SİSTEM SİMULASYONU KUYRUK SİSTEMİ VE BİLEŞENLERİ KUYRUK SİSTEMİ VE BİLEŞENLERİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "SİSTEM SİMULASYONU KUYRUK SİSTEMİ VE BİLEŞENLERİ KUYRUK SİSTEMİ VE BİLEŞENLERİ"

Transkript

1 SİSTEM SİMULASYONU KUYRUK SİSTEMLERİ KUYRUK SİSTEMİ VE BİLEŞENLERİ Bi kuyuk sistemi; hizmet veen bi veya biden fazla sevise sahipti. Sisteme gelen müşteile tüm sevislei dolu bulusa, sevisin önündeki kuyuğa ya da kuyukladan (biden fazla kuyuk vasa) biisine gie. Kesikli benzetim çalışmalaının büyük bi kısmını, geçek hayatta kaşılaşılan kuyuk sistemleinin modellenmesi oluştumaktadı veya benzetimi yapılan bi sistemin en azından bazı bileşenlei bi kuyuk sistemi oluştuabili. KUYRUK SİSTEMİ VE BİLEŞENLERİ Bu nedenle, bu deste; kuyuk sistemi bileşenlei, standat notasyonlaı ve kuyuk sistemi taafından sağlanan sevis kalitesini belileyen pefomans ölçüleinin bilmesi geeki. Aşağıdaki tablo da, patikte kaşılaşılan kuyuk sistemleine bazı önekle veilmişti. 1

2 ÖRNEKLER SİSTEM SERVİS VEREN MÜŞTERİLER Banka Veznele Müşteile Hastane Doktola, Hemşiele Yatakla Hastala ÖRNEKLER SİSTEM SERVİS VEREN MÜŞTERİLER Bilgisaya Sistemi Mekezi İşlem Biimi, Gidi-Çıktı Aygıtlaı İşle Montaj Hattı İşçile, Makinala Üetilen biimle Havaalanı Pist,Güvenlik Biimlei Uçakla, Yolcula BİR KUYRUK SİSTEMİNİN BİLEŞENLERİ Bi kuyuk sisteminin 3 bileşeni vadı. 1. Vaış süeci 2. Sevis süeci 3. Kuyuk disiplini 2

3 1.VARIŞ SÜRECİ Müşteilein sisteme geliş modelini tanımla. Bu duumda vaış posesi, müşteilein vaışlaaası zamanlaı ile kaakteize edili. Vaışla, sabit zamanlada ya da assal zamanlada olabili. Vaışla assal zamanlada oluyosa, vaışlaaası zaman bi dağılım ile modelleni. A i : (i-1). ve i. müştei vaışlaı aasındaki vaışlaaası zaman aalığı olsun. a 1, a 2,...: assal değişkenledi. E(a) : vaışlaaası otalama (beklenen) zaman l = 1/E(A) : Müşteilein vaış oanı (Biim zamanda gelen müştei sayısı) Önek : Bi dakikada 5 vaış olan bi sistemde vaışla aası zaman aalığı otalaması E(a)=1/ l =1/5=0.20 dakika 2.SERVİS SÜRECİ Sevis süeci, sevis sayısı ve sevis zamanı dağılımı ile kaakteize edili. He sevis kendisine ait bi kuyuğa veya tüm sevislei besleyen otak (tek) bi kuyuğa sahip olabili. S i : i. müşteinin sevis zamanı S 1,S 2,... assal değişkenle E(s) : Bi müşteinin sevis zamanı otalaması µ= 1/E(s) : Sevis oanı (Biim zamanda sevis göen müştei sayısı) ÖRNEK Otalama sevis zamanı 2 dakika ise, sevis oanı µ=1/e(s)=1/2=0.5 sevis/dakika Kuyuk sistemleinde en önemli paamete tafik yoğunluğudu. = (vaış oanı)/[(sevis oanı)*c] c: sevis veen sayısı 3

4 TRAFİK YOĞUNLUĞU ( ) Kuyuk uzunluğunun süekli atmaması için tafik yoğunluğunun biden küçük olması geekmektedi. ÖRNEK 3 dakikada bi vaışın olduğu bi sistemde sevis zamanı 2 dakika olsun. Gelişle ve sevis süelei bi zaman çizelgesinde gösteilise; =E(s) / E(a) = 2/3=0.667 (doluluk oanı) = (1- ) = = (sevisin boş kalma oanı) Analitik ve benzetim modelinde <1 olduğu kabul edili. KUYRUK DİSİPLİNİ Sevise alınacak müştei düzenini belile. FİFO : İlk gien ilkçıka pensibi GİRİŞ SİSTEM ÇIKIŞ LİFO : Son gien ilk çıka pensibi GİRİŞ SİSTEM ÇIKIŞ ÖNCELİK (PRIORITY) : Müşteileinönemine göe sevis Aksi belitilmedikçe, FIFO kullanılı. 4

5 KUYRUK MODELİ NOTASYONU: Kendall (1953) kuyuk sistemi modelleini sınıflandımak için bi sistem geliştimişti. A / B / S A : Vaış süeci B : Sevis süeci S : Sevis sayısı Bu sınıflandıma sistemi aşağıdaki gibi genişletilmişti. A / B / S / K / E K : sistemde izin veilen müştei sayısı E : kuyuk disiplini KUYRUK MODELİ NOTASYONU: M D E k G A ve B için: : Üstel dağılıma sahip sevis zamanı ya da vaışla aası zaman : Sabit sevis zamanı ya da vaışla aası zaman : K-Elang dağılmış sevis zamanı ya da vaışla aası zaman : Genel bi dağılım FIFO : ilk gien ilk çıka SIRO : assal sıada sevis PRI : Öncelikli sevis GD : Genel kuyuk disiplini E için: KUYRUK MODELİ NOTASYONU: M / D / 3 / 50 / PRI Öncelikli sevis Sistemde max. 50 müştei sınıı 3 sevis veen Sabit sevis süesi Vaışla aası zaman: üstel dağılım 5

6 PERFORMANS ÖLÇÜTLERİ Bi kuyuk sisteminde 4 temel pefomans ölçütü vadı. Bunla; Kuyuk uzunluğu (L q ) Kuyukta hacanan süe (W q ) Sistemde olan kişi sayısı (L) Sistemde hacanan süe (W) KUYRUK SİSTEMLERİNDE PERFORMANS ÖLÇÜTLERİ M/M/S kuyuk modellei, M/G/1 kuyuk modellei ve bazı diğe kuyuk sistemlei için veilen pefomans ölçütlei analitik olaak hesaplanabili. Analitik çözümlein mümkün olması için, vaışla aası dağılımın, sevis dağılımının ya da he ikisinin üstel olması ya da bazı özel kuyuk modellei için tanımlanmış dağılımla olması geeki. M/M/1 KUYRUK MODELİ Vaışla aası zamanın ve sevis zamanının üstel dağılıma sahip olduğu, bi sevis olanağı olan FİFO kuyuk disiplininin kullanıldığı kuyuk modelidi. Kuyuk kapasitesi sonsuzdu. Bu modelin, süekli zamanlı Makov Posesinden elde edilen matematiksel modelle ile çözümü vadı. (Bu fomülle, denge duumu için geçelidi.) P 0 : sistemde iş veya müştei olmaması olasılığı P 1 : sistemde 1 iş veya müştei olma olasılığı P n : sistemde n iş veya müştei olma olasılığı 6

7 M/M/1 KUYRUK MODELİ Tafik yoğunluğu, doluluk oanı M/M/1 KUYRUK MODELİ M/M/1 KUYRUK MODELİ Sistemdeki otalama müştei sayısı / biim zaman Kuyuktaki otalama müştei sayısı / biim zaman 7

