ÇIKTI ANALİZİ BENZETİM TÜRLERİ

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ÇIKTI ANALİZİ BENZETİM TÜRLERİ"

Transkript

1 ÇIKTI ANALİZİ BENZETİM TÜRLERİ Çıktı analizi benzetimden üretilen verilerin analizidir. Çıktı analizinde amaç, bir sistemin performansını tahmin etmek ya da iki veya daha fazla alternatif sistemlerin performansını karşılamaktadır. Girdi değişkenlerinin değerlerini üretmek için rassal sayı üreteçleri kullanıldığından benzetim modelinin bir kere çalıştırılması ile elde edilen çıktı da rassal olacaktır. Bu nedenle istatistiksel çıktı analizine ihtiyaç duyulur. Benzetim deneylerinin analizi ve tasarımı benzetimin tipine bağlıdır. Benzetimler çalışma uzunluğunun belirlenip belirlenemediğine dayalı olarak sonlu ve sonsuz olmak üzere ikiye ayrılır. Sonsuz benzetimler için parametreler ya performans ölçüleri birkaç tipte olabilir. Benzetim modelinin bir kere çalıştırılması ile elde edilen çıktı prosesi; y, y,.., y m olsun Bitişli Benzetim Bitişli Olmayan Benzetim Yi: i. müşterinin kuyrukta bekleme süresi Yi ler rassal değişkenlerdir ve birbirine bağımlıdır ancak istatistiksel teknikler bağımsızlık kabulüne dayalıdır. Bu nedenle her birisi m uzunluğunda n bağımsız deneme yapılır. Denemeler arasındaki bağımsızlık farklı başlangıç değerleri kullanılarak sağlanır. Denge Durumu Parametreleri Denge Durumu Çevrim Parametreleri Diğer Parametreler. Deneme m y y,,..., i y y m y = m i = } Bağımsız. Deneme m y y,,..., i y y m y = m i= } Bağımsız. Deneme m y y,,..., i y y m y = m i= } Bağımsız n. Deneme m y y,,..., i n yn y nm y = n m i= } Bağımsız Denemeler arasındaki bağımsızlık sağlandıktan sonra çıktı analizi için istatistiksel yöntemler kullanılabilir. Bitişli (Terminating) Benzetim: İstenilen performans ölçülerinin tahmini değerlerini önceden belirtilen bir E olayı ortaya çıkıncaya kadar geçen benzetim zamanı için tahmin eder. (O, T E ) aralığı; E olayının ortaya çıktığı zaman. (T E rassal değişken olabilir) Örneğin, E= {beklemeleri tamamlanmış m müşteri } Verilen ödevde müşteri de benzetim tamamlanması bu duruma uygun bir benzetimi göstermektedir. ÖRNEK : Bir banka sistemini benzetimini ele alalım. Banka sabah 9: da açılmakta ve akşam 7: de kapanmaktadır. Bir benzetimin amacı bu periyot için müşteri servisinin kalitesinin bir ölçüsünü tahmin etmek olabilir. E={8 saatlik bir benzetim çalışması ve sistemin boş olması} Benzetim için başlangıç koşulu; anındaki müşteri sayısıdır.

2 ÖRNEK : bir uçak üreticisi, uçak üretmek için bir kontrat yaptığı varsayılsın. Bu uçakları 8 ay içerisinde üretmek zorundadır. Şirket istenilen teslim tarihine en düşük maliyetle üretimi yapabilecek üretim alternatifini seçebilmek için alternatiflerin benzetimini yapmak istiyor. E={ uçağın üretimi} ÖRNEK : bir günde saat ( vardiya) çalışan bir üretim sistemini dikkate alalım sat sonunda kalan işler bir sonraki gün işlenmektedir. Bu sistemin benzetimi, bir sonlu benzetim olarak dikkate alınabilir mi? E={ saatlik üretim} Alınamaz çünkü bu üretim sistemi gerçekte sürekli bir sistemdir. Bir gün için bitiş koşulları bir sonraki gün için başlangıç koşulları olacaktır. ÖRNEK : bir ürün satan bir işletme, aylık bir süre içinde stokta ne kadar ürün bulundurması gerektiğine karar vermek istiyor. Başlangıç stok düzeyi verildiğinde amaç; aylık beklenen maliyeti minimize etmek için her ay ne kadar sipariş vereceğini belirlemektedir. Bu durumda; Örnek : yeni bir üretim sitemi kuracak bir işletmeyi dikkate alalım. Bu işletme, işçiler işlerini öğreninceye kadar ve mekanik zorluklar ortadan kalkıncaya kadar çalıştıktan sonra sistemin ortalama (denge durumunda) çıktısını belirlemek istiyor. Aşağıdaki kabuller yapıldığında, a) Sistem günün saati haftanın günü çalışmakta b) Bir vardiyanın sonunda ya da bir sonraki vardiyanın başındaki üretim kaybı ihmal edilmekte c) Günü belirli zamanlarında üretimi kesen bir ara yok Sistemin hafta sonu ve her günün sonundaki boş zaman (8 saatlik boş zaman) ihmal edilerek saatlik günlerle benzetimi yapılabilir. Ni: i. saatte üretilen parçaların sayısı olsun. N, N,. Stokastik prosesi, ilgilenilen N rassal değişkeni ile denge durumu dağılımına sahipse, ortalamanın tahmini ile ilgileniriz. E={ ay için sistemi izlemek} Benzetim mevcut stok düzeyi ile başlatılır Bitişli olmayan (Nonterminating) benzetim: İstenilen performans ölçülerinin tahminini, benzetim zamanının sonsuza ulaşan durumu için tahmin eder. Benzetim çalışma süresini belirleyecek herhangi bir E olayı yoktur. Bu tür benzetim için bir performans ölçüsü, denge durumu parametresi olarak adlandırılır. Eğer bu parametre y, y,.. çıktı stokastik prosesinin bir karakteristiği ise denge durumu parametresinden söz edilir. Durum: y rassal değişkeni denge durumu dağılımına sahip ise benzetim ile ν=e( y) denge durumu ortalamasının tahmini ile ilgilenir. Birçok gerçek sistem için stokastik proses, denge durumu dağılımına sahip değildir. Çünkü sistemin karakteristikleri zaman içinde devamlı olarak değişir. Örneğin bir üretim sisteminde üretim çizelgeleme kuraları ve fabrika yerleşimi (yani makinelerin sayısı ve yerleşimi) zamanla değişebilir. Diğer taraftan gerçeğin bir özeti olan benzetim modeli denge durumu dağılımlarına sahip olabilir. Çünkü modelin karakteristiklerinin zaman içinde değişmediği kabul edilir. Örnek te işletme başlangıçtan normal duruma (yani işçiler işlerini öğrenip, mekanik problemlerin ortadan kalktığı durum ) gelinceye kadar geçen süreyi bilmek isterse benzetim sonlu bir benzetimdir. Çünkü benzetimi bitiren bir E olayı vardır. E={sistem normal duruma gelinceye kadar benzetim} * Bir sistem için benzetim; benzetim çalışmasının amaçlarına bağlı olarak sonlu yada sonsuz olabilir.

