ENM 316 BENZETİM DERS 3 KUYRUK SİSTEMİ. Operasyon yönetiminde önemli bir alana sahiptir.

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ENM 316 BENZETİM DERS 3 KUYRUK SİSTEMİ. Operasyon yönetiminde önemli bir alana sahiptir."

Transkript

1 ENM 316 BENZETİM DERS 3 KUYRUK SİSTEMİ Kuyruk sistemleri, Operasyon yönetiminde önemli bir alana sahiptir. Üretimde, atölye çevresi kuyruk şebekelerinin karmaşık bir ilişkisi olarak düşünülebilir. Bir iş merkezinde tamamlanan işler, bir sonraki iş merkezinde işlenebilmek için kuyruğa girerler. Bir atölyede çizelgeleme işlemi dinamik bir problemdir. Akış oranları ve diğer performans ölçütleri kuyruk teorisinden yararlanılarak bulunabilir.

2 KUYRUK SİSTEMİ Servis sistemlerinde, kuyruk problemleri ile sık sık karşılaşılmaktadır. Hizmet sistemlerindeki kuyruk olayları ile günlük yaşantımızda sık sık karşılaşmaktayız. Michael Fortina (1988), yaptığı bir araştırma sonucunda, çoğu insan tüm hayatı boyunca toplam 5 yılını kuyruklarda bekleyerek, 6 ayını da trafik ışıklarında bekleyerek geçirmektedir. Restaurantlarda, bankada, süpermarketlerde, berberlerde, çevre yolundaki gişe önlerinde devamlı olarak kuyruklarla karşılaşırız. Bir havaalanında piste uçakların inmesi bir kuyruk problemidir. Havadaki uçaklar, servis görmeyi bekleyen müşteriler, pist ise servis olarak düşünülebilir. Telefon, trafik sistemleri, karmaşık kuyruk sistemlerine örnektir. Telefon call lar switching (anahtarlama) sistemi ile yönlendirilir. Bir sonraki switching e ulaşıncaya kadar ya da son noktaya ulaşmak için kuyruk oluşturmaktadır. KUYRUK SİSTEMİ Bir kuyruk sistemi, Hizmet veren bir veya birden fazla servise sahiptir. Sisteme gelen müşteriler tüm servisleri dolu bulursa, servisin önündeki kuyruğa ya da kuyruklardan (birden fazla kuyruk varsa) birisine girer. Kesikli olay benzetim çalışmalarının büyük bir kısmını, gerçek hayatta karşılaşılan kuyruk sistemlerinin modellenmesi oluşturmakta veya benzetim edilen sistemin en azından bazı bileşenleri bir kuyruk sistemidir. Bu nedenle, Kuyruk sisteminin standart notasyonlarını ve kuyruk sistemi tarafından sağlanana servis kalitesini belirleyen performans ölçülerini bilmesi önemlidir.

3 KUYRUK SİSTEMİ Sistem Servisler Müşteriler Banka Hastane Bilgisayar Sistemi Montaj Hattı Havaalanı KUYRUK SİSTEMİNİN BİLEŞENLERİ Bir kuyruk sisteminin 5 bileşeni vardır. Bunlar; Varış prosesi (Arrival process) Servis prosesi (Service process) Kuyruk disiplini (Queueing Discipline) Sistemde izin verilen müşteri sayısı Müşterinin geldiği yığının genişliği

4 KUYRUK SİSTEMİNİN BİLEŞENLERİ 1) Varış Prosesi: Bir kuyruk sisteminde varış prosesi; müşterilerin sisteme nasıl geldiğini tanımlar. Bu durumda varış prosesi, müşterilerin varışlararası zamanları ile karakterize edilir. Varışlar, sabit zamanlarda ya da rassal zamanlarda olabilir. Varışlar rassal zamanlarda oluyorsa, varışlararası zaman bir olasılık dağılımı ile karakterize edilir. A i : (i-1). ve i. müşteri varışları arasındaki varışlararası zaman aralığı olsun. A 1, A 2, : rassal değişkenlerdir. E(A): varışlararası ortalama (beklenen) zaman λ = 1 E( A) : Müşterilerin varış oranı (Birim zamanda gelen müşteri sayısı) Örnek: Bir dakikada 5 varış olan bir sistemde varışlararası zaman aralığı ortalaması 1 1 E( A) = = = 0.20 dak λ 5 KUYRUK SİSTEMİNİN BİLEŞENLERİ 2) Servis Mekanizması: Servis prosesi, servis sayısı ve servis zamanı dağılımı ile karakterize edilir. Her servis kendisine ait bir kuyruğa veya tüm servisleri bekleyen bir kuyruğa sahip olabilir. S i : i. müşterinin servis zamanı S 1, S 2,. : rassal değişkenler E(S): Bir müşterinin ortalama servis zamanı µ = 1 E( S) : Servis oranı (Birim zamanda servis gören müşteri sayısı) Örnek: Ortalama servis zamanı 2 dakika ise, servis oranı 1 1 µ = = = 0.5 E( S) 2 servis/dak

5 KUYRUK SİSTEMİNİN BİLEŞENLERİ Kuyruk sistemlerinde en önemli parametre trafik yoğunluğudur. Varis orani λ ρ = = ( Servis orani) c µ c c: servis sayısı λ 1 E( A) E( S) ρ = = = µ c (1 E( S)) c E( A) c E( S) 0.5 Örnek: E(A)=1 ve E(S)=0.5, c=1 ρ = = = 0. 5 E( A) 1 ρ < 1 ise ρ = 1 ise ρ > 1 ise servis zamanin servis dolu sonsuz kuyruk 1 - ρ kadari olusur bos kalir KUYRUK SİSTEMİNİN BİLEŞENLERİ Örnek: 3 dakikada bir varışın olduğu bir sistemde servis zamanı 2 dakikadır. Gelişler ve servis süreleri bir zaman çizelgesinde gösterilirse;

6 KUYRUK SİSTEMİNİN BİLEŞENLERİ 3) Kuyruk Disiplini: Servise alınacak müşteri düzenini belirler. FIFO (First in First Out): ilk giren, ilk çıkar prensibine göre servis LIFO(Last in First Out): son giren, ilk çıkar prensibine göre servis SIRO(Service in Random Order): Rassal sırada servis ÖNCELİK (PRIORITY): Müşterilerin önemine göre servis verilir. Aksi belirtilmedikçe, FIFO kullanılır. KUYRUK SİSTEMİNİN BİLEŞENLERİ Kendall (1953), kuyruk sistemi modellerini sınıflandırmak için bir sistem geliştirmiştir. 1/2/3 1: Varış prosesi 2: Servis prosesi 3: Servis sayısı Bu sınıflandırma sistemi aşağıdaki gibi genişletilmiştir. 1/2/3/4/5/6 4: Paralel servis sayısı 5: Sistemde izin verilen müşteri sayısı 6: Müşterinin geldiği yığının genişliği

7 KUYRUK SİSTEMİNİN BİLEŞENLERİ KUYRUK SİSTEMLERİNDE PERFORMANS ÖLÇÜTLERİ Sınırlı sayıda kuyruk sistemleri (M/M/1, M/M/S ve M/G/1 olarak tanımlanan sistemler) için analitik çözüm mevcuttur. Bu sınıf için, servis sürelerinin üstel ve varışların poisson dağılımı söz konusudur. Sistem, bu özelliklere uymuyor ise, analitik çözümleri bulmak mümkün değildir. Bu durumda, benzetimden yararlanılır.