8 M/M/1 KUYRUK MODELİ Bi müşteinin sistemde otalama bekleme zamanı Bi müşteinin kuyukta Ot. Bekleme zamanı ÖRNEK 1 Bi kuyuk sisteminde vaışla aası süenin otalama 2,5 dakika, otalama hizmet süesi 2 dakikadı. Sistemde tek bi sevis veen vadı. Vaışla aası süe ve sevis süesi üstel dağılıma göe dağılmakta olup, kuyuk disiplini FIFO yönteminde uygundu. Bu sistemle ilişkin pefomans ölçütleini hesaplayınız. ÖRNEK 1 - ÇÖZÜM Tafik 24 l = 24 müştei / saat yoğunluğu U l 30 (sistemin = 30 müştei / saat = (zamanın pobability %80 seve doluluk oanı sistem dolu, %20 sistem boştu) L l (sistemdeki 24/(30-24) 4 customes on aveage in the system l otalama müştei sayısı) 2 L l q l 2 (Kuyuktaki otalama müştei (24) /[30(30-24)] 3.2 customes sayısı) on aveage in the waiting 8

9 ÖRNEK 1 - ÇÖZÜM 1 1 L = saat ( 10 dakika) (Bi müşteinin sistemde hacadığı hou (10 min) avg otalama time in süe) the system pe cust W l l l 24 W = saat ( 8 dakika) q l 30(30 24) (Bi müşteinin kuyukta hacadığı hou (8 min) aveage otalama time in süe) the waiting line ÖRNEK 2 Bi önceki önekte sevis veen bi yadımcı tutulaak hızlandıılabili ve böylece sevis süesi 1,5 dakikaya düşüülebili. Bu işlem fimaya haftalık bazda 150 TL maliyet yaatmaktadı. Paza aaştımalaının göstediğine göe otalama kuyukta bekleme süesinin kısaltıldığı he bi dakika işletmeye haftalık bazda 75 TL katkı sağlamaktadı. Sizce yönetim sevis veeni hızlandımak için yadımcı tutmalı mıdı? ÖRNEK 2 - ÇÖZÜM Yeni sistemde = 40 müştei / saat olaak değişmişti. Bu vei ışığında kuyukta bekleme süesi; W q = saat (2.75 dakika) olacaktı. He bi dakika 75 TL kazanç sağladığından (8-2.75) = 5.25 dakika için 5.25*75 = TL kazanç sağlamaktadı. Sonuç olaak maliyet atışı 150 TL olup kazanç TL olduğundan yeni sisteme geçilmedi. 9

KUYRUK SİSTEMİ VE BİLEŞENLERİ SİSTEM SİMULASYONU KUYRUK SİSTEMİ VE BİLEŞENLERİ ÖRNEKLER BİR KUYRUK SİSTEMİNİN ÖRNEKLER

KUYRUK SİSTEMİ VE BİLEŞENLERİ SİSTEM SİMULASYONU KUYRUK SİSTEMİ VE BİLEŞENLERİ ÖRNEKLER BİR KUYRUK SİSTEMİNİN ÖRNEKLER KUYRUK SİSTEMİ VE SİSTEM SİMULASYONU 5. KUYRUK SİSTEMLERİ Bi kuyuk sistemi; hizmet veen bi veya biden fazla sevise sahipti. Sisteme gelen müşteile tüm sevislei dolu bulusa, sevisin önündeki kuyuğa ya da

Detaylı

BENZETİM. Prof.Dr.Berna Dengiz. 4. Ders Modelleme yaklaşımları Benzetim yazılımlarında aranan özellikler M/M/1 Kuyruk Sistemi benzetimi

BENZETİM. Prof.Dr.Berna Dengiz. 4. Ders Modelleme yaklaşımları Benzetim yazılımlarında aranan özellikler M/M/1 Kuyruk Sistemi benzetimi Prof.Dr.Berna Dengiz 4. Ders Modelleme yaklaşımları Benzetim yazılımlarında aranan özellikler M/M/1 Kuyruk Sistemi benzetimi BENZETİM DİLLERİNDE MODELLEME YAKLAŞIMLARI Tüm benzetim dilleri; ya olay-çizelgeleme

Detaylı

ENM 316 BENZETİM DERS 3 KUYRUK SİSTEMİ. Operasyon yönetiminde önemli bir alana sahiptir.

ENM 316 BENZETİM DERS 3 KUYRUK SİSTEMİ. Operasyon yönetiminde önemli bir alana sahiptir. ENM 316 BENZETİM DERS 3 KUYRUK SİSTEMİ Kuyruk sistemleri, Operasyon yönetiminde önemli bir alana sahiptir. Üretimde, atölye çevresi kuyruk şebekelerinin karmaşık bir ilişkisi olarak düşünülebilir. Bir

Detaylı

SAE 10, 20, 30 ve 40 d = 200 mm l = 100 mm W = 32 kn N = 900 d/dk c = mm T = 70 C = 2. SAE 10 için

SAE 10, 20, 30 ve 40 d = 200 mm l = 100 mm W = 32 kn N = 900 d/dk c = mm T = 70 C = 2. SAE 10 için ÖRNEK mm çapında, mm uzunluğundaki bi kaymalı yatakta, muylu 9 d/dk hızla dönmekte ve kn bi adyal yükle zolanmaktadı. Radyal boşluğu. mm alaak SAE,, ve yağlaı için güç kayıplaını hesaplayınız. Çalışma

Detaylı

EMEKLILIK SİSTEMLERİ SINAV SORULARI WEB-ARALIK 2015. Bireysel emeklilik sistemine ilişkin olarak aşağıdakilerden hangisi(leri) yanlıştır?

EMEKLILIK SİSTEMLERİ SINAV SORULARI WEB-ARALIK 2015. Bireysel emeklilik sistemine ilişkin olarak aşağıdakilerden hangisi(leri) yanlıştır? EMEKLILIK SİSTEMLERİ SINAV SORULARI WEB-ARALIK 2015 Sou-1 Bieysel emeklilik sistemine ilişkin olaak aşağıdakileden hangisi(lei) yanlıştı? I. Bieysel emeklilik sistemindeki biikimle Sosyal Güvenlik Sistemine

Detaylı

Kuyruk Sistemlerinin Benzetimi. KUYRUK & BEKLEME HATTI SİSTEMLERİ Genel nüfus Bekleme hattı Sunucu

Kuyruk Sistemlerinin Benzetimi. KUYRUK & BEKLEME HATTI SİSTEMLERİ Genel nüfus Bekleme hattı Sunucu Kuyruk Sistemlerinin Benzetimi KUYRUK & BEKLEME HATTI SİSTEMLERİ Dr. Mehmet AKSARAYLI Genel nüfus Bekleme hattı Sunucu Genel nüfus Kuyruğa giriş ve hizmetlerin yapısı Sistemin kapasitesi Kuyruk disiplini

Detaylı

ASTRONOTİK DERS NOTLARI 2014

ASTRONOTİK DERS NOTLARI 2014 YÖRÜNGE MEKANİĞİ Yöüngeden Hız Hesabı Küçük bi cismin yöüngesi üzeinde veilen hehangi bi noktadaki hızı ve bu hızın doğultusu nedi? Uydu ve çekim etkisinde bulunan cisim (Ye, gezegen, vs) ikili bi sistem

Detaylı

Olay-Tabanlı Modelleme. İlhan AYDIN

Olay-Tabanlı Modelleme. İlhan AYDIN Olay-Tabanlı Modelleme İlhan AYDIN Olay-Sürümlü Modeller Zaman sürümlü modeller düzenli zaman aralıklarında senkron bir tarzda ilerleyen sinyallere sahip sistemleri karakterize eder. Olay sürümlü modeller

Detaylı

KUYRUK TEORİSİ (BEKLEME HATTİ MODELLERİ) Hazırlayan: Özlem AYDIN

KUYRUK TEORİSİ (BEKLEME HATTİ MODELLERİ) Hazırlayan: Özlem AYDIN KUYRUK TEORİSİ (BEKLEME HATTİ MODELLERİ) Hazırlayan: Özlem AYDIN GİRİŞ Bir hizmet için beklemek günlük yaşantının bir parçasıdır. Örneğin, restoranlarda yemek yemek için bekleme, hastanelerdeki hasta kuyruğunda

Detaylı

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi İlhan AYDIN KESİKLİ-OLAY BENZETİMİ Kesikli olay benzetimi, durum değişkenlerinin zaman içinde belirli noktalarda değiştiği sistemlerin modellenmesi

Detaylı

SAE 10, 20, 30 ve 40 d = 200 mm l = 100 mm W = 32 kn N = 900 d/dk c = 0.100 mm T = 70 C l d. olduğu biliniyor. Buradan

SAE 10, 20, 30 ve 40 d = 200 mm l = 100 mm W = 32 kn N = 900 d/dk c = 0.100 mm T = 70 C l d. olduğu biliniyor. Buradan ÖRNEK 00 mm çapında, 00 mm uzunluğundaki bi kaymalı yatakta, muylu 900 d/dk hızla dönmekte kn bi adyal yükle zolanmaktadı. Radyal boşluğu 0.00 mm alaak AE 0, 0, 0 40 yağlaı güç kayıplaını hesaplayınız.

