanunu Düğüm, dal, çevre 2.1. Giriş Kirchhoff Kanunları Paralel

Detaylı

T.C. GAZİ ÜNİVERSİTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFER LABORATUVARI ISIL IŞINIM ÜNİTESİ

T.C. GAZİ ÜNİVERSİTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFER LABORATUVARI ISIL IŞINIM ÜNİTESİ T.C. GAZİ ÜNİVERSİTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFER LABORATUVARI ISIL IŞINIM ÜNİTESİ DENEY 1: ISI IÇIN TERS KARE KANUNU 1. DENEYİN AMACI: Bir yüzeydeki ışınım şiddetinin, yüzeyin

Detaylı

DEĞİŞKENLER ARASINDAKİ GECİKMELİ İLİŞKİLER: Dağıtılmış Gecikme ve Otoregresiv Modeller

DEĞİŞKENLER ARASINDAKİ GECİKMELİ İLİŞKİLER: Dağıtılmış Gecikme ve Otoregresiv Modeller DEĞİŞKENLER ARASINDAKİ GECİKMELİ İLİŞKİLER: Dağıılmış Gecikme ve Ooregresiv Modeller 1 Zaman serisi modellerinde, bağımlı değişken Y nin zamanındaki değerleri, bağımsız X değişkenlerinin zamanındaki cari

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun.

Detaylı

-ENFLASYON ROBUST ESTIMATION OF THE VECTOR AUTOREGRESSIVE MODEL: AN INVESTIGATION OF THE RELATIONSHIP BETWEEN ECONOMIC GROWTH AND INFLATION

-ENFLASYON ROBUST ESTIMATION OF THE VECTOR AUTOREGRESSIVE MODEL: AN INVESTIGATION OF THE RELATIONSHIP BETWEEN ECONOMIC GROWTH AND INFLATION Marmara Üniversiesi YIL 2010, SAYI II, S. 539-553 -ENFLASYON Öze Özlem YORULMAZ * ** - Anahar Kelimeler: ROBUST ESTIMATION OF THE VECTOR AUTOREGRESSIVE MODEL: AN INVESTIGATION OF THE RELATIONSHIP BETWEEN

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 4 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

MIT Açık Ders Malzemesi İstatistiksel Mekanik II: Alanların İstatistiksel Fiziği 2008 Bahar

MIT Açık Ders Malzemesi İstatistiksel Mekanik II: Alanların İstatistiksel Fiziği 2008 Bahar MIT Açık Ders Malzemesi http://ocw.mit.edu 8.334 İstatistiksel Mekanik II: Alanların İstatistiksel Fiziği 008 Bahar Bu malzemeye atıfta bulunmak ve Kullanım Şartlarımızla ilgili bilgi almak için http://ocw.mit.edu/terms

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ 1. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için

Detaylı

Akış YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Akış YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Akış Makine Öğrenmesi nedir? Günlük Hayatımızdaki Uygulamaları Verilerin Sayısallaştırılması Özellik Belirleme Özellik Seçim Metotları Bilgi Kazancı (Informaiton Gain-IG) Sinyalin Gürültüye Oranı: (S2N

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 7 Sayı: 3 s. 31-36 Ekim 2005

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 7 Sayı: 3 s. 31-36 Ekim 2005 DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 7 Sayı: 3 s. 31-36 Ekim 2005 PROSTAT HÜCRE ÇEKİRDEKLERİNİN SINIFLANDIRILMASINDA İSTATİSTİKSEL YÖNTEMLERİN VE YAPAY SİNİR AĞLARININ BAŞARIMI (PERFORMANCE

Detaylı

Rastgele Süreçler. Rastgele süreç konsepti (Ensemble) Örnek Fonksiyonlar. deney. Zaman (sürekli veya kesikli) Ensemble.

Rastgele Süreçler. Rastgele süreç konsepti (Ensemble) Örnek Fonksiyonlar. deney. Zaman (sürekli veya kesikli) Ensemble. 1 Rastgele Süreçler Olasılık taması Rastgele Deney Çıktı Örnek Uzay, S (s) Zamanın Fonksiy onu (t, s) Olayları Tanımla Rastgele süreç konsepti (Ensemble) deney (t,s 1 ) 1 t Örnek Fonksiyonlar (t,s ) t

Detaylı

PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BAYES AĞLARI KULLANARAK MEDİKAL TRANSTORASİK EKOKARDİYOGRAFİ VERİLERİNİN İŞLENMESİ VE TEŞHİS YAZILIMI GELİŞTİRİLMESİ YÜKSEK LİSANS TEZİ Bedia Sündüz KILIÇ

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

2.1 Gri Düzey Eş Oluşum Matrisi ( GLCM) Gri düzey eş oluşum matrisi Haralick tarafından öne sürülmüştür [1]. Đstatistiksel doku analizi yöntemidir.