3 Denge durumu dağılımına sahip olmayan bir sonsuz benzetim için y, y,.. stokastik prosesini dikkate alalım. Zaman eksenini eşit uzunlukta çevrim olarak adlandırılan ardışık zaman aralıklarına böldüğümüzü kabul edelim. Örneğin bir üretim sisteminde bir çevrim 8 saatlik bir vardiyanın çalışma zamanı olabilir. y c : i. çevrimde tanımlanan bir rassal değişken olsun. yc, yc.. prosesinin karşılaştırılabilir olduğu kabul edilsin. BİR SİSTEM İÇİN ÇIKTI ANALİZİ A) Bitişli Benzetimler için: Bitişli benzetim modelinin n bağımsız denemesi yapılsın. Her denemede aynı başlangıcın koşulu kullanılmakta ve denemeler arasındaki bağımsızlık farklı başlangıç değerleri kullanılarak sağlanmaktadır. Benzetim çalışmasında bir performans ölçüsü (X) ile ilgilenildiği kabul edilsin..durum: y c, yc.. prosesinin bir denge durumu dağılımına Fc sahip olduğunu kabul edelim. c c y F Bu durumda performans ölçüsü, denge durumu çevirim parametresi olarak adlandırılır. c ( ) ν c =E y Bir denge durumu çevrim parametresi, y c, yc çevrim parametresinin bir denge durumu parametresidir. ÖRNEK : Örnek deki üretim sisteminde her iki vardiyanın. saatinin başlangıcında yarım saatlik yemek arası olduğunu kabul edelim bu durumda saatlik çıktı prosesi N, N,. Denge durumu dağılımına sahip değildir. N c : i. 8 saatlik vardiyadaki ortalama saatlik çıktı olsun. Bu durumda bir çevrim üzerinden denge durumu beklenen ortalama saatlik çıktının tahmini ile ilgilenebiliriz.. Durum: Sonsuz benzetim için y, y,.. stokastik prosesinin denge durumu dağılımına sahip olmadığını kabul edelim. Aynı zamanda uygun bir çevrim tanımlaması olmasın. Yani y c, yc prosesin bir denge durumu dağılımına sahip olduğu bir çevrim tanımlaması olmasın. ÖRNEK: M/M/ kuyruk sisteminin benzetimi ile bir gün içinde bir müşterinin beklenen ortalama beklemesi için nokta tahmini ve % 9 güvenlik düzeyinde güven aralığını elde edelim. Tekrarlama Kuyrukta Ort. Bekleme Bu durum, modelin parametrelerinin zaman içinde değiştiğinde söz konusudur. Örneğin bir telefon şirketinde telefon açışlarının varış oranı haftadan haftaya yıldan yıla değişiyorsa denge durumu parametreleri tanımlanamayacaktır. Bu durumda girdi parametrelerinin zaman içinde nasıl değiştiğini tanımlayan bir veri mevcut olacaktır. Bu durumda ise benzetimi bitirecek bir E olayı vardır ve sonlu benzetim için kullanılan analiz teknikleri bu tür sistemlerin benzetim çıktılarının analizinde kullanılabilir.

4 ÖRNEK: Stok sistemleri için aylık planlanan aralıkta beklenen ortalama maliyet için nokta tahminini ve % 9 güvenlik düzeyinde güven aralığı oluşturmak isteniyor bunun bağımsız tekrarlama yapılmış ve aşağıdaki maliyetler elde edilmiştir. Bu durumda yaklaşık α olasılığı ile x en fazla β kadar mutlak hataya sahip olacaktır. Yani, GA istenilen hassasiyete sahip olacaktır. İstenilen hassasiyete sahip GA nı oluşturmak için gerekli toplam deneme sayısı (n*) aşağıdaki eşitsizlik kullanılarak elde edilir. Tekrarlama Ortalama maliyet BELİRLİ BİR HASSASLIĞIN ELDE EDİLMESİ n tekrarlamaya dayalı bu metodun bir dezavantajı analizcinin güven aralığının yarı uzunluğunu (yada X (n) in hassaslığını) kontrol edememesidir. s Sabit n değeri için yarı uzunluk ( t, n α ), lerin varyansına V(X) e bağlı n x j olacaktır. İstenilen yarı uzunluğa sahip güven aralığının belirlenmesinde yol vardır. - Mutlak hassasiyet: x µ =β ise, x nın mutlak hassasiyetin β kadar olduğu söylenebilir. ÖRNEK A) M/M/ kuyruk sisteminin benzetiminin benzetimi yapılarak kuyrukta ortalama bekleme zamanı tahmin edilmek isteniyor. Bu nedenle n= deneme yapılarak aşağıdaki sonuçlar elde edilmiştir. s x =.8, =. S =. (n) %9 G.D.;..8 m [ m ] Kuyrukta ortalama bekleme zamanı için oluşturulan G.A. nın hassasiyetinin ( β ) olması isteniyor. Bunu sağlamak için gerekli deneme sayısını bulunuz. ( α=.) α güven düzeyinde güven aralığının yarı uzunluğunun küçük oluncaya kadar tekrarlama yapılırsa; α P( x yarı uzunluk µ x + yarı uzunluk) = P( x µ yarı uzunluk) P( x µ β) β eşit yada daha Z α S Z...9*. n* n* n* n*. n* = β n* n 9 = = deneme daha yapılırsa ilgilenilen performans ölçüsü için istenilen hassasiyet GA elde edilir.

