ÜNİTE TAŞIMACILIK SİSTEMLERİ. Prof. Dr. Bülent SEZEN İÇİNDEKİLER HEDEFLER ROTA PLANLAMA

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ÜNİTE TAŞIMACILIK SİSTEMLERİ. Prof. Dr. Bülent SEZEN İÇİNDEKİLER HEDEFLER ROTA PLANLAMA"

Transkript

1 HEDEFLER İÇİNDEKİLER ROTA PLANLAMA Giriş Rota Planlama Taşıma Problemi Atama Problemi Gezgin Satıcı Problemi En Kısa Yol Problemi Rota Planlama Yazılımları TAŞIMACILIK SİSTEMLERİ Prof. Dr. Bülent SEZEN Bu üniteyi çalıştıktan sonra; Rota planlamanın tanımı ve kapsamını öğrenecek, Matematiksel anlamda tipik bir taşıma probleminin çözüm yaklaşımını anlayacak, Atama problemi, gezgin satıcı problemi ve en kısa yol problemi gibi farklı taşımacılık problemleri için matematiksel çözüm yollarını görecek, Rota planlama yazılımlarına değinilerek gerçek hayatta taşımacılıkta rota planlamasının yazılımlarla nasıl çözüldüğünü öğreneceksiniz. ÜNİTE 13

2 GİRİŞ Taşımacılıkta rota planlama bir noktadan bir başka noktaya (ya da noktalara) yapılan sevkiyatlarda güncel problemlerin çözülmesi ve taşıma maliyetlerinin minimumda tutulabilmesi için birçok lojistik firmanın önemle üzerinde durması gereken konulardan biridir. Rota planlama konusu disiplinler arası bir konu olup, Rota planlama, bir başlangıç noktası, bir varış noktası ve duruş noktaları bulunabilen bir taşıma probleminde en düşük maliyetli ya da en kısa sürede kat edilebilen rotanın belirlenmesi işlemidir. yöneylem araştırması, tedarik zinciri yönetimi, şebeke problemleri ve genel anlamda yönetim konularını kapsayan ve bu konuların bir bileşkesi konumunda olan geniş alanlı bir konudur. Rota planlama deyince ilk aklımıza gelen en kısa yol problemidir. En kısa yol problemi bir noktadan bir başka noktaya en kısa sürede ya da en düşük maliyetle gidebileceğimiz en uygun yolun bulunması problemidir. Aslında en kısa yol probleminin arka planında daha birçok farklı problem çeşidi mevcuttur. Örneğin gideceğiniz yol üzerinde uğramanız gereken noktalar varsa problem başka bir boyut kazanmaktadır. Ya da bazı durumlarda başladığınız noktaya geri dönüp seyahatinizi başlangıç noktasında bitirmeniz gerekebilir. Örneğin gezgin satıcı probleminde durum böyledir. Tahmin edilebileceği gibi bu durumda da problemin değişkenleri ve yapılandırılması farklılık arz edecektir. Bu bölümde rota planlama konusunda çeşitli problem türlerini ele alacağız. Her bir farklı problem türünün çözümünde kullanılabilecek farklı yaklaşımlara ve çözüm yöntemlerine yer vereceğiz. Tabi bu konularda kullanılabilecek formülasyonlardan, algoritmalardan ve rota planlama yazılımlarından da bahsedeceğiz. Teknolojiler geliştikçe her alanda olduğu gibi rota planlama problemlerinin çözümünde de bilgisayar teknolojilerinden ve yazılımlardan faydalanılmaktadır. Her ne kadar bu yazılımlar bize en uygun rotayı bulmamızda yardımcı olsalar da, bu yazılımların arka planında nasıl bir mantık ve algoritma işlemektedir sorusunun yanıtlanmasında bu bölümde anlatılanlar faydalı olacaktır. ROTA PLANLAMA Rota planlama, bir başlangıç noktası, bir varış noktası ve gerekli durumlarda başlangıç ve varış noktaları arasında bir veya birden çok duruş noktası (ya da uğrama noktası) bulunabilen bir taşıma probleminde en düşük maliyetli ya da en kısa sürede kat edilebilen rotanın belirlenmesi ya da hesaplanması işlemini Atatürk Üniversitesi Açıköğretim Fakültesi 2

3 kapsamaktadır. Rota planlama problemlerinin çözümünde matematiksel çözüm [(örneğin optimizasyon (eniyileme)] yöntemlerinden faydalanılır. Rota planlama problemleri aslında daha geniş kapsamlı olan şebeke (network) modellerinin bir alt dalı olarak görülebilir. Şebeke problemlerinde birbirlerine (oklarla) bağlı ve ilişkilendirilmiş noktalar ve bu noktalar arasında tanımlı fonksiyonlar (örneğin maliyet, uzaklık vb.) mevcuttur. Şebeke modellerinin tipik amaçları toplam maliyeti ya da kat edilen mesafeyi minimize etmektir. Aşağıdaki şekilde tipik bir şebeke modelinden bir kesit görünmektedir. i ij X j Şekil 13.1 Şebeke Modelinden Bir Kesit Örneği Şekilde tanımlanan Xij iki nokta (i ve j) arasındaki akış kapasitesi, i noktasından j noktasına bir birim yük taşımanın maliyeti ya da daha farklı bir fonksiyon olabilir. Taşıma probleminde amaç m tane kaynaktan n tane hedefe yapılacak sevkiyatları minimum taşıma maliyetiyle gerçekleştirecek şekilde her bir i ve j noktası arasında taşınacak miktarları belirlemektir. Şebeke problemine uygun olabilecek uygulamalara örnek olarak kara yolu, deniz ve hava taşımacılığında rota planlama, süpermarket mağaza zincirleri ve depoları arasında dağıtım planlama, bir bilgisayar içinde kablolarla birbirine bağlı yongalar (çipler) arasında veri akışının optimize edilmesi, uydu iletişimi ile televizyon istasyonları arasında sinyallerin verimli bir şekilde iletilmesi, şehir içi ve şehirlerarası otobüs (ya da tren) terminallerinin birbirleri arasındaki yolcu taşımacılığının planlanması, vb. sayılabilir. Görüldüğü gibi şebeke problemlerinin gerçek hayatta çok fazla kullanım alanı mevcuttur. Şebeke problemleri doğası itibarıyla tam sayılı programlama modelleri olmasına karşın, genellikle tam sayı kısıtı yok sayılarak nispeten daha kolay çözüm yolları türetilmiştir. Bu nedenle, rota planlama problemi gibi şebeke problemleri genellikle sezgisel (heuristic) adı verilen basit algoritmalar kullanılarak çözülebilir. TAŞIMA PROBLEMİ Taşıma problemi tipik bir şebeke problemidir. Taşıma modelinde m tane kaynak (çıkış) noktası ve n tane de hedef (varış) noktası vardır. Kaynakların indisi i harfi ile gösterilirken, hedeflerin indisi j harfi ile gösterilir. i inci kaynaktan j inci hedefe gönderilecek olan miktar Xij ile ifade edilmektedir. i inci kaynaktan Atatürk Üniversitesi Açıköğretim Fakültesi 3

4 gönderilebilecek toplam (arz) miktarı Si ile gösterilirken. j inci hedefin alabileceği toplam talep miktarı Dj ile gösterilmektedir. Son olarak, i ve j noktaları arasında bir birim yükün taşınmasının maliyeti Cij olarak tanımlanmaktadır. Taşıma probleminde amaç m tane kaynaktan n tane hedefe yapılacak olan sevkiyatları minimum taşıma maliyetiyle gerçekleştirecek şekilde her bir i ve j noktası arasında taşınacak miktarları (yani Xij leri) belirlemektir. Örnek Taşıma Problemi ABC lojistik firmasının bir müşterisinin Çanakkale, İstanbul ve Giresun da bulunan üç ayrı deposundan Balıkesir, Kastamonu, Ankara ve Samsun da bulunan bayilerine yapılacak olan sevkiyatları için minimum taşıma maliyetine sahip taşıma planını belirlemesi gerekmektedir. Ürünler her bir depodan her bir bayi adresine gönderilebilmektedir. Yani her ürün her depoda bulunmakta ve yine her bayiden de talep edilebilmektedir. Burada çözülmesi gereken, hangi depodan hangi bayi adresine ve ne kadar miktarda sevkiyat yapılması gerektiğidir. Yukarıda belirtildiği gibi depoları i indisi ile ve bayileri de j indisi ile gösterirsek, i nci depodan j inci bayi adresine gönderilen miktar Xij ile tanımlanır ve problemin karar değişkenleri (yani çözülmesi gereken değişkenler) bu Xij değerleridir. Bazı Xij değerleri sıfır olabilecektir. Bunun anlamı bazı depolardan bazı bayilere sevkiyat yapılmayacak olmasıdır. Problemin çözülebilmesi için bir karar verme kıstasına (kriterine) ihtiyaç vardır. Taşıma probleminde tipik karar verme kıstası birim taşıma maliyetidir. Şöyle ki, her bir i deposundan her bir j bayisine bir birim ürün taşıma maliyeti Cij ile tanımlanır. Cij değerleri sabit olup, bizim tarafımızdan belirlenmiş (ya da belirlenecek) olan değerlerdir. Örneğimizi basit tutmak için tek bir ürünün sevkiyatı için arz ve talep miktarlarını sayısal olarak belirleyelim. Bu hafta Çanakkale deposundan 800 birim, İstanbul deposundan 500 birim ve Giresun deposundan da 400 birim ürün arz edilebilmektedir. Yani toplamda 1700 birim ürün arzı mevcuttur. Bu haftanın dağıtım planına göre bu 1700 birimlik ürün arzı, Balıkesir bayisine 500 birim, Kastamonu bayisine 200 birim, Ankara bayisine 700 birim ve Samsun bayisine 300 birim olacak şekilde gönderilecektir. Her bir depodan her bir bayi adresine bir birim ürün göndermenin maliyeti (Cij) aşağıdaki şekilde (Şekil 13.2 de üstteki Atatürk Üniversitesi Açıköğretim Fakültesi 4

