Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ"

Transkript

1 YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun. Başka bir şekilde ifade etmek istersek: X i i.i.d µ,σ 2, i = 1,2,...,n iid: türdeş identical, ve bağımsız independent dağılımlı Burada dağılımın ne olduğunu belirtmediğimize dikkat edin. Bu r.d. lerin toplamlarının beklenen değeri ve varyansı: E[X 1 + X X n ] = E[X 1 ] + E[X 2 ] E[X n ] = nµ V ar[x 1 + X X n ] = V ar[x 1 ] + V ar[x 2 ] V ar[x n ] = nσ 2 YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 2 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM Bu r.d. lerin toplamına S n diyelim. Yani, S n = X 1 + X X n Z = S n ES n V arsn = S n nµ nσ 2 = S nn µ n 1/2 n σ = X n µ σ/ n N,1 MLT ye göre gözlem sayısı arttıkça, yani, n, yukarıdaki ifade standart normal dağılıma yakınsar, yani, Z N,1

2 YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 3 2 n= 1 4 n= 2 4 n= n= 1 5 n= 3 6 n= n= 75 6 n= 1 6 n= YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 4 BÜYÜK SAYILAR KANUNU LAW of LARGE NUMBERS Merkezi Limit Teoremi, Büyük Sayılar Kanunu ile yakından ilişkilidir. Büyük Sayılar Kanununa göre, türdeş dağılımlı aynı anakütle beklenen değeri µ ve varyansına σ 2 sahip, birbirinden bağımsız ve sonlu varyanslı n r.d. in aritmetik ortalaması örneklem ortalaması n büyüdükçe anakütle ortalamasına yakınsar. X n = 1 n X 1 + X X n örneklem ortalaması olsun. Büyük sayılar yasasına göre n, X n µ Başka bir deyişle, istediğimiz kadar küçük seçebileceğimiz ǫ gibi pozitif herhangi bir sayı için: lim P [ X n µ < ǫ ] = 1 n

3 YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 5 MERKEZİ LİMİT TEOREMİ ÖRNEK: X 1,X 2,...,X 12 birbirinden bağımsız ve herbiri U,b, b > dağılımına sahip rassal değişkenler olsun. Merkezi Limit Teoremini kullanarak P b 4 < X < 3b 4 olasılığının yaklaşık.9973 olduğunu gösterelim. CEVAP: Bu 12 bağımsız r.d. uniform anakütleden geldiğine göre önce anakütledeki ortalama ve varyansı bulmamız gerekir. Uniforma,b dağılım için beklenen değer ve varyans olduğuna göre, örneğimizde µ x = b + a 2, σ2 x = b a2 12 olur. µ x = b 2, σ2 x = b2 12 YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 6 MERKEZİ LİMİT TEOREMİ V arx = σ2 x n = b2 144 CEVAP devam: MLT yi kullanarak: P b 4 < X < 3b 4 = P b 4 b 2 b 12 < X µ 3b x σ 2 x /n < 4 b 2 b 12 = P 3 < Z < 3 = Φ3 1 Φ3 = =.9973

4 YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 7 BİNOM DAĞILIMININ NORMAL YAKINSAMASI X: Başarı olasılığının p olduğu n bağımsız Bernoulli denemesinde toplam başarı sayısı, X Binomn, p EX = np, V arx = n yeterince büyükse Merkezi Limit Teoreminden hareketle şu yazılabilir: Z = X EX V arx = X np N,1 Başarı sayısı X in a ve b arasında olma olasılığı: a np Pa X b = P = P a np Z X np b np b np YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 8 BİNOM DAĞILIMININ NORMAL YAKINSAMASI Kesikli bir dağılımı sürekli bir dağılıma yakınsadığımızdan bu formüle süreklilik düzeltmesi uygularsak, yani a yerine a.5 ve b yerine b +.5 yazarsak: Pa X b = P = P a.5 np a.5 np Z Şu olasılığı hesaplamak istediğimizi düşünelim: P1 X 15 X np b +.5 np b +.5 np Binom dağılımında X her zaman bir tamsayı olacağından yukarıdaki olasılık P1 X 15 = P9.1 X şeklinde yazılabilir. Bu iki uç noktanın ortasını kullanarak iyi bir yakınsama yapabiliriz.

