Yoksulun Kazanabildiği Bir Oyun Ali Nesin
|
|
|
- Ömer Sağlık
- 10 yıl önce
- İzleme sayısı:
Transkript
1 Yosulun Kazanabildiği Bir Oyun Ali Nesin B u yazıda yosulu azandıracağız. Küçü bir olasılıla da olsa, yosul azanabilece. Oyunu açılamadan önce, Sonlu Oyunlar adlı yazımızdai oyunu anımsayalım: İi oyuncu yazı-tura oynuyorlar. İl yazı-tura atışında ortaya lira sürülüyor. Oyunculardan biri, diyelim birinci oyuncu, aybettiçe ortaya oyduğu parayı arttırıyor, bir öncei atışta aybettiğinin ii atını oyuyor. Kazandığındaysa ortaya lira oyuyor. Örneğin birinci oyuncu il atışta aybederse, iinci atışta ortaya lira sürüyor. İinci atışta da aybederse, üçüncü atışta ortaya 4 lira sürüyor. Yine aybederse 8 lira sürüyor Kazanana değin bu böyle devam ediyor. Kazandığında gene lira ortaya sürüyor. Birinci oyuncu stratejisine devam edebildiçe devam ediyor. Devam edemediğinde, yani cebinde yeterli parası almadığında, oyun bitiyor. Sonlu Oyunlar yazısında, ii oyuncunun da sonlu parası olduğunda bu oyunun uygulamada esinlile biteceğini anıtlamıştı. Aynı oyunu oynayacağız. Anca bu ez iinci oyuncunun sonsuz parası olduğunu varsayacağız (zengin oyuncu.) Birinci oyuncununsa yalnızca lirası var (yosul oyuncu.) Yosul, birinci oyuncu ve yuarda açıladığımız stratejiyle oynuyor. Eğer stratejisini sürdüremezse oyun bitiyor; oyun daha önce bitemez. Zenginin parası hiç bitmediğinden, zenginin bu oyunu aybetme olasılığı yotur. Daha il yazı-tura atışında yosul aybederse, yosul cebindei te lirayı aybeder ve oyun hemen biter. Dolayısıyla en az / olasılıla yosul oyunu aybedecetir. Yosulun oyundan beş parasız alma olasılığını bulamadım. Yazının sonunda bu olasılığı bulma için hesaplanması gereen bir sonsuz toplamı vereceğim. Yosul il atışta azanıp iinci atışta aybederse ne olur? Oyun gene biter, ama bu ez yosulun cebinde lirası vardır. Yani yosul tapi alar. Çünü, yosul, birinci yazı-tura atışında azanmıştır, dolayısıyla iinci atıştan hemen önce cebinde lirası vardır. İinci atışta aybettiğinde yalnızca lirası almıştır. Üçüncü atış için ortaya lira oyması geremetedir ama lirası yotur. Deme i en az /4 olasılıla yosul oyundan ne azançlı ne de zararlı alar. Yosulun oyundan ne azançlı ne de zararlı alma olasılığını da bulamadım. Yosulun Şansı başlılı yazıdai oyunun tersine bu oyunda yosul azanabilir. Öyle bir an gelebilir i, yosulun cebinde liradan fazla para olmasına arşın, yosul stratejisini sürdüremez (yani oyun biter.) Örneğin, yosul il dört atışta azanır da sonrai ii atışta aybederse yosulun cebinde lira olmasına arşın oyun biter. Deme i en az / 6 = /64 olasılıla yosul oyundan azançlı ayrılır. Yosulun oyundan lira azançlı alma olasılığını da bilmiyorum. Bu hesaplayamadığım olasılıların yalaşı hesaplanabilmesi için gereen malzeme bu yazıda vardır. Dileyen our bu sayıları yalaşı hesaplayabilir. Bu tam olara hesaplayamadığım olasılılar henüz ad verilmemiş sayılar da olabilirler. Sözcü sayımız sonsuz ama anca sayılabilir sonsuzluta. Gerçel (reel) sayılarsa sayılamaz sonsuzluta. Dolayısıyla her sayıya ad veremeyiz. Önemli bulduğumuz sayılara ad veririz. Örneğin π önemli olduğundan π ye bir ad verilmiştir: π. π nin aresinin ve areöünün de adları vardır: π ve π. Tam olara hesaplayamadığım bu üç olasılığa daha önce bir ad verilmiş midir bilmiyorum. Verilmemişse hiçbir zaman tam olara hesaplayamayız. Nasıl π nin aç olduğunu hiçbir zaman tam olara bilemeyecese ve anca adını söyleyere π nin imliğini
2 Bu oyun sonsuza de sürebilir, örneğin fair hep azanırsa... Ama göreceğiz