5 tablonun içindeki değerler) verilmektedir. Örneğin Çanakkale den Kastamonu ya bir birim taşıma maliyeti 50 kuruştur. Bu veriler doğrultusunda taşıma problemi için gerekli girdiler sağlanmış bulunmaktadır. Şimdi taşıma probleminin matematiksel olarak formüle edilmesi ve sonra da bu matematik modelin çözülmesi gerekmektedir. Sayısal örneğimizden devam edersek, yukarıda betimlenen taşıma (dağıtım) planlama probleminin matematiksel modeli aşağıdaki gibi olacaktır: Min (20X X X X 14 ) + (26X X X X 24 ) + (62X X X X 34 ) (X 11 + X 12 + X 13 + X 14 ) = 800 (Çanakkale arz miktarı = 800) (X 21 + X 22 + X 23 + X 24 ) = 500 (İstanbul arz miktarı = 500) (X 31 + X 32 + X 33 + X 34 ) = 400 (Giresun arz miktarı = 400) (X 11 + X 21 + X 31 ) = 500 (Balıkesir talep miktarı = 500) (X 12 + X 22 + X 32 ) = 200 (Kastamonu talep miktarı = 200) (X 13 + X 23 + X 33 ) = 700 (Balıkesir talep miktarı = 700) (X 14 + X 24 + X 34 ) = 300 (Kastamonu talep miktarı = 300) X ij 0 (Tüm Xij ler sıfırdan büyük ya da eşittirler, negatif olamazlar) Problemi yukarıdaki modelde görüldüğü gibi matematiksel olarak formüle edebiliriz. Modelin ilk kısmı amaç fonksiyonudur. Min ifadesi minimize etmek anlamında olup, toplam taşıma maliyetinin minimize edilmesi amacını göstermektedir. Diğer kısımlar ise kısıtlar olarak adlandırılır. Bu probleme özel olarak tanımlanan kısıt denklemlerinde, her bir deponun arz miktarı belirtildiği kadar olmalı ve her bir bayinin talep ettiği miktarlar da yine belirtilen haftalık talep miktarları kadar olmalıdır. Problemin Microsoft Excel Solver (Çözücü) eklentisi kullanılarak bulunan çözümü aşağıdaki şekilde verilmektedir. Atatürk Üniversitesi Açıköğretim Fakültesi 5

6 Cij: Birim Taşıma Maliyetleri (Kuruş) Balıkesir Kastamonu Ankara Samsun Çanakkale İstanbul Giresun Xij: Depolardan bayilere taşınan miktarlar (birim) Balıkesir Kastamonu Ankara Samsun Çanakkale İstanbul Giresun Şekil Örnek Taşıma Probleminin Excel İle Çözümü Matematiksel modellerin çözümünde çeşitli yazılımlar ya da programlar kullanılabilir. Biz bu örnekte MS Excel Çözücü eklentisini kullanarak optimum (en iyi) çözümü bulduk. Çözüme ulaşmak için kullanılabilecek diğer yazılımlara örnek olarak WinQSB programı ya da Matlab programlama aracı verilebilir. Şekil 2 deki çözümde görüldüğü gibi problemin en düşük maliyetli çözümünde Çanakkale deposundan Balıkesir bayisine 500 birim, Giresun deposundan Samsun bayisine 300 birim, İstanbul ve Giresun depolarından Kastamonu bayisine 100 er birim, Çanakkale deposundan Ankara bayisine 300 birim ve son olarak da İstanbul deposundan Ankara deposuna 400 birim ürün gönderilmesi öngörülmektedir. Bu çözümün taşıma maliyeti minimum maliyet olup kuruş yani 410 TL olarak bulunmuştur. ATAMA PROBLEMİ Birçok işte yöneticiler birtakım atama problemleriyle karşı karşıyadırlar. Örneğin işleri çalışanlara, makineleri işlere, projeleri araştırmacılara, bölgeleri satış elemanlarına atamak gerektiğinde söz konusu problem bir atama problemi olup minimum maliyetle atama işleminin gerçekleştirilmesi amaçlanır. Taşımacılıkta atama problemi sıklıkla karşımıza çıkmaktadır. Örneğin gemi taşımacılığında eldeki gemilerin hedef limanlara atanması, farklı kapasitelerdeki Atatürk Üniversitesi Açıköğretim Fakültesi 6

7 Örnek Rota Planlama yük taşıyıcıların farklı taşıma görevlerine atanması, depolardan mağazalara yapılacak sevkiyatlarda hangi deponun hangi mağaza(lar)a sevkiyat yapacağı ile ilgili atamanın yapılması gibi daha birçok örnek sayılabilir. Atama probleminde minimize edilmek istenen amaç değeri toplam taşıma maliyeti olabileceği gibi, harcanan toplam süre ya da kat edilen toplam mesafe de olabilir. Gemi taşımacılığında elimizde bulunan n tane gemiyi n farklı taşıma işine atama problemini ele alalım. Burada amaç, gemilerin taşıma maliyetleri, liman maliyetleri, gemilerin hızları ve siparişlerin temin süreleri ile gemilerin yük taşıma kapasiteleri de göz önünde bulundurularak en düşük toplam maliyetle bu taşıma işleminin gerçekleştirilmesidir. Kuşkusuz bu tür bir problemde eğer sipariş, liman ve gemi sayıları çok fazla olup karmaşık bir problem ile karşı karşıya kalınırsa bilgisayar destekli karar destek sistemlerinden faydalanılmalıdır. Karar destek sistemleri sayesinde her bir i gemisini her bir j taşıma işine atamanın maliyetini (Cij) belirlediğimizi varsayalım. Bu durumda tipik bir atama problemi ile karşı karşıyayız demektir. Atama problemi aslında bir önceki konuda anlatılan taşıma probleminin özel bir hâlidir. Şöyle ki, aradaki farklar: 1. Taşıma probleminde m adet başlangıç noktası ve n adet varış noktası varken atama probleminde n adet iş n adet iş görene (ya da bizim örneğimizdeki gibi gemilere) atanacaktır. 2. Karar değişkenleri olan Xij lerin tanımı atama probleminde aşağıdaki gibi olacaktır: Xij = 1 Xij = 0 atanmamışsa Eğer i gemisi j taşıma işine atanmışsa Eğer i gemisi j taşıma işine Görüldüğü gibi bu iki farklılık dışında atama problemi aslında taşıma probleminin özel bir hâlidir ve taşıma probleminin çözülme yönteminin aynısı kullanılarak bu problem de benzer şekilde çözülebilir. Atatürk Üniversitesi Açıköğretim Fakültesi 7

8 Örnek Atama Problemi RT deniz taşımacılık şirketinin mevcut 5 adet gemisi (1, 2, 3, 4 ve 5 nolu) bu ay için gelen siparişler doğrultusunda 5 farklı taşıma işine (A, B, C, D ve E limanlarına) atanacaktır. Geçmiş verilerden ve güncel maliyet bilgilerinden yola çıkarak her bir geminin her bir taşıma işine atanmasının toplam maliyeti aşağıdaki şekilde (Şekil 13.3 de üstteki tablonun içindeki değerler) verilmektedir. Bu maliyet verileri doğrultusunda karşımızda tipik bir atama problemi var demektir. Problemin çözümünde yine MS Excel Çözücü eklentisi kullanılmıştır. Bulunan optimum çözüm aşağıdaki şekilde gösterilmektedir. Gemiler Hedef Limanlara Taşıma Maliyetleri (Bin TL) A B C D E Hedef Limanlara Yapılan Atamalar (1 = Atanmış) A B C D E Gemiler Şekil 3. Örnek Atama Probleminin Excel İle Çözümü Görüldüğü gibi en uygun çözümde (Şekil 3 ün alt kısmında) 1 no lu gemi A limanına, 2 no lu gemi B limanına, 3 no lu gemi E limanına, 4 no lu gemi C limanına ve 5 no lu gemi D limanına gitmek üzere atanmıştır. Bu atamaların toplam maliyeti 43 Bin TL olmuştur. Burada belirtilmesi gereken önemli bir nokta, Atatürk Üniversitesi Açıköğretim Fakültesi 8

9 5 no lu geminin yönetim tarafından A limanına atanmasının kesinlikle uygun olmayacağının bildirilmiş olmasıdır. Bu nedenle, Şekil 3 ün üst tarafında maliyet bilgileri girilirken 5 nolu geminin A limanına gitme maliyeti için bilerek 99 gibi çok büyük bir değer girilmiştir (renkli olarak gösterilen bölge). Bu sayede 5 nolu gemi maliyeti çok yüksek olduğu için zaten A limanına atanmamıştır. Tıpkı taşıma probleminde olduğu gibi burada anlatılan örnek atama probleminde de problemin matematiksel formülasyonu üzerinden en uygun çözüm bulunmuştur. Aşağıda gösterilen atama problemi modeline dikkatlice bakılırsa, atama probleminin taşıma probleminin özel bir hâli olduğu çok daha iyi anlaşılabilecektir. Min (9X X X X X 15 ) + (13X X X X X 25 ) + (15X X X X X 35 ) + (13X X X X X 45 ) + (99X X X X X 55 ) (X 11 + X 12 + X 13 + X 14 + X 15 ) = 1 (1 no lu gemi sadece 1 işe atanır) (X 21 + X 22 + X 23 + X 24 + X 25 ) = 1 (2 no lu gemi sadece 1 işe atanır) (X 31 + X 32 + X 33 + X 34 + X 35 ) = 1 (3 no lu gemi sadece 1 işe atanır) (X 41 + X 42 + X 43 + X 44 + X 45 ) = 1 (4 no lu gemi sadece 1 işe atanır) (X 51 + X 52 + X 53 + X 54 + X 55 ) = 1 (5 no lu gemi sadece 1 işe atanır) (X 11 + X 21 + X 31 + X 41 + X 51 ) = 1 (A limanına sadece 1 gemi atanır) (X 12 + X 22 + X 32 + X 42 + X 52 ) = 1 (B limanına sadece 1 gemi atanır) (X 13 + X 23 + X 33 + X 43 + X 53 ) = 1 (C limanına sadece 1 gemi atanır) (X 14 + X 24 + X 34 + X 44 + X 54 ) = 1 (D limanına sadece 1 gemi atanır) (X 15 + X 25 + X 35 + X 45 + X 55 ) = 1 (E limanına sadece 1 gemi atanır) Xij = 1 Xij = 0 atanmamışsa Eğer i gemisi j taşıma işine atanmışsa Eğer i gemisi j taşıma işine Atatürk Üniversitesi Açıköğretim Fakültesi 9

10 (Bu son kısıt ile eğer i gemisi j limanına atanmamışsa Xij değeri sıfır olacağından maliyet hesabında bu atamanın maliyeti sıfır olacaktır.) GEZGİN SATICI PROBLEMİ Gezgin satıcı problemi adından da anlaşılabileceği gibi bir satıcının (ya da Gezgin satıcı problemi bir satıcının bir başlangıç noktasından çıkıp m tane farklı uğrama noktasını ziyaret edip başladığı yere tekrar geri dönmesi gerektiği özel bir taşıma problemidir. taşıma aracının) bir başlangıç noktasından çıkıp m tane farklı uğrama noktasını ziyaret edip başladığı yere tekrar geri dönmesi gereken özel bir taşıma problemidir. Burada gidilecek yerler zaten bellidir. Belli olmayan ise gidilecek olan yerlere hangi sırada gidileceğidir. Bu sıralamadaki farklılık seyahatin rotasını da etkileyeceğinden, problemin özünde yine toplam taşıma maliyetini (ya da süresini veya mesafesini) minimize edecek en uygun rotayı belirleme amacı vardır. Günümüzdeki yalın tedarik zinciri uygulamaları ve tam zamanında (just in time) üretim sistemlerini uygulayan firmalar (örneğin Toyota gibi otomobil firmaları), bir yandan montaj hattının sürekliliğini sağlamak ve diğer yandan da az miktarda (gerektiği kadar) stok bulundurmak için süt dağıtımı (milk run distribution) adı verilen yöntemi kullanılmaktadır. Süt dağıtımı aslında tam bir gezgin satıcı problemidir. Bu yöntemle tıpkı süt dağıtıcısının evleri dolaşıp sütlerini bıraktığı gibi, tedarikçi firmalardan gelen parça siparişleri belli bir program dâhilinde ve belli bir sırada (en uygun) toplanarak son montajları yapılmak üzere ana firmaya günlük olarak (ya da saatlik olarak) sevk edilmektedir. Böylece her bir alt parçadan gerekli olduğu miktarda, gerekli olduğu yerde ve gerekli olduğu zamanda temin edilmektedir ki bu tam zamanında sevkiyat (Just in Time, JIT) anlamına gelmektedir. Gezgin satıcı probleminde yol üzerindeki her bir nokta sadece bir defa ziyaret edilir. Ziyaret edilen her bir i ve j noktası arasındaki mesafe ya da taşıma maliyeti Cij ile gösterilir. Problemin karar değişkeni olan Xij ler aşağıdaki gibi tanımlanır: Xij = 1 Xij = 0 Eğer belirlenen rota üzerinde i bölgesinden j bölgesine gidiş varsa Eğer belirlenen rota üzerinde i bölgesinden j bölgesine gidiş yoksa Atatürk Üniversitesi Açıköğretim Fakültesi 10