5 YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 9 BİNOM DAĞILIMININ NORMAL YAKINSAMASI ÖRNEK 5.11, s.23: Bir satıcı müşteri olabilecek kimselerle önceden telefonla bağlantı kurup, bunların evlerine uğrama kararını vermektedir. Deneyimine göre, bu ön bağlantıların %4 ı eve uğramayla sonuçlanmaktadır. Bu satıcı 1 kişiyle telefonda bağlantı kursa, bunun sonucunda 45 ile 5 arasında eve gitme olasılığı kaçtır? P45 X 5 = P Z Süreklilik düzeltmesi yaparsak: P45 X 5 = P = P1.2 Z 2.4 = Φ2.4 Φ1.2 = = Z = P.92 Z 2.14 = Φ2.14 Φ.92 = =.1626 YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 POISSON DAĞILIMININ NORMAL YAKINSAMASI X: Bir olayın belli bir zaman diliminde gerçekleşme sayısı, λ parametresi de bu zaman diliminde ortalama gerçekleşme sayısını göstersin. Bu durumda X aşağıdaki ortalama ve varyansa sahip Poisson dağılımına uyar X Poissonλ EX = λ, V arx = λ Merkezi Limit Teoreminden hareketle şu yazılabilir: Z = X EX V arx = X λ λ N,1 X in a ve b arasında olma olasılığı: a λ Pa X b = P X λ b λ λ λ λ a λ = P Z b λ λ λ

6 YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 11 POISSON DAĞILIMININ NORMAL YAKINSAMASI Süreklilik düzeltmesi yapıldığınıda X in a ve b arasında olma olasılığı: a.5 λ Pa X b = P X λ b +.5 λ λ λ λ = P a.5 λ λ Z b +.5 λ λ ÖRNEK: Bir tüketici danışma merkezine günde ortalama 25 başvuru yapılmaktadır. Bu başvuruların Poisson dağılımına uyduğu düşünülmektedir. Belli bir günde 2 ile 3 arasında başvuru yapılma olasılığı nedir? P2 X 3 = P X λ 25 λ = P 1.1 Z 1.1 = YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 12 ÜSTEL EXPONENTIAL DAĞILIM: Bekleme kuyruğu problemleri, müşteriye hizmet süresinin belirsiz olduğu durumlarda üstel dağılım iyi bir yakınsama sağlayabilir. Olasılık yoğunluk fonksiyonu µ >, e = Simetrik olmayan bir dağılım fx = 1 µ e x/µ, x için Beklenen değer: EX = µ, Varyans: V arx = µ 2 Birikimli dağılım fonksiyonu: Fx = 1 e x/µ, x için

7 YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 13 fx.2.18 µ=5 ortalamaya sahip Ustel Dagilim x YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 14 Fx 1.9 µ=5 ortalamaya sahip Ustel Dagilimin Birikimli Dagilim Fonksiyonu x

8 YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 15 ÜSTEL EXPONENTIAL DAĞILIM: ÖRNEK 5.13, s.235: Bir kitaplığın danışma masasında kullanıcılara verilen hizmet 5 dk. ortalama süre ile üstel dağılıma uymaktadır. bir kullanıcıya verilen hizmetin 1 dakikadan uzun sürme olasılığı kaçtır? CEVAP: X verilen hizmet süresi olmak üzere Olasılık yoğunluk fonksiyonu: ve birikimli dağılım fonksiyonu: İstenen olasılık: fx = 1 5 e x/5, x için Fx = 1 e x/5, x için PX > 1 = P1 < X < = F F1 = 1 1 e 1/5 = e 2 =.1353

İSTATİSTİK I KAVRAMLARININ

İSTATİSTİK I KAVRAMLARININ YTÜ-İktisat İstatistik II İstatistik I Gözden Geçirme İSTATİSTİK I KAVRAMLARININ GÖZDEN GEÇİRİLMESİ Hüseyin Taştan Yıldız Teknik Üniversitesi, İktisat Bölümü, email: tastan@yildiz.edu.tr YTÜ-İktisat İstatistik

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

altında ilerde ele alınacaktır.

altında ilerde ele alınacaktır. YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 1 NOKTA TAHMİN YÖNTEMLERİ Şimdiye kadar verilmiş tahmin edicilerin sonlu örneklem ve asimptotik özelliklerini inceledik. Acaba bilinmeyen anakütle parametrelerini

Detaylı

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa, NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME

RİSK ANALİZİ VE AKTÜERYAL MODELLEME SORU 1: Bir hasar sıklığı dağılımının rassal değişken olan ortalaması (0,8) aralığında tekdüze dağılmaktadır. Hasar sıklığı dağılımının Poisson karma dağılıma uyduğu bilindiğine göre 1 ya da daha fazla

Detaylı

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar.