8 M/M/1 KUYRUK MODELİ Varışlararası zamanının ve servis zamanının üstel dağılıma sahip olduğu, FIFO kuyruk disiplininin kullanıldığı kuyruk modelidir. Kuyruk kapasitesi sonsuzdur. Bu modelin, matematiksel çözümü vardır. Sürekli zamanlı Markov prosesinden elde edilen formüller; (Bu formüller denge durumu için geçerlidir.) M/M/1 KUYRUK MODELİ P 0 : sistemde is veya musteri olmamasi olasiligi P 1 : sistemde bir is veya musteri olmasi olasiligi P 2 : sistemde P n iki is veya : sistemde n is veya musteri musteri olmasi olmasi olasiligi olasiligi λ ρ = ; µ (trafik yogunlugu,doluluk orani)

9 M/M/1 KUYRUK MODELİ P P 0 x = 1 - = ρ λ µ x P 0 1 λ λ P 1 = ρ P0 = 1 µ µ 2 2 λ λ P 2 = ρ P0 = 1 µ µ n λ P n = ρ P0 = 1 µ n λ µ M/M/1 KUYRUK MODELİ λ ρ L = = ; sistemdeki ortalama musteri sayisi µ λ 1 ρ Q = L Q 2 2 λ ρ = = ; kuyruktakiortalama musteri sayisi µ ( µ λ) 1 ρ 1 1 W = = ; bir musterinin sistemde bekleme zamani µ λ µ (1 ρ) d = W Q λ ρ = = ; bir musterinin kuyrukta ortalama bek. zamani µ ( µ λ) µ (1 ρ) Parametreler arasındaki ilişki; Q = λ. d L = λ. w W = d + E(S)

10 KESİKLİ OLAY BENZETİMİ Kesikli olay benzetimi, durum değişkenlerinin zaman içinde bazı noktalarda değiştiği sistemlerin modellenmesi ile ilgilenir. Sistemin zamana göre benzetimidir. Zaman içinde kesikli noktalarda bir olay ortaya çıkar. Bu olay, sitemin durumunu değiştiren ani bir oluştur. KESİKLİ OLAY BENZETİMİ (KOB) ÖRNEK 1: Bir servisli kuyruk sistemi dikkate alınsın.

11 KESİKLİ OLAY BENZETİMİ (KOB) Bu sistemin özellikleri; Bir varış kanalı Bir servis imkanı FIFO ilk gelen ilk servis Servis meşgul ise, müşteri kuyrukta bekler Varışlararası zaman ve servis süreleri bilgisayarda belirlenen dağılımlardan üretilir. Varışlararası zamanlar stokastik Servis zamanları stokastik İş veya müşteri servisleri bittiği an sistemden çıkar Bir servis tamamlandığında en yakın müşteri servise alınır. KESİKLİ OLAY BENZETİMİ (KOB) Bu sistemde performans ölçüleri: Müşterilerin kuyrukta ortalama bekleme zamanı i. musterinin kuyrukta i. musterinin servise i. musterinin sisteme = bekleme zamani baslama zamani varis zamani n Kuyrukta ortalama i. musterinin kuyrukta = bekleme zamani i =1 bekleme zamani n

12 KESİKLİ OLAY BENZETİMİ (KOB) Bu sistemde performans ölçüleri: Müşterilerin sistemde ortalama bekleme zamanı i. musterinin sistemde bekleme zamani = i. musterinin servisinin bitis zamani i. musterinin sisteme varis zamani i. musterinin kuyrukta i. musterinin = + bekleme zamani servis zamani n Sistemde ortalama i. musterinin sistemde = bekleme zamani i =1 bekleme zamani n KESİKLİ OLAY BENZETİMİ (KOB) Bu sistemde performans ölçüleri: Servisin dolu ve bos zaman yüzdeleri Servisin dolu Toplam dolu (mesgul) zaman = 100 zaman yuzdesi Toplam gecen sure Servisin bos Servisin dolu = 100 zaman yuzdesi zaman yuzdesi

13 KESİKLİ OLAY BENZETİMİ (KOB) Performans ölçüsünün tahmin edilmesinde sistemin durum değişkenlerinin izlenmesi gerekir. Durum Değişkenleri: 1) Servisin durumu: Servisin boş veya dolu olması gelen müşterinin servise veya kuyruğa girmesini belirler 2) Kuyruktaki müşteri sayısı: Bir servis tamamlandığında kuyruktaki müşteri sayısı servisin yeni durumunu belirler. Kuyrukta müşteri yoksa servis boş duruma geçer. Müşteri varsa, kuyruğun başındaki müşteri servise alınarak servis dolu durumuna geçecektir. Olaylar: 1) Müşteri varışı (Varış olayı): Sistemin durumunu değiştirir. Yani, servis boş ise dolu olacak veya kuyruktaki müşteri sayısı 1 artacak. 2) Servisin tamamlanması (Servis olayı Çıkış olayı): Sistemin durumunu değiştirir. Servis dolu iken boş olacak ya da kuyruktaki müşteri sayısı 1 azalacak. KOB DA ZAMAN İLERLETME Kesikli olay benzetim modelinin yapısı gereği, her adımda simülasyon zamanın bilinmesi gerekir. Bu nedenle, benzetim zamanının bir değerden diğer bir değere artmasını sağlayacak bir işlem gerekir. Benzetim zamanını veren değişken BENZETİM SAATİ olarak adlandırılır. Modelde zaman birimi olarak, giriş parametrelerinde kullanılan birim alınır. Simülasyon zamanı ile modelin bilgisayarda işletilmesi zamanı arasında bir ilişki yoktur. Simülasyon saatinin ilerletilmesinde iki yaklaşım kullanılmaktadır. En yakın olay zamanı ile zaman ilerletme Sabit artışlarla zaman ilerletme

14 KOB DA ZAMAN İLERLETME 1. En Yakın Olay Zamanı Kesikli olay benzetiminde genellikle en yakın olay zamanı yaklaşımı kullanılmaktadır. Bu yaklaşımla zaman ilerletme işleminde; Benzetim saati başlangıç değeri 0 alınır ve gelecekteki olayın ortaya çıkış zamanı belirlenir. Benzetim saati gelecekte ortaya çıkacak bu ilk olayın zamanına ilerletilir. Yeni bir olayın ortaya çıkışına bağlı olarak sistemin durumu yeni şekline göre düzenlenir ve gelecek olay zamanı belirlenir. Zaman ilerletme işlemi önceden belirlenmiş durdurma koşulu sağlanıncaya kadar devam eder. KOB DA ZAMAN İLERLETME ÖRNEK: Bir servisli kuyruk modeli benzetiminde en yakın olay zamanıyla zaman ilerletme Bu dağılımlar genellikle sistemde yapılan gözlemlerden elde edilen veriye istatistik teknikler kullanılarak belirlenir.