5 x µ. Göreli Hassasiyet : =γ ise; x nın göreli hatasının kadar olduğu söylenebilir. µ G.A. nın yarı uzunluğunun x ya bölünmesi ile elde edilen değerin γ ya eşit yada daha küçük kadar tekrarlama yapıldığı kabul edilsin. x µ yarı uzunluk α P x x x µ P γ x n deneme sayısına bağlı olarak µ için güven aralığı oluşturulsun. Deneme sayısı artarken yığın ortalaması ve yığın varyanslarının değişmediği kabulü altında γ göreli hata için gerekli deneme sayısı n* ; Başlangıç Koşullarının Seçimi Sonlu benzetimde performans ölçüleri başlangıç anındaki sistemin durumuna bağlıdır. Bu nedenle, uygun başlangıç koşullarının seçilmesi gerekir. Örneğin saat : ve : arasında bankaya gelen müşterilerin kuyrukta ortalama bekleme süresi tahmin edilmek istensin. Bu saatlerde banka genellikle kalabalık olur. Benzetime hiçbir müşterinin bulunmadığı koşulu altında başlamak kuyrukta ortalama bekleme süresinin tahmininin yanlı olmasına neden olur. Bu yanlılığı ortadan kaldırmak için yaklaşım vardır..yaklaşım: bankada saat 9: hiçbir müşterinin bulunmadığı koşulu altında benzetime başlanır.ve saatlik benzetim yapılır istenilen performans ölçüsünün tahmini ise son saatlik gözlemler dikkate alınarak yapılır. 9: ile : arasındaki benzetim öğle saatlerindeki benzetim için uygun koşulları belirler. Bu yaklaşımın dezavantajı ilk saatlik benzetimin gözlemleri tahmin için kullanılmadığı için bilgisayar zamanının kaybına sebep olmasıdır. n* > n ise n*-n adet ek deneme yapılır. ÖRNEK b) örnek a da verilen benzetim çalışmasında göreli hassasiyetin. olması için gerekli deneme sayısını bulunuz. s x (n) =.8, =. S =. dk..yaklaşım: çeşitli günlerde banka öğle saatlerinde gözlemlenerek müşteri sayıları ile ilgili veri toplanır. Öğle saatlerinde i. müşterini bulunması ile ilgili olasılık dağılımı elde edilir. ˆP i dağılımından rassal olarak seçilen müşteri sayısının saat : bulunduğu varsayımı altında saatlik benzetim gerçekleştirilir. Z α S.9*. n* n* n* 9.7 n* = x β.8*. Bir saatlik süre için birden fazla tekrarlama yapılacaksa, ˆP i den farklı örnekler seçileceğinden dolayı x j ler bağımsız özdeş dağılıma sahip olacaklardır. Çünkü her tekrarlama için başlangıç koşulları aynı dağılımdan bağımsız olarak seçilmektedir. n*-n = - = ek deneme yapılırsa istenilen göreli hassasiyete sahip G.A elde edilir

6 b) DENGE DURUMU PARAMETRELERİ İÇİN (Bitişli Olmayan Sistemler için) İSTATİSTİKSEL ANALİZ y, y,..; Sonsuz benzetimin bir kez çalıştırılması sonucu elde edilen çıktı stokastik prosesi olsun. P( yi y) = F i(y) F(y) = P( y y) i y: Dağılım fonksiyonu F in ilgilenilen denge durumu rassal değişkenidir. Amaç denge durumu parametresi φ tahmin etmek. φ nın tahmininde bir zorluk; i=,, için y i nin dağılım fonksiyonu F den farklı olmasıdır. Bunun nedeni denge durumu tavrı nın bir göstergesi olan başlangıç koşulunun seçiminin genellikle mümkün olmamasıdır. Bu durumda elde edilen performans ölçüsünün tahmini denge durumu parametresinin yanlı bir tahminidir. m yi y i (m) = = m ν= E(y)'nin yanlı tah min cisi Bu problem; başlangıç yanlılık problemi yada başlama problemi olarak adlandırılır. Başlangıç Yanlılığı Problemi Başlangıç Periyodunu (TB) Tahmin Etmek için Metotlar Denge durumu ortalaması ν=e(y) tahmin etmek istediğimizi kabul edelim. ν= lim E(y) i Başlangıç yanlılığı probleminin en önemli sonucu; E y (m) ν herhangi m değeri için. Başlangıç periyodunu tahmin etmek için literatürde çeşitli metotlar vardır. Bunlar;. Hareketli Ortalamalar Metodu. Korelogram Metodu. Küme Metodu. Welch Yaklaşımı Başlangıç Yanlılığının Etkisini Azaltmak İçin Metotlar; Benzetime denge durumu koşulunu gösteren bir koşul ile başlamak Benzetim modelini başlangıç yanlılığının etkisini ortadan kaldıracak kadar uzun çalıştırmak Başlangıç periyodunu tahmin etmek ve periyotta kaydedilen gözlemleri sildikten sonra denge durumu parametresini tahmin etmek. Hareketli Ortalamalar Metodu: n y i y(n) = i= n n = y() = y y+ y n = y() = y+ y + y n = y() = y+ y ym n = m y(m) = m Kümülâtif ortalamanın grafiği çizilerek benzetimin dengeye girdiği TB noktası belirlenir.

7 Denge Durumu Parametresini Tahmin Etmek için Kullanılan Metotlar y, y,.. prosesi için denge durumu ortalaması tahmin etmek isteyelim. Literatürde metot vardır.. Tekrarlama / Silme Metodu (Replication/Deletion). Küme Ortalamaları Metodu. Regenerative Metod. Otoregressive Metod. Standartlaştırılmış zaman serileri metodu. Tekrarlama / Silme Metodu Sonlu benzetim çıktı analizinde kullanılan tekrarlama metodu ile aynıdır. Tek farklılık her tekrarlamada başlangıçyanlılığını ortadan kaldırmak için l gözlemin l silinmesidir. gözlemden sonraki gözlemler ortalamanın tahmin edilmesinde kullanılır. - Bir benzetim modelinin uzunluğu (m) kullanıcı tarafından belirlenir.(denge durumu tavrının hassas tahminlerini elde edecek uzunlukta olmalıdır) - Gerekli tekrarlama sayısı ise mutlak hassasiyet veya göreli hassasiyet yaklaşımı kullanılarak belirlenir. ÖRNEK: Varış oranı saatte müşteri ve ortalama servis zamanın.8 saat olduğu M/M/ kuyruk sisteminin benzetiminin yapılarak denge durumunda sistemdeki ortalama müşteri sayısının tahmin edilmek istendiğini kabul edelim. Sistemin benzetimi saat için yapılmaktadır. d =, µ= = =. E(S).8 d ρ= = =.8 µ. λ L= = = Müşteri / saat µ λ. Bu sistemin denge durumu benzetimi için öncelikle başlangıç periyodunun tahmin edilmesi gerekir. Yapılan çalışma sonucunda başlangıç periyodu ilk saat olarak belirlenmiştir. Tekrarlama / Silme metodu kullanılarak tekrarlama yapılmıştır. Her tekrarlamada saat için benzetim yapılarak ilk saatteki gözlemler başlangıç yanlılığını ortadan kaldırmak için dikkate alınmıştır. 7