Detaylı

TMMOB ELEKTRİK MÜHENDİSLERİ ODASI ELEKTRİK TESİSLERİNDE TOPRAKLAMA ÖLÇÜMLERİ VE ÖLÇÜM SONUÇLARININ DEĞERLENDİRİLMESİ

TMMOB ELEKTRİK MÜHENDİSLERİ ODASI ELEKTRİK TESİSLERİNDE TOPRAKLAMA ÖLÇÜMLERİ VE ÖLÇÜM SONUÇLARININ DEĞERLENDİRİLMESİ TMMOB ELEKTİK MÜHENDİSLEİ ODASI ELEKTİK TESİSLEİNDE TOPAKLAMA ÖLÇÜMLEİ VE ÖLÇÜM SONUÇLAININ DEĞELENDİİLMESİ Not : Bu çalışma Elk.Y.Müh. Tane İİZ ve Elk.Elo.Müh. Ali Fuat AYDIN taafından Elektik Mühendislei

Detaylı

Ankara Üniversitesi Diş Hekimliği Fakültesi Ankara Aysuhan OZANSOY

Ankara Üniversitesi Diş Hekimliği Fakültesi Ankara Aysuhan OZANSOY FİZ11 FİZİK Ankaa Üniesitesi Diş Hekimliği Fakültesi Ankaa Aysuhan OZANSOY Bölüm-III : Doğusal (Bi boyutta) Haeket 1. Ye değiştime e Haeketin Tanımı 1.1. 1 Mekanik Nedi? 1.. Refeans çeçeesi, Konum, Ye

Detaylı

Basit Makineler. Test 1 in Çözümleri

Basit Makineler. Test 1 in Çözümleri Basit Makinele BASİ MAİNELER est in Çözümlei. Şekil üzeindeki bilgilee göe dinamomete değeini göstei. Cevap D di.. Makaa ve palanga sistemleinde kuvvetten kazanç sayısı kada yoldan kayıp vadı. uvvet kazancı

Detaylı

9/22/2014 EME 3105 SİSTEM SİMÜLASYONU. Giriş. Tek Kanallı Kuyruk Sistemi. Kuyruk Sistemlerinin Simulasyonu. Simulasyon Örnekleri Ders 2

9/22/2014 EME 3105 SİSTEM SİMÜLASYONU. Giriş. Tek Kanallı Kuyruk Sistemi. Kuyruk Sistemlerinin Simulasyonu. Simulasyon Örnekleri Ders 2 EME 3105 SİSTEM SİMÜLASYONU Simulasyon Örnekleri Ders Giriş Bu derste bilgisayar yardımı olmaksızın çalıştırılabilen birkaç simulasyon örneği verilmiştir. Bu örnekler size sistem simulasyonu metodolojisini

Detaylı

BÖLÜM 2 GAUSS KANUNU

BÖLÜM 2 GAUSS KANUNU BÖLÜM GAUSS KANUNU.1. ELEKTRİK AKISI Elektik akısı, bi yüzeyden geçen elektik alan çizgileinin sayısının bi ölçüsüdü. Kapalı yüzey içinde net bi yük bulunduğunda, yüzeyden geçen alan çizgileinin net sayısı

Detaylı

Örnek 1. Çözüm: Örnek 2. Çözüm: 60 30000 300 60 = = = 540

Örnek 1. Çözüm: Örnek 2. Çözüm: 60 30000 300 60 = = = 540 Önek 1 1.8 kn yük altında 175 dev/dak dönen bi mil yatağında çalışacak bilyeli ulman için, 5 saat ömü ve %9 güvenililik istemekteyiz. Öneğin SKF kataloğundan seçmemiz geeken inamik yük sayısı (C 1 ) nedi?

Detaylı

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER Bölüm 5 Olasılık ve Olasılık Dağılışlaı Doç.D. Suat ŞAHİNLE Olasılık ve Olasılık Dağılışlaı Olasılık: Eşit saşla meydaa gele tae olayda A taesi A olayı olsu. Bu duumda A olayıı meydaa gelme olasılığı;

Detaylı

5 ÖABT / MTL ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG. 678 ( sin + cos )( sin- cos )( sin+ cos ) lim sin- cos " = lim ( sin+ cos ) = bulunu. ". # # I = sin d = sin sin d sin = u sin d = dv du = sin : cos

Detaylı

2013 2013 LYS LYS MATEMATİK Soruları

2013 2013 LYS LYS MATEMATİK Soruları LYS LYS MATEMATİK Soulaı. LYS 5. LYS ( + a ) = 8 < < olmak üzee, olduğuna öe, a kaçtı? I. A) D) II. + III. (.) ifadeleinden hanileinin değei neatifti? A) Yalnız I Yalnız II Yalnız III D) I ve III II ve

Detaylı

Nokta (Skaler) Çarpım

Nokta (Skaler) Çarpım Nokta (Skale) Çapım Statikte bazen iki doğu aasındaki açının, veya bi kuvvetin bi doğuya paalel ve dik bileşenleinin bulunması geeki. İki boyutlu poblemlede tigonometi ile çözülebili, ancak 3 boyutluda

Detaylı

ICBC TURKEY YATIRIM MENKUL DEĞERLER A.Ş. ICBC TURKEY PORTFÖY HİSSE SENEDİ FONU

ICBC TURKEY YATIRIM MENKUL DEĞERLER A.Ş. ICBC TURKEY PORTFÖY HİSSE SENEDİ FONU 1 OCAK 31 ARALIK 216 HESAP DÖNEMİNE AİT VE YATIRIM PERFORMANSI KONUSUNDA KAMUYA AÇIKLANAN BİLGİLERE İLİŞKİN RAPOR ICBC TURKEY YATIRIM MENKUL DEĞERLER A.Ş. ICBC TURKEY PORTFÖY HİSSE SENEDİ FONU kamuya açıklanan

Detaylı

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ TRİBOLOJİ LABORATUARI DENEY FÖYÜ

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ TRİBOLOJİ LABORATUARI DENEY FÖYÜ SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ TRİBOLOJİ LABORATUARI DENEY FÖYÜ DENEY ADI RADYAL KAYMALI YATAKLARDA SÜRTÜNME KUVVETİNİN ÖLÇÜLMESİ DERSİN ÖĞRETİM ÜYESİ YRD.DOÇ.DR.

Detaylı

GESTRA Ürün Programı. Her türlü uygulama için optimum çözümler

GESTRA Ürün Programı. Her türlü uygulama için optimum çözümler GESTRA Üün Pogamı He tülü uygulama için optimum çözümle Kondenstop (buha kapanı) Çek valfle BK Seisi PN 630 a kada olan duo paslanmaz çelik bimetalik egülatölü kondenstopladı. BK tipi kondenstopla, en

Detaylı

Kominikayon da ve de Sinyal Đşlemede kullanılan Temel Matematiksel Fonksiyonlar:

Kominikayon da ve de Sinyal Đşlemede kullanılan Temel Matematiksel Fonksiyonlar: Kominikayon da ve de Sinyal Đşlemede kllanılan Temel Matematiksel Fonksiyonla: Unit Step fonksiyon, Implse fonksiyon: Unit Step Fonksiyon: Tanim: Unit Step fonksiyon aşağıdaki gibi iki şekilde tanımlanabili

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

SİSTEM MODELLEME VE OTOMATİK KONTROL FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ

SİSTEM MODELLEME VE OTOMATİK KONTROL FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ SİSTEM MODELLEME VE OTOMATİK KONTROL FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ.Gup: Vize sou önekleindeki son gup (Routh-Huwitz testi) soula dahildi. Bunla PID soulaıyla bilikte de soulabili..) Tansfe fonksiyonu

Detaylı

Bölüm 6: Dairesel Hareket

Bölüm 6: Dairesel Hareket Bölüm 6: Daiesel Haeket Kaama Soulaı 1- Bi cismin süati değişmiyo ise hızındaki değişmeden bahsedilebili mi? - Hızı değişen bi cismin süati değişi mi? 3- Düzgün daiesel haekette cismin hızı değişi mi?