11 Gezgin satıcı probleminin amaç fonksiyonu tıpkı taşıma ve atama problemlerinde olduğu gibi toplam taşıma maliyetinin (Cij ler ile Xij lerin çarpımlarının toplamı) minimize edilmesi şeklinde formüle edilmektedir. Gezgin satıcı problemi aslında atama problemine benzer. Çünkü her bir i ve j bölgesi birbirlerine tahsis edilmiş (atanmış) ve her bir bölge için sadece bir atama mevcuttur. Diğer bir deyişle, her bir bölgeye sadece bir giriş ve bir çıkış olacaktır. Atama problemine benzemesine rağmen gezgin satıcı probleminin çözümü nispeten daha zordur. Özellikle uğranacak olan bölge sayısı m arttıkça, problemin çözümü daha da zorlaşmaktadır. Örneğin 50 uğrama noktasını (şehir ya da firma olabilir) içeren bir problem için 500 trilyon kısıt denklemi yazılması gerekmektedir. Tabi bugünkü bilgisayar teknolojisi ile bu tür problemler de kısa sürelerde çözülebilmektedir. Örnek Gezgin Satıcı Problemi Tam zamanında (Just in time) sevkiyat planına uyabilmek için süt dağıtımı (milk run distribution) uygulayan bir tedarikçi firmadan çıkan bir tır 4 farklı firmaya uğradıktan sonra geri dönmektedir. Aşağıdaki tabloda her iki uğrama noktası arasındaki seyahat süreleri dakika cinsinden verilmektedir. Tablo 13.1 Örnekteki Uğrama Noktaları Arasındaki Taşıma Sürelerini (Dakika Cinsinden) Gösteren Tablo Firma 1 Firma 2 Firma 3 Firma 4 Ana Firma Firma Firma Firma Firma Problemin amacı tüm firmalara (ana firma dâhil olmak üzere m= 5) birer defa uğrayıp ana firmaya en kısa sürede geri dönmektir. Bizim burada bulmamız gereken hangi sırada ziyaretlerin gerçekleştirileceğidir. Bu problem simetrik bir Atatürk Üniversitesi Açıköğretim Fakültesi 11

12 seyahat problemidir. Çünkü her bir uğrama noktası çifti arasındaki seyahat zamanı iki yönde de aynıdır. Fakat bunun böyle olmadığı problemler de olabilir. Örneğin trafiğin tek yönde sıkışık olduğu durumlarda gidiş süresi ile dönüş süresi aynı olmayabilir. Böyle bir problemi basit bir şekilde çözmenin bir yolu bütün muhtemel rotaları alt alta yazarak bunların toplam sürelerini hesaplayıp en kısa süreli olanı bulmaktır. Aşağıda bu tarz bir çözüm yöntemi uygulanmaktadır (aşağıda firma kelimesi F olarak kısaltılmıştır, örneğin Firma 1 yerine F1 yazılmıştır): Döngü Toplam Süre Ana Firma-F1-F2-F3-F4-Ana Firma = 90 dakika 2. Ana Firma-F1-F2-F4-F3-Ana Firma = 103 dakika 3. Ana Firma-F1-F3-F2-F4-Ana Firma = 83 dakika 4. Ana Firma-F1-F3-F4-F2-Ana Firma = 85 dakika 5. Ana Firma-F1-F4-F2-F3-Ana Firma = 106 dakika 6. Ana Firma-F1-F4-F3-F2-Ana Firma = 95 dakika 7. Ana Firma-F2-F3-F1-F4-Ana Firma = 88 dakika 8. Ana Firma-F2-F1-F3-F4-Ana Firma = 85 dakika 9. Ana Firma-F2-F4-F1-F3-Ana Firma = 101 dakika 10. Ana Firma-F2-F1-F4-F3-Ana Firma = 108 dakika 11. Ana Firma-F3-F1-F2-F4-Ana Firma = 96 dakika 12. Ana Firma-F3-F2-F1-F4-Ana Firma = 106 dakika Yukarıdaki hesaplamalarda görüldüğü gibi problemin en kısa süreli çözümü 3. seçenekteki Ana Firma-F1-F3-F2-F4-Ana Firma rotasıdır. Bu rotanın toplam süresi 83 dakikadır. Bu problemde uğrama noktaları sayısı (m= 5) olduğundan ve bu problem simetrik bir problem olduğundan problemin [(m 1)!] / 2 adet muhtemel çözümü vardır. Yani m= 5 ise [(m 1)!] / 2 = [(5 1)!] / 2 = 4! / 2 = 12 Atatürk Üniversitesi Açıköğretim Fakültesi 12

13 Yukarıda görüldüğü gibi problemin 12 muhtemel çözümü vardır ki biz de zaten 12 farklı çözüm bulduk. Burada problem simetrik olmasa idi bu değeri ikiye bölmeyecektik ki bu sefer 24 farklı çözüm olacaktı. Uğranılan bölge sayısı arttıkça problemin muhtemel çözüm sayısı da artacak ve böylece artık problem elle çözülemeyecek kadar zorlaşacaktır. Gezgin satıcı problemi atama problemi şeklinde çözüldüğünde, birbirinden ayrı alt döngülerle sonuçlanacaktır. Bu alt döngüleri engellemek için normal atama problemi şeklinde tanımlanan modele ek kısıtlar ilave edilmelidir. Örneğin (Ana Firma-F2-F1-Ana Firma) şeklinde eksik uğrama noktaları şeklinde yani tamamlanmamış bir alt döngüsünün gerçekleşememesi için (Ana Firma-F2); (F2- F1) ve (F1-Ana Firma) bağlantılarının çözüme aynı anda girmesini engelleyecek bir kısıt eklemek gerekir. Ana firma için indis numarası olarak 5 i verirsek aşağıdaki kısıt denklemi (Ana Firma-F2-F1-Ana Firma) alt döngüsünün geçersiz olmasını sağlar: X52 + X21 + X15 2 Bu alt döngü sadece X52, X21, ve X15 değerlerinin hepsinin 1 e eşit olduğunda geçerli olabileceğinden yukarıdaki kısıt bunu imkânsız yapar, çünkü üçü birden 1 e eşit olduğunda 2 den büyük olacaktır ki yukarıdaki kısıt denklemi bunu engeller. Bir başka örnek olarak (F1-F2-F3-F4-F1) alt döngünün geçersiz olduğunu söylemek için aşağıdaki kısıt denklemini eklemeliyiz: X12 + X23 + X34 + X41 3 Bu gezgin satıcı problemini bir atama problemi modeli şeklinde çözebilmek için, yukarıdaki gibi muhtemel tüm alt döngülerin ek kısıtlar getirilerek engellenmesi gerekir. Bu doğrultuda örnek problemimiz için aşağıdaki kısıtlar eklenmelidir: Tek düğümlü alt döngüler için: X11 0, X22 0, X33 0, X44 0, X55 0. Atatürk Üniversitesi Açıköğretim Fakültesi 13

14 İki düğümlü alt döngüler için: X12 + X21 1 X13 + X31 1 X14 + X41 1 X15 + X51 1 X23 + X32 1 X24 + X42 1 X25 + X52 1 X34 + X43 1 X35 + X53 1 X45 + X54 1 Üç düğümlü alt döngüler için: X12 + X23 + X31 2 X12 + X24 + X41 2 X12 + X25 + X51 2 X13 + X34 + X41 2 X13 + X35 + X51 2 X14 + X45 + X51 2 X23 + X34 + X42 2 X23 + X35 + X52 2 X24 + X45 + X52 2 X34 + X45 + X53 2 Dört düğümlü alt döngüler için: X12 + X23 + X34 + X41 3 X12 + X23 + X35 + X51 3 X12 + X24 + X45 + X51 3 X13 + X34 + X45 + X51 3 X23 + X34 + X45 + X51 3 MS Excel ya da WinQSB gibi yazılım araçları ile 10 veya daha az uğrama noktası olan problemlerin gezgin satıcı problemleri çözülebilir. Daha büyük çaplı gezgin satıcı problemleri için daha kapsamlı çözüm araçları (örneğin Matlab gibi) kullanılabilir. Atatürk Üniversitesi Açıköğretim Fakültesi 14

15 EN KISA YOL PROBLEMİ Çoğumuz bir yere gideceğimiz zaman kara yolları haritasına bakarak gideceğiniz yere giden en kısa yolu bulmaya çalışırız. Genellikle en kısa yoldan gideceğimiz yere varmak isteriz ki, yolculuk maliyetimiz (benzin sarfiyatı ve yol masrafları) en az olsun. En kısa yol probleminde amacımız, başlangıç noktasından gidilecek hedef noktaya kadar giden en kısa yolu bulmaktır. En kısa yol probleminde bir giriş noktasıyla başlayan ve n inci bitiş (terminal) noktası ile biten n adet nokta vardır. En kısa yol probleminin gezgin satıcı probleminden iki farkı vardır. Şöyle ki, en kısa yol probleminde, 1. Her bir noktanın seçilen yol üzerinde yer alması gerekmemektedir. Ziyaret edilmeyen noktalar da olabilir. 2. Gezgin satıcı probleminden farklı olarak başlangıç düğümüne (noktasına) dönülmez. Örnek En Kısa Yol Problemi TLMN şirketi uluslararası bölgelerde faaliyet gösteren bir taşımacılık şirketidir. Bu şirketin bu ayki işlerinden birisi bir müşterisi için A ve B şehirleri arasında mal taşımaktır. İki şehri birleştiren muhtemel yollar üzerindeki uğranabilecek şehirler (10 adet şehir) ve bu şehirler arasındaki mesafeler (kilometre cinsinden) aşağıdaki gibidir. Şehir Şehir Mesafe (kilometre) Atatürk Üniversitesi Açıköğretim Fakültesi 15