15 KOB DA ZAMAN İLERLETME KOB DA ZAMAN İLERLETME 2. Sabit Artışlarla Zaman İlerletme Bu yaklaşımda benzetim saati, önceden belirlenen bir zaman birimi kadar artırılır. Benzetim saatindeki her artış sonrası, aralığında herhangi bir olayın ortaya çıkıp çıkmadığı kontrol edilir. Bu aralıkta bir veya birden fazla olay ortaya çıkmış ise, bu olaylar aralığın sonunda olmuş gibi dikkate alınır ve sistemin durumu güncelleştirilir.

16 KOB DA ZAMAN İLERLETME e i : herhangi tipteki i olayın ortaya çıkışının gerçek zamanı KOB DA ZAMAN İLERLETME [0, t) zaman aralığında, e 1 zamanında ortaya çıkan olay, modelde zamanında olmuş gibi dikkate alınır. [ t, 2 t) aralığında hiçbir olay ortaya çıkmamıştır. Ancak, model bu durumu belirlemek için kontrol işlemini yapar. [2 t, 3 t) aralığında e 2 ve e 3 zamanında 2 olay olmuştur. Ancak her iki olayda 3 zamanında olmuş gibi dikkate alınır. Modelde, aynı zamanda birden fazla olay ortaya çıktığında olayların hangi sırada dikkate alınacağına karar verecek bir kural bulunmalıdır. Bu yaklaşımın 2 dezavantajı; 1) Gerçekte aynı anda meydana gelmeyen olayların zaman aralığı sonunda birlikte dikkate alınması ve ilk hangi olayın dikkate alınacağına karar verme işleminden dolayı hatanın ortaya çıkmasıdır. 2) Çok küçük alınarak bu hata azaltılabilir. Ancak, her aralığında yapılacak kontrol den dolayı modelin çalışma zamanı artacaktır. Bu nedenle KOB da, bu yaklaşım genellikle kullanılmaz.

17 KOB BİLEŞENLERİ En yakın olay zamanı ile zaman ilerletme tekniğinin kullanıldığı kesikli olay benzetimi modellerinde aşağıdaki bileşenler bulunmaktadır. SİSTEM DURUMU: Durum değişkenlerinin bilinmesi herhangi bir zaman için sistemin durumunun açıklanmasını sağlar. SİMÜLASYON SAATİ: Simülasyon saatinin mevcut değerini veren bir değişkendir. OLAY LİSTESİ: Olabilecek en yakın olay tipini gösteren listedir. İSTATİSTİKSEL SAYAÇLAR: Performans ölçüsüyle ilgili bilgilerin tutulması için tanımlanmış değişkenler listesi İLK DEĞER VERME İŞLEMİ: Bir alt program (SUBROUTINE) olarak hazırlanır. Simülasyon modelinde kullanılan değişkenlere ilk değerlerini verir. ZAMAN İŞLEMİ: Olay listesindeki en yakın olayı belirleyen, simülasyon saatini bir olay zamanından diğerine geçecek şekilde artıran bir alt programdır. OLAY İŞLEMİ: i. olay ortaya çıktığında sistemin durumunu ve gerekli istatistiki sayaçları yeni duruma göre düzenleyen bir alt programdır. RAPOR ÜRETECİ: Simülasyon sona erdiğinde istenilen istatistikleri hesaplatarak yazdıran bir alt programdır. ANA PROGRAM: Zaman işlemini çağırarak en yakın olayı belirleyen, olay işlemlerini kontrol ederek sistemin yeni durumunu belirler. Bu bileşenler arasındaki mantıksal ilişki aşağıdaki şekilde görülmektedir. KOB BİLEŞENLERİ

18 İSTATİSTİKSEL SAYAÇLAR KOB de üç tip istatistik vardır. 1. Değişkenlerin gözlemlenmesine dayalı istatistik (Kesikli zaman istatistiği): 2. Zamana göre ortalama 3. Bir zaman aralığı boyunca değişen değişkenler için ortalama İSTATİSTİKSEL SAYAÇLAR 1. Değişkenlerin gözlemlenmesine dayalı istatistik (Kesikli zaman istatistiği): Örnek; Bir kuyruk sisteminde, kuyrukta ortalama bekleme zamanı tahmin edilsin. - i. müşterinin bekleme zamanını hesapla (d i ) - n müşteri için toplam bekleme zamanı bul n d i i= 1 kuyrukta ortalama bekleme zamanı hesapla d n n d i i= = 1

19 İSTATİSTİKSEL SAYAÇLAR 2. Zamana göre ortalama Değişkenler değerlerini belirli zamanlarda atlamalarla değiştirir. Zaman peryotları için değişkenlerin değerleri sabittir. Bir atlama yaparak diğer bir zaman peryodu için de sabit bir değerde kalırlar. İSTATİSTİKSEL SAYAÇLAR Örnek: Kuyruk sisteminde ortalama müşteri sayısı

20 İSTATİSTİKSEL SAYAÇLAR Örnek: Kuyruk sisteminde zamana göre ortalamanın alındığı diğer bir performans ölçüsü servisin doluluk oranıdır. İSTATİSTİKSEL SAYAÇLAR 3. Bir zaman aralığı boyunca değişen değişkenler için ortalama

21 EL İLE BENZETİM ÖRNEK: Aşağıda sisteme gelen 7 iş ve her birinin sisteme varış zamanları tablo halinde verilmiştir. Sistemdeki servis işlemi için 2 alternatif düşünülmektedir. 1. Alternatif: Bir makine, bir iş için servis süresi 5 dk. 2. Alternatif: İki makine, bir iş için servis süresi 10 dk. Sisteme gelen işlerin tek bir kuyruk oluşturduğu ve her iki makineyi beslediğini düşününüz. Her bir alternatif için sistemin benzetimini yaparak 1) Boş zaman yüzdesini (ortalama boş zaman, alternatif 2. için) 2) Sistemde ortalama bekleme zamanını bulunuz. İş Varış zamanı Kuyrukta bekleme zamanı Servise başlama zamanı Servis bitiş zamanı Servis zamanı Servisin dolu zamanı

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi İlhan AYDIN KESİKLİ-OLAY BENZETİMİ Kesikli olay benzetimi, durum değişkenlerinin zaman içinde belirli noktalarda değiştiği sistemlerin modellenmesi

Detaylı

BENZETİM. Prof.Dr.Berna Dengiz. 4. Ders Modelleme yaklaşımları Benzetim yazılımlarında aranan özellikler M/M/1 Kuyruk Sistemi benzetimi

BENZETİM. Prof.Dr.Berna Dengiz. 4. Ders Modelleme yaklaşımları Benzetim yazılımlarında aranan özellikler M/M/1 Kuyruk Sistemi benzetimi Prof.Dr.Berna Dengiz 4. Ders Modelleme yaklaşımları Benzetim yazılımlarında aranan özellikler M/M/1 Kuyruk Sistemi benzetimi BENZETİM DİLLERİNDE MODELLEME YAKLAŞIMLARI Tüm benzetim dilleri; ya olay-çizelgeleme