Detaylı

DNS temelleri ve BIND DNS sunucusu. Devrim GÜNDÜZ. TR.NET devrim@oper.metu.edu.tr. http://seminer.linux.org.tr http://belgeler.linux.org.

DNS temelleri ve BIND DNS sunucusu. Devrim GÜNDÜZ. TR.NET devrim@oper.metu.edu.tr. http://seminer.linux.org.tr http://belgeler.linux.org. DNS temellei ve sunucusu Devim GÜNDÜZ TR.NET devim@ope.metu.edu.t http://semine.linux.og.t http://belgele.linux.og.t Giiş Bu seminede, aşağıdaki konula anlatılacaktı: DNS Nedi? DNS Yapısı nasıldı? Ne zaman

Detaylı

BENZETİM. Prof.Dr.Berna Dengiz

BENZETİM. Prof.Dr.Berna Dengiz Prof.Dr.Berna Dengiz 2. Ders Sistemin Performans.. Ölçütleri Sistem Türleri Benzetim Modelleri Statik veya Dinamik Deterministik ( belirli ) & Stokastik ( olasılıklı) Kesikli & Sürekli Sistemin Performans

Detaylı

r r r r

r r r r 997 ÖYS. + 0,00 0,00 = k 0,00 olduğuna göe, k kaçtı? B) C). [(0 ) + ( 0) ] [(9 0) (0 ) ] işleminin sonucu kaçtı? B) C) 9 6. Bi a doğal sayısının ile bölündüğünde bölüm b, kalan ; b sayısı ile bölündüğünde

Detaylı

SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II KUYRUK TEORİSİ - I DERS NOTLARI

SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II KUYRUK TEORİSİ - I DERS NOTLARI SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II KUYRUK TEORİSİ - I DERS NOTLARI KUYRUK TEORİSİ Her birimiz kuyruklarda bekleyerek vakit geçirmişizdir. Bu derste kuyruklarlarla ilgili

Detaylı

5. ( 8! ) 2 ( 6! ) 2 = ( 8! 6! ). ( 8! + 6! ) Cevap E. 6. Büyük boy kutu = 8 tane. Cevap A dakika = 3 saat 15 dakika olup Göksu, ilk 3 saatte

5. ( 8! ) 2 ( 6! ) 2 = ( 8! 6! ). ( 8! + 6! ) Cevap E. 6. Büyük boy kutu = 8 tane. Cevap A dakika = 3 saat 15 dakika olup Göksu, ilk 3 saatte Deneme - / Mat MTEMTİK DENEMESİ Çözümle. 7 7 7, 0, 7, + + = + + 03, 00,, 3 0 0 7 0 0 7 =. +. +. 3 = + + = 0 bulunu.. Pa ve padaa eklenecek saı olsun. a- b+ b =- a+ b+ a & a - ab+ a =-ab-b -b & a + b =

Detaylı

Yönetimde Karar Verme Teknikleri

Yönetimde Karar Verme Teknikleri SAKARYA ÜNİVERSİTESİ Yönetimde Karar Verme Teknikleri Hafta 0 Yrd. Doç. Dr. Harun R. YAZGAN Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan Öğretim" tekniğine

Detaylı

Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30)

Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30) ENM 316 BENZETİM ÖDEV SETİ Ödev 1. Bir projede A, B, C, D, E ve F olmak üzere 6 faaliyet vardır. Projenin tamamlanması için bu faaliyetlerin sırası ile yapılması gerekmektedir. Her faaliyetin tamamlanması

Detaylı

PLANLI BAKIM SİSTEMLERİ İÇİN BAZI STOKASTİK YENİLEME MODELLERİ. Abdullah EROĞLU (*) ÖZET

PLANLI BAKIM SİSTEMLERİ İÇİN BAZI STOKASTİK YENİLEME MODELLERİ. Abdullah EROĞLU (*) ÖZET D.E.Ü.İ.İ.B.F.Degisi il:3 Sayı:II Yıl:998 ss:73-84 LANLI BAKIM SİSTEMLERİ İÇİN BAZI STOKASTİK YENİLEME MODELLERİ Abdullah EROĞLU ( ÖZET Bi sisem ve sisemi oluşuan elemanlaın aızalanmalaı assaldı. Dolayısıyla

Detaylı

ENM 316 BENZETİM ÖDEV SETİ

ENM 316 BENZETİM ÖDEV SETİ ENM 316 BENZETİM ÖDEV SETİ ÖDEV 1: El ile Benzetim Bir depo ve 7 adet müşterisi olan bir taşımacılık sisteminde müşterilerden gelen siparişler araç ile taşınmaktadır. İki tür sipariş söz konusudur. Birincisi

Detaylı

Rassal Değişken Üretimi

Rassal Değişken Üretimi Rassal Değişken Üretimi Doç. Dr. Mehmet AKSARAYLI GİRİŞ Yaşadığımız ya da karşılaştığımız olayların sonuçları farlılık göstermektedir. Sonuçları farklılık gösteren bu olaylar, tesadüfü olaylar olarak adlandırılır.

Detaylı

Çapraz Masuralı Rulman Serisi Kompakt, Yüksek Düzeyde Rijit Döndürme Yatakları Mükemmel bir dönme doğruluğu

Çapraz Masuralı Rulman Serisi Kompakt, Yüksek Düzeyde Rijit Döndürme Yatakları Mükemmel bir dönme doğruluğu Çapaz Masualı Rulman Seisi Kompakt, Yüksek Düzeyde Rijit Döndüme Yataklaı Mükemmel bi dönme doğuluğu KATALOG No.382-1TR İçindekile Çapaz Masualı Rulman Seisi Yapı ve Özellikle... S.2-3 Tüle ve Özellikle...

Detaylı

3. EŞPOTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ. Bir çift elektrot tarafından oluşturulan elektrik alan ve eş potansiyel çizgilerini görmek.

3. EŞPOTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ. Bir çift elektrot tarafından oluşturulan elektrik alan ve eş potansiyel çizgilerini görmek. 3. EŞPOTNSİYEL VE ELEKTRİK LN ÇİZGİLERİ MÇ i çift elektot taafından oluştuulan elektik alan ve eş potansiyel çizgileini gömek. RÇLR Güç kaynağı Galvanomete Elektot (iki adet) Pob (iki adet) İletken sıvı

Detaylı

SENKRON RELÜKTANS MAKİNASININ ANALİZİ

SENKRON RELÜKTANS MAKİNASININ ANALİZİ SENKRON REÜKTANS MAKİNASNN ANAİZİ Esoy BEŞER 1 H.Taık DURU 2 Sai ÇAMUR 3 Biol ARİFOĞU 4 Esa KANDEMİR 5 Elektik Mühendisliği Bölümü Mühendislik Fakültesi Koeli Ünivesitesi, Vezioğlu Kampusü, 411, Koeli

Detaylı

MATLAB GUI TABANLI ELEKTROMIKNATIS DEVRE TASARIMI VE ANALİZİ

MATLAB GUI TABANLI ELEKTROMIKNATIS DEVRE TASARIMI VE ANALİZİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 005 : 11 : 1 : 13-19

Detaylı

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007)

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007) MEKANİK TİTREŞİMLER TİTREŞİM ÖLÇÜMÜ: Titeşim ölçümü oldukça kapsamlı bi koudu ve mekaik, elektik ve elektoik bilgisi içeiklidi. Titeşim ölçümleide titeşim geliği (ye değiştime-displacemet, hız-velocity