8 j Sistem Müş Sayısı 7 9 ÖRNEK: performans ölçüsü için güven aralıkları oluşturulacaktır. Tüm sistem güvenilirliğinin % 9 olması için her bir güven aralığı için hata oranı nedir? x(n) =.8 S (n) = (.7) % 9 güvenlik düzeyin de g üven aralığı S (n) G.A. = x(n) m t n, α n = [.8 m(.)(.) ] = [.8 m.9] = [.,.] k α s =.9 α +α +α +α =. s= α =α =α =α olduğu için α E =. α E =. Her bir güven aralığı %97. güvenlik düzeyinde oluşturulmalıdır. müşteriden sonra, sistemdeki müşterilerin ortalama denge durumda sistemde beklenen müşteri sayısına yakın olduğu görülmektedir. Birden Fazla Performans Ölçüsü Şimdiye kadar anlatılan metotlarda bir performans ölçüsünün tahmini için güven aralığı oluşturulmaktadır. Ancak gerçek hayatta benzetim ile aynı anda birden fazla performans ölçüsü ile ilgilenilir. Benzetim Modeli x y S Kuyruktaki ortalama bekleme zamanı GA = x m t n, α n Servis doluluk oranı S GA = y m t n, α n 8

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi İlhan AYDIN KESİKLİ-OLAY BENZETİMİ Kesikli olay benzetimi, durum değişkenlerinin zaman içinde belirli noktalarda değiştiği sistemlerin modellenmesi

Detaylı

ENM 316 BENZETİM DERS 3 KUYRUK SİSTEMİ. Operasyon yönetiminde önemli bir alana sahiptir.

ENM 316 BENZETİM DERS 3 KUYRUK SİSTEMİ. Operasyon yönetiminde önemli bir alana sahiptir. ENM 316 BENZETİM DERS 3 KUYRUK SİSTEMİ Kuyruk sistemleri, Operasyon yönetiminde önemli bir alana sahiptir. Üretimde, atölye çevresi kuyruk şebekelerinin karmaşık bir ilişkisi olarak düşünülebilir. Bir

Detaylı

SİSTEM SİMÜLASYONU BENZETIM 1 SİMÜLASYON MODEL TÜRLERİ 1. STATİK VEYA DİNAMİK. Simülasyon Modelleri

SİSTEM SİMÜLASYONU BENZETIM 1 SİMÜLASYON MODEL TÜRLERİ 1. STATİK VEYA DİNAMİK. Simülasyon Modelleri SİSTEM SİMÜLASYONU SİMÜLASYON MODELİ TÜRLERİ BİR SİMÜLASYON ÇALIŞMASINDA İZLENECEK ADIMLAR ve SİMÜLASYON MODEL TÜRLERİ Simülasyon Modelleri Üç ana grupta toplanabilir; 1. Statik (Static) veya Dinamik (Dynamic),

Detaylı

BENZETİM. Prof.Dr.Berna Dengiz

BENZETİM. Prof.Dr.Berna Dengiz Prof.Dr.Berna Dengiz 2. Ders Sistemin Performans.. Ölçütleri Sistem Türleri Benzetim Modelleri Statik veya Dinamik Deterministik ( belirli ) & Stokastik ( olasılıklı) Kesikli & Sürekli Sistemin Performans

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları Alteratif üretim

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli

Detaylı

ENM 316 BENZETİM ÖDEV SETİ

ENM 316 BENZETİM ÖDEV SETİ ENM 316 BENZETİM ÖDEV SETİ ÖDEV 1: El ile Benzetim Bir depo ve 7 adet müşterisi olan bir taşımacılık sisteminde müşterilerden gelen siparişler araç ile taşınmaktadır. İki tür sipariş söz konusudur. Birincisi

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI µ µ içi Güve Aralığı ALTERNATİF İTEMLERİN KARŞILAŞTIRILMAI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri Mehmet YILMAZ mehmetyilmaz@ankara.edu.tr 10 KASIM 2017 5. HAFTA 2.7 M/M/1/ / sistemi için Bekleme zamanının dağılımı ( ) 1 T j rastgele değişkeni j. birimin

Detaylı

WEIBULL DAĞILIMI WEIBULL DAĞILIMI ANADOLU ÜNİVERSİTESİ

WEIBULL DAĞILIMI WEIBULL DAĞILIMI ANADOLU ÜNİVERSİTESİ ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ SÜREKLİ DAĞILIMLAR-2 DOÇ. DR. NİHAL ERGİNEL 2015 WEIBULL DAĞILIMI Weibull dağılımı, pek çok farklı sistemlerin bozulana kadar geçen süreleri ile ilgilenir. Dağılımın

Detaylı

MONTE CARLO BENZETİMİ

MONTE CARLO BENZETİMİ MONTE CARLO BENZETİMİ U(0,1) rassal değişkenler kullanılarak (zamanın önemli bir rolü olmadığı) stokastik ya da deterministik problemlerin çözümünde kullanılan bir tekniktir. Monte Carlo simülasyonu, genellikle

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

Simülasyonda İstatiksel Modeller. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Simülasyonda İstatiksel Modeller. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Simülasyonda İstatiksel Modeller Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri

Detaylı

ANADOLU ÜNİVERSİTESİ ÖRNEK: GEOMETRİK DAĞILIM

ANADOLU ÜNİVERSİTESİ ÖRNEK: GEOMETRİK DAĞILIM ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ KESİKLİ DAĞILIMLAR-2 DOÇ. DR. NİHAL ERGİNEL 2015 GEOMETRİK DAĞILIM Bir Bernoulli deneyi ilk olumlu sonuç elde edilmesine kadar tekrarlansın. X: ilk olumlu sonucun

Detaylı

RASSAL SAYI ÜRETİLMESİ

RASSAL SAYI ÜRETİLMESİ Dr. Mehmet AKSARAYLI Ekonometri Böl. Simülasyon Ders Notları Rassal Sayı Üretilmesi RASSAL SAYI ÜRETİLMESİ Simülasyon analizinde kullanılacak az sayıda rassal sayı üretimi için ilkel yöntemler kullanılabilir.

Detaylı

Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30)

Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30) ENM 316 BENZETİM ÖDEV SETİ Ödev 1. Bir projede A, B, C, D, E ve F olmak üzere 6 faaliyet vardır. Projenin tamamlanması için bu faaliyetlerin sırası ile yapılması gerekmektedir. Her faaliyetin tamamlanması

Detaylı

ENM 316 BENZETİM GİRİŞ DERS 1 GİRİŞ GİRİŞ. Zaman içerisinde değişiklik gösteren bir sistemin tavrı, geliştirilen bir benzetim modeli ile incelenir.