2.1 Gri Düzey Eş Oluşum Matrisi ( GLCM) Gri düzey eş oluşum matrisi Haralick tarafından öne sürülmüştür [1]. Đstatistiksel doku analizi yöntemidir. ÇELĐK YÜZEYLERĐN SINIFLANDIRILMASI * Cem ÜNSALAN ** Aytül ERÇĐL * Ayşın ERTÜZÜN *Boğaziçi Üniversitesi, Elektrik-Elektronik Mühendisliği Bölümü unsalan@boun.edu.tr **Boğaziçi Üniversitesi, Endüstri Mühendisliği

Detaylı

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ Dersin Öğretim Elemanı: Yrd. Doç. Dr. Yasin KABALCI Ders Görüşme

Detaylı

OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler

OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler 1 SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

12. Hafta Ders Notları GENEL TEKRAR

12. Hafta Ders Notları GENEL TEKRAR 12. Hafta Ders Notları GENEL TEKRAR A Veri Türleri Anakütle bir bütünü temsil ederken; örneklem, bir bütünün sadece bir kısmını temsil etmektedir. Anakütledeki gözlem sayısı N ile temsil edilirken; örneklemdeki

Detaylı

Murat MAZIBAŞ mmazibas@bddk.org.tr Bankacılık Düzenleme ve Denetleme Kurumu (BDDK) ÖZET

Murat MAZIBAŞ mmazibas@bddk.org.tr Bankacılık Düzenleme ve Denetleme Kurumu (BDDK) ÖZET İMKB Piyasalarındaki Volailienin Modellenmesi ve Öngörülmesi: Asimerik GARCH Modelleri ile bir Uygulama Mura MAZIBAŞ mmazibas@bddk.org.r Bankacılık Düzenleme ve Deneleme Kurumu (BDDK) ÖZET Çalışmada, 5

Detaylı

1. ÇÖZÜM YOLU: (15) 8 = = 13 13:2 = :2 = :2 = 1.2+1

1. ÇÖZÜM YOLU: (15) 8 = = 13 13:2 = :2 = :2 = 1.2+1 . ÇÖZÜM YOLU: (5) 8 =.8+5 = 3 3:2 = 6.2+ 6:2 = 3.2+0 3:2 =.2+ En son bölümden başlayarak kalanları sıralarız. (5) 8 = (0) 2 2. ÇÖZÜM YOLU: 8 sayı tabanında verilen sayının her basamağını, 2 sayı tabanında

Detaylı

TÜRKİYE NÜFUSU İÇİN STOKASTİK ÖLÜMLÜLÜK MODELLERİ

TÜRKİYE NÜFUSU İÇİN STOKASTİK ÖLÜMLÜLÜK MODELLERİ Nüfusbilim Dergisi\Turkish Journal of Populaion Sudies, 2012, 34, 31-50 31 TÜRKİYE NÜFUSU İÇİN STOKASTİK ÖLÜMLÜLÜK MODELLERİ Ölümlülük ahminleri, demografi ve aküerya bilimlerinde önemli bir rol oynamakadır.

Detaylı

A İSTATİSTİK. 1. nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir.

A İSTATİSTİK. 1. nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir. . nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir. Buna göre, n C r + n C r toplamı aşağıdakilerden hangisine eşittir? A) n + C r B)

Detaylı

Teknolojik bir değişiklik veya üretim arttırıcı bir yatırımın sonucunda ihracatta, üretim miktarında vs. önemli artışlar olabilir.