Detaylı

BÖLÜM 2 KORUNUM DENKLEMLERİ

BÖLÜM 2 KORUNUM DENKLEMLERİ BÖLÜM KORUNUM DENKLEMLERİ.-Uzayda sabit konumlu sonlu kontol hacmi.- Debi.3- Haeketi takiben alınmış tüev.4- üeklilik denklemi.5- Momentum denklemi.6- Eneji Denklemi.7- Denklemlein bilançosu Kounum Denklemlei

Detaylı

Latex 3000 Yazıcı serisi. Kurulum Yerini Hazırlama Denetim Listesi

Latex 3000 Yazıcı serisi. Kurulum Yerini Hazırlama Denetim Listesi Latex 3000 Yazıcı seisi Kuulum Yeini Hazılama Denetim Listesi Telif Hakkı 2015 HP Development Company, L.P. 2 Yasal bildiimle Bu belgede ye alan bilgile önceden habe veilmeksizin değiştiilebili. HP üün

Detaylı

YX = b X +b X +b X X. YX = b X +b X X +b X. katsayıları elde edilir. İlk olarak denklem1 ve denklem2 yi ele alalım ve b

YX = b X +b X +b X X. YX = b X +b X X +b X. katsayıları elde edilir. İlk olarak denklem1 ve denklem2 yi ele alalım ve b Kadelen Bisküvi şiketinin on şehideki eklam statejisi Radyo-TV ve Gazete eklamı olaak iki şekilde geçekleşmişti. Bu şehiledeki satış, Radyo-TV ve Gazete eklam veilei izleyen tabloda veilmişti. Şehi No

Detaylı

YENİ NESİL ASANSÖRLERİN ENERJİ VERİMLİLİĞİNİN DEĞERLENDİRİLMESİ

YENİ NESİL ASANSÖRLERİN ENERJİ VERİMLİLİĞİNİN DEĞERLENDİRİLMESİ YENİ NESİL ASANSÖRLERİN ENERJİ VERİMLİLİĞİNİN DEĞERLENDİRİLMESİ ÖZET Egün ALKAN Elk.Y.Müh. Buga Otis Asansö Sanayi ve Ticaet A.Ş. Tel:0212 323 44 11 Fax:0212 323 44 66 Balabandee Cad. No:3 34460 İstinye-İstanbul

Detaylı

kısıtlanmamış hareket radyal mesafe ve açısal konum cinsinden ölçüldüğünde polar koordinatları kullanmak uygun olur.

kısıtlanmamış hareket radyal mesafe ve açısal konum cinsinden ölçüldüğünde polar koordinatları kullanmak uygun olur. Düzlmd ğisl haktin üçüncü tanımı pola koodinatlada yapılı; buada paçacık sabit bi başlangıç noktasından msaf uzaktadı bu adyal doğu açısıyla ölçülmktdi. Hakt adyal bi msaf açısal bi konum il kısıtlı olduğunda

Detaylı

OPTİMUM RADAR PARAMETRELERİNİN SÜREKLİ GENETİK ALGORİTMA YARDIMIYLA KARIŞTIRMA ORTAMINDA RADAR MENZİLİNİN MAKSİMİZE EDİLMESİ İÇİN BELİRLENMESİ

OPTİMUM RADAR PARAMETRELERİNİN SÜREKLİ GENETİK ALGORİTMA YARDIMIYLA KARIŞTIRMA ORTAMINDA RADAR MENZİLİNİN MAKSİMİZE EDİLMESİ İÇİN BELİRLENMESİ Optimum ada Paameteleinin Süekli Genetik Algoitma Yadımıyla Kaıştıma Otamında ada Menzilinin Maksimize Edilmesi İçin Belilenmesi HAVACILIK VE UZAY TEKNOLOJİLEİ DEGİSİ TEMMUZ 2004 CİLT 1 SAYI 4 (41-46)

Detaylı

( ) ( ) ( ) ϕ ( ) ( )

( ) ( ) ( ) ϕ ( ) ( ) TRANFORMATORLAR Genel Elektiksel Özelliklei ve Gücünün Belilenmesi TRGT ODABAŞ Fiziksel Temelle Giiş Tansfomatole geilim ve akımın ölçülmesi veya sinyal ve gücün taşınması gibi özel maksatla için dizayn

Detaylı

MONTE CARLO BENZETİMİ

MONTE CARLO BENZETİMİ MONTE CARLO BENZETİMİ U(0,1) rassal değişkenler kullanılarak (zamanın önemli bir rolü olmadığı) stokastik ya da deterministik problemlerin çözümünde kullanılan bir tekniktir. Monte Carlo simülasyonu, genellikle

Detaylı

FİZ102 FİZİK-II. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B-Grubu Bahar Yarıyılı Bölüm-III Ankara. A.

FİZ102 FİZİK-II. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B-Grubu Bahar Yarıyılı Bölüm-III Ankara. A. FİZ12 FİZİK-II Ankaa Ünivesitesi Fen Fakültesi Kimya Bölümü B-Gubu 214-215 Baha Yaıyılı Bölüm-III Ankaa A. Ozansoy Bölüm-III: Gauss Kanunu 1. lektik Akısı 2. Gauss Kanunu 3. Gauss Kanununun Uygulamalaı

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI SAĞLIK BAKANLIĞI PERSONEL GENEL MÜDÜRLÜĞÜ PERSONELİNİN UNVAN DEĞİŞİKLİĞİ SINAVI 29. GRUP: MAKİNE MÜHENDİSİ

T.C. MİLLÎ EĞİTİM BAKANLIĞI SAĞLIK BAKANLIĞI PERSONEL GENEL MÜDÜRLÜĞÜ PERSONELİNİN UNVAN DEĞİŞİKLİĞİ SINAVI 29. GRUP: MAKİNE MÜHENDİSİ T.. MİLLÎ EĞİTİM KNLIĞI EĞİTİM TEKNOLOJİLERİ GENEL MÜÜRLÜĞÜ Ölçme eğelendime ve çıköğetim Kuumlaı aie aşkanlığı KİTPÇIK TÜRÜ dayın dı ve Soyadı : day Numaası (T.. Kimlik No) : SĞLIK KNLIĞI PERSONEL GENEL

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI SAĞLIK BAKANLIĞI PERSONEL GENEL MÜDÜRLÜĞÜ PERSONELİNİN UNVAN DEĞİŞİKLİĞİ SINAVI 29. GRUP: MAKİNE MÜHENDİSİ

T.C. MİLLÎ EĞİTİM BAKANLIĞI SAĞLIK BAKANLIĞI PERSONEL GENEL MÜDÜRLÜĞÜ PERSONELİNİN UNVAN DEĞİŞİKLİĞİ SINAVI 29. GRUP: MAKİNE MÜHENDİSİ T.. MİLLÎ EĞİTİM KNLIĞI EĞİTİM TEKNOLOJİLERİ GENEL MÜÜRLÜĞÜ Ölçme eğelendime ve çıköğetim Kuumlaı aie aşkanlığı KİTPÇIK TÜRÜ dayın dı ve Soyadı : day Numaası (T.. Kimlik No) : SĞLIK KNLIĞI PERSONEL GENEL

Detaylı

Veri Ağlarında Gecikme Modeli

Veri Ağlarında Gecikme Modeli Veri Ağlarında Gecikme Modeli Giriş Veri ağlarındaki en önemli performans ölçütlerinden biri paketlerin ortalama gecikmesidir. Ağdaki iletişim gecikmeleri 4 farklı gecikmeden kaynaklanır: 1. İşleme Gecikmesi:

Detaylı

BASAMAK TİPİ DEVRE YAPISI İLE ALÇAK GEÇİREN FİLTRE TASARIMI

BASAMAK TİPİ DEVRE YAPISI İLE ALÇAK GEÇİREN FİLTRE TASARIMI BASAMAK TİPİ DEVRE YAPISI İE AÇAK GEÇİREN FİTRE TASARIMI Adnan SAVUN 1 Tugut AAR Aif DOMA 3 1,,3 KOÜ Mühendislik Fakültesi, Elektonik ve abeleşme Müh. Bölümü 41100 Kocaeli 1 e-posta: adnansavun@hotmail.com