ENM 316 BENZETİM GİRİŞ DERS 1 GİRİŞ GİRİŞ. Zaman içerisinde değişiklik gösteren bir sistemin tavrı, geliştirilen bir benzetim modeli ile incelenir. GİRİŞ ENM 316 BENZETİM DERS 1 Zaman içerisinde değişiklik gösteren bir sistemin tavrı, geliştirilen bir benzetim modeli ile incelenir. Model, sistemin çalışması ile ilgili kabullerin bir setinden oluşur.

Detaylı

ENM 316 BENZETİM DERS 1 GİRİŞ. Benzetim, karmaşık sistemlerin tasarımı ve analizinde kullanılan en güçlü analiz araçlarından birisidir.

ENM 316 BENZETİM DERS 1 GİRİŞ. Benzetim, karmaşık sistemlerin tasarımı ve analizinde kullanılan en güçlü analiz araçlarından birisidir. ENM 316 BENZETİM DERS 1 GİRİŞ Benzetim, karmaşık sistemlerin tasarımı ve analizinde kullanılan en güçlü analiz araçlarından birisidir. Genel anlamda benzetim, zaman içinde sistemin işleyişinin taklididir.

Detaylı

EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME

EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME GİRİŞ Bu bölümde benzetim için excel örnekleri önerilmektedir. Örnekler excel ile yapılabileceği gibi el ile de yapılabilir. Benzetim örnekleri

Detaylı

ENM 316 BENZETİM ÖDEV SETİ

ENM 316 BENZETİM ÖDEV SETİ ENM 16 BENZETİM ÖDEV SETİ Ödev 1. Bir depo ve N adet müşteriden oluşan bir taşımacılık sisteminde araç depodan başlayıp bütün müşterileri teker teker ziyaret ederek depoya geri dönmektedir. Sistemdeki

Detaylı

ENM 316 BENZETİM. Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30)

ENM 316 BENZETİM. Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30) ENM 316 BENZETİM ÖDEV 1: Bir projede A, B, C, D, E ve F olmak üzere 6 faaliyet vardır. Projenin tamamlanması için bu faaliyetlerin sırası ile yapılması gerekmektedir. Her faaliyetin tamamlanması için gereken

Detaylı

BENZETİM. Prof.Dr.Berna Dengiz. 4. Ders Modelleme yaklaşımları Benzetim yazılımlarında aranan özellikler M/M/1 Kuyruk Sistemi benzetimi

BENZETİM. Prof.Dr.Berna Dengiz. 4. Ders Modelleme yaklaşımları Benzetim yazılımlarında aranan özellikler M/M/1 Kuyruk Sistemi benzetimi Prof.Dr.Berna Dengiz 4. Ders Modelleme yaklaşımları Benzetim yazılımlarında aranan özellikler M/M/1 Kuyruk Sistemi benzetimi BENZETİM DİLLERİNDE MODELLEME YAKLAŞIMLARI Tüm benzetim dilleri; ya olay-çizelgeleme

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

Simülasyonda İstatiksel Modeller

Simülasyonda İstatiksel Modeller Simülasyonda İstatiksel Modeller Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri iyi tanımlayabilir. İlgilenilen olayın örneklenmesi ile uygun

Detaylı

IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R

IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R Geçen Ders Envanter yonetımı: Gazetecı problemı Rastsal Rakamlar Üret Talebi hesapla Geliri hesapla Toplam maliyeti hesapla Günlük ve aylık

Detaylı

ENM-3105 Sistem Simulasyonu Kısa Sınav 1

ENM-3105 Sistem Simulasyonu Kısa Sınav 1 ENM-3105 Sistem Simulasyonu Kısa Sınav 1 Sınav Tarihi ve Yeri: 06 Kasım 2014, Perşembe, İlk ders, B203 No lu Derslik) (Kısa Sınav 1 de aşağıda verilen sorulardan birinin benzeri sorulacaktır.) Soru 1)

Detaylı

IE 303T Sistem Benzetimi

IE 303T Sistem Benzetimi IE 303T Sistem Benzetimi 1 L E C T U R E 5 : O L A S I L I K T E K R A R 2 Review of the Last Lecture Random Variables Beklenen Değer ve Varyans Moment Kesikli Dağılımlar Bernoulli Dağılımı Binom Dağılımı

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri

Detaylı

Bekleme Hattı Teorisi

Bekleme Hattı Teorisi Bekleme Hattı Teorisi Sürekli Parametreli Markov Zincirleri Tanım 1. * +, durum uzayı * +olan sürekli parametreli bir süreç olsun. Aşağıdaki özellik geçerli olduğunda bu sürece sürekli parametreli Markov

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı 1 Bernoulli Dağılımı Bir şans değişkeninin bernoulli dağılımı göstermesi için ilgilenilen süreçte bernoulli

Detaylı

ARALIK TAHMİNİ (INTERVAL ESTIMATION):

ARALIK TAHMİNİ (INTERVAL ESTIMATION): YTÜ-İktisat İstatistik II Aralık Tahmini I 1 ARALIK TAHMİNİ INTERVAL ESTIMATION): Nokta tahmininde ilgilenilen anakütle parametresine ilişkin örneklem bilgisinden hareketle tek bir sayı üretilir. Bir nokta

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ.DR. SAADETTIN ERHAN KESEN. Ders No:2 Simülasyon Örnekleri

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ.DR. SAADETTIN ERHAN KESEN. Ders No:2 Simülasyon Örnekleri 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ.DR. SAADETTIN ERHAN KESEN Ders No:2 GIRIŞ Bu derste elle ya da bir çalışma sayfası yardımıyla oluşturulacak bir simülasyon tablosunun kullanımıyla yapılabilecek simülasyon

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

İSTATİSTİK VE OLASILIK SORULARI

İSTATİSTİK VE OLASILIK SORULARI İSTATİSTİK VE OLASILIK SORULARI SORU 1 Meryem, 7 arkadaşı ile bir voleybol maçına katılmayı planlamaktadır. Davet ettiği arkadaşlarından herhangi bir tanesinin EVET deme olasılığı 0,8 ise, en az 3 arkadaşının

Detaylı

EME SISTEM SİMÜLASYONU. Giriş. Ertelenmiş Talep (Backorder) / Kayıp Satış (Lost Sales) Sürekli / Periyodik Gözden Geçirme

EME SISTEM SİMÜLASYONU. Giriş. Ertelenmiş Talep (Backorder) / Kayıp Satış (Lost Sales) Sürekli / Periyodik Gözden Geçirme .. Giriş EME SISTEM SİMÜLASYONU Simülasyon problemlerinin önemli bir bölümü stok sistemlerini içerir. Bu derste basit bir stokastik stok kontrol sistemi ele alınıp, sistemin isleyişi elle simule Simulasyon