Detaylı

Olay-Tabanlı Modelleme. İlhan AYDIN

Olay-Tabanlı Modelleme. İlhan AYDIN Olay-Tabanlı Modelleme İlhan AYDIN Olay-Sürümlü Modeller Zaman sürümlü modeller düzenli zaman aralıklarında senkron bir tarzda ilerleyen sinyallere sahip sistemleri karakterize eder. Olay sürümlü modeller

Detaylı

KUYRUK SİSTEMİ VE BİLEŞENLERİ SİSTEM SİMULASYONU KUYRUK SİSTEMİ VE BİLEŞENLERİ ÖRNEKLER BİR KUYRUK SİSTEMİNİN ÖRNEKLER

KUYRUK SİSTEMİ VE BİLEŞENLERİ SİSTEM SİMULASYONU KUYRUK SİSTEMİ VE BİLEŞENLERİ ÖRNEKLER BİR KUYRUK SİSTEMİNİN ÖRNEKLER KUYRUK SİSTEMİ VE SİSTEM SİMULASYONU 5. KUYRUK SİSTEMLERİ Bi kuyuk sistemi; hizmet veen bi veya biden fazla sevise sahipti. Sisteme gelen müşteile tüm sevislei dolu bulusa, sevisin önündeki kuyuğa ya da

Detaylı

9/22/2014 EME 3105 SİSTEM SİMÜLASYONU. Giriş. Tek Kanallı Kuyruk Sistemi. Kuyruk Sistemlerinin Simulasyonu. Simulasyon Örnekleri Ders 2

9/22/2014 EME 3105 SİSTEM SİMÜLASYONU. Giriş. Tek Kanallı Kuyruk Sistemi. Kuyruk Sistemlerinin Simulasyonu. Simulasyon Örnekleri Ders 2 EME 3105 SİSTEM SİMÜLASYONU Simulasyon Örnekleri Ders Giriş Bu derste bilgisayar yardımı olmaksızın çalıştırılabilen birkaç simulasyon örneği verilmiştir. Bu örnekler size sistem simulasyonu metodolojisini

Detaylı

BENZETİM. Prof.Dr.Berna Dengiz

BENZETİM. Prof.Dr.Berna Dengiz Prof.Dr.Berna Dengiz 2. Ders Sistemin Performans.. Ölçütleri Sistem Türleri Benzetim Modelleri Statik veya Dinamik Deterministik ( belirli ) & Stokastik ( olasılıklı) Kesikli & Sürekli Sistemin Performans

Detaylı

KUYRUK TEORİSİ (BEKLEME HATTİ MODELLERİ) Hazırlayan: Özlem AYDIN

KUYRUK TEORİSİ (BEKLEME HATTİ MODELLERİ) Hazırlayan: Özlem AYDIN KUYRUK TEORİSİ (BEKLEME HATTİ MODELLERİ) Hazırlayan: Özlem AYDIN GİRİŞ Bir hizmet için beklemek günlük yaşantının bir parçasıdır. Örneğin, restoranlarda yemek yemek için bekleme, hastanelerdeki hasta kuyruğunda

Detaylı

EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME

EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME GİRİŞ Bu bölümde benzetim için excel örnekleri önerilmektedir. Örnekler excel ile yapılabileceği gibi el ile de yapılabilir. Benzetim örnekleri

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ.DR. SAADETTIN ERHAN KESEN. Ders No:2 Simülasyon Örnekleri

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ.DR. SAADETTIN ERHAN KESEN. Ders No:2 Simülasyon Örnekleri 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ.DR. SAADETTIN ERHAN KESEN Ders No:2 GIRIŞ Bu derste elle ya da bir çalışma sayfası yardımıyla oluşturulacak bir simülasyon tablosunun kullanımıyla yapılabilecek simülasyon

Detaylı

Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30)

Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30) ENM 316 BENZETİM ÖDEV SETİ Ödev 1. Bir projede A, B, C, D, E ve F olmak üzere 6 faaliyet vardır. Projenin tamamlanması için bu faaliyetlerin sırası ile yapılması gerekmektedir. Her faaliyetin tamamlanması

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

ENM 316 BENZETİM ÖDEV SETİ

ENM 316 BENZETİM ÖDEV SETİ ENM 16 BENZETİM ÖDEV SETİ Ödev 1. Bir depo ve N adet müşteriden oluşan bir taşımacılık sisteminde araç depodan başlayıp bütün müşterileri teker teker ziyaret ederek depoya geri dönmektedir. Sistemdeki

Detaylı

Veri Ağlarında Gecikme Modeli

Veri Ağlarında Gecikme Modeli Veri Ağlarında Gecikme Modeli Giriş Veri ağlarındaki en önemli performans ölçütlerinden biri paketlerin ortalama gecikmesidir. Ağdaki iletişim gecikmeleri 4 farklı gecikmeden kaynaklanır: 1. İşleme Gecikmesi:

Detaylı

Girdi Analizi. 0 Veri toplama 0 Girdi sürecini temsil eden olasılık dağılımı belirleme. 0 Histogram 0 Q-Q grafikleri

Girdi Analizi. 0 Veri toplama 0 Girdi sürecini temsil eden olasılık dağılımı belirleme. 0 Histogram 0 Q-Q grafikleri Girdi Analizi 0 Gerçek hayattaki benzetim modeli uygulamalarında, girdi verisinin hangi dağılımdan geldiğini belirlemek oldukça zor ve zaman harcayıcıdır. 0 Yanlış girdi analizi, elde edilen sonuçların

Detaylı

1106104 SİSTEM SİMÜLASYONU

1106104 SİSTEM SİMÜLASYONU 6 SİSTEM SİMÜLASYONU Yrd Doç. Dr. Sırma Yavuz Çarşamba : - : (F-9) Ofis: B Blok - Kat Donanım Lab. Ofis Saatleri : Çarşamba 6: - 7: İçerik Simülasyon Modeli Yaklaşımları Kuyruk Sistemlerinin Simülasyonu

Detaylı

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma 2 13.1 Normal Dağılımın Standartlaştırılması Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma değerleriyle normal

Detaylı

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun.

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

Kuyruk Sistemlerinin Simülasyonu

Kuyruk Sistemlerinin Simülasyonu Kuyruk Sistemlerinin Simülasyonu Kuyruk sistemlerinin simülasyonu sonraki adımda ne olacağını belirlemek üzere bir olay listesinin tutulmasını ve bakımını gerektirir. Simülasyonda olaylar genellikle gerçek

Detaylı

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir, 14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.

Detaylı

Endüstri Mühendisliğine Giriş

Endüstri Mühendisliğine Giriş NOT: MRP ve TAM ZAMANINDA ÜRETİM ARASINDAKİ FARKLAR ile ilgili notlar sizlere çalışmanız için derste işlenmemiştir Endüstri Mühendisliğine Giriş 26 Aralık 2012, Şişli-Ayazağa, İstanbul, Türkiye. Yard.