16 Bu problemde 1 numaralı şehir A şehri olup başlangıç noktasıdır ve 10 numaralı şehir B şehri olup varış noktasıdır. Problemin şebeke gösterimi aşağıdaki şekilde görüldüğü gibidir. Başlan gıç ş Varı Şekil 13.4 Örnek En Kısa Yol Probleminin Şebeke Gösterimi Atatürk Üniversitesi Açıköğretim Fakültesi 16

17 Bu problem önceki modellere benzer bir şekilde formüle edilip çözülebilir. Xij, i ve j şehirleri arasında otoyolun kullanımını temsil etsin. Bu durumda Xij karar değişkeni aşağıdaki gibi tanımlanabilir: Xij = 1 Xij = 0 Eğer belirlenen rota üzerinde i ve j şehirleri arasındaki otoyoldan geçilecek ise Eğer belirlenen rota üzerinde i ve j şehirleri arasındaki otoyoldan geçilmeyecek ise Burada amaç kat edilen toplam uzaklığı minimize etmektir. Bu da bütün seyahat edilen yolların uzaklıklarının (dij ile gösterilebilir) karar değişkeni olan Xij ile çarpımlarının toplamıdır: Minimize dij Xij Bu şekilde eğer Xij=1 ise söz konusu i ve j şehirleri arası mesafe kat edilmiş olacak ve toplam mesafeye ilave edilecektir. En kısa yol modelinin kısıtları her bir şehir için (başlangıç ve bitiş şehirleri hariç) aşağıdaki gibi ifade edilebilir: (Şehrin içine gitmek için kullanılan otoyolların sayısı) = (şehirden ayrılırken gidilen yolların sayısı) Yani diğer bir deyişle bir şehre kaç defa giriş yapıldıysa aynı sayıda çıkış olmalıdır. Tabi bu kural başlangıç ve bitiş şehirleri için geçerli olmayacaktır. Çünkü başlangıç şehrine giriş olmayacak sadece çıkış olacaktır. Benzer şekilde bitiş şehrinden de çıkış olmayacak sadece giriş olacaktır. Yukarıdaki kısıt denklemine örnek olarak 7. şehir için aşağıdaki kısıt yazılmalıdır: X47 + X57 = X78 + X7,10 Yani, eğer 7. şehir seçilen yol üzerinde ise, 7. şehire gelirken ziyaret edilen otoyolların sayısı toplamda 1 olacaktır ve 7. şehirden çıkarken geçilen yolların sayısı da toplamda 1 olacaktır. Bunun için yukarıdaki formülde ya X47 ya da X57 değerlerinden biri 1 e eşit diğeri sıfıra eşit olacaktır. Benzer şekilde yukarıdaki formülde ya X78 ya da X710 değerlerinden biri 1 e eşit diğeri sıfıra eşit olacaktır. Atatürk Üniversitesi Açıköğretim Fakültesi 17

18 Fakat eğer 7. şehir seçilen rota üzerinde değilse, bu şehre giriş ve çıkış sayıları toplamı sıfır olacaktır. Yani X47, X57, X78 ve X7,10 değerlerinin hepsi sıfıra eşit olacaktır. Ayrıca, yukarıda belirtildiği gibi, başlangıç şehri olan 1. şehirden çıkışların sayısı tam olarak 1 olmalı, ve son durak olan 10 numaralı şehre girişlerin sayısı da 1 olmalıdır. Bu kural da, modele aşağıdaki kısıtlar eklenerek elde edilir. X12 + X13 + X14 = 1 (başlangıç şehri için) ve X7,10 + X8,10 = 1 (bitiş şehri için) Bu gibi kısıt denklemleri ilave edildiğinde problem bir doğrusal programlama problemi hâline gelir ve bilindik çözüm araçları ile çözülebilir. Karar değişkenleri (Xij ler) 0-1 li ikili değişkenler olduğundan bu problem bir İkili Tam Sayılı (Binary Integer) Doğrusal Programlama Modelidir. Yukarıdaki örnek en kısa yol probleminin çözümü aşağıdaki gibi bulunmaktadır: Önce başlangıç şehri olan 1 numaralı şehirden 3 numaralı şehre gidilir. Kat edilen mesafe 139 km Sonra 3 numaralı şehirden 6 numaralı şehre gidilir. Kat edilen mesafe 241 km Sonra 6 numaralı şehirden 8 numaralı şehre gidilir. Kat edilen mesafe 182 km Sonra 8 numaralı şehirden 9 numaralı şehre gidilir. Kat edilen mesafe 215 km Sonra 9 numaralı şehirden 10 numaralı şehre gidilir. Kat edilen mesafe 113 km Bu sonuca göre en kısa yol rotası numaralı şehirlerden geçen rota olup kat edilen toplam mesafe 890 kilometredir. Atatürk Üniversitesi Açıköğretim Fakültesi 18

19 ROTA PLANLAMA YAZILIMLARI Rota planlama yazılımları coğrafi açıdan iki nokta arasındaki optimal (en iyi) rotayı planlamak için tasarlanmış bilgisayar programlarıdır. Bu yazılımlar genellikle kara yolları şebekeleri için tasarlanmış olup, kara yolunda seyreden araçlar için en iyi rotayı belirlemede kullanılırlar. Genellikle geçilecek yerlerin listesini, kavşak noktalarını, yol numaralarını ve takip edilmesi gereken yönleri ve uzaklıkları sürücüye bildirir ve aynı zamanda bir harita ile de görsel olarak bu bilgileri gösterebilirler. Online olarak rota planlama hizmeti sunabilen web sitelerine örnek olarak Google Maps, Mapquest, Tom Tom Route Planner, ViaMichelin ve Intermodal Journey Planner vb. gibi siteler verilebilir. Bu uygulamalar tahmini seyahat süresini, ücretli geçişler varsa bunların toplam maliyetini ve bazı durumlarda yol üstündeki önemli ihtiyaç yerlerini de (örneğin, hastane, restoran vb.) kullanıcıya gösterebilirler. Rota planlama yazılımları yüzde yüz hatasız değildir. Belli bir süre kullanıldıktan sonra kullanıcı bazı durumlarda kendi inisiyatifini de kullanabilir. Büyük ya da küçük sayılarda araç filoları bulunan taşıma ve dağıtım şirketleri rota planlama yazılımlarını filo yönetim sistemleriyle bütünleştirerek araçları için optimum rotaları belirleyebilir ve daha düşük maliyetlerle taşımacılık yapabilirler. Taşıma ve dağıtım işletmeleri için en uygun rota planlama çözümleri genellikle GPS (Global Positioning System, Küresel Konumlandırma Sistemi) üzerinden izleme yeteneğine ve gelişmiş raporlama özelliklerine de sahiptirler. GPS, uydu üzerinden konum bilgisi sağlayan ve bu bilgiyi ilgili noktaya gönderen bir sistemdir. Bu sistemler sayesinde kat edilen mesafe en aza indirilebilir, plan dışı duruşlar engellenebilir ve en düşük yakıt maliyetiyle taşıma işi gerçekleştirilebilir. Günlük hayatımızda kullandığımız araç navigasyon sistemleri rota planlama yazılımlarında birtakım algoritmalardan faydalanmaktadır. Bu yazılımlar önce çeşitli algoritmalar yardımıyla gidilecek yolu bölgelere ayırmakta, sonra da bu bölümlendirmeden yola çıkarak optimum rotayı belirlemektedir (Flinsenberg, 2009). Aynı zamanda yoldaki trafik sıkışmalarını da göz önünde bulundurabilen bu sistemler aracın muhtemel varış süresini de hesaplayabilmektedir. Her firmanın geliştirdiği navigasyon sistemleri farklı algoritmalardan yararlandığı için farklı firmaların navigasyon cihazlarının bulacağı en uygun rotalar da birbirlerinden farklı olabilecektir. Atatürk Üniversitesi Açıköğretim Fakültesi 19

20 Özet Rota Planlama Bu bölümde rota planlamanın genel anlamda ne olduğu, kimler için gerekli olduğu ve rota planlamada ne tür matematiksel araçların kullanıldığı üzerinde durulmuştur. Taşımacılık sistemlerinde en temel problemlerden biri olan taşıma probleminin matematiksel anlamda tanımlaması yapılmış ve bu problemin nasıl çözülebileceği örneklerle gösterilmiştir. Taşıma probleminde amaç m tane kaynaktan n tane hedefe yapılacak olan sevkiyatları minimum taşıma maliyetiyle gerçekleştirecek şekilde her bir i ve j noktası arasında taşınacak miktarları (yani Xij leri) belirlemektir. Taşıma probleminin özel bir hâli olan atama probleminde ise işleri çalışanlara, makineleri işlere, projeleri araştırmacılara, bölgeleri satış elemanlarına atamak gerektiğinde minimum maliyetle atama işleminin gerçekleştirilmesi amaçlanır. Gezgin satıcı problemi ve en kısa yol problemleri de taşımacılık sistemlerinde sıklıkla karşılaşılan diğer problem türleridir. Her iki problem türünün önemli ayırt edici özellikleri ayrıntılı olarak açıklanmış ve ardından da örnekler verilerek bu örnek problemlerin nasıl çözülebileceği anlatılmıştır. Atatürk Üniversitesi Açıköğretim Fakültesi 20

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTıRMA MODELININ TANıMı Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Dr. Özgür Kabak GAMS Giriş GAMS (The General Algebraic Modeling System) matematiksel proglamlama ve optimizasyon için tasarlanan yüksek seviyeli bir dildir. Giriş dosyası:

Detaylı

Ulaştırma Problemleri

Ulaştırma Problemleri Ulaştırma Problemleri Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir. Bu modelde, malların kaynaklardan (fabrika gibi )hedeflere (depo gibi) taşınmasıyla ilgilenir. Buradaki amaç

Detaylı

DERS BİLGİLERİ. Ders Kodu Yarıyıl T+U Saat Kredi AKTS LOJİSTİK SİSTEMLERİ PLANLAMA VE TASARIMI ESYE549 3+0 3 7

DERS BİLGİLERİ. Ders Kodu Yarıyıl T+U Saat Kredi AKTS LOJİSTİK SİSTEMLERİ PLANLAMA VE TASARIMI ESYE549 3+0 3 7 DERS BİLGİLERİ Ders Kodu Yarıyıl T+U Saat Kredi AKTS LOJİSTİK SİSTEMLERİ PLANLAMA VE TASARIMI ESYE549 3+0 3 7 Ön Koşul Dersleri ISE veya eşdeğer bir optimizasyona giriş dersi Dili Seviye si Türü İngilizce

Detaylı

Geçmiş ve Gelecek. Türkiye Lojistiği Geleceğe Nasıl Ulaşacak. Geleceğin Tedarik Zincirini Oluşturmak 13 Mayıs 2015

Geçmiş ve Gelecek. Türkiye Lojistiği Geleceğe Nasıl Ulaşacak. Geleceğin Tedarik Zincirini Oluşturmak 13 Mayıs 2015 Geçmiş ve Gelecek Türkiye Lojistiği Geleceğe Nasıl Ulaşacak Geleceğin Tedarik Zincirini Oluşturmak 13 Mayıs 2015 ATİLLA YILDIZTEKİN Lojistik YönetimDanışmanı atilla@yildiztekin.com Nasıl Bir Değişim Yaşıyoruz?