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

Kuyruk Sistemlerinin Benzetimi. KUYRUK & BEKLEME HATTI SİSTEMLERİ Genel nüfus Bekleme hattı Sunucu

Kuyruk Sistemlerinin Benzetimi. KUYRUK & BEKLEME HATTI SİSTEMLERİ Genel nüfus Bekleme hattı Sunucu Kuyruk Sistemlerinin Benzetimi KUYRUK & BEKLEME HATTI SİSTEMLERİ Dr. Mehmet AKSARAYLI Genel nüfus Bekleme hattı Sunucu Genel nüfus Kuyruğa giriş ve hizmetlerin yapısı Sistemin kapasitesi Kuyruk disiplini

Detaylı

DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci

DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci DOĞRUSAL ZAMAN SERİSİ MODELLERİ Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci Tek Değişkenli Zaman Serisi Modelleri Ekonomik verilerin analizi ile ekonomik değişkenlerin gelecekte alabilecekleri

Detaylı

HİPOTEZ TESTLERİ ANADOLU ÜNİVERSİTESİ. Hipotez Testleri ENM317 Mühendislik İstatistiği Doç. Dr. Nihal ERGİNEL 2014

HİPOTEZ TESTLERİ ANADOLU ÜNİVERSİTESİ. Hipotez Testleri ENM317 Mühendislik İstatistiği Doç. Dr. Nihal ERGİNEL 2014 ANADOLU ÜNİVERSİTESİ Hipotez Testleri ENM317 Mühendislik İstatistiği Doç. Dr. Nihal ERGİNEL 2014 HİPOTEZ TESTLERİ Pek çok problemde bazı parametrelere bağlı bir ifadeyi kabul yada red etmek için karar

Detaylı

EME Sistem Simülasyonu. Giriş. Ertelenmiş Talep (Backorder) / Kayıp Satış (Lost Sales) Sürekli / Periyodik Gözden Geçirme

EME Sistem Simülasyonu. Giriş. Ertelenmiş Talep (Backorder) / Kayıp Satış (Lost Sales) Sürekli / Periyodik Gözden Geçirme EME 7 Giriş Sistem Simülasyonu Simülasyon problemlerinin önemli bir bölümü stok sistemlerini içerir. Bu derste basit bir stokastik stok Simulasyon Örnekleri Ders kontrol sistemi ele alınıp, sistemin isleyişi

Detaylı

Zaman Serileri-1. If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist. IENG 481 Tahmin Yöntemleri Dr.

Zaman Serileri-1. If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist. IENG 481 Tahmin Yöntemleri Dr. Zaman Serileri-1 If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere

Detaylı

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel

Detaylı

IE 303 SİSTEM BENZETİMİ

IE 303 SİSTEM BENZETİMİ IE 303 SİSTEM BENZETİMİ DERS 2 : S I M U L A S Y O N Ö R N E K L E R I...making simulations of what you're going to build is tremendously useful if you can get feedback from them that will tell you where

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL İSTATİSTİKSEL TAHMİN Örnekten anakütle parametrelerinin tahmin edilmesidir. İki tür tahminleme yöntemi vardır:

Detaylı

Rassal Değişken Üretimi

Rassal Değişken Üretimi Rassal Değişken Üretimi Doç. Dr. Mehmet AKSARAYLI GİRİŞ Yaşadığımız ya da karşılaştığımız olayların sonuçları farlılık göstermektedir. Sonuçları farklılık gösteren bu olaylar, tesadüfü olaylar olarak adlandırılır.

Detaylı

Rastgele Değişkenlerin Dağılımları. Mühendislikte İstatistik Yöntemler

Rastgele Değişkenlerin Dağılımları. Mühendislikte İstatistik Yöntemler Rastgele Değişkenlerin Dağılımları Mühendislikte İstatistik Yöntemler Ayrık Rastgele Değişkenler ve Olasılık Dağılımları Yapılan çalışmalarda elde edilen verilerin dağılışı ve dağılış fonksiyonu her seferinde

Detaylı

Araştırmada Evren ve Örnekleme

Araştırmada Evren ve Örnekleme 6. Bölüm Araştırmada Evren ve Örnekleme 1 İçerik Örnekleme Teorisinin Temel Kavramları Örnekleme Yapmayı Gerekli Kılan Nedenler Örnekleme Süreci Örnekleme Yöntemleri 2 1 Giriş Araştırma sonuçlarının geçerli,

Detaylı

İşgücü Talebinin Tahmininde Sayısal ve. ve Ayrıntılı Yöntemler. İnsan Kaynakları Planlamasında Sayısal

İşgücü Talebinin Tahmininde Sayısal ve. ve Ayrıntılı Yöntemler. İnsan Kaynakları Planlamasında Sayısal İşgücü Talebinin Tahmininde Sayısal ve Sayısal Yrd. Doç. Dr. Rıza DEMİR İstanbul Üniversitesi İşletme Fakültesi İnsan Kaynakları Planlaması ve Seçimi Dersi 2017 Talep Tahmin i İnsan kaynakları talebi veya

Detaylı

KESİKLİ DÜZGÜN DAĞILIM

KESİKLİ DÜZGÜN DAĞILIM KESİKLİ DÜZGÜN DAĞILIM Eğer X kesikli rassal değişkeninin alabileceği değerler (,,..., ) eşit olasılığa sahip ise, kesikli düzgün dağılım söz konusudur. p(x) =, X=,,..., şeklinde gösterilir. Bir kutuda

Detaylı

EME 3117 SİSTEM SİMULASYONU

EME 3117 SİSTEM SİMULASYONU EME 3117 SİSTEM SİMULASYONU Sonsuz Ufuk Simulasyon (Kararlı Hal Simulasyonu) Ders 14 Hatırlatma Gözleme ve Zamana Dayalı Performans Ölçümleri Gözleme Dayalı Ortalama sistem süresi Ortalama kuyruk süresi

Detaylı

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( )

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( ) İKİ DEĞİŞKENLİ OLASILIK Rassal bir deneme yapılmakta ve farklı iki olay ile ilgilenilmektedir. A 1, A 2,,A i olayları bağdaşmaz ve bütünü kapsayıcıdır. B 1, B 2,,B j olayları bağdaşmaz ve bütünü kapsayıcıdır.