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

Olasılık ve İstatistik (IE 220) Ders Detayları

Olasılık ve İstatistik (IE 220) Ders Detayları Olasılık ve İstatistik (IE 220) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Olasılık ve İstatistik IE 220 Her İkisi 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin

Detaylı

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa, NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına

Detaylı

BAKIM-ONARIM İÇİN SIRADA BEKLEME (KUYRUK) MODELLERİ

BAKIM-ONARIM İÇİN SIRADA BEKLEME (KUYRUK) MODELLERİ GIRIŞ 2 BAKIM-ONARIM İÇİN SIRADA BEKLEME (KUYRUK) MODELLERİ D R. F E R H A T G Ü N G Ö R 1 Kuyruk teorisi; servis almak için oluşan kuyruk, sağlanan servis hizmetinden fazladır. Bunun çeşitli nedenleri

Detaylı

ULUSLARARASI ANTALYA ÜNİVERSİTESİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ DERS KATALOĞU

ULUSLARARASI ANTALYA ÜNİVERSİTESİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ DERS KATALOĞU ULUSLARARASI ANTALYA ÜNİVERSİTESİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ DERS KATALOĞU ZORUNLU DERSLER IE 201 - Operasyon Modelleme Karar vermedeki belirsizlik rolü de dahil olmak üzere işletme kararlarının matematiksel

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

Çizelgeleme Nedir? Bir ürünün üretilmesi/hizmetin sunumu için

Çizelgeleme Nedir? Bir ürünün üretilmesi/hizmetin sunumu için Üretim Çizelgeleme Çizelgeleme Nedir? Bir ürünün üretilmesi/hizmetin sunumu için işgörenin nerede, ne zaman gerekli olduğunun, gerekli faaliyetlerin zamanlamasının, üretime başlama ve üretimi tamamlama

Detaylı

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01 Ortak Varyans ve İstatistiksel Bağımsızlık Bir rassal değişken çifti istatistiksel olarak bağımsız ise aralarındaki ortak varyansın değeri 0 dır. Ancak ortak varyans değerinin 0 olması, iki rassal değişkenin

Detaylı

İşlem Yönetimi (Process Management)

İşlem Yönetimi (Process Management) İşlem Yönetimi (Process Management) 2 Bir işletim sisteminde, temel kavramlardan bir tanesi işlemdir. İş, görev ve süreç kelimeleri de işlem ile eşanlamlı olarak kullanılabilir. Bir işlem temel olarak

Detaylı

BSM 532 KABLOSUZ AĞLARIN MODELLEMESİ VE ANALİZİ OPNET MODELER

BSM 532 KABLOSUZ AĞLARIN MODELLEMESİ VE ANALİZİ OPNET MODELER BSM 532 KABLOSUZ AĞLARIN MODELLEMESİ VE ANALİZİ OPNET MODELER Yazılımı ve Genel Özellikleri Doç.Dr. Cüneyt BAYILMIŞ Kablosuz Ağların Modellemesi ve Analizi 1 OPNET OPNET Modeler, iletişim sistemleri ve

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar.

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar. 9..03 EME 305 SİSTEM SİMÜLASYONU Simulasyonda İstatistiksel Modeller-II Ders 5 Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar Sürekli Düzgün (Uniform) Dağılım Normal Dağılım Üstel (Exponential)

Detaylı

TOPLAM KALİTE YÖNETİMİ

TOPLAM KALİTE YÖNETİMİ SAKARYA ÜNİVERSİTESİ TOPLAM KALİTE YÖNETİMİ Hafta 13 Yrd. Doç. Dr. Semra BORAN Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan Öğretim" tekniğine uygun olarak

Detaylı

Yalın Üretim Sisteminde Malzeme Taşıma Mesafelerinin Benzetim Yöntemiyle Optimizasyonu. Kocaeli Üniversitesi, Endüstri Mühendisliği

Yalın Üretim Sisteminde Malzeme Taşıma Mesafelerinin Benzetim Yöntemiyle Optimizasyonu. Kocaeli Üniversitesi, Endüstri Mühendisliği Yalın Üretim Sisteminde Malzeme Taşıma Mesafelerinin Benzetim Yöntemiyle Optimizasyonu İlay GÜLER Celal ÖZKALE İpek AYRANCI Muhammet KAHRIMAN Kocaeli Üniversitesi, Endüstri Mühendisliği Yalın Üretim Malzeme

Detaylı

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL İYİ UYUM TESTİ Rassal değişkenin olasılık yoğunluk fonksiyonunun ve parametresinin bilinmediği, ancak belirli

Detaylı

RASSAL SAYI ve RASSAL DEĞİŞ ĞİŞKEN. dd Her Ui nin beklenen değeri; Benzetimde rassallık k varsa, bir veya birden fazla dağı

RASSAL SAYI ve RASSAL DEĞİŞ ĞİŞKEN. dd Her Ui nin beklenen değeri; Benzetimde rassallık k varsa, bir veya birden fazla dağı RASSAL SAYI ve RASSAL DEĞİŞ ĞİŞKEN ÜRETİMİ Benzetimde rassallık k varsa, bir veya birden fazla ğılımdan rassal değişken üretimi yapılacakt lacaktır. Bu ğılımlar, gözlemden g elde edilen veriye giydirilmiş

Detaylı

SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ

SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ Sıra İstatistikleri ve Uygulama Alanlarından Bir Örneğin Değerlendirmesi 89 SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ Esin Cumhur PİRİNÇCİLER Araş. Gör. Dr., Çanakkale Onsekiz

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 7 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

Simülasyonda İstatiksel Modeller

Simülasyonda İstatiksel Modeller Simülasyonda İstatiksel Modeller Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri iyi tanımlayabilir. İlgilenilen olayın örneklenmesi ile uygun

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

Örneklem Dağılımları ve Merkezi Limit Teoremi

Örneklem Dağılımları ve Merkezi Limit Teoremi Örneklem Dağılımları ve Merkezi Limit Teoremi Çıkarımsal İstatistik (Inferential Statistics) : Örneklemden yola çıkarak ana kütleyle (popülasyonla) ilgili çıkarımlarda bulunmak (Smidt, 2001) İstatistiksel

Detaylı

1. Süreç nedir? 2. Süreç nedir? 3. Temel süreç unsurları nelerdir? 4. Süreçler nasıl sınıflandırılabilir? Süreç tipleri nelerdir?

1. Süreç nedir? 2. Süreç nedir? 3. Temel süreç unsurları nelerdir? 4. Süreçler nasıl sınıflandırılabilir? Süreç tipleri nelerdir? 1. Süreç nedir? Girdileri çıktı haline getiren birbiriyle ilgili ve etkileşimli faaliyetler takımı dır. 2. Süreç nedir? Tanımlanabilirlik Tekrarlanır olması Ölçülebilirlik Bir sahibi ve sorumluları olması

Detaylı

KUYRUK TEORİSİ III KUYRUK SİSTEMLERİ

KUYRUK TEORİSİ III KUYRUK SİSTEMLERİ SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II KUYRUK TEORİSİ III KUYRUK SİSTEMLERİ DERS NOTLARI M/M/1/GD/c/ KUYRUK SİSTEMİ Geçen dersimizde sistemin kapasitesini sınırsız görmüştük.