Teknolojik bir değişiklik veya üretim arttırıcı bir yatırımın sonucunda ihracatta, üretim miktarında vs. önemli artışlar olabilir. YAPISAL DEĞİŞİKLİK Zaman serileri bazı nedenler veya bazı fakörler arafından ekilenerek zaman içinde değişikliklere uğrayabilirler. Bu değişim ikisadi kriz, ikisa poliikalarında yapılan değişiklik, eknolojik

Detaylı

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1 3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki

Detaylı

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL VERİ MADENCİLİĞİ Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL SPRINT Algoritması ID3,CART, ve C4.5 gibi algoritmalar önce derinlik ilkesine göre çalışırlar ve en iyi dallara ayırma kriterine

Detaylı

2016 YILI AKTÜERLİK SINAVLARI: İSTATİSTİK OLASILIK

2016 YILI AKTÜERLİK SINAVLARI: İSTATİSTİK OLASILIK Soru 1 X rassal değişkeninin olasılık yoğunluk fonksiyonu x x, x> f ( x) = 0, dy. 1 werilmiş ve Y = rassal değişkeni tanımlamış ise, Y değişkenin 0< 1 X 1 y için olasılık yoğunluk fonksiyonu aşağıdaki

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok Gauss Yasası Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok daha kullanışlı bir şekilde nasıl hesaplanabileceği

Detaylı

Özet: Açısal momentumun türetimi. Açısal momentum değiştirme bağıntıları. Artırıcı ve Eksiltici İşlemciler Kuantum Fiziği Ders XXI

Özet: Açısal momentumun türetimi. Açısal momentum değiştirme bağıntıları. Artırıcı ve Eksiltici İşlemciler Kuantum Fiziği Ders XXI Özet: Açısal momentumun türetimi Açısal momentum değiştirme bağıntıları Levi- Civita simgesi Genel olarak, L x, L y, L z, nin eşzamanlı özdurumları yoktur L 2 ve bir bileşeni (L z ) nin eşzamanlı özdurumlarıdır.

Detaylı

12. Ders Sistem-Model-Simülasyon Güvenilirlik Analizi ve Sistem Güvenilirliği

12. Ders Sistem-Model-Simülasyon Güvenilirlik Analizi ve Sistem Güvenilirliği . Ders Sisem-Model-Simülasyon Güvenilirlik Analizi ve Sisem Güvenilirliği Sisem-Model-Simülasyon Kaynak:F.Özürk ve L. Özbek,, Maemaiksel Modelleme ve Simülasyon, sayfa -9. Aklımız ile gerçek dünyadaki

Detaylı

Ders #15 için okuma: Bölümler 3.4, 3.5, 3.6 ve 3.7 (3.baskıda, Bölümler 3.4, 3.5, 3.6, 3.7 ve 3.8) Değerlik Bağı Teorisi.

Ders #15 için okuma: Bölümler 3.4, 3.5, 3.6 ve 3.7 (3.baskıda, Bölümler 3.4, 3.5, 3.6, 3.7 ve 3.8) Değerlik Bağı Teorisi. 5.111 Ders Özeti #14 Bugün için okuma: Bölüm 3.8 (3. Baskıda 3.9) Lewis Teorisinin Sınırları, Bölüm 3.9 (3. Baskıda 3.10) Molekül Orbitalleri, Bölüm 3.10 (3. Baskıda 3.11) Ġki Atomlu Moleküllerin Elektron

Detaylı

= t. v ort. x = dx dt

= t. v ort. x = dx dt BÖLÜM.4 DOĞRUSAL HAREKET 4. Mekanik Mekanik konusu, kinemaik ve dinamik olarak ikiye ayırmak mümkündür. Kinemaik cisimlerin yalnızca harekei ile ilgilenir. Burada cismin hareke ederken izlediği yol önemlidir.

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

Karadeniz Teknik Üniversitesi Mühendislik Fakültesi * Elektrik-Elektronik Mühendisliği Bölümü Elektronik Anabilim Dalı * Elektronik Laboratuarı I

Karadeniz Teknik Üniversitesi Mühendislik Fakültesi * Elektrik-Elektronik Mühendisliği Bölümü Elektronik Anabilim Dalı * Elektronik Laboratuarı I Karadeniz Teknik Üniversiesi Mühendislik Fakülesi * Elekrik-Elekronik Mühendisliği Bölümü Elekronik Anabilim alı * Elekronik Laborauarı I FET.Lİ KUETLENİİCİLE 1. eneyin Amacı FET Transisörlerle yapılan

Detaylı

Box-Jenkıns Modelleri ile Aylık Döviz Kuru Tahmini Üzerine Bir Uygulama

Box-Jenkıns Modelleri ile Aylık Döviz Kuru Tahmini Üzerine Bir Uygulama Kocaeli Üniversiesi Sosyal Bilimler Ensiüsü Dergisi (6) 2003 / 2 : 49-62 Box-Jenkıns Modelleri ile Aylık Döviz Kuru Tahmini Üzerine Bir Uygulama Hüdaverdi Bircan * Yalçın Karagöz ** Öze: Bu çalışmada geleceği