Detaylı

Ders 4: Rastgele Değişkenler ve Dağılımları

Ders 4: Rastgele Değişkenler ve Dağılımları Ders 4: Rastgele Değişkenler ve Dağılımları Rastgele değişken kavramı Kesikli ve sürekli rastgele değişkenler İki boyutlu rastgele değişkenler Beklenen değer Varyans Örnek uzaydaki her elemanı bir sayıyla

Detaylı

50 40 ----------30 20 10

50 40 ----------30 20 10 HACİM Maddenin uzayda kaplamış olduğu yedi.bi cismin kapladığı yei aynı anda başka bi cisim kaplayamaz.hacim biimlei m3 veya cm3 tü.ayıca sıvıla için Lite kullanılı. 1 Lite=1 dm3 1 ml=1cm3=1cc A)Katılaın

Detaylı

Kimyasal Reaksiyon Mühendisliği. Hız Kanunları

Kimyasal Reaksiyon Mühendisliği. Hız Kanunları Kimyasal Reasiyon Mühendisliği Hız Kanunlaı 1 Tanımla Homojen Reasiyon Te fazlıdı. Heteojen Reasiyon Ço fazlıdı, easiyon genel olaa fazla aasındai aaesitlede meydana geli. Tesinmez (Te yönlü) Reasiyon

Detaylı

ENM 316 BENZETİM. Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30)

ENM 316 BENZETİM. Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30) ENM 316 BENZETİM ÖDEV 1: Bir projede A, B, C, D, E ve F olmak üzere 6 faaliyet vardır. Projenin tamamlanması için bu faaliyetlerin sırası ile yapılması gerekmektedir. Her faaliyetin tamamlanması için gereken

Detaylı

3 FAZLI SİSTEMLER. şartlarda daha fazla güç nakli mümkündür. 26.05.2013 3 fazlı sistemler 1 3-FAZLI DENGELİ SİSTEMLER V OR V OS O V OT

3 FAZLI SİSTEMLER. şartlarda daha fazla güç nakli mümkündür. 26.05.2013 3 fazlı sistemler 1 3-FAZLI DENGELİ SİSTEMLER V OR V OS O V OT 3 FA İEME n Çok azlı sistemle, geilimleinin aasında az akı bulunan iki veya daha azla tek azlı sistemin bileştiilmiş halidi ve bu işlem simetik bi şekilde yapılı. n ek azlı sistemlede güç dalgalı olduğu

Detaylı

Evrensel kuvvet - hareket eşitlikleri ve güneş sistemi uygulaması

Evrensel kuvvet - hareket eşitlikleri ve güneş sistemi uygulaması Evensel kuvvet - haeket eşitliklei ve güneş sistemi uygulaması 1. GİRİŞ Ahmet YALÇIN A-Ge Müdüü ESER Taahhüt ve Sanayi A.Ş. Tuan Güneş Bulvaı Cezayi Caddesi 718. Sokak No: 14 Çankaya, Ankaa E-posta: ayalcin@ese.com

Detaylı

Eme Sistem simülasyonu. Giriş. Simulasyonun Kullanım Alanları (Devam) Simulasyonun Kullanım Alanları. Sistem Simülasyonuna Giriş

Eme Sistem simülasyonu. Giriş. Simulasyonun Kullanım Alanları (Devam) Simulasyonun Kullanım Alanları. Sistem Simülasyonuna Giriş Eme 3105 Giriş Sistem simülasyonu Gerçek Dünya Sureci Sistemin davranışıyla ilişkili varsayımlar seti Modelleme & Analiz Sistem Simülasyonuna Giriş Ders 1 Simülasyon, gerçek bir dünya sureci yada sistemindeki

Detaylı

9/14/2016 EME 3117 SİSTEM SIMÜLASYONU. Giriş. (Devam) Simulasyonun Kullanım Alanları. Sistem Simülasyonuna Giriş. Hafta 1. Yrd.Doç.Dr.

9/14/2016 EME 3117 SİSTEM SIMÜLASYONU. Giriş. (Devam) Simulasyonun Kullanım Alanları. Sistem Simülasyonuna Giriş. Hafta 1. Yrd.Doç.Dr. EME 3117 SİSTEM SIMÜLASYONU Sistem Simülasyonuna Giriş Hafta 1 Yrd.Doç.Dr.Beyazıt Ocaktan Giriş Simülasyon, gerçek bir dünya süreci yada sistemindeki işlemlerin zamana bağlı değişimlerinin taklit edilmesidir.

Detaylı

Bölüm 30. Biot-Savart Yasası Giriş. Biot-Savart Yasası Gözlemler. Biot-Savart Yasası Kurulum. Serbest Uzayın Geçirgenliği. Biot-Savart Yasası Denklem

Bölüm 30. Biot-Savart Yasası Giriş. Biot-Savart Yasası Gözlemler. Biot-Savart Yasası Kurulum. Serbest Uzayın Geçirgenliği. Biot-Savart Yasası Denklem it-savat Yasası Giiş ölüm 30 Manyetik Alan Kaynaklaı it ve Savat, elektik akımının yakındaki bi mıknatısa uyguladığı kuvvet hakkında deneyle yaptı Uzaydaki bi nktada akımdan ilei gelen manyetik alanı veen

Detaylı

EME 3105 Giriş SISTEM SIMÜLASYONU Sistem Simülasyonuna Giriş Simülasyon Ders 1 Simülasyon, Yrd.Doç.Dr.Beyazıt Ocaktan

EME 3105 Giriş SISTEM SIMÜLASYONU Sistem Simülasyonuna Giriş Simülasyon Ders 1 Simülasyon, Yrd.Doç.Dr.Beyazıt Ocaktan EME 3105 Giriş SISTEM SIMÜLASYONU Sistem Simülasyonuna Giriş Gerçek Dünya Sureci Sistemin davranışıyla ilişkili varsayımlar seti Modelleme & Analiz Ders 1 Yrd.Doç.Dr.Beyazıt Ocaktan Simülasyon, gerçek

Detaylı

BURSA HAFİF RAYLI TAŞIMA SİSTEMİ İÇİN AKIM KAYNAKLI AKTİF GÜÇ FİLTRESİ UYGULAMASI

BURSA HAFİF RAYLI TAŞIMA SİSTEMİ İÇİN AKIM KAYNAKLI AKTİF GÜÇ FİLTRESİ UYGULAMASI BURSA HAFİF RAYLI TAŞIMA SİSTEMİ İÇİN AKIM KAYNAKLI AKTİF GÜÇ FİLTRESİ UYGULAMASI A.Teciyanlı*, O.Uçak*, T.Kılınç*, R.Çına, İ.Özkan *TÜBİTAK-UZAY ODTÜ/ANKARA, BURULAŞ, Nilüfe/BURSA alpe.teciyanli@uzay.tubitak.gov.t

Detaylı

SİMULASYON MODELLEME VE ANALİZ. Giriş. Arena Ortamı. Simulasyon Dilleri HAFTA 2. Yrd.Doç.Dr.Beyazıt Ocaktan

SİMULASYON MODELLEME VE ANALİZ. Giriş. Arena Ortamı. Simulasyon Dilleri HAFTA 2. Yrd.Doç.Dr.Beyazıt Ocaktan SİMULASYON MODELLEME VE ANALİZ 1 2 Giriş Bu derste ARENA ortamında modelleme yeteneklerini genel olarak tanıtmak için basit bir model sunulacaktır. HAFTA 2 Yrd.Doç.Dr.Beyazıt Ocaktan Simulasyon Dilleri

Detaylı

3. BÖLÜM. HİDROLİK-PNÖMATİK Prof.Dr.İrfan AY

3. BÖLÜM. HİDROLİK-PNÖMATİK Prof.Dr.İrfan AY HİDROLİK-PNÖMATİK 3. BÖLÜM 3.1 PİSTON, SİLİNDİR MEKANİZMALARI Hiolik evelee piston-silini ikilisi ile oluşan oğusal haeket aha sona önel, yaı önel, oğusal önel haeket olaak çevilebili. Silinile: a) Tek