Detaylı

A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını

Detaylı

ÜSTEL DÜZLEŞTİRME YÖNTEMİ

ÜSTEL DÜZLEŞTİRME YÖNTEMİ ÜSEL DÜLEŞİRME YÖNEMİ ÜSEL DÜLEŞİRME YÖNEMİ Bu bölüme kadar anlatılan yöntemler zaman içinde değişmeyen parametre varsayımına uygun serilerin tahminlerinde kullanılmaktaydı. Bu tür seriler deterministik

Detaylı

Sistem kavramı ile ilgili literatürde birçok tanım vardır. Bu tanımlara göre sistem; Aralarında karşılıklı ilişkiler olan elemanlar kümesidir.

Sistem kavramı ile ilgili literatürde birçok tanım vardır. Bu tanımlara göre sistem; Aralarında karşılıklı ilişkiler olan elemanlar kümesidir. 1 Sistem kavramı ile ilgili literatürde birçok tanım vardır. Bu tanımlara göre sistem; Aralarında karşılıklı ilişkiler olan elemanlar kümesidir. Birbirleri ile etkileşimli elemanların oluşturduğu topluluktur.

Detaylı

SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II MARKOV ZİNCİRLERİ DERS NOTLARI

SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II MARKOV ZİNCİRLERİ DERS NOTLARI SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II MARKOV ZİNCİRLERİ DERS NOTLARI STOKASTİK (RASSAL) SÜREÇLER Bazen rassal değişkenlerin zamanla nasıl değiştiğiyle ilgileniriz. Örneğin

Detaylı

ÖZET. Osman ÇEVİK Ayşe Elif YAZGAN

ÖZET. Osman ÇEVİK Ayşe Elif YAZGAN 120 HİZMET ÜRETEN BİR SİSTEMİN BEKLEME HATTI (KUYRUK) MODELİ İLE ETKİNLİĞİNİN ÖLÇÜLMESİ ÖZET Osman ÇEVİK Ayşe Elif YAZGAN Bu çalışmada bekleme hattı modeli yardımıyla bir bankadaki müşterilerin sıra beklemelerine

Detaylı

Ders 1 Minitab da Grafiksel Analiz-I

Ders 1 Minitab da Grafiksel Analiz-I ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 1 Minitab da Grafiksel Analiz-I İstatistik Nedir? İstatistik kelimesi ilk olarak Almanyada devlet anlamına gelen status kelimesine dayanılarak kullanılmaya

Detaylı

SAĞLIK TEKNOLOJİ DEĞERLENDİRME (STD) İÇİN MODELLEME VE BENZETİM. Dr. Murat Günal

SAĞLIK TEKNOLOJİ DEĞERLENDİRME (STD) İÇİN MODELLEME VE BENZETİM. Dr. Murat Günal 1 SAĞLIK TEKNOLOJİ DEĞERLENDİRME (STD) İÇİN MODELLEME VE BENZETİM Dr. Murat Günal SAĞLIK TEKNOLOJİ DEĞERLENDİRME (STD) Sekröte sunulacak Yeni Ürün (veya Teknoloji) Mevcut ve gelecekteki demografik durum

Detaylı

OLASILIK ve İSTATİSTİK Hipotez Testleri

OLASILIK ve İSTATİSTİK Hipotez Testleri OLASILIK ve İSTATİSTİK Hipotez Testleri Yrd.Doç.Dr. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü Hipotezler ve Testler Hipotez, kitleye(yığına) ait

Detaylı

SİSTEMİN PERFORMANS ÖLÇÜTLERİ

SİSTEMİN PERFORMANS ÖLÇÜTLERİ SİSTEMİN PERFORMANS ÖLÇÜTLERİ Sistem Türleri Benzetim Modelleri Statik veya Dinamik Deterministik ( Belirli ) & Stokastik ( Olasılıklı) Kesikli & Sürekli Statik Monte Carlo Benzetimi İLHAN AYDIN BENZETİM

Detaylı

FRACTURE ÜZERİNE. 1. Giriş

FRACTURE ÜZERİNE. 1. Giriş FRACTURE ÜZERİNE 1. Giriş Kırılma çatlak ilerlemesi nedeniyle oluşan malzeme hasarıdır. Sünek davranışın tartışmasında, bahsedilmişti ki çekmede nihai kırılma boyun oluşumundan sonra oluşan kırılma nedeniyledir.

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

ENDÜSTRİ MÜHENDİSLİĞİ

ENDÜSTRİ MÜHENDİSLİĞİ 1. Bir işletmede mevcut sabit maliyetler kapsamında olmayan seçenek aşağıdakilerden hangisidir? a) Süreçte kullanılacak tezgah/tezgahların satın alma maliyeti b) Süreçte kullanılacak tezgah/tezgahların

Detaylı

Kanalizasyon Şebekesi ÇEV 314 Yağmursuyu ve Kanalizasyon

Kanalizasyon Şebekesi ÇEV 314 Yağmursuyu ve Kanalizasyon Kanalizasyon Şebekesi ÇEV 314 Yağmursuyu ve Kanalizasyon Öğr. Gör. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Kanalizasyon Şebekesi Kullanılmış sular, kanalizasyon şebekesi ile atıksu arıtma tesisine

Detaylı

SiSTEM ANALiZi ve TASARIMI

SiSTEM ANALiZi ve TASARIMI SiSTEM ANALiZi ve TASARIMI BIL3403 Öğ. Gör. ASLI BiROL abirol@kavram.edu.tr 01.10.2012 Dersin Amacı Bu ders ile öğrenci; edindiği mesleki bilgi birikimini kullanarak sektörde uygulanabilir bir projeyi

Detaylı

Endüstri Mühendisliği Tezli Yüksek Lisans Dersler Tablosu

Endüstri Mühendisliği Tezli Yüksek Lisans Dersler Tablosu Endüstri Mühendisliği Tezli Yüksek Lisans Dersler Tablosu Zorunlu Dersler Ders Kodu Ders Adı Teorik Uygulama Toplam AKTS IENG540 Optimizasyon Modelleri ve Algoritmalar 3 0 3 8 IENG560 Olasılıksal Analiz

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

İstatistiksel Süreç Kontrol KAZIM KARABOĞA

İstatistiksel Süreç Kontrol KAZIM KARABOĞA İstatistiksel Süreç Kontrol KAZIM KARABOĞA KALİTENİN TARİHSEL KİMLİK DEĞİŞİMİ Muayene İstatistiksel Kalite Kontrol Toplam Kalite Kontrol Toplam Kalite Yönetimi İSTATİSTİKSEL KALİTE KONTROL İstatistiksel

Detaylı

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır?