Detaylı

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0 YTÜ-İktisat İstatistik II Hipotez Testi 1 HİPOTEZ TESTİ: AMAÇ: Örneklem bilgisinden hareketle anakütleye ilişkin olarak kurulan bir hipotezin (önsavın) geçerliliğinin test edilmesi Genel notasyon: anakütleye

Detaylı

Laboratuvar 3. Yrd.Doç.Dr.Beyazıt Ocaktan. Elektronik Montaj ve Test Örneği

Laboratuvar 3. Yrd.Doç.Dr.Beyazıt Ocaktan. Elektronik Montaj ve Test Örneği 1 SİSTEM SİMULASYONU Laboratuvar 3 Yrd.Doç.Dr.Beyazıt Ocaktan Elektronik Montaj ve Test Örneği 2 Bir elektronik devre üreticisinin kaplama atölyesini ele alalım. Bu isletmede A ve B parcaları farklı atölyelerde

Detaylı

Ders 4: Rastgele Değişkenler ve Dağılımları

Ders 4: Rastgele Değişkenler ve Dağılımları Ders 4: Rastgele Değişkenler ve Dağılımları Rastgele değişken kavramı Kesikli ve sürekli rastgele değişkenler İki boyutlu rastgele değişkenler Beklenen değer Varyans Örnek uzaydaki her elemanı bir sayıyla

Detaylı

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01 Ortak Varyans ve İstatistiksel Bağımsızlık Bir rassal değişken çifti istatistiksel olarak bağımsız ise aralarındaki ortak varyansın değeri 0 dır. Ancak ortak varyans değerinin 0 olması, iki rassal değişkenin

Detaylı

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ Günümüz simülasyonları gerçek sistem davranışlarını, zamanın bir fonksiyonu olduğu düşüncesine dayanan Monte Carlo yöntemine dayanır. 1.

Detaylı

Rasgele Sayı Üretme. Rasgele Sayıların Özellikleri. İki önemli istaiksel özelliği var :

Rasgele Sayı Üretme. Rasgele Sayıların Özellikleri. İki önemli istaiksel özelliği var : Rasgele Sayı Üretme Rasgele Sayıların Özellikleri İki önemli istaiksel özelliği var : Düzgünlük (Uniformity) Bağımsızlık R i, rasgele sayısı olasılık yoğunluk fonksiyonu aşağıdaki gibi olan uniform bir

Detaylı

ANADOLU ÜNİVERSİTESİ BEKLENEN DEĞER. X beklenen değeri B[X] ile gösterilir. B[X] = İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER

ANADOLU ÜNİVERSİTESİ BEKLENEN DEĞER. X beklenen değeri B[X] ile gösterilir. B[X] = İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER DOÇ. DR. NİHAL ERGİNEL 2015 X beklenen değeri B[X] ile gösterilir. B[X] = BEKLENEN DEĞER Belli bir malzeme taşınan kolilerin ağırlıkları

Detaylı

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan 1 Ders Planı 1. Karar Problemleri i. Karar problemlerinin bileşenleri ii. Değerler, amaçlar, bağlam iii. Etki diagramları 2. Model Girdilerinde Belirsizlik

Detaylı

İSTATİSTİKSEL TAHMİNLEME. Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir.

İSTATİSTİKSEL TAHMİNLEME. Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir. İSTATİSTİKSEL TAHMİNLEME Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir. 1 ŞEKİL: Evren uzay-örneklem uzay İstatistiksel tahmin

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1 3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki

Detaylı

KUYRUK TEORİSİ II DOĞUM-ÖLÜM SÜRECİ

KUYRUK TEORİSİ II DOĞUM-ÖLÜM SÜRECİ SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II KUYRUK TEORİSİ II DOĞUM-ÖLÜM SÜRECİ DERS NOTLARI DOĞUM-ÖLÜM SÜRECİ Kuyruk sistemindeki t zamanındaki müşteri sayısını kuyruk sisteminin

Detaylı

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serileri IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere sahip değișkenlere zaman serisi adı verilmektedir. Genel olarak zaman serisi,

Detaylı

Sürelerine Göre Tahmin Tipleri

Sürelerine Göre Tahmin Tipleri Girişimcilik Bölüm 5: Talep Tahmini scebi@ktu.edu.tr 5.1. Talep Tahmini Tahmin: Gelecek olayları önceden kestirme bilim ve sanatı. İstatistiksel Tahmin: Geçmiş verileri matematiksel modellerde kullanarak

Detaylı

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir, 14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.

Detaylı

ortalama ve ˆ ˆ, j 0,1,..., k

ortalama ve ˆ ˆ, j 0,1,..., k ÇOKLU REGRESYONDA GÜVEN ARALIKLARI Regresyon Katsayılarının Güven Aralıkları y ( i,,..., n) gözlemlerinin, xi ortalama ve i k ve normal dağıldığı varsayılsın. Herhangi bir ortalamalı ve C varyanslı normal

Detaylı

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Örnekleme Planlar ve Dağılımları Prof. Dr. İrfan KAYMAZ Tanım İncelenen olayın ait olduğu anakütlenin bütünüyle dikkate alınması zaman, para, ekipman ve bunun gibi nedenlerden dolayı

Detaylı

Appendix B: Olasılık ve Dağılım Teorisi

Appendix B: Olasılık ve Dağılım Teorisi Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz...

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... 1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... CABİR VURAL BAHAR 2006 Açıklamalar

Detaylı

9/22/2014 EME 3105 SİSTEM SİMÜLASYONU. Giriş. Tek Kanallı Kuyruk Sistemi. Kuyruk Sistemlerinin Simulasyonu. Simulasyon Örnekleri Ders 2

9/22/2014 EME 3105 SİSTEM SİMÜLASYONU. Giriş. Tek Kanallı Kuyruk Sistemi. Kuyruk Sistemlerinin Simulasyonu. Simulasyon Örnekleri Ders 2 EME 3105 SİSTEM SİMÜLASYONU Simulasyon Örnekleri Ders Giriş Bu derste bilgisayar yardımı olmaksızın çalıştırılabilen birkaç simulasyon örneği verilmiştir. Bu örnekler size sistem simulasyonu metodolojisini

Detaylı

İSTATİSTİK STATISTICS (2+0) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI

İSTATİSTİK STATISTICS (2+0) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI İSTATİSTİK STATISTICS (+) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI KONU BAŞLIKLARI :. İSTATİSTİĞE GİRİŞ. VERİLERİN DÜZENLENMESİ. MERKEZİ EĞİLİM ÖLÇÜLERİ.