Detaylı

TG 3 ÖABT ORTAÖĞRETİM MATEMATİK

TG 3 ÖABT ORTAÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ 9 Mat TG ÖABT ORTAÖĞRETİM MATEMATİK Bu testlein he hakkı saklıdı. Hangi amaçla olusa olsun testlein tamamının

Detaylı

TG Haziran 2013 KAMU PERSONEL SEÇME SINAVI LİSANS ÖĞRETMENLİK ALAN BİLGİSİ ORTAÖĞRETİM MATEMATİK TESTİ ÇÖZÜM KİTAPÇIĞI

TG Haziran 2013 KAMU PERSONEL SEÇME SINAVI LİSANS ÖĞRETMENLİK ALAN BİLGİSİ ORTAÖĞRETİM MATEMATİK TESTİ ÇÖZÜM KİTAPÇIĞI KAMU PERSNEL SEÇME SINAVI LİSANS ÖĞRETMENLİK ALAN BİLGİSİ RTAÖĞRETİM MATEMATİK TESTİ ÇÖZÜM KİTAPÇIĞI T.C. KİMLİK NUMARASI : ADI : SYADI : TG 9 Hazian DİKKAT! ÇÖZÜMLERLE İLGİLİ AŞAĞIDA VERİLEN UYARILARI

Detaylı

Sadece daha da iyisi.

Sadece daha da iyisi. TMMOB H A B E R DENEME Bildiğiniz ve güvendiğiniz heşey. Sadece daha da iyisi. %15 indiimle yeni bi Suit satın alabili veya mevcut Autodesk üünleinizi Suitlee yükseltebilisiniz. Autodesk Building Design

Detaylı

FARKLI DIġ DUVAR YAPILARI ĠÇĠN OPTĠMUM ISI YALITIM KALINLIĞI TESPĠTĠNĠN EKONOMĠK ANALĠZĠ

FARKLI DIġ DUVAR YAPILARI ĠÇĠN OPTĠMUM ISI YALITIM KALINLIĞI TESPĠTĠNĠN EKONOMĠK ANALĠZĠ FARKLI DIġ DUVAR YAPILARI ĠÇĠN OPTĠMUM ISI YALITIM KALINLIĞI TESPĠTĠNĠN EKONOMĠK ANALĠZĠ, Zafe ĠNGĠZ Düzce Ünivesitesi, Düzce Meslek Yüksekokulu, Teknik Pogamla Uzunmustafa, 81010 DÜZE. Email: etemguel@gmail.com

Detaylı

BÖLÜM 6. MANEVRA 6.1. GĐRĐŞ

BÖLÜM 6. MANEVRA 6.1. GĐRĐŞ ÖÜM 6. MANEVRA 6.. GĐRĐŞ üm deniz aaçlaı için temel dizayn geekleinden biisi yeteli manea kabiliyetine sahip olmaktı. Manea kabiliyeti temel olaak geminin istenen bi yönde kontollü şekilde yön değiştiebilmesini

Detaylı

Basit Makineler. Test 1 in Çözümleri. 3. Verilen düzenekte yük 3 ipe bindiği için kuvvetten kazanç 3 tür. Bu nedenle yoldan kayıp da 3 olacaktır.

Basit Makineler. Test 1 in Çözümleri. 3. Verilen düzenekte yük 3 ipe bindiği için kuvvetten kazanç 3 tür. Bu nedenle yoldan kayıp da 3 olacaktır. 9 Basit Makinele BASİ MAİNEER est in Çözülei.. Veilen düzenekte yük ipe bindiği için kuvvetten kazanç tü. Bu nedenle yoldan kayıp da olacaktı. kasnak ükün 5x kada yükselesi için kasnağa bağlı ipin 5x.

Detaylı

ENM 316 BENZETİM GİRİŞ DERS 1 GİRİŞ GİRİŞ. Zaman içerisinde değişiklik gösteren bir sistemin tavrı, geliştirilen bir benzetim modeli ile incelenir.

ENM 316 BENZETİM GİRİŞ DERS 1 GİRİŞ GİRİŞ. Zaman içerisinde değişiklik gösteren bir sistemin tavrı, geliştirilen bir benzetim modeli ile incelenir. GİRİŞ ENM 316 BENZETİM DERS 1 Zaman içerisinde değişiklik gösteren bir sistemin tavrı, geliştirilen bir benzetim modeli ile incelenir. Model, sistemin çalışması ile ilgili kabullerin bir setinden oluşur.

Detaylı

BASIT MAKINALAR. Basit makinalarda yük P, dengeleyici kuvvet F ile gösterilir. Bu durumda ; Kuvvet Kazancı = olur

BASIT MAKINALAR. Basit makinalarda yük P, dengeleyici kuvvet F ile gösterilir. Bu durumda ; Kuvvet Kazancı = olur SIT MKINR Günlük yaşantımızda iş yapmamızı kolaylaştıan alet ve makineledi asit makinelele büyük bi yükü, küçük bi kuvvetle dengelemek ve kaldımak mümkündü asit makinalada yük, dengeleyici kuvvet ile gösteili

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk

Detaylı

Basit Makineler Çözümlü Sorular

Basit Makineler Çözümlü Sorular Basit Makinele Çözümlü Soula Önek 1: x Çubuk sabit makaa üzeinde x kada haeket ettiilise; makaa kaç tu döne? x = n. n = x/ olu. n = sabit makaanın dönme sayısı = sabit makaanın yaıçapı Önek : x Çubuk x

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

KÖPRÜLERİN YAPISAL ÖZELLİKLERİNİN DİNAMİK ÖLÇÜMLER VE MODAL ANALİZ İLE BELİRLENMESİ

KÖPRÜLERİN YAPISAL ÖZELLİKLERİNİN DİNAMİK ÖLÇÜMLER VE MODAL ANALİZ İLE BELİRLENMESİ KÖPRÜLERİN YAPISAL ÖZELLİKLERİNİN DİNAMİK ÖLÇÜMLER VE MODAL ANALİZ İLE BELİRLENMESİ Ahmet TÜRER*, Hüseyin KAYA* *Ota Doğu Teknik Üniv., İnşaat Müh. Böl., Ankaa ÖZET Köpülein yapısal duumu hakkındaki değelendimele

Detaylı

Örnek...1 : Çapı 4 birim olan bir dairenin yarı çevresi ve alan ın ın sa yısal değerleri toplam ı kaçtır? 6π. Örnek...4 : Örnek...2 : Örnek...

Örnek...1 : Çapı 4 birim olan bir dairenin yarı çevresi ve alan ın ın sa yısal değerleri toplam ı kaçtır? 6π. Örnek...4 : Örnek...2 : Örnek... ÇEEE ÇEVE, İEE N 3 ( ÇEEİN ÇEVEİ İENİN, İE İİİNİN, İE EEİNİN VE HNIN NI ÇEEE ENZEİ EĞEENİE ) ÇEEİN ÇEVEİ VE İENİN NI İE İİİ NI VE YY UZUNUĞU mek ezli bi çembein çevesi, Çeve=2.π. mek ezli bi daienin alanı,

Detaylı

Sonlu Elemanlar Yöntemiyle Yumuşak Polietilen Bir Silindirik Borunun Gerilme Analizi

Sonlu Elemanlar Yöntemiyle Yumuşak Polietilen Bir Silindirik Borunun Gerilme Analizi Uludag.Üniv.Zi.Fak.Deg., 25) 19: 23-36 Sonlu Elemanla Yöntemiyle Yumuşak Polietilen Bi Silindiik Bounun Geilme Analizi Muhaem ZEYTİNOĞLU * ÖZET Taım, anayii ve konut ektöünde kullanılan, ıvı ve gaz iletim

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ.DR. SAADETTIN ERHAN KESEN. Ders No:2 Simülasyon Örnekleri