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar. 9..03 EME 305 SİSTEM SİMÜLASYONU Simulasyonda İstatistiksel Modeller-II Ders 5 Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar Sürekli Düzgün (Uniform) Dağılım Normal Dağılım Üstel (Exponential)

Detaylı

Simülasyonda İstatiksel Modeller

Simülasyonda İstatiksel Modeller Simülasyonda İstatiksel Modeller Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri iyi tanımlayabilir. İlgilenilen olayın örneklenmesi ile uygun

Detaylı

Örneklem Dağılımları ve Merkezi Limit Teoremi

Örneklem Dağılımları ve Merkezi Limit Teoremi Örneklem Dağılımları ve Merkezi Limit Teoremi Çıkarımsal İstatistik (Inferential Statistics) : Örneklemden yola çıkarak ana kütleyle (popülasyonla) ilgili çıkarımlarda bulunmak (Smidt, 2001) İstatistiksel

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01 Ortak Varyans ve İstatistiksel Bağımsızlık Bir rassal değişken çifti istatistiksel olarak bağımsız ise aralarındaki ortak varyansın değeri 0 dır. Ancak ortak varyans değerinin 0 olması, iki rassal değişkenin

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir, 14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Poisson Dağılımı Özellikleri ve Olasılıkların Hesaplanması

Poisson Dağılımı Özellikleri ve Olasılıkların Hesaplanması Özellikleri ve Olasılıkların Hesaplanması Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Poisson dağılımı kesikli dağılımlar içinde Binom dağılımından

Detaylı

Olasılık Kuramı ve Bazı Olasılık Dağılımları

Olasılık Kuramı ve Bazı Olasılık Dağılımları KAVRAMLAR Olasılık Kuramı ve Bazı Olasılık Dağılımları Deney: belirli koşullar altında tekrarlanabilen ve her tekrarda farklı sonuçlar elde edilebilen işlemdir. Örneklem uzayı: bir denemenin tüm olası

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI 1 Rassal Değişken Bir deney ya da gözlemin şansa bağlı sonucu bir değişkenin aldığı değer olarak düşünülürse, olasılık ve istatistikte böyle bir

Detaylı

ENM 316 BENZETİM ÖDEV SETİ

ENM 316 BENZETİM ÖDEV SETİ ENM 16 BENZETİM ÖDEV SETİ Ödev 1. Bir depo ve N adet müşteriden oluşan bir taşımacılık sisteminde araç depodan başlayıp bütün müşterileri teker teker ziyaret ederek depoya geri dönmektedir. Sistemdeki

Detaylı

ĐST 474 Bayesci Đstatistik

ĐST 474 Bayesci Đstatistik ĐST 474 Bayesci Đstatistik Ders Sorumlusu: Dr. Haydar Demirhan haydarde@hacettepe.edu.tr Đnternet Sitesi: http://yunus.hacettepe.edu.tr/~haydarde Đçerik: Olasılık kuramının temel kavramları Bazı özel olasılık

Detaylı

SIRADAN EN KÜÇÜK KARELER (OLS)

SIRADAN EN KÜÇÜK KARELER (OLS) SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz...

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... 1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... CABİR VURAL BAHAR 2006 Açıklamalar

Detaylı

Girdi Analizi. 0 Veri toplama 0 Girdi sürecini temsil eden olasılık dağılımı belirleme. 0 Histogram 0 Q-Q grafikleri

Girdi Analizi. 0 Veri toplama 0 Girdi sürecini temsil eden olasılık dağılımı belirleme. 0 Histogram 0 Q-Q grafikleri Girdi Analizi 0 Gerçek hayattaki benzetim modeli uygulamalarında, girdi verisinin hangi dağılımdan geldiğini belirlemek oldukça zor ve zaman harcayıcıdır. 0 Yanlış girdi analizi, elde edilen sonuçların

Detaylı

Rastlantı Değişkenleri

Rastlantı Değişkenleri Rastlantı Değişkenleri Olasılık Kütle Fonk. Example: A shipment of 8 similar microcomputers to a retail outlet contains 3 that are defective. If a school makes a random purchase of 2 of these computers,