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: CSE 6003

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: CSE 6003 Dersi Veren Birim: Fen Bilimleri Enstitüsü Dersin Türkçe Adı: Makina Öğrenmesi ve Akıl Yürütme Dersin Orjinal Adı: Machine Learning and Reasoning Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora)

Detaylı

Nitel Tepki Bağlanım Modelleri

Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Ekonometri 2 Konu 18 Sürüm 2,0 (Ekim 2011) Doğrusal-Dışı Yaklaşım ve UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

Eş Zamanlı Yazılımlarda Güvenilirlik Analizi : Literatür Taraması

Eş Zamanlı Yazılımlarda Güvenilirlik Analizi : Literatür Taraması Eş Zamanlı Yazılımlarda Güvenilirlik Analizi : Lieraür Taraması Erku Tekeli Çukurova Üniversiesi, Kozan Meslek Yüksekokulu, Adana eekeli@cu.edu.r Öze: Son yıllarda yüksek başarımlı hesaplamalara olan ihiyaçlar

Detaylı

Markov Zinciri Monte Carlo Yaklaşımı. Aktüeryal Uygulamaları

Markov Zinciri Monte Carlo Yaklaşımı. Aktüeryal Uygulamaları Markov Zinciri Monte Carlo Yaklaşımı ve Aktüeryal Uygulamaları ŞİRZAT ÇETİNKAYA Aktüer Sistem Araştırma Geliştirme Bölümü AKTÜERLER DERNEĞİ 2.0.20080 2008 - İSTANBUL Sunum Planı. Giriş 2. Bayesci Metodun

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 11 Hiperspektral Görüntülerde Kümeleme ve Sınıflandırma Alp Ertürk alp.erturk@kocaeli.edu.tr Sınıflandırma Sınıflandırma işleminin amacı, her piksel vektörüne bir ve

Detaylı

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI SORU- 1 : ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI X ve Y birbirinden bağımsız iki rasgele değişken olmak üzere, sırasıyla aşağıdaki moment çıkaran fonksiyonlarına sahiptir: 2 2 M () t = e,

Detaylı

Rekombinasyon ve Bağlantı Analizi (Recombination and Linkage Analysis)

Rekombinasyon ve Bağlantı Analizi (Recombination and Linkage Analysis) Rekombinasyon ve Bağlantı Analizi (Recombination and Linkage Analysis) Mayoz bölünme sırasında aynı kromozom (bir kromatid) üzerindeki genler gametlere beraberce, başka bir ifade ile bağlı (zincirlenmiş)

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan

Detaylı

İŞARETLER ve SİSTEMLER (SIGNALS and SYSTEMS)

İŞARETLER ve SİSTEMLER (SIGNALS and SYSTEMS) İŞARETLER ve SİSTEMLER (SIGNALS and SYSTEMS) Yrd. Doç. Dr. Musafa Zahid YILDIZ musafayildiz@sakarya.edu.r oda no: 469 Kaynaklar: 1. Signals and Sysems, Oppenheim. (Türkçe versiyonu: Akademi Yayıncılık)

Detaylı

YAPAY SİNİR AĞLARI VE ARIMA MODELLERİNİN MELEZ YAKLAŞIMI İLE ZAMAN SERİLERİNDE ÖNGÖRÜ

YAPAY SİNİR AĞLARI VE ARIMA MODELLERİNİN MELEZ YAKLAŞIMI İLE ZAMAN SERİLERİNDE ÖNGÖRÜ YAPAY SİNİR AĞLARI VE ARIMA MODELLERİNİN MELEZ YAKLAŞIMI İLE ZAMAN SERİLERİNDE ÖNGÖRÜ Erol EĞRİOĞLU Haceepe Üniversiesi, Fen Fakülesi, İsaisik Bölümü, 06532, Beyepe, Ankara, TÜRKİYE, erole@haceepe.edu.r

Detaylı

CROSS CLASSIFICATION: THEORETICAL FRAMEWORK AND APPLICATIONS

CROSS CLASSIFICATION: THEORETICAL FRAMEWORK AND APPLICATIONS ÇAPRAZ SINIFLANDIRMA: TEORİK ÇERÇEVE VE UYGULAMALAR CROSS CLASSIFICATION: THEORETICAL FRAMEWORK AND APPLICATIONS BEKİR ŞEN YRD. DOÇ. DR. YAKUP ÖZKAZANÇ Tez Danışmanı Hacettepe Üniversitesi Lisansüstü Eğitim-Öğretim

Detaylı

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar.