Detaylı

İSTATİSTİĞE GİRİŞ VE OLASILIK

İSTATİSTİĞE GİRİŞ VE OLASILIK 1. 52 iskambil kağıdı ile oynanan bir kağıt oyununda çekilen kart vale ya da kız ise 3$, papaz ya da as ise 5$ kazanılmaktadır. Başka herhangi bir kartın çekilmesi durumunda oyun kaybedilmektedir. Oyunun

Detaylı

Tesadüfi Değişken. w ( )

Tesadüfi Değişken. w ( ) 1 Tesadüfi Değişken Tesadüfi değişkenler gibi büyük harflerle veya gibi yunan harfleri ile bunların aldığı değerler de gibi küçük harflerle gösterilir. Tesadüfi değişkenler kesikli veya sürekli olmak üzere

Detaylı

EME 3105 SİSTEM SİMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9

EME 3105 SİSTEM SİMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9 EME 3105 1 Girdi Analizi Prosedürü SİSTEM SİMÜLASYONU Modellenecek sistemi (prosesi) dokümante et Veri toplamak için bir plan geliştir Veri topla Verilerin grafiksel ve istatistiksel analizini yap Girdi

Detaylı

DESTEK DOKÜMANI 1/11. Ürün : UNITY2 Bölüm : PLANLAMA. Đçindekiler

DESTEK DOKÜMANI 1/11. Ürün : UNITY2 Bölüm : PLANLAMA. Đçindekiler Đçindekiler Đçindekiler...1 1. UYGUN ĐŞ ĐSTASYONU BELĐRLEME...2 1.1 Operasyon Kartı...2 1.2 Üretim Emri...3 1.3 TSY Üretim Kontrol Parametreleri...3 1.4 Çalışma Prensibi...3 2. MPS / MRP GÜNCELLEMELERĐ...6

Detaylı

Bir Normal Dağılım Ortalaması İçin Testler

Bir Normal Dağılım Ortalaması İçin Testler Bir Normal Dağılım Ortalaması İçin Testler İÇERİK o Giriş ovaryansı Bilinen Bir Normal Dağılım Ortalaması İçin Hipotez Testler P-değerleri: II. Çeşit hata ve Örnekleme Büyüklüğü Seçimi Örnekleme Büyüklüğü

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 8: Prof. Dr. Tanım Hipotez, bir veya daha fazla anakütle hakkında ileri sürülen, ancak doğruluğu önceden bilinmeyen iddialardır. Ortaya atılan iddiaların, örnekten elde edilen

Detaylı

Sürekli Rastsal Değişkenler

Sürekli Rastsal Değişkenler Sürekli Rastsal Değişkenler Normal Dağılım: Giriş Normal Dağılım: Tamamen ortalaması ve standart sapması ile tanımlanan bir rastsal değişken, X, için oluşturulan sürekli olasılık dağılımına normal dağılım

Detaylı

Kuyruk Sistemlerinin Simülasyonu

Kuyruk Sistemlerinin Simülasyonu Kuyruk Sistemlerinin Simülasyonu Kuyruk sistemlerinin simülasyonu sonraki adımda ne olacağını belirlemek üzere bir olay listesinin tutulmasını ve bakımını gerektirir. Simülasyonda olaylar genellikle gerçek

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa, NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

ÜSTEL DÜZLEŞTİRME YÖNTEMİ

ÜSTEL DÜZLEŞTİRME YÖNTEMİ ÜSEL DÜLEŞİRME YÖNEMİ ÜSEL DÜLEŞİRME YÖNEMİ Bu bölüme kadar anlatılan yöntemler zaman içinde değişmeyen parametre varsayımına uygun serilerin tahminlerinde kullanılmaktaydı. Bu tür seriler deterministik

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II KUYRUK TEORİSİ - I DERS NOTLARI

SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II KUYRUK TEORİSİ - I DERS NOTLARI SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II KUYRUK TEORİSİ - I DERS NOTLARI KUYRUK TEORİSİ Her birimiz kuyruklarda bekleyerek vakit geçirmişizdir. Bu derste kuyruklarlarla ilgili

Detaylı

EME 3105 SİSTEM SİMULASYONU (ARENA) Hafta 3

EME 3105 SİSTEM SİMULASYONU (ARENA) Hafta 3 T.C. BALIKESİR ÜNİVERSİTESİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ EME 3105 SİSTEM SİMULASYONU (ARENA) Hafta 3 Beyazıt OCAKTAN SİMULASYON ÇALIŞMA PARAMETRELERİNİN GİRİLMESİ Örnek 1'de verilen eczanenin haftanın

Detaylı

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma 2 13.1 Normal Dağılımın Standartlaştırılması Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma değerleriyle normal

Detaylı

İSTATİSTİK II (İST202U)

İSTATİSTİK II (İST202U) İSTATİSTİK II (İST202U) KISA ÖZET KOLAYAOF DİKKATİNİZE: BURADA SADECE ÖZETİN İLK ÜNİTESİ SİZE ÖRNEK OLARAK GÖSTERİLMİŞTİR. ÖZETİN TAMAMININ KAÇ SAYFA OLDUĞUNU ÜNİTELERİ İÇİNDEKİLER BÖLÜMÜNDEN GÖREBİLİRSİNİZ.

Detaylı

RASGELE SÜREÇLER İ.Ü. ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ İLETİŞİM LABORATUVARI ARALIK, 2007

RASGELE SÜREÇLER İ.Ü. ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ İLETİŞİM LABORATUVARI ARALIK, 2007 RASGELE SÜREÇLER İ.Ü. ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ İLETİŞİM LABORATUVARI ARALIK, 007 1 Tekdüze Dağılım Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk

Detaylı

KAPASİTE PLANLAMASI ve ÖLÇME KRİTERLERİ

KAPASİTE PLANLAMASI ve ÖLÇME KRİTERLERİ KAPASİTE PLANLAMASI ve ÖLÇME KRİTERLERİ Kuruluş yeri belirlenen bir üretim biriminin üretim miktarı açısından hangi büyüklükte veya kapasitede olması gerektiği işletme literatüründe kapasite planlaması

Detaylı

RISK ANALIZI SINAVI WEB EKİM Kasko sigortasından çekilen beş hasarlı bir rassal örneklem aşağıdaki gibi verilmektedir:

RISK ANALIZI SINAVI WEB EKİM Kasko sigortasından çekilen beş hasarlı bir rassal örneklem aşağıdaki gibi verilmektedir: RISK ANALIZI SINAVI WEB EKİM 2017 SORU 1: Kasko sigortasından çekilen beş hasarlı bir rassal örneklem aşağıdaki gibi verilmektedir: 115 240 325 570 750 Hasarların α = 1 ve λ parametreli Gamma(α, λ) dağılıma

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu

Detaylı

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir Bilimsel Araştırma Yöntemleri Prof. Dr. Şener Büyüköztürk Doç. Dr. Ebru Kılıç Çakmak Yrd. Doç. Dr. Özcan Erkan Akgün Doç. Dr. Şirin Karadeniz Dr. Funda Demirel Örnekleme Yöntemleri Evren Evren, araştırma

Detaylı