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri

Detaylı

SÜREKSİZ(DISCRETE) OLASILIK DAĞILIMLARI

SÜREKSİZ(DISCRETE) OLASILIK DAĞILIMLARI SÜREKSİZ(DISCRETE) OLASILIK DAĞILIMLARI Yrd. Doç.Dr. İrfan Yolcubal Kocaeli Üni. Jeoloji Müh. Random Değişken: Nümerik olarak ifade edilen bir deneyin sonuçları Süreksiz(Discrete) Random Değişken: Randomdeğişken

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015

RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015 RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015 SORU 2: Motosiklet sigortası pazarlamak isteyen bir şirket, motosiklet kaza istatistiklerine bakarak, poliçe başına yılda ortalama 0,095 kaza olacağını tahmin

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 7 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

Markov Zinciri Monte Carlo Yaklaşımı. Aktüeryal Uygulamaları

Markov Zinciri Monte Carlo Yaklaşımı. Aktüeryal Uygulamaları Markov Zinciri Monte Carlo Yaklaşımı ve Aktüeryal Uygulamaları ŞİRZAT ÇETİNKAYA Aktüer Sistem Araştırma Geliştirme Bölümü AKTÜERLER DERNEĞİ 2.0.20080 2008 - İSTANBUL Sunum Planı. Giriş 2. Bayesci Metodun

Detaylı

Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30)

Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30) ENM 316 BENZETİM ÖDEV SETİ Ödev 1. Bir projede A, B, C, D, E ve F olmak üzere 6 faaliyet vardır. Projenin tamamlanması için bu faaliyetlerin sırası ile yapılması gerekmektedir. Her faaliyetin tamamlanması

Detaylı

9/22/2014 EME 3105 SİSTEM SİMÜLASYONU. Giriş. Tek Kanallı Kuyruk Sistemi. Kuyruk Sistemlerinin Simulasyonu. Simulasyon Örnekleri Ders 2

9/22/2014 EME 3105 SİSTEM SİMÜLASYONU. Giriş. Tek Kanallı Kuyruk Sistemi. Kuyruk Sistemlerinin Simulasyonu. Simulasyon Örnekleri Ders 2 EME 3105 SİSTEM SİMÜLASYONU Simulasyon Örnekleri Ders Giriş Bu derste bilgisayar yardımı olmaksızın çalıştırılabilen birkaç simulasyon örneği verilmiştir. Bu örnekler size sistem simulasyonu metodolojisini

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk

Detaylı

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi İlhan AYDIN KESİKLİ-OLAY BENZETİMİ Kesikli olay benzetimi, durum değişkenlerinin zaman içinde belirli noktalarda değiştiği sistemlerin modellenmesi

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

Rastgele Değişkenler ve Olasılık

Rastgele Değişkenler ve Olasılık Rastgele Değişkenler ve Olasılık Yrd. Doç. Dr. Ümit Deniz Uluşar Doğum Günü Problemi Rastgele seçilen n kişiden en az iki tanesinin doğum günleri aynı olma olasılığı. n 367 ise %100 n 57 ise %99 n 23 ise

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ SORU : Ortalaması, varyansı olan bir raslantı değişkeninin, k ile k arasında değer alması olasılığının en az 0,96 olmasını sağlayacak en küçük k değeri aşağıdakilerden hangisidir? A),5 B) C) 3,75 D) 5

Detaylı

Veri Ağlarında Gecikme Modeli

Veri Ağlarında Gecikme Modeli Veri Ağlarında Gecikme Modeli Giriş Veri ağlarındaki en önemli performans ölçütlerinden biri paketlerin ortalama gecikmesidir. Ağdaki iletişim gecikmeleri 4 farklı gecikmeden kaynaklanır: 1. İşleme Gecikmesi:

Detaylı

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: ÇIKARSAMA Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

KUYRUK TEORİSİ (BEKLEME HATTİ MODELLERİ) Hazırlayan: Özlem AYDIN

KUYRUK TEORİSİ (BEKLEME HATTİ MODELLERİ) Hazırlayan: Özlem AYDIN KUYRUK TEORİSİ (BEKLEME HATTİ MODELLERİ) Hazırlayan: Özlem AYDIN GİRİŞ Bir hizmet için beklemek günlük yaşantının bir parçasıdır. Örneğin, restoranlarda yemek yemek için bekleme, hastanelerdeki hasta kuyruğunda

Detaylı

istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi

istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi 2010 S 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek t ablolar ve f ormüller bu kitapçığın sonunda verilmiştir. 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi yanlıstır? ) Maddesel