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar. 9..03 EME 305 SİSTEM SİMÜLASYONU Simulasyonda İstatistiksel Modeller-II Ders 5 Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar Sürekli Düzgün (Uniform) Dağılım Normal Dağılım Üstel (Exponential)

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

Risk ve Belirsizlik. 1. Karar Analizleri 2. Karar Ağaçları 3. Oyun Teorisi. Karar Verme Aşamasındaki Bileşenler

Risk ve Belirsizlik. 1. Karar Analizleri 2. Karar Ağaçları 3. Oyun Teorisi. Karar Verme Aşamasındaki Bileşenler Risk ve Belirsizlik Altında Karar Verme KONU 6 1. Karar Analizleri 2. Karar Ağaçları 3. Oyun Teorisi i Karar Verme Aşamasındaki Bileşenler Gelecekte gerçekleşmesi mümkün olan olaylar Olası Durumlar şeklinde

Detaylı

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Konut Primi ve Kira Getiri Büyümesinin Varyans Ayrıştırması. Celil Zurnacı 1, Eray Akgün, Murat Karaöz Akdeniz Üniversitesi

Konut Primi ve Kira Getiri Büyümesinin Varyans Ayrıştırması. Celil Zurnacı 1, Eray Akgün, Murat Karaöz Akdeniz Üniversitesi Social Sciences Research Journal, Volume, Issue, 5-66 (June 15), ISSN: 17-537 5 Konu Primi ve Kira Geiri Büyümesinin Varyans Ayrışırması Celil Zurnacı 1, Eray Akgün, Mura Karaöz Akdeniz Üniversiesi Türkiye

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ZAMAN SERİSİ MODELLERİ ÜZERİNE BİR SİMÜLASYON ÇALIŞMASI

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ZAMAN SERİSİ MODELLERİ ÜZERİNE BİR SİMÜLASYON ÇALIŞMASI T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ZAMAN SERİSİ MODELLERİ ÜZERİNE BİR SİMÜLASYON ÇALIŞMASI Tufan ÖZEK YÜKSEK LİSANS TEZİ İSTATİSTİK ANABİLİM DALI Konya, T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ

Detaylı

Yrd.Doç.Dr. Hüseyin YİĞİTER

Yrd.Doç.Dr. Hüseyin YİĞİTER Dokuz Eylül Üniversitesi İnşaat Mühendisliği Bölümü İNŞ2024 YAPI MALZEMESİ II SERTLEŞMİŞ BETONUN DİĞER ÖZELLİKLERİ Yrd.Doç.Dr. Hüseyin YİĞİTER http://kisi.deu.edu.tr/huseyin.yigiter EĞİLME DENEYİ ve EĞİLME

Detaylı

Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması

Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması 1 Emre DANDIL Bilecik Ş. Edebali Üniversitesi emre.dandil@bilecik.edu.tr +90228 214 1613 Sunum İçeriği Özet Giriş

Detaylı

2. BASİT DOĞRUSAL REGRESYON 12

2. BASİT DOĞRUSAL REGRESYON 12 1. GİRİŞ 1 1.1 Regresyon ve Model Kurma / 1 1.2 Veri Toplama / 5 1.3 Regresyonun Kullanım Alanları / 9 1.4 Bilgisayarın Rolü / 10 2. BASİT DOĞRUSAL REGRESYON 12 2.1 Basit Doğrusal Regresyon Modeli / 12

Detaylı

ANAL IZ III Aras nav Sorular

ANAL IZ III Aras nav Sorular Ad ve Soyad : Numaras : ANAL IZ III Aras nav Sorular 26.11.27 1. x 1 = p 3 ve x n+1 = p 3 + x n ; n = 1; 2; ::: biçiminde tan mlanan (x n ) dizisinin yak nsak oldu¼gunu gösteriniz ve limitini bulunuz.(2)

Detaylı

Elektrik Devre Temelleri

Elektrik Devre Temelleri Elektrik Devre Temelleri 3. TEMEL KANUNLAR-2 Doç. Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Kocaeli Üniversitesi ÖRNEK 2.5 v 1 ve v 2 gerilimlerini bulun. (KGK) 1 PROBLEM 2.5 v 1 ve v 2

Detaylı