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır? 26.2.23 Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HĐPOTEZ TESTLERĐ denir. Sonuçların raslantıya bağlı olup

Detaylı

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER SPSS in üzerinde işlem yapılabilecek iki ana ekran görünümü vardır. DATA VIEW (VERİ görünümü) VARIABLE VIEW (DEĞİŞKEN görünümü) 1 DATA VIEW (VERİ görünümü) İstatistiksel

Detaylı

YAŞAR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ENDÜSTRİ MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI

YAŞAR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ENDÜSTRİ MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI YAŞAR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ENDÜSTRİ MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI Mevcut Program: TEZLİ YÜKSEK LİSANS PROGRAMI 1.Dönem 2.Dönem 521 Doğrusal Eniyileme ve Ağ Modelleri 2-2-3 10 524

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

DERS BİLGİLERİ. Uygulamalı İşletme İstatistiği BBA 282 Bahar 3+0+0 3 5

DERS BİLGİLERİ. Uygulamalı İşletme İstatistiği BBA 282 Bahar 3+0+0 3 5 DERS BİLGİLERİ Ders Kodu Yarıyıl T+U+L Saat Kredi AKTS Uygulamalı İşletme İstatistiği BBA 282 Bahar 3+0+0 3 5 Ön Koşul Dersleri - Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Zorunlu Dersin

Detaylı

Envanter Politikası Belirlemede Benzetim Uygulaması

Envanter Politikası Belirlemede Benzetim Uygulaması Envanter Politikası Belirlemede Benzetim Uygulaması Hayrettin Kemal Sezen Prof.Dr. Uludağ Üniversitesi İİBF Yöneylem Anabilimdalı kemal@uludag.edu.tr Şenol Erdoğmuş Y.Doç.Dr. Osmangazi Üniversitesi İstatistik

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME

RİSK ANALİZİ VE AKTÜERYAL MODELLEME SORU 1: Bir hasar sıklığı dağılımının rassal değişken olan ortalaması (0,8) aralığında tekdüze dağılmaktadır. Hasar sıklığı dağılımının Poisson karma dağılıma uyduğu bilindiğine göre 1 ya da daha fazla

Detaylı

YÖNEYLEM ARAŞTIRMASI-2 -Markov Zincirleri-

YÖNEYLEM ARAŞTIRMASI-2 -Markov Zincirleri- YÖNEYLEM ARAŞTIRMASI-2 -Markov Zincirleri- Hazırlayan Yrd. Doç. Selçuk Üniversitesi Mühendislik Fakültesi - Endüstri Mühendisliği Bölümü Giriş Zaman içerisinde tamamen önceden kestirilemeyecek şekilde

Detaylı

BİLİŞİM TEKNOLOJİLERİ 6. SINIF DERS NOTLARI 2

BİLİŞİM TEKNOLOJİLERİ 6. SINIF DERS NOTLARI 2 PROGRAMLAMA Bir problemin çözümü için belirli kurallar ve adımlar çerçevesinde bilgisayar ortamında hazırlanan komutlar dizisine programlama denir. Programlama Dili: Bir programın yazılabilmesi için kendine

Detaylı

Nitel Tepki Bağlanım Modelleri

Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Ekonometri 2 Konu 18 Sürüm 2,0 (Ekim 2011) Doğrusal-Dışı Yaklaşım ve UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons

Detaylı

DERS TANIMLAMA FORMU. Proje/Alan Çalışması. Doç. Dr. Oğuz TEKELİOĞLU. amaçlanmaktadır, ayrıca pratikte uygulamalarının yapılması

DERS TANIMLAMA FORMU. Proje/Alan Çalışması. Doç. Dr. Oğuz TEKELİOĞLU. amaçlanmaktadır, ayrıca pratikte uygulamalarının yapılması DERS TANIMLAMA FORMU Dersin Kodu ve Adı : MMÜ Elektroteknik.-Elektrik Makineleri Programın Adı: Makine Mühendisliği Ders Dili Yarıyıl Dersin Türü (Zorunlu/Seçmeli) Eğitim ve Öğretim Yöntemleri (ECTS) Teori

Detaylı

15.433 YATIRIM. Ders 2: Menkul Kıymetler ve Wall Street de Rassal Yürüyüş. Bahar 2003

15.433 YATIRIM. Ders 2: Menkul Kıymetler ve Wall Street de Rassal Yürüyüş. Bahar 2003 15.433 YATIRIM Ders 2: Menkul Kıymetler ve Wall Street de Rassal Yürüyüş Bahar 2003 İçerik Olasılık Teorisi Olasılık dağılımlarının kısa bir gözden geçirmesi Rassal olayları normal olaylarla değerlendirmek

Detaylı

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 Bölüm 2 DOĞRUSAL PROGRAMLAMA 21 2.1 Doğrusal Programlamanın

Detaylı

BÖLÜM 7 ULAŞTIRMA MÜHENDİSLİĞİ ANABİLİM DALI

BÖLÜM 7 ULAŞTIRMA MÜHENDİSLİĞİ ANABİLİM DALI BÖLÜM 7 ULAŞTIRMA MÜHENDİSLİĞİ ANABİLİM DALI Ulaştırma mühendisliği, insan ve yükün güvenli, yeterli, ekonomik ve doğa koşullarına uygun bir biçimde taşınabilmesini sağlayacak ulaşım sistemlerinin ve bileşenlerinin

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015

RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015 RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015 SORU 2: Motosiklet sigortası pazarlamak isteyen bir şirket, motosiklet kaza istatistiklerine bakarak, poliçe başına yılda ortalama 0,095 kaza olacağını tahmin

Detaylı

Algoritmanın Hazırlanması

Algoritmanın Hazırlanması Algoritmanın Hazırlanması Algoritma, herhangi bir sorunun çözümü için izlenecek yol anlamına gelmektedir. Çözüm için yapılması gereken işlemler hiçbir alternatif yoruma izin vermeksizin sözel olarak ifade

Detaylı

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL VERİ MADENCİLİĞİ Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL SPRINT Algoritması ID3,CART, ve C4.5 gibi algoritmalar önce derinlik ilkesine göre çalışırlar ve en iyi dallara ayırma kriterine

Detaylı

Simoto, seri imalat işlerinin yanı sıra aynı zamanda teknik ekibi ile müşterilerine özel otomasyon hizmeti de vermektedir.

Simoto, seri imalat işlerinin yanı sıra aynı zamanda teknik ekibi ile müşterilerine özel otomasyon hizmeti de vermektedir. Akıllı Otomasyonlar Simoto, seri imalat işlerinin yanı sıra aynı zamanda teknik ekibi ile müşterilerine özel otomasyon hizmeti de vermektedir. Üretimde standart kaliteyi yakalama, maliyet düşürme ve yığın

Detaylı

Gezgin Etmen Sistemlerinin Başarım Ölçümü: Benzetim Tekniği

Gezgin Etmen Sistemlerinin Başarım Ölçümü: Benzetim Tekniği Gezgin Etmen Sistemlerinin Başarım Ölçümü: Benzetim Tekniği Gürol Erdoğan 1, Mustafa Yıldız 1, Mehmet Erdem Türsem 2, Selahattin Kuru 1 1 Enformatik Uygulama ve Araştırma Merkezi, Işık Üniversitesi, İstanbul

Detaylı

Üst Düzey Programlama

Üst Düzey Programlama Üst Düzey Programlama Servlet Üst Düzey Programlama-ders01/ 1 Servlet Nedir? Web sayfaları ilk başlarda durağan bir yapıya sahipti ve kullanıcıdan bilgi alarak işlemler yapmıyordu. Zamanın geçmesiyle kullanıcıya