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

15.433 YATIRIM. Ders 2: Menkul Kıymetler ve Wall Street de Rassal Yürüyüş. Bahar 2003

15.433 YATIRIM. Ders 2: Menkul Kıymetler ve Wall Street de Rassal Yürüyüş. Bahar 2003 15.433 YATIRIM Ders 2: Menkul Kıymetler ve Wall Street de Rassal Yürüyüş Bahar 2003 İçerik Olasılık Teorisi Olasılık dağılımlarının kısa bir gözden geçirmesi Rassal olayları normal olaylarla değerlendirmek

Detaylı

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme İstatistik ve Olasılığa Giriş Robert J. Beaver Barbara M. Beaver William Mendenhall Presentation designed and written by: Barbara M. Beaver İstatistik ve Olasılığa Giriş Ders 3 Verileri Sayısal Ölçütlerle

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

İSTATİSTİK BÖLÜMÜ DERS İÇERİKLERİ (2009 2010)

İSTATİSTİK BÖLÜMÜ DERS İÇERİKLERİ (2009 2010) İSTATİSTİK BÖLÜMÜ DERS İÇERİKLERİ (2009 2010) BİRİNCİ YIL Güz Dönemi (1. Yarıyıl) STAT 101 Temel İstatistik I (3 2 4) İstatistik bilimi. Verilerin görsel sunumu. Frekans tablosu oluşturma. Gövde yaprak

Detaylı

Akdeniz Üniversitesi

Akdeniz Üniversitesi F. Ders Tanıtım Formu Dersin Adı Öğretim Dili Akdeniz Üniversitesi İSTATİSTİKSEL ANALİZ I Türkçe Dersin Verildiği Düzey Ön Lisans ( ) Lisans (*) Yüksek Lisans( ) Doktora ( ) Eğitim Öğretim Sistemi Örgün

Detaylı

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma 2 13.1 Normal Dağılımın Standartlaştırılması Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma değerleriyle normal

Detaylı

ENM 316 BENZETİM DERS 3 KUYRUK SİSTEMİ. Operasyon yönetiminde önemli bir alana sahiptir.

ENM 316 BENZETİM DERS 3 KUYRUK SİSTEMİ. Operasyon yönetiminde önemli bir alana sahiptir. ENM 316 BENZETİM DERS 3 KUYRUK SİSTEMİ Kuyruk sistemleri, Operasyon yönetiminde önemli bir alana sahiptir. Üretimde, atölye çevresi kuyruk şebekelerinin karmaşık bir ilişkisi olarak düşünülebilir. Bir

Detaylı

LOGİSTİC DAĞILIM VE RANDOM SAYI ÜRETİMİ

LOGİSTİC DAĞILIM VE RANDOM SAYI ÜRETİMİ C.Ü. İktisadi ve İdari Bilimler Dergisi, Cilt 3, Sayı, 9 LOGİSTİC DAĞILIM VE RANDOM SAYI ÜRETİMİ Yalçın KARAGÖZ Cumhuriyet Üniversitesi, İ.İ.B.F. İşletme Bölümü Özet Bu çalışmada logistic dağılım hakkında

Detaylı

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ SORU : Ortalaması, varyansı olan bir raslantı değişkeninin, k ile k arasında değer alması olasılığının en az 0,96 olmasını sağlayacak en küçük k değeri aşağıdakilerden hangisidir? A),5 B) C) 3,75 D) 5

Detaylı

Risk ve Getiri (1) Ders 9 Finansal Yönetim 15.414

Risk ve Getiri (1) Ders 9 Finansal Yönetim 15.414 Risk ve Getiri (1) Ders 9 Finansal Yönetim 15.414 Bugün Risk ve Getiri İstatistik Tekrarı Hisse senedi davranışlarına giriş Okuma Brealey ve Myers, Bölüm 7, sayfalar 153-165 Yol haritası 1. Bölüm: Değerleme

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Olasılık ve Rastgele Değişkenler EEE214 4 3 3 4

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Olasılık ve Rastgele Değişkenler EEE214 4 3 3 4 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Olasılık ve Rastgele Değişkenler EEE214 4 3 3 4 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Zorunlu /

Detaylı

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 1. Asal sayılar 2. Bir tam sayının bölenleri 3. Modüler aritmetik 4. Bölünebilme kuralları 5. Lineer modüler aritmetik 6. Euler