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ.DR. SAADETTIN ERHAN KESEN. Ders No:2 Simülasyon Örnekleri 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ.DR. SAADETTIN ERHAN KESEN Ders No:2 GIRIŞ Bu derste elle ya da bir çalışma sayfası yardımıyla oluşturulacak bir simülasyon tablosunun kullanımıyla yapılabilecek simülasyon

Detaylı

FİZ101 FİZİK-I. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B Grubu Bölüm V: Newton un Hareket Yasaları

FİZ101 FİZİK-I. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B Grubu Bölüm V: Newton un Hareket Yasaları İZ101 İZİK-I Ankaa Ünivesitesi en akültesi Kimya Bölümü B Gubu Bölüm V: Newton un Haeket Yasalaı 05.12.2014 Aysuhan OZANSOY Bölüm-V: Newton un Haeket Yasalaı: 1. Kuvvet Kavamı 2. Newton un I. Yasası (Eylemsizlik

Detaylı

ÜNİFORM OLMAYAN İÇ ISI ÜRETİMİ ETKİSİNDE UÇLARI SABİT BİR SİLİNDİRDE ELASTİK-PLASTİK GERİLME ANALİZİ

ÜNİFORM OLMAYAN İÇ ISI ÜRETİMİ ETKİSİNDE UÇLARI SABİT BİR SİLİNDİRDE ELASTİK-PLASTİK GERİLME ANALİZİ Gazi Üniv. Müh. Mim. Fak. De. J. Fac. Eng. Ach. Gazi Univ. Cilt 8, No 4, 33-44, 003 Vol 8, No 4, 33-44, 003 ÜNİFORM OLMAYAN İÇ ISI ÜRETİMİ ETKİSİNDE UÇLARI SABİT BİR SİLİNDİRDE ELASTİK-PLASTİK GERİLME

Detaylı

EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME

EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME GİRİŞ Bu bölümde benzetim için excel örnekleri önerilmektedir. Örnekler excel ile yapılabileceği gibi el ile de yapılabilir. Benzetim örnekleri

Detaylı

KARIŞIK MODELLİ U-TİPİ MONTAJ HATLARINDA HAT DENGELEME VE MODEL SIRALAMA PROBLEMLERİ İÇİN YENİ BİR SEZGİSEL YAKLAŞIM

KARIŞIK MODELLİ U-TİPİ MONTAJ HATLARINDA HAT DENGELEME VE MODEL SIRALAMA PROBLEMLERİ İÇİN YENİ BİR SEZGİSEL YAKLAŞIM Gazi Üniv. Müh. Mim. Fak. De. J. Fac. Eng. Ach. Gazi Univ. Cilt 22, No 2, 277-286, 2007 Vol 22, No 2, 277-286, 2007 KARIŞIK MODELLİ U-TİPİ MONTAJ HATLARINDA HAT DENGELEME VE MODEL SIRALAMA PROBLEMLERİ

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS OR ENGINEERS: STATICS edinand P. Bee E. Russell Johnston, J. Des Notu: Hai ACAR İstanbul Teknik Üniveistesi Tel: 285 31 46 / 116 E-mail: acah@itu.edu.t Web: http://atlas.cc.itu.edu.t/~acah

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Jounal of Engineeing and Natual Sciences Mühendislik ve Fen Bilimlei Degisi Sigma 6 47-66, 8 Aaştıma Makalesi / eseach Aticle DESIGN OF GOUNDING GID WITH AND WITHOUT GOUNDING OD IN TWO-LAYE SOIL MODEL

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ SONLU FARKLAR YÖNTEMİ İLE ÇOK YÜKSEK FREKANSLI ELEKTROMANYETİK DALGA ALANI HESABI Azu KOÇASLAN JEOFİZİK MÜHENDİSLİĞİ ANABİLİM DALI ANKARA

Detaylı

BİLEZİKLİ ASENKRON MAKİNELERDE ANLIK YÜKSEK MOMENT VE HIZ DENETİMİ İÇİN ROTOR DEVRESİNE BULANIK MANTIK TABANLI GÜÇ ENJEKSİYONU

BİLEZİKLİ ASENKRON MAKİNELERDE ANLIK YÜKSEK MOMENT VE HIZ DENETİMİ İÇİN ROTOR DEVRESİNE BULANIK MANTIK TABANLI GÜÇ ENJEKSİYONU P AM U K K A L E Ü N İ V E R S İ T E S İ M Ü H E N D İ S L İ K F A K Ü L T E S İ P A M U K K A L E U N I V E R S I T Y E N G I N E E R I N G F A C U L T Y M Ü H E N D İ S L İK B İ L İM L E R İ D E R G

Detaylı

TG 1 ÖABT İLKÖĞRETİM MATEMATİK

TG 1 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT İLKÖĞRETİM MATEMATİK Bu testlein he hakkı saklıdı. Hangi amaçla olusa olsun, testlein tamamının vea bi

Detaylı

ENJEKSİYON YIĞMA YÖNTEMİNDE KUVVET VE MALZEME AKIŞINA DEFORMASYON BÖLGESİ BOYUT ORANININ ETKİLERİ

ENJEKSİYON YIĞMA YÖNTEMİNDE KUVVET VE MALZEME AKIŞINA DEFORMASYON BÖLGESİ BOYUT ORANININ ETKİLERİ Uludağ Ünivesitesi Mühendislik Mimalık Fakültesi Degisi, Cilt 9, Sayı, 004 ENJEKSİYON YIĞMA YÖNTEMİNDE KUVVET VE MALZEME AKIŞINA DEFORMASYON BÖLGESİ BOYUT ORANININ ETKİLERİ M Tahi ALTINBALIK Yılmaz ÇAN

Detaylı

ENM 316 BENZETİM DERS 1 GİRİŞ. Benzetim, karmaşık sistemlerin tasarımı ve analizinde kullanılan en güçlü analiz araçlarından birisidir.

ENM 316 BENZETİM DERS 1 GİRİŞ. Benzetim, karmaşık sistemlerin tasarımı ve analizinde kullanılan en güçlü analiz araçlarından birisidir. ENM 316 BENZETİM DERS 1 GİRİŞ Benzetim, karmaşık sistemlerin tasarımı ve analizinde kullanılan en güçlü analiz araçlarından birisidir. Genel anlamda benzetim, zaman içinde sistemin işleyişinin taklididir.

Detaylı

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ Günümüz simülasyonları gerçek sistem davranışlarını, zamanın bir fonksiyonu olduğu düşüncesine dayanan Monte Carlo yöntemine dayanır. 1.

Detaylı

TORK. τ = 2.6 4.sin30.2 + 2.cos60.4 = 12 4 + 4 = 12 N.m Çubuk ( ) yönde dönme hareketi yapar. τ K. τ = F 1. τ 1. τ 2. τ 3. τ 4. 1. 2.

TORK. τ = 2.6 4.sin30.2 + 2.cos60.4 = 12 4 + 4 = 12 N.m Çubuk ( ) yönde dönme hareketi yapar. τ K. τ = F 1. τ 1. τ 2. τ 3. τ 4. 1. 2. AIŞIRMAAR 8 BÖÜM R ÇÖZÜMER R cos N 4N 0 4sin0 N M 5d d N ve 4N luk kuv vet lein çu bu ğa dik bi le şen le i şekil de ki gi bi olu nok ta sı na gö e top lam tok; τ = 6 4sin0 + cos4 = 4 + 4 = Nm Çubuk yönde

Detaylı

KUYRUK TEORİSİ III KUYRUK SİSTEMLERİ

KUYRUK TEORİSİ III KUYRUK SİSTEMLERİ SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II KUYRUK TEORİSİ III KUYRUK SİSTEMLERİ DERS NOTLARI M/M/1/GD/c/ KUYRUK SİSTEMİ Geçen dersimizde sistemin kapasitesini sınırsız görmüştük.

Detaylı

Sürekli Rastsal Değişkenler

Sürekli Rastsal Değişkenler Sürekli Rastsal Değişkenler Normal Dağılım: Giriş Normal Dağılım: Tamamen ortalaması ve standart sapması ile tanımlanan bir rastsal değişken, X, için oluşturulan sürekli olasılık dağılımına normal dağılım

Detaylı