Detaylı

Tedarik Zincirlerinde Yer Seçimi Kararları (Location Decisions)

Tedarik Zincirlerinde Yer Seçimi Kararları (Location Decisions) Tedarik Zincirlerinde Yer Seçimi Kararları (Location Decisions) Öğr. Üyesi: Öznur Özdemir Kaynak: Waters, D. (2009). Supply Chain Management: An Introduction to Logistics, Palgrave Macmillan, New York

Detaylı

MATEMATiKSEL iktisat

MATEMATiKSEL iktisat DİKKAT!... BU ÖZET 8 ÜNİTEDİR BU- RADA İLK ÜNİTE GÖSTERİLMEKTEDİR. MATEMATiKSEL iktisat KISA ÖZET KOLAY AOF Kolayaöf.com 0362 233 8723 Sayfa 2 içindekiler 1.ünite-Türev ve Kuralları..3 2.üniteTek Değişkenli

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

Stok Kontrol. Önceki Derslerin Hatırlatması. Örnek (Ekonomik Sipariş Miktarı Modeli)(2) Örnek (Ekonomik Sipariş Miktarı Modeli)(1)

Stok Kontrol. Önceki Derslerin Hatırlatması. Örnek (Ekonomik Sipariş Miktarı Modeli)(2) Örnek (Ekonomik Sipariş Miktarı Modeli)(1) Stok Kontrol Önceki Derslerin Hatırlatması Ders 7 Farklı Bir Stok Yönetimi Durumu Uzun Dönemli Stok Problemi Talep hızı sabit, biliniyor Birim ürün maliyeti sabit Sipariş maliyeti sabit Tedarik Süresi

Detaylı

ARAÇ ROTALAMA SİSTEMLERİ VE TASARRUF ALGORİTMASI UYGULAMASI

ARAÇ ROTALAMA SİSTEMLERİ VE TASARRUF ALGORİTMASI UYGULAMASI İstanbul Ticaret Üniversitesi..Fen Bilimleri Dergisi Yıl: 11 Sayı: 21 Bahar 2012 s.41-51 ARAÇ ROTALAMA SİSTEMLERİ VE TASARRUF ALGORİTMASI UYGULAMASI Burak KOSİF*, İsmail EKMEKÇİ** Geliş: 18.06.2012 Kabul:

Detaylı

BÖLÜMLER. Birinci Bölüm TEDARİK ZİNCİRİ YÖNETİMİNE GİRİŞ. İkinci Bölüm DIŞ KAYNAK KULLANIMI. Üçüncü Bölüm ENVANTER YÖNETİMİ

BÖLÜMLER. Birinci Bölüm TEDARİK ZİNCİRİ YÖNETİMİNE GİRİŞ. İkinci Bölüm DIŞ KAYNAK KULLANIMI. Üçüncü Bölüm ENVANTER YÖNETİMİ TEDARİK ZİNCİRİ YÖNETİMİ ARKA PLANI, GELİŞİMİ, GÜNCEL UYGULAMALARI BÖLÜMLER Birinci Bölüm TEDARİK ZİNCİRİ YÖNETİMİNE GİRİŞ İkinci Bölüm DIŞ KAYNAK KULLANIMI Üçüncü Bölüm ENVANTER YÖNETİMİ Dördüncü Bölüm

Detaylı

ENM 316 BENZETİM ÖDEV SETİ

ENM 316 BENZETİM ÖDEV SETİ ENM 16 BENZETİM ÖDEV SETİ Ödev 1. Bir depo ve N adet müşteriden oluşan bir taşımacılık sisteminde araç depodan başlayıp bütün müşterileri teker teker ziyaret ederek depoya geri dönmektedir. Sistemdeki

Detaylı

BİRİNCİ BÖLÜM: TEDARİK ZİNCİRİ YÖNETİMİNE GİRİŞ

BİRİNCİ BÖLÜM: TEDARİK ZİNCİRİ YÖNETİMİNE GİRİŞ İÇİNDEKİLER Önsöz... v İçindekiler... vii BİRİNCİ BÖLÜM: TEDARİK ZİNCİRİ YÖNETİMİNE GİRİŞ 1.1 Tedarik Zincirinin Temel Fonksiyonları... 8 1.1.1 Üretim... 8 1.1.2 Envanter Yönetimi... 16 1.1.3 Taşıma ve

Detaylı

Hasan C. BEYHAN Başarso' - İş Geliş/rme ve Sa3ş Sorumlusu

Hasan C. BEYHAN Başarso' - İş Geliş/rme ve Sa3ş Sorumlusu Hasan C. BEYHAN Başarso' - İş Geliş/rme ve Sa3ş Sorumlusu Servis Güzergah Op/mizasyonu 1/20 Rotaban - Servis Güzergah Op/mizasyonu Nedir? Hangi Sorunları Çözer? Nasıl Çalışır? Faydaları? Rotaban Kullanıcıları

Detaylı

YÖNEYLEM ARAŞTIRMALARI 1

YÖNEYLEM ARAŞTIRMALARI 1 YÖNEYLEM ARAŞTIRMALARI 1 1.HAFTA Amacı:Karar vericiler işletmelerde sahip oldukları kaynakları; insan gücü makine ve techizat sermaye kullanarak belirli kararlar almak ister. Örneğin; en iyi üretim miktarı

Detaylı

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü OYUN TEORİSİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü TANIM ''Oyun Teorisi'', iki yada daha fazla rakibi belirli kurallar altında birleştirerek karşılıklı olarak çelişen olasılıklar

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

GPS NAVIGATION SYSTEM QUICK START USER MANUAL

GPS NAVIGATION SYSTEM QUICK START USER MANUAL GPS NAVIGATION SYSTEM QUICK START USER MANUAL TURKISH Başlarken Araç navigasyon yazılımını ilk kez kullanırken, bir başlangıç ayarı süreci otomatik olarak başlar. Aşağıdaki adımları takip edin: Program

Detaylı

Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30)

Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30) ENM 316 BENZETİM ÖDEV SETİ Ödev 1. Bir projede A, B, C, D, E ve F olmak üzere 6 faaliyet vardır. Projenin tamamlanması için bu faaliyetlerin sırası ile yapılması gerekmektedir. Her faaliyetin tamamlanması

Detaylı

LOS Energy. Akaryakıt / Gaz Dağıtım Çözümü

LOS Energy. Akaryakıt / Gaz Dağıtım Çözümü LOS Energy Akaryakıt / Gaz Dağıtım Çözümü Exepto Bilgi Teknolojileri A.Ş. 2003 Yılında kuruldu. Alışan Group Şirketi ISO 9001 Certified Microsoft Çözüm Ortağı Custom Solutions Competency Data Management

Detaylı

ÜNİTE. MATEMATİK-1 Prof.Dr.Abdullah MADEN İÇİNDEKİLER HEDEFLER DENKLEMLER VE EŞİTSİZLİK UYGULAMALARI

ÜNİTE. MATEMATİK-1 Prof.Dr.Abdullah MADEN İÇİNDEKİLER HEDEFLER DENKLEMLER VE EŞİTSİZLİK UYGULAMALARI HEDEFLER İÇİNDEKİLER DENKLEMLER VE EŞİTSİZLİK UYGULAMALARI Denklem Uygulamaları Sayı Problemleri Kar-Zarar ve Yüzde Hesapları Eşitsizlik Uygulamaları Mutlak Değerli Eşitsizlikler MATEMATİK-1 Prof.Dr.Abdullah

Detaylı

EM302 Yöneylem Araştırması 2 TP Modelleme. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 TP Modelleme. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 TP Modelleme Dr. Özgür Kabak Çek Tahsilatı Ofisi Örneği Bir Amerikan şirketinin Birleşik Devletlerdeki müşterilerinin ödemelerini gönderdikleri çekler ile topladığını varsayalım.

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Gezgin Satıcı Problemi 9. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Gezgin Satıcı Problemi Soru n tane şehri olan bir

Detaylı

NAVİGASYON KULLANIM KILAVUZU.

NAVİGASYON KULLANIM KILAVUZU. NAVİGASYON KULLANIM KILAVUZU www.fiatnavigation.com www.daiichi.com.tr Başlarken Araç navigasyon yazılımını ilk kez kullanırken, bir başlangıç ayarı süreci otomatik olarak başlar. Aşağıdaki adımları takip

Detaylı

Akıllı Bilet Online İşlem Merkezi Uygulaması

Akıllı Bilet Online İşlem Merkezi Uygulaması Akıllı Bilet Online İşlem Merkezi Uygulaması www.akillibiletim.com Akıllı Bilet Online İşlem Merkezi uygulamasının tasarım ve geliştirme sürecinde göz önünde bulundurulan en önemli husus, uygulamanın herkes

Detaylı

Afet Yardım Operasyonlarında CBS Tabanlı Acil Müdahale Sistemi

Afet Yardım Operasyonlarında CBS Tabanlı Acil Müdahale Sistemi Afet Yardım Operasyonlarında CBS Tabanlı Acil Müdahale Sistemi Erdinç Bakır 1, Dr. Onur Demir 1 & Dr. Linet Ozdamar 2 1 Bilg. Müh. Bölümü 2 Sistem ve End. Müh. Bölümü Yeditepe University, Istanbul, Turkey

Detaylı

TEDARİK ZİNCİRİ YÖNETİMİ

TEDARİK ZİNCİRİ YÖNETİMİ Ömer Faruk GÖRÇÜN Kadir Has Üniversitesi Örnek Olay ve Uygulamalarla TEDARİK ZİNCİRİ YÖNETİMİ II Yayın No : 2874 İşletme-Ekonomi Dizisi : 573 1. Baskı - Ekim 2010 - İSTANBUL 2. Baskı - Mart 2013 - İSTANBUL

Detaylı

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Doç.Dr.Mehmet Hakan Satman mhsatman@istanbul.edu.tr İstanbul Üniversitesi 2014.10.22 Doç.Dr.Mehmet Hakan Satmanmhsatman@istanbul.edu.tr Tedarik Zinciri

Detaylı

TIGER PLUS FİYAT LİSTESİ 4 Ağustos 2011 tarihinden itibaren geçerlidir.