Detaylı

2013 KAMU PERSONEL SEÇME SINAVI ÖABT MATEMATİK ÖĞRETMENLİĞİ (İLKÖĞRETİM) TESTİ DEĞERLENDİRME RAPORU, SORULARI VE ÇÖZÜMLERİ

2013 KAMU PERSONEL SEÇME SINAVI ÖABT MATEMATİK ÖĞRETMENLİĞİ (İLKÖĞRETİM) TESTİ DEĞERLENDİRME RAPORU, SORULARI VE ÇÖZÜMLERİ 0 KAMU PERSONEL SEÇME SINAI ÖABT MATEMATİK ÖĞRETMENLİĞİ (İLKÖĞRETİM) TESTİ DEĞERLENDİRME RAPORU, SORULARI E ÇÖZÜMLERİ Temmuz, 0 MATEMATİK (İLKÖĞRETİM) ÖĞRETMENLİĞİ Analizden soru sorulmuştur. İlk 8 soru

Detaylı

OLASILIK. P(A) = şeklinde ifade edilir.

OLASILIK. P(A) = şeklinde ifade edilir. OLASILIK Olasılık belirli bir olayın olabilirliğinin sayısal ölçüsüdür. Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. 17 yy. da şans oyunlarıyla birlikte kullanılmaya

Detaylı

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08 1. Tanımlanan ana kütleden rassal seçilen örneklemlerden hesaplanan istatistikler yardımı ile ilgili ana kütle parametrelerinin değerini araştırma sürecine ne ad verilir? A) İstatistiksel hata B) İstatistiksel

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ 1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ Örneklem verileri kullanılan her çalışmada bir örneklem hatası çıkma riski her zaman söz konusudur. Dolayısıyla istatistikte bu örneklem hatasının meydana

Detaylı

Makine Müh./ Bakım-Onarım 2013-2014 04.05.2014. Dr.Ferhat Güngör / M.Ü. Teknoloji Fak. 1

Makine Müh./ Bakım-Onarım 2013-2014 04.05.2014. Dr.Ferhat Güngör / M.Ü. Teknoloji Fak. 1 1 Dr. Ferhat Güngör Endüstrideki pahalı makineleşmeye yatırım arttıkça, üretim maliyetlerinin minimumda tutulabilmesi ve üretim sürecinin kesintisiz olarak sürmesine, bakım sistemlerini kurmaya, geliştirmeye

Detaylı

BENZETİM. Prof.Dr.Berna Dengiz. 4. Ders Modelleme yaklaşımları Benzetim yazılımlarında aranan özellikler M/M/1 Kuyruk Sistemi benzetimi

BENZETİM. Prof.Dr.Berna Dengiz. 4. Ders Modelleme yaklaşımları Benzetim yazılımlarında aranan özellikler M/M/1 Kuyruk Sistemi benzetimi Prof.Dr.Berna Dengiz 4. Ders Modelleme yaklaşımları Benzetim yazılımlarında aranan özellikler M/M/1 Kuyruk Sistemi benzetimi BENZETİM DİLLERİNDE MODELLEME YAKLAŞIMLARI Tüm benzetim dilleri; ya olay-çizelgeleme

Detaylı

Biyoistatistiğin Tanımı Biyoistatistikte Kullanılan Terimler Değişken Tipleri Parametre ve İstatistik Tanımlayıcı İstatistikler

Biyoistatistiğin Tanımı Biyoistatistikte Kullanılan Terimler Değişken Tipleri Parametre ve İstatistik Tanımlayıcı İstatistikler Biyoistatistiğin Tanımı Biyoistatistikte Kullanılan Terimler Değişken Tipleri Parametre ve İstatistik Tanımlayıcı İstatistikler Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik

Detaylı

SİGORTA MATEMATİĞİ (Hayat-Hayat Dışı) Soru-1: (x) yaşında bir kişinin, tam sürekli tam hayat (whole life) sigortası için,

SİGORTA MATEMATİĞİ (Hayat-Hayat Dışı) Soru-1: (x) yaşında bir kişinin, tam sürekli tam hayat (whole life) sigortası için, SİGORTA MATEMATİĞİ (Hayat-Hayat Dışı) Soru-1: (x) yaşında bir kişinin, tam sürekli tam hayat (whole life) sigortası için, (i) Āx=0,5 (ii) 2 Āx=0,40 (iii) δ=0,04 (iv) E[L]= -0,2 olduğuna, sürekli, T zamanı

Detaylı

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL İYİ UYUM TESTİ Rassal değişkenin olasılık yoğunluk fonksiyonunun ve parametresinin bilinmediği, ancak belirli