Detaylı

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI aysecagli@beykent.edu.tr 1 Güven aralığı ve Hipotez testi Güven aralığı µ? µ? Veriler, bir değer aralığında hangi değeri gösteriyor? (Parametrenin gerçek

Detaylı

İŞLETME VE ORGANİZASYON STAJI UYGULAMA ESASLARI

İŞLETME VE ORGANİZASYON STAJI UYGULAMA ESASLARI İŞLETME VE ORGANİZASYON STAJI UYGULAMA ESASLARI ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ İŞLETME VE ORGANİZASYON STAJI UYGULAMA ESASLARI 2014 İŞLETME VE ORGANİZASYON STAJI UYGULAMA ESASLARI Açıklama Staj yapılan işletmelerde

Detaylı

İSTATİSTİK BÖLÜMÜ DERS İÇERİKLERİ (2009 2010)

İSTATİSTİK BÖLÜMÜ DERS İÇERİKLERİ (2009 2010) İSTATİSTİK BÖLÜMÜ DERS İÇERİKLERİ (2009 2010) BİRİNCİ YIL Güz Dönemi (1. Yarıyıl) STAT 101 Temel İstatistik I (3 2 4) İstatistik bilimi. Verilerin görsel sunumu. Frekans tablosu oluşturma. Gövde yaprak

Detaylı

Sözlükler ilişki kelimesini öncelikli olarak iki insan arasındaki bağlantı olarak tanımlamaktadır.

Sözlükler ilişki kelimesini öncelikli olarak iki insan arasındaki bağlantı olarak tanımlamaktadır. İİş Hayattıında İİlliişkii ve İİlliişkii Yönettiimiiniin Arrttan Önemii ZZeyynnep TTuur ra vve Mehhmet t SSoyyer r Sözlükler ilişki kelimesini öncelikli olarak iki insan arasındaki bağlantı olarak tanımlamaktadır.

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serileri IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere sahip değișkenlere zaman serisi adı verilmektedir. Genel olarak zaman serisi,

Detaylı

Modelleme ve Simülasyon ile Karar Alma ve Doğrulama

Modelleme ve Simülasyon ile Karar Alma ve Doğrulama Modelleme ve Simülasyon ile Karar Alma ve Doğrulama Örnek Fiili Uygulamalar (Banka, Üretim, Müze) Copyright 2009, Results Kurumsal Verimlilik Çözümleri. All rights reserved. Bu dokümanın tüm hakları saklıdır.

Detaylı

2013-2014 Bahar Y.Y. E-Mühendislik Yönetimi Proje Dersi Danışman Listesi ve İlgi Alanları

2013-2014 Bahar Y.Y. E-Mühendislik Yönetimi Proje Dersi Danışman Listesi ve İlgi Alanları 2013-2014 Bahar Y.Y. E-Mühendislik Yönetimi Proje Dersi Danışman Listesi ve İlgi Alanları Prof. Dr. Orhan TORKUL 1. Bilişim Sistemleri Analiz ve Tasarımı 2. İş Zekası Sistemleri 3. Ortak Çalışma Sistemleri

Detaylı

Gündem. Demo 3D ile Geleceği Görmek. Dijitalis Yazılım ve Danışmanlık Ltd.Şti. www.dijitalis.com

Gündem. Demo 3D ile Geleceği Görmek. Dijitalis Yazılım ve Danışmanlık Ltd.Şti. www.dijitalis.com Gündem Demo 3D ile Geleceği Görmek 1 Dijitalis Dijitalis, stratejik taktiksel ve operasyonel doğru kararlar verebilmek ve dinamik değişiklere çok hızlı adapte olabilmek için entegre çözümler sunar. Tedarik

Detaylı

Poisson Dağılımı Özellikleri ve Olasılıkların Hesaplanması

Poisson Dağılımı Özellikleri ve Olasılıkların Hesaplanması Özellikleri ve Olasılıkların Hesaplanması Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Poisson dağılımı kesikli dağılımlar içinde Binom dağılımından

Detaylı

BLG 1306 Temel Bilgisayar Programlama

BLG 1306 Temel Bilgisayar Programlama BLG 1306 Temel Bilgisayar Programlama WEB : mustafabahsi.cbu.edu.tr E-MAIL : mustafa.bahsi@cbu.edu.tr Değişken ve Atama Bilgisayar programı içerisinde ihtiyaç duyulan sembolik bir ifadeyi veya niceliği

Detaylı

Altı Sigma Nedir? www.kimyageriz.biz

Altı Sigma Nedir? www.kimyageriz.biz Altı Sigma Nedir? Sigma,bir prosesteki değişkenliği ölçen ortalamadan standart sapma olarak da bilinir.altı sigma yaklaşımı,ölçüm aracı olarak ünite başına hata sayısı(defects per unit,(dpu)) ı kullanır.ünite

Detaylı

ENF102 TEMEL BİLGİSAYAR BİLİMLERİ VE C/ C++ PROGRAMLAMA DİLİ. Gazi Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü

ENF102 TEMEL BİLGİSAYAR BİLİMLERİ VE C/ C++ PROGRAMLAMA DİLİ. Gazi Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü ENF102 TEMEL BİLGİSAYAR BİLİMLERİ VE C/ C++ PROGRAMLAMA DİLİ Gazi Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Konular Giriş math Kütüphane Fonksiyonları Çok Parametreyle Fonksiyon

Detaylı

YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ İNTİBAK ÇİZELGESİ 2010-2011 1.SINIF / GÜZ DÖNEMİ

YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ İNTİBAK ÇİZELGESİ 2010-2011 1.SINIF / GÜZ DÖNEMİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ İNTİBAK ÇİZELGESİ 2010-2011 1.SINIF / GÜZ DÖNEMİ Bu ders 1. Sınıf güz döneminden 2. Sınıf güz dönemine alınmıştır. gerektiği halde alamayan öğrenciler 2010-2011 öğretim yılı

Detaylı

Sağlık Hizmeti Sistemlerinin Etkinliği: Bir Kamu Hastanesi ve Özel Hastane Karşılaştırması Bilgehan TEKİN 1

Sağlık Hizmeti Sistemlerinin Etkinliği: Bir Kamu Hastanesi ve Özel Hastane Karşılaştırması Bilgehan TEKİN 1 Çankırı Karatekin Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 6(1): 483-506 Cankiri Karatekin University Journal of Institute of Social Sciences, 6(1): 483-506 Sağlık Hizmeti Sistemlerinin Etkinliği:

Detaylı

HÜPP PYTHON I.HAFTA ALGORİTMA MANTIĞI, AKIŞ DİYAGRAMLARI VE PYTHON'A GİRİŞ

HÜPP PYTHON I.HAFTA ALGORİTMA MANTIĞI, AKIŞ DİYAGRAMLARI VE PYTHON'A GİRİŞ HÜPP PYTHON I.HAFTA ALGORİTMA MANTIĞI, AKIŞ DİYAGRAMLARI VE PYTHON'A GİRİŞ PROGRAMLAMAYA GİRİŞ Herhangi bir program yazabilmemiz için öncelikle önümüzde bir problem, soru olması gerekir. Problemi belirledikten

Detaylı