TIGER PLUS FİYAT LİSTESİ 4 Ağustos 2011 tarihinden itibaren geçerlidir. TIGER PLUS FİYAT LİSTESİ 4 Ağustos 2011 tarihinden itibaren geçerlidir. Genel 1. Fiyat listesinde bulunan tüm lisans ve eğitim fiyatları ile eğitim süreleri LOGO tarafından tavsiye edilen son kullanıcı

Detaylı

Araç Takip Sistemi. Araç Takip Sistemi kullandığınızda;

Araç Takip Sistemi. Araç Takip Sistemi kullandığınızda; 1 Araç Takip Sistemi kullandığınızda; Araç ve sürücü analizi yaparak yakıt tüketimini kontrol altına alabilir ve ideal tüketim seviyesine çekebilirsiniz. Araç Takip Sistemi Araçlarınızın konumunu harita

Detaylı

LOJİSTİK VE TEDARİK ZİNCİRİ YÖNETİMİ UZMANLIK PROGRAMI

LOJİSTİK VE TEDARİK ZİNCİRİ YÖNETİMİ UZMANLIK PROGRAMI LOJİSTİK VE TEDARİK ZİNCİRİ YÖNETİMİ UZMANLIK PROGRAMI LOJİSTİK VE TEDARİK ZİNCİRİ YÖNETİMİ UZMANLIK PROGRAMI Program 1: Program 2: Taşımacılık Yönetimi Depo Yönetimi Stok Yönetimi Satınalma ve Tedarik

Detaylı

HARİTA OKUMA BİLGİSİ

HARİTA OKUMA BİLGİSİ HARİTA OKUMA BİLGİSİ 1. Harita üzerinde gösterilen işaretlerden hangisi uluslararası yol numarasıdır? a) O-3 b) E-80 c) D100 d) K2 2. Yeryüzünün tamamının veya bir parçasının kuşbakışı görünümünün matematiksel

Detaylı

ÜNİTE. MATEMATİK-1 Prof.Dr.Abdullah KOPUZLU İÇİNDEKİLER HEDEFLER LOGARİTMİK VE ÜSTEL FONKSİYONLARIN İKTİSADİ UYGULAMALARI

ÜNİTE. MATEMATİK-1 Prof.Dr.Abdullah KOPUZLU İÇİNDEKİLER HEDEFLER LOGARİTMİK VE ÜSTEL FONKSİYONLARIN İKTİSADİ UYGULAMALARI HEDEFLER İÇİNDEKİLER LOGARİTMİK VE ÜSTEL FONKSİYONLARIN İKTİSADİ UYGULAMALARI Logaritmik ve Üstel Fonksiyonların İktisadi Uygulamaları Bileşik Faiz Problemleri Nüfus Problemleri MATEMATİK-1 ProfDrAbdullah

Detaylı

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01 Ortak Varyans ve İstatistiksel Bağımsızlık Bir rassal değişken çifti istatistiksel olarak bağımsız ise aralarındaki ortak varyansın değeri 0 dır. Ancak ortak varyans değerinin 0 olması, iki rassal değişkenin

Detaylı

İŞLETME VE ORGANİZASYON STAJI UYGULAMA ESASLARI

İŞLETME VE ORGANİZASYON STAJI UYGULAMA ESASLARI İŞLETME VE ORGANİZASYON STAJI UYGULAMA ESASLARI ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ İŞLETME VE ORGANİZASYON STAJI UYGULAMA ESASLARI 2014 İŞLETME VE ORGANİZASYON STAJI UYGULAMA ESASLARI Açıklama Staj yapılan işletmelerde

Detaylı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım Mehmet Ali Aytekin Tahir Emre Kalaycı Gündem Gezgin Satıcı Problemi GSP'yi Çözen Algoritmalar Genetik Algoritmalar

Detaylı

ELEKTRONİK İŞ SÜREÇLERİ ÜNİTE 8

ELEKTRONİK İŞ SÜREÇLERİ ÜNİTE 8 ELEKTRONİK İŞ SÜREÇLERİ ÜNİTE 8 GİRİŞ Yeni iş ortamında işletmeler hızlı olmak zorundadır. Bunun için daha hızlı tedarik etmek, daha hızlı üretmek ve daha hızlı satmak durumundadır. Bu bölümde yeni bir

Detaylı

Saha İş Gücü Yönetim Sistemi ve Güzergah Optimizasyonu

Saha İş Gücü Yönetim Sistemi ve Güzergah Optimizasyonu Saha İş Gücü Yönetim Sistemi ve Güzergah Optimizasyonu Sahayı Bilerek Yönetin Başarsoft, hayatınıza harita tabanlı çözümler sunar. Saha İş Gücü Yönetim Sistemi Nedir? Kurum ve firmaların, saha işlerini

Detaylı

MAKİNE ELEMANLARI DERS SLAYTLARI

MAKİNE ELEMANLARI DERS SLAYTLARI MAKİNE ELEMANLARI DERS SLAYTLARI TOLERANSLAR P r o f. D r. İ r f a n K A Y M A Z P r o f. D r. A k g ü n A L S A R A N A r ş. G ör. İ l y a s H A C I S A L I H O Ğ LU Tolerans Gereksinimi? Tasarım ve üretim

Detaylı

İbrahim Küçükkoç Arş. Gör.

İbrahim Küçükkoç Arş. Gör. Doğrusal Programlamada Karışım Problemleri İbrahim Küçükkoç Arş. Gör. Balikesir Üniversitesi Endüstri Mühendisliği Bölümü Mühendislik-Mimarlık Fakültesi Çağış Kampüsü 10145 / Balıkesir 0 (266) 6121194

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

TREND LOJİSTİK. Gelişen Lojistik Uygulamalar. ATİLLA YILDIZTEKİN Lojistik Yönetim Danışmanı atillayildiztekin@yahoo.com

TREND LOJİSTİK. Gelişen Lojistik Uygulamalar. ATİLLA YILDIZTEKİN Lojistik Yönetim Danışmanı atillayildiztekin@yahoo.com TREND LOJİSTİK Gelişen Lojistik Uygulamalar Depo Yönetimi LOGIMEX 11 1 Mart 2012 ATİLLA YILDIZTEKİN Lojistik Yönetim Danışmanı atillayildiztekin@yahoo.com 1 Depolamanın Yeri Tedarik Zinciri Lojistik Depolama

Detaylı

Tedarik Zinciri Yönetimi. Diğer tanımlar. Tedarik Zinciri Yönetimi Nedir? Tedarik Zinciri: Hizmet Örneği. Bölüm I Tedarik Zinciri Yönetimine Giriş

Tedarik Zinciri Yönetimi. Diğer tanımlar. Tedarik Zinciri Yönetimi Nedir? Tedarik Zinciri: Hizmet Örneği. Bölüm I Tedarik Zinciri Yönetimine Giriş Tedarik Zinciri Yönetimi Bölüm I Tedarik Zinciri Yönetimine Giriş Doç. Dr. Kazım Sarı Uluslararası Lojistik ve Taşımacılık Bölümü Beykent Üniversitesi İşletmeler daima müşteri gereksinimlerini rakiplerinden

Detaylı

GPS NAVI GASYON SI STEMI

GPS NAVI GASYON SI STEMI GPS NAVI GASYON SI STEMI NAV HIZLI BAS LANGIÇ KILAVUZU MOTOR ANA SAYFA TÜRK Başlarken Navigasyon yazılımı ilk kez kullanıldığında otomatik olarak bir ilk kurulum işlemi başlar. Aşağıdaki işlemleri yapın:

Detaylı

TIGER PLUS FİYAT LİSTESİ 1 Aralık 2010 tarihinden itibaren geçerlidir.

TIGER PLUS FİYAT LİSTESİ 1 Aralık 2010 tarihinden itibaren geçerlidir. TIGER PLUS FİYAT LİSTESİ 1 Aralık 2010 tarihinden itibaren geçerlidir. Genel 1. Fiyat listesinde bulunan tüm lisans ve eğitim fiyatları ile eğitim süreleri LOGO tarafından tavsiye edilen son kullanıcı

Detaylı

Endüstri Mühendisliği - 1. yarıyıl. Academic and Social Orientation. 441000000001101 Fizik I Physics I 3 0 1 4 4 6 TR

Endüstri Mühendisliği - 1. yarıyıl. Academic and Social Orientation. 441000000001101 Fizik I Physics I 3 0 1 4 4 6 TR - - - - - Bölüm Seçin - - - - - Gönder Endüstri Mühendisliği - 1. yarıyıl 141000000001101 Akademik ve Sosyal Oryantasyon Academic and Social Orientation 1 0 0 1 0 1 TR 441000000001101 Fizik I Physics I

Detaylı

Araç Takip Sistemi DIT Paket

Araç Takip Sistemi DIT Paket Araç Takip Sistemi DIT Paket FiloWay Araç Takip Sistemleri, sürekli gelişen teknolojiyi, rekabetçi fiyat ve eksiksiz destek hizmeti ile sunmaktadır. FiloWay in sunduğu en önemli maliyet avantajı entegre

Detaylı

Kaynak: KGM, Tesisler ve Bakım Dairesi, 2023 Yılı Bölünmüş Yol Hedefi. Harita 16 - Türkiye 2023 Yılı Bölünmüş Yol Hedefi

Kaynak: KGM, Tesisler ve Bakım Dairesi, 2023 Yılı Bölünmüş Yol Hedefi. Harita 16 - Türkiye 2023 Yılı Bölünmüş Yol Hedefi ULAŞIM Kara taşımacılığı 2023 hedeflerinde büyük merkezler otoyollarla bağlanırken, nüfusu nispeten küçük merkezlerin bu otoyollara bölünmüş yollarla entegre edilmesi hedeflenmektedir. Harita 16 ve Harita

Detaylı

PROF. DR. ŞAKİR ESNAF IN BİTİRME PROJESİ KONULARI

PROF. DR. ŞAKİR ESNAF IN BİTİRME PROJESİ KONULARI PROF. DR. ŞAKİR ESNAF IN TEORİK ÇALIŞMA BAŞLIKLARI Ø Coğrafi Çoklu Tesis Yeri Seçimi (Weber) Probleminin Çözümü için Sezgisel ve Metasezgisel Algoritmalar Ø Çoklu Tesis Yeri Seçimi (Pmedyan) Probleminin

Detaylı

Hakkımızda. www.kita.com.tr. KITA, 1995 te kurulmuş entegre bir lojistik hizmet üreticisidir.

Hakkımızda. www.kita.com.tr. KITA, 1995 te kurulmuş entegre bir lojistik hizmet üreticisidir. İstanbul, 2013 Hakkımızda KITA, 1995 te kurulmuş entegre bir lojistik hizmet üreticisidir. KITA, taşıma ve lojistik hizmetlerinde mükemmelliği hedef alarak ve kalifiye insan kaynağını en etkin şekilde

Detaylı

BENZETİM. Prof.Dr.Berna Dengiz. 4. Ders Modelleme yaklaşımları Benzetim yazılımlarında aranan özellikler M/M/1 Kuyruk Sistemi benzetimi

BENZETİM. Prof.Dr.Berna Dengiz. 4. Ders Modelleme yaklaşımları Benzetim yazılımlarında aranan özellikler M/M/1 Kuyruk Sistemi benzetimi Prof.Dr.Berna Dengiz 4. Ders Modelleme yaklaşımları Benzetim yazılımlarında aranan özellikler M/M/1 Kuyruk Sistemi benzetimi BENZETİM DİLLERİNDE MODELLEME YAKLAŞIMLARI Tüm benzetim dilleri; ya olay-çizelgeleme

Detaylı

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 Bölüm 2 DOĞRUSAL PROGRAMLAMA 21 2.1 Doğrusal Programlamanın

Detaylı

UTY nin esas amacı, yol ağını kullanan araç sayısını azaltırken, seyahat etmek isteyenlere de geniş hareketlilik imkanları sağlamaktır.