Detaylı

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi Parametrik Olmayan Testler İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Rank Korelasyon Parametrik

Detaylı

A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını

Detaylı

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER A) Normal Dağılım ile İlgili Sorular Sayfa /4 Hamileler ile ilgili bir araştırmada, bu grubun hemoglobin değerlerinin normal dağılım gösterdiği

Detaylı

8.04 Kuantum Fiziği Ders IV. Kırınım olayı olarak Heisenberg belirsizlik ilkesi. ise, parçacığın dalga fonksiyonu,

8.04 Kuantum Fiziği Ders IV. Kırınım olayı olarak Heisenberg belirsizlik ilkesi. ise, parçacığın dalga fonksiyonu, Geçen Derste Kırınım olayı olarak Heisenberg belirsizlik ilkesi ΔxΔp x 2 Fourier ayrışımı Bugün φ(k) yı nasıl hesaplarız ψ(x) ve φ(k) ın yorumu: olasılık genliği ve olasılık yoğunluğu ölçüm φ ( k)veyahut

Detaylı

Kuyruk Sistemlerinin Simülasyonu

Kuyruk Sistemlerinin Simülasyonu Kuyruk Sistemlerinin Simülasyonu Kuyruk sistemlerinin simülasyonu sonraki adımda ne olacağını belirlemek üzere bir olay listesinin tutulmasını ve bakımını gerektirir. Simülasyonda olaylar genellikle gerçek

Detaylı

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014)

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) S-1) Bir otoyol üzerinde radarla hız kontrolü yapan, polis ekipler tarafından tespit edilen tane aracın hızları aşağıdaki tabloda

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Hipotez Testi Rehberi. Orhan Çevik İstanbul, 30 Ağustos 2014

Hipotez Testi Rehberi. Orhan Çevik İstanbul, 30 Ağustos 2014 Hipotez Testi Rehberi Orhan Çevik İstanbul, 30 Ağustos 2014 Hipotezler Sıfır Hipotezi: H 0 Aksi kanıtlanmadığı sürece doğru olduğu düşünülen varsayımdır. H 0 ın kanıta ihtiyacı yoktur. H 0 ı ret etmek

Detaylı

GÜVEN ARALIKLARI ALISTIRMA SORULARI. 2012 Aras.Gör. Efe SARIBAY

GÜVEN ARALIKLARI ALISTIRMA SORULARI. 2012 Aras.Gör. Efe SARIBAY GÜVEN ARALIKLARI ALISTIRMA SORULARI 2012 Aras.Gör. Efe SARIBAY 1) Bir bankada bir gün içerisinde açılan vadeli TL. hesaplarının ortalamasını incelemek amacıyla yapılan bir araştırmada 12 günlük yapılan

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

Olasılık ve İstatistik TASLAK

Olasılık ve İstatistik TASLAK Aydın ÜSTÜN 2014 İçindekiler 1 GİRİŞ 1 1.1 Ölçme, Olasılık ve İstatistiğe Genel Bakış................ 1 1.2 Deney Tasarımı: Anakütle ve Örneklem Uzayı............. 2 1.2.1 Örneklem süreci..........................

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

OLASILIK ve ÝSTATÝSTÝK ( Genel Tekrar Testi-1) KPSS MATEMATÝK. Bir anahtarlıktaki 5 anahtardan 2 si kapıyı açmak - tadır.

OLASILIK ve ÝSTATÝSTÝK ( Genel Tekrar Testi-1) KPSS MATEMATÝK. Bir anahtarlıktaki 5 anahtardan 2 si kapıyı açmak - tadır. OLASILIK v ÝSTATÝSTÝK ( Gnl Tkrar Tsti-1) 1. Bir anahtarlıktaki 5 anahtardan si kapıyı açmak - tadır. Açmayan anahtar bir daha dnnmdiğin gör, bu kapının n çok üçüncü dnmd açılma olasılığı kaçtır? 5 6 7

Detaylı

Ölçüm Sisteminin Analizi Measurement System Analysis. Dr. Nihal Erginel

Ölçüm Sisteminin Analizi Measurement System Analysis. Dr. Nihal Erginel Ölçüm Sisteminin Analizi Measurement System Analysis Dr. Nihal Erginel TOPLAM DEĞİŞKENLİK Süreçten kaynaklanan değişkenlik Ölçüm sisteminden kaynaklanan değişkenlik Süreç Değişkenlik Kaynakları Hammadde

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

ÜNİTE ÜNİTE. RİSK YÖNETİMİ Doç. Dr. İbrahim Doğan İÇİNDEKİLER HEDEFLER KANTİTATİF RİSK DEĞERLENDİRME TEKNİKLERİ

ÜNİTE ÜNİTE. RİSK YÖNETİMİ Doç. Dr. İbrahim Doğan İÇİNDEKİLER HEDEFLER KANTİTATİF RİSK DEĞERLENDİRME TEKNİKLERİ HEDEFLER İÇİNDEKİLER KANTİTATİF RİSK DEĞERLENDİRME TEKNİKLERİ Giriş İstatiksel Kavramlar Olasılık Şartlı Olasılık Rassal Değişken Beklenen Değer Varyans Histogram Kantitatif Risk Değerlendirme Teknikleri

Detaylı

İŞARETLİ SIRA İSTATİSTİĞİNİ KULLANAN PARAMETRİK OLMAYAN KONTROL DİYAGRAMIYLA SÜRECİN İZLENMESİ

İŞARETLİ SIRA İSTATİSTİĞİNİ KULLANAN PARAMETRİK OLMAYAN KONTROL DİYAGRAMIYLA SÜRECİN İZLENMESİ V. Ulusal Üretim Araştırmaları Sempozyumu, İstanbul Ticaret Üniversitesi, 25-27 Kasım 2005 İŞARETLİ SIRA İSTATİSTİĞİNİ KULLANAN PARAMETRİK OLMAYAN KONTROL DİYAGRAMIYLA SÜRECİN İZLENMESİ Metin ÖNER Celal

Detaylı

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri Ders izlence Formu Dersin Kodu ve İsmi Dersin Sorumlusu Dersin Düzeyi MAT407 REEL ANALİZ Prof. Dr. Ertan İBİKLİ ve

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

Tekrarlı Ölçümler ANOVA

Tekrarlı Ölçümler ANOVA Tekrarlı Ölçümler ANOVA Repeated Measures ANOVA Aynı veya ilişkili örneklemlerin tekrarlı ölçümlerinin ortalamalarının aynı olup olmadığını test eder. Farklı zamanlardaki ölçümlerde aynı (ilişkili) kişiler

Detaylı

Örnek Uzay: Bir deneyin tüm olabilir sonuçlarının kümesine Örnek Uzay denir. Genellikle harfi ile gösterilir.

Örnek Uzay: Bir deneyin tüm olabilir sonuçlarının kümesine Örnek Uzay denir. Genellikle harfi ile gösterilir. BÖLÜM 3. OLASILIK ve OLASILIK DAĞILIMLARI Rasgele Sonuçlu Deney: Sonuçlarının kümesi belli olan, ancak hangi sonucun ortaya çıkacağı önceden söylenemeyen bir işleme Rasgele Sonuçlu Deney veya kısaca Deney

Detaylı

12. HAFTA (RİSK VE GETİRİ) Prof. Dr. Yıldırım B. ÖNAL

12. HAFTA (RİSK VE GETİRİ) Prof. Dr. Yıldırım B. ÖNAL 12. HAFTA (RİSK VE GETİRİ) Prof. Dr. Yıldırım B. ÖNAL GETİRİ VE RİSK SUNUM İÇERİĞİ MENKUL KIYMETLERDE GETİRİ VE RİSK YATIRIM YAPILIRKEN GÖZ ÖNÜNDE BULUNDURULAN ETMENLER BEKLENEN GETİRİ VARYANS STANDART

Detaylı

Su Ürünlerinde Temel İstatistik. Ders 2: Tanımlar

Su Ürünlerinde Temel İstatistik. Ders 2: Tanımlar Su Ürünlerinde Temel İstatistik Ders 2: Tanımlar Karakter Araştırma yada istatistiksel analizde ele alınan ünitenin yapısal (morfolojik, fizyolojik, psikolojik, estetik, vb.) özellikleridir. Tüm karakterler

Detaylı

RASTGELE DEĞİŞKENLER VE PARAMETRELER

RASTGELE DEĞİŞKENLER VE PARAMETRELER RASTGELE DEĞİŞKENLER VE PARAMETRELER Daha önceki bölümlerde belirli ve belirsiz olaylardan sıklıkla bahsedildi. Rastgele veri üretiminin integral alan hesaplamalarında bile kullanılabileceğinden söz edildi.

Detaylı