UTY nin esas amacı, yol ağını kullanan araç sayısını azaltırken, seyahat etmek isteyenlere de geniş hareketlilik imkanları sağlamaktır. ULAŞTIRMADA TALEP YÖNETİMİ (UTY) NEDİR? Basit olarak, UTY programları bir araçtaki kişi sayısını arttırarak ya da seyahat zamanını ya da ihtiyacını etkileyerek taşımacılık sistemlerinin hareket kazandırdığı

Detaylı

İç Servis. Dış Servis. Serbest İç Servis Mağazaya Sipariş Ver Teslimat Montaj Bilgisayar Toplama Kalite Kontrolü Teslim Et

İç Servis. Dış Servis. Serbest İç Servis Mağazaya Sipariş Ver Teslimat Montaj Bilgisayar Toplama Kalite Kontrolü Teslim Et İç Servis Dış Servis Serbest İç Servis Mağazaya Sipariş Ver Teslimat Montaj Bilgisayar Toplama Kalite Kontrolü Teslim Et Hazırla Gönder Takip Et Teslim Al Montajını Yap Servis Girişi Müşterilerin getirdiği

Detaylı

Özyineleme (Recursion)

Özyineleme (Recursion) C PROGRAMLAMA Özyineleme (Recursion) Bir fonksiyonun kendisini çağırarak çözüme gitmesine özyineleme (recursion), böyle çalışan fonksiyonlara da özyinelemeli (recursive) fonksiyonlar denilir. Özyineleme,

Detaylı

112 Acil Yardım Bilgisayar Destekli Sevk ve Yönetim Sistemi

112 Acil Yardım Bilgisayar Destekli Sevk ve Yönetim Sistemi 112 Acil Yardım Bilgisayar Destekli Sevk ve Yönetim Sistemi Mehmet Şenol Ergenç Sistem Tasarım Mühendisi, Aselsan A.Ş. msergenc@aselsan.com.tr Aselsan ve Faaliyet Alanları Hakkında Genel Bilgi Aselsan

Detaylı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1 Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı Mart 2015 0 SORU 1) Bulanık Küme nedir? Bulanık Kümenin (fuzzy

Detaylı

Kablo Üretim Çizelgeleme Paketi. dinamo Kablo GANT. dinamo KABLO Kablo Üretim Planlama/Çizelgeleme Paketi Bilgi Dosyası

Kablo Üretim Çizelgeleme Paketi. dinamo Kablo GANT. dinamo KABLO Kablo Üretim Planlama/Çizelgeleme Paketi Bilgi Dosyası dinamo Kablo GANT dinamo KABLO Kablo Üretim Planlama/Çizelgeleme Paketi Bilgi Dosyası KABLO Üretim Planlama ve Maliyetlendirme Yazılımı dinamo Kablo GANT Kimin İçin? dinamo Kablo GANT, kablo üretimi yapan,

Detaylı

BLG 1306 Temel Bilgisayar Programlama

BLG 1306 Temel Bilgisayar Programlama BLG 1306 Temel Bilgisayar Programlama WEB : mustafabahsi.cbu.edu.tr E-MAIL : mustafa.bahsi@cbu.edu.tr Değişken ve Atama Bilgisayar programı içerisinde ihtiyaç duyulan sembolik bir ifadeyi veya niceliği

Detaylı

Kara Yolu. KITA, başta Avrupa olmak üzere Ortadoğu ve BDT ülkeleriyle karşılık olarak çalışmaktadır.

Kara Yolu. KITA, başta Avrupa olmak üzere Ortadoğu ve BDT ülkeleriyle karşılık olarak çalışmaktadır. TANITIM Kıta Ulaştırma Hizmetleri A.Ş. 1995 te kurulmuş bir lojistik hizmet firmasıdır. Kıta, verdiği taşıma ve lojistik hizmetlerinde mükemmelliği hedef almış, kalifiye insan kaynağını en etkin şekilde

Detaylı

Tedarik Zinciri Yönetimi

Tedarik Zinciri Yönetimi Tedarik Zinciri Yönetimi -Tedarik Zinciri Ağı Tasarımı- Yrd. Doç. Dr. Mert TOPOYAN Ağ tasarımı, tedarik zinciri açısından üç karar düzeyini de ilgilendiren ve bu düzeylerde etkisi olan bir konudur. Zincirin

Detaylı

TSOFT FACEBOOK STORE UYGULAMASI

TSOFT FACEBOOK STORE UYGULAMASI TSOFT FACEBOOK STORE UYGULAMASI GEREKSİNİMLER VE KURULUM YARDIMI GİRİŞ Facebook, insanların arkadaşlarıyla iletişim kurmasını ve bilgi alış verişi yapmasını amaçlayan bir sosyal paylaşım web sitesidir,

Detaylı

Vision Link Programında Filo Durumu Raporu Nasıl Oluşturulur?

Vision Link Programında Filo Durumu Raporu Nasıl Oluşturulur? Filonuzdaki makinalarınızın güncel durumuna ve genel görünümüne ulaşmanız artık çok kolay. Filo Durumu Raporuyla filonuzdaki makinalarınızın aşağıdaki bilgilerini görüntüleyebilirsiniz; - Makine Seri Numarası,

Detaylı

Taşıma Probleminde Optimum (En Uygun) Çözüm Bulanması

Taşıma Probleminde Optimum (En Uygun) Çözüm Bulanması Taşıma Probleminde Optimum (En Uygun) Çözüm Bulanması Tevfik GÜYAGÜLER {*) GİRİŞ Bu yazıda çeşitli üretim merkezlerinde üretilen malların birden fazla tüketim merkezlerine nakledilmesinde taşıma maliyetini

Detaylı

Göstericiler (Pointers)

Göstericiler (Pointers) C PROGRAMLAMA Göstericiler (Pointers) C programlama dilinin en güçlü özelliklerinden biridir. Göstericiler, işaretçiler yada pointer adı da verilmektedir. Gösterici (pointer); içerisinde bellek adresi

Detaylı

2005-2009 Tarihleri Arasında Avkom da Yazdığım Programlar 1 Avkomix Başlama Tarihi: Haziran 2007 Database LKS (Muhasebe Programından Gelen Veriler, Fatura, Konsinye, Banka, vb.) AvkomERP.mdb (Kendi veritabanımız,

Detaylı

TURKCELL HİZMETLERİ. Kullanım Bilgileri. LOGO Kasım 2014

TURKCELL HİZMETLERİ. Kullanım Bilgileri. LOGO Kasım 2014 TURKCELL HİZMETLERİ Kullanım Bilgileri LOGO Kasım 2014 İçindekiler TURKCELL HİZMETLERİ... 3 Online Turkcell Fatura Aktarımı... 4 Fatura Eşleştirme Tabloları... 5 Online Fatura Aktarımları... 6 Toplu Mesaj

Detaylı

GALATASARAY ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ MÜHENDİSLİK VE TEKNOLOJİ FAKÜLTESİ ÖĞRETİM ÜYELERİ TARAFINDAN YÜRÜTÜLEN PROJELER (2008-2011)

GALATASARAY ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ MÜHENDİSLİK VE TEKNOLOJİ FAKÜLTESİ ÖĞRETİM ÜYELERİ TARAFINDAN YÜRÜTÜLEN PROJELER (2008-2011) 08.401.001 08.401.002 08.401.003 Dikkat Seviyesindeki Değişimlerin Elektrofizyolojik Ölçümler İle İzlenmesi PFO(Patent Foramen Ovale) Teşhisinin Bilgisayar Yardımı İle Otomatik Olarak Gerçeklenmesi ve

Detaylı

DOĞRUSAL PROGRAMLAMA TEKNİĞİ İLE KÖMÜR DAĞITIM OPTİMİZASYONU COAL DISTRIBUTION OPTIMIZATION BY UTILIZING LINEAR PROGRAMMING

DOĞRUSAL PROGRAMLAMA TEKNİĞİ İLE KÖMÜR DAĞITIM OPTİMİZASYONU COAL DISTRIBUTION OPTIMIZATION BY UTILIZING LINEAR PROGRAMMING Eskişehir Osmangazi Üniversitesi Müh.Mim.Fak.Dergisi C.XX, S.1, 2007 Eng&Arch.Fac. Eskişehir Osmangazi University, Vol..XX, No:1, 2007 Makalenin Geliş Tarihi : 17.02.2006 Makalenin Kabul Tarihi : 16.11.2006

Detaylı

BİLİŞİM TEKNOLOJİLERİ 6. SINIF DERS NOTLARI 2

BİLİŞİM TEKNOLOJİLERİ 6. SINIF DERS NOTLARI 2 PROGRAMLAMA Bir problemin çözümü için belirli kurallar ve adımlar çerçevesinde bilgisayar ortamında hazırlanan komutlar dizisine programlama denir. Programlama Dili: Bir programın yazılabilmesi için kendine

Detaylı

YENİ NESİL NAVİGASYON YAZILIMI KULLANIM KILAVUZU. Sürüm 3.0

YENİ NESİL NAVİGASYON YAZILIMI KULLANIM KILAVUZU. Sürüm 3.0 YENİ NESİL NAVİGASYON YAZILIMI KULLANIM KILAVUZU Sürüm 3.0 1 İlk Açılış Navturk yazılımını başlattığınızda ilk önce açılış sayfasını ve ardından harita ekranını göreceksiniz. Navturk Açılış Ekranı Navturk

Detaylı

T.C. MARMARA ÜNİVERSİTESİ

T.C. MARMARA ÜNİVERSİTESİ T.C. MARMARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DERS : OPTİMİZASYON TEKNİKLERİ ÖĞR.ÜYESİ : Yard.Doç.Dr. MEHMET TEKTAŞ 1 ATAMA PROBLEMLERİ PROBLEM: Aşağıdaki tabloda saat olarak her öğrencinin iş eğitimi

Detaylı

Teknolojiye Giden Kestirme Yol. Lojistik Otomasyon Platformu LVS 3Plus. 31 Ekim 2012 Barbaros ABA

Teknolojiye Giden Kestirme Yol. Lojistik Otomasyon Platformu LVS 3Plus. 31 Ekim 2012 Barbaros ABA Teknolojiye Giden Kestirme Yol Lojistik Otomasyon Platformu LVS 3Plus 31 Ekim 2012 Barbaros ABA GBS Vizyonu Uçtan uca teknoloji kullanımı GBS Faaliyetleri GBS Faaliyetleri GBS Hizmetler Danışmanlık & Uyarlama

Detaylı

Yukarıdaki fonksiyonun anlamı: Bulunulan hücreye, B2 hücresinden B17 hücresine kadar olan hücreleri toplam ve yaz.

Yukarıdaki fonksiyonun anlamı: Bulunulan hücreye, B2 hücresinden B17 hücresine kadar olan hücreleri toplam ve yaz. DERS 14: FONKSİYONLAR (İŞLEVLER) Amaçlar: -Fonksiyon Sınıflamasını Tanımak. -Fonksiyonları Kullanmak. -Fonksiyon Sihirbazını Kullanmak. I. FONKSİYONLAR NE İŞE YARAR? Daha önceki haftalarda da Microsoft

Detaylı

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI PROJENİN ADI: OYUN TEORİSİ İLE İSTANBUL TRAFİĞİNİN İNCELENMESİ HAZIRLAYANLAR: ECE TUNÇKOL-BERKE OĞUZ AKIN MEV KOLEJİ ÖZEL

Detaylı

MÜŞTERİ İLİŞKİLERİ YÖNETİMİ (PZL208U)

MÜŞTERİ İLİŞKİLERİ YÖNETİMİ (PZL208U) DİKKATİNİZE: BURADA SADECE ÖZETİN İLK ÜNİTESİ SİZE ÖRNEK OLARAK GÖSTERİLMİŞTİR. ÖZETİN TAMAMININ KAÇ SAYFA OLDUĞUNU ÜNİTELERİ İÇİNDEKİLER BÖLÜMÜNDEN GÖREBİLİRSİNİZ. MÜŞTERİ İLİŞKİLERİ YÖNETİMİ (PZL208U)

Detaylı

ÇALIŞMA VE DİNLENME SÜRELERİ

ÇALIŞMA VE DİNLENME SÜRELERİ ÇALIŞMA VE DİNLENME SÜRELERİ 1. Ticari amaçla yolcu ve yük taşıyan motorlu araç sürücüleri sürekli en fazla kaç saat araç kullanabilirler? a) 4 saat b) 6 saat c) 4.5 saat d) 3 saat 2. Tek şoför 24 saatlik

Detaylı

ARTSİS KULLANICI EL KİTABI

ARTSİS KULLANICI EL KİTABI ARTSİS KULLANICI EL KİTABI 2010 1 BÖLÜMLER 3 1. TANIMLAMALAR 3 1.1.1 Yeni Araç Kaydı 3 1.2 Bakım 7 1.3 Firmalar 7 1.3.1 Bakım Firmaları Kayıt 7 1.3.2 Sigorta Şirketi Adı 7 1.3.2 Yakıt Alınan Firmalar 8

Detaylı

Kök Neden Belirlemede Excel Destekli Pareto Analizi ve İyileştirme Alanının Hesaplanması

Kök Neden Belirlemede Excel Destekli Pareto Analizi ve İyileştirme Alanının Hesaplanması 326 Kök Neden Belirlemede Excel Destekli Pareto Analizi ve İyileştirme Alanının Hesaplanması 1 Prof.Dr. Yılmaz ÖZKAN and 2 Abdulkadir ALTINSOY * 1 Prof.Dr. Faculty of Political Science, Sakarya University,

Detaylı

1 ÜRETİM VE ÜRETİM YÖNETİMİ

1 ÜRETİM VE ÜRETİM YÖNETİMİ İÇİNDEKİLER ÖNSÖZ III Bölüm 1 ÜRETİM VE ÜRETİM YÖNETİMİ 13 1.1. Üretim, Üretim Yönetimi Kavramları ve Önemi 14 1.2. Üretim Yönetiminin Tarihisel Gelişimi 18 1.3. Üretim Yönetiminin Amaçları ve Fonksiyonları

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

Servis Güzergâhları Optimizasyonu. Rotaban Viewer Kullanım Kılavuzu

Servis Güzergâhları Optimizasyonu. Rotaban Viewer Kullanım Kılavuzu Servis Güzergâhları Optimizasyonu Rotaban Viewer Kullanım Kılavuzu İçindekiler 1 Giriş... 1 1.1 Rotaban Nedir?... 1 2 Rotaban Viewer... 2 2.1 Giriş... 2 2.2 Ana Sayfa... 3 2.2.1 Adres Güncelleme... 3 2.2.2

Detaylı

FABRİKA ORGANİZASYONU Üretim Planlama ve Yönetimi 2. Uygulama: Sipariş ve Parti Büyüklüğü Hesaplama

FABRİKA ORGANİZASYONU Üretim Planlama ve Yönetimi 2. Uygulama: Sipariş ve Parti Büyüklüğü Hesaplama FABRİKA ORGANİZASYONU Üretim Planlama ve Yönetimi 2. Uygulama: Sipariş ve Parti Büyüklüğü Hesaplama Uygulamalar 1. İhtiyaç Hesaplama 2. Sipariş ve Parti Büyüklüğü Hesaplama 3. Dolaşım Akış Çizelgeleme/Terminleme

Detaylı

YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER

YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER I. ATAMA PROBLEMLERİ PROBLEM 1. Bir isletmenin en kısa sürede tamamlamak istediği 5 işi ve bu işlerin yapımında kullandığı 5 makinesi vardır. Aşağıdaki

Detaylı

KARŞI ÖDEME TARİHİ TAKİBİ

KARŞI ÖDEME TARİHİ TAKİBİ KARŞI ÖDEME TARİHİ TAKİBİ Doküman Kodu : RFN-05 Açıklama : Karşı Ödeme Günü Takibi Kapsam : Finansal İşlemler Revizyon No : 1 Yayın Tarihi : Mayıs 2014 AMAÇ Müşterilerle yapılan anlaşmalar çerçevesinde

Detaylı

Endüstri Mühendisliğine Giriş

Endüstri Mühendisliğine Giriş Endüstri Mühendisliğine Giriş 5 ve 19 Aralık 2012, Şişli-Ayazağa, İstanbul, Türkiye. Yard. Doç. Dr. Kamil Erkan Kabak Endüstri Mühendisliği Bölümü,, Şişli-Ayazağa, İstanbul, Türkiye erkankabak@beykent.edu.tr

Detaylı

Üstel ve Logaritmik Fonksiyonlar

Üstel ve Logaritmik Fonksiyonlar Üstel ve Logaritmik Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; üstel ve logaritmik fonksiyonları tanıyacak, üstel ve logaritmik fonksiyonların grafiklerini

Detaylı

LOJİSTİK ve TEDARİK ZİNCİRİ YÖNETİMİ

LOJİSTİK ve TEDARİK ZİNCİRİ YÖNETİMİ LOJİSTİK ve TEDARİK ZİNCİRİ YÖNETİMİ Mehmet TANYAŞ İTÜ Endüstri Mühendisliği Bölümü Öğretim Üyesi ve Lojistik Derneği (LODER) Başkanı ORACLE Applications Day 14.03.2006, İSTANBUL SUNUM PLANI Lojistik Yönetimi

Detaylı

T.C. ULAŞTIRMA, DENİZCİLİK ve HABERLEŞME BAKANLIĞI Tehlikeli Mal ve Kombine Taşımacılık Düzenleme Genel Müdürlüğü

T.C. ULAŞTIRMA, DENİZCİLİK ve HABERLEŞME BAKANLIĞI Tehlikeli Mal ve Kombine Taşımacılık Düzenleme Genel Müdürlüğü T.C. ULAŞTIRMA, DENİZCİLİK ve HABERLEŞME BAKANLIĞI Tehlikeli Mal ve Kombine Taşımacılık Düzenleme Genel Müdürlüğü TEHLİKELİ MAL TAŞIMACILIĞI SÜRÜCÜ SINAV SORULARI (28 TEMMUZ 2013) SRC 5 (TEMEL EĞİTİM)

Detaylı

Basit Format Ulaşım Seferleri

Basit Format Ulaşım Seferleri Basit Format Ulaşım Seferleri Sürüm 1.2 Bu talimatlar, Basit Format Ulaşım Seferleri (bundan böyle PFRT olarak geçecektir) tablosunu doğru şekilde doldurmanıza yardımcı olacaktır. Bu format ile şehir içi

Detaylı

Bilgisayar Programlama MATLAB

Bilgisayar Programlama MATLAB What is a computer??? Bilgisayar Programlama MATLAB Prof. Dr. İrfan KAYMAZ What Konular is a computer??? MATLAB ortamının tanıtımı Matlab sistemi (ara yüzey tanıtımı) a) Geliştirme ortamı b) Komut penceresi

Detaylı

SYS Version 1.0.1 Satış Yönetim Sistemi

SYS Version 1.0.1 Satış Yönetim Sistemi SYS Version 1.0.1 Satış Yönetim Sistemi 1. Genel Bakış Değişen rekabet ortamı ve farklılaşan müşteri beklentileri, bayi ağlarının kompleks ve yönetiminin zor olması satış süreçlerini oldukça farklı bir

Detaylı

Tıbbi kaynakların son derece kısıtlı olması var olan kaynaklarında etkin

Tıbbi kaynakların son derece kısıtlı olması var olan kaynaklarında etkin GİRİŞ: Tıbbi kaynakların son derece kısıtlı olması var olan kaynaklarında etkin Kullanılmaması sonucu her yıl yüz binlerce kişi hayatını kaybediyor. Tıpta ve sağlık Sistemlerinde sayısal tekniklerin kullanılması

Detaylı

EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME

EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME GİRİŞ Bu bölümde benzetim için excel örnekleri önerilmektedir. Örnekler excel ile yapılabileceği gibi el ile de yapılabilir. Benzetim örnekleri

Detaylı

Veri Ağlarında Gecikme Modeli

Veri Ağlarında Gecikme Modeli Veri Ağlarında Gecikme Modeli Giriş Veri ağlarındaki en önemli performans ölçütlerinden biri paketlerin ortalama gecikmesidir. Ağdaki iletişim gecikmeleri 4 farklı gecikmeden kaynaklanır: 1. İşleme Gecikmesi:

Detaylı

GPS Nedir? Nasıl Çalışır?

GPS Nedir? Nasıl Çalışır? GPS Nedir? Nasıl Çalışır? Atalarımız kaybolmamak için çok ekstrem ölçümler kullanmak zorunda kalmışlardır. Anıtlar dikerek yerler işaretlenmiş, zahmetli haritalar çizilmiş ve gökyüzündeki yıldızların yerlerine

Detaylı

Prof.Dr. ÜNAL ERKAN MUMCUOĞLU. merkan@metu.edu.tr

Prof.Dr. ÜNAL ERKAN MUMCUOĞLU. merkan@metu.edu.tr Ders Bilgisi Ders Kodu 9060528 Ders Bölüm 1 Ders Başlığı BİLİŞİM SİSTEMLERİ İÇİN MATEMATİĞİN TEMELLERİ Ders Kredisi 3 ECTS 8.0 Katalog Tanımı Ön koşullar Ders saati Bu dersin amacı altyapısı teknik olmayan

Detaylı

Sizin başarınız için çalışıyorlar

Sizin başarınız için çalışıyorlar Sizin başarınız için çalışıyorlar NAVmobile ve AXmobile çalışanlarınıza ve ortaklarınıza daha erişimli yaparak iş verilerinizin gücünü arttıran çözümlerdir. NAVmobile ve AXmobile firmanın İşletme kaynaklarını

Detaylı

C Programlama Dilininin Basit Yapıları

C Programlama Dilininin Basit Yapıları Bölüm 2 C Programlama Dilininin Basit Yapıları İçindekiler 2.1 Sabitler ve Değişkenler......................... 13 2.2 Açıklamalar (Expresions)........................ 14 2.3 İfadeler (Statements) ve İfade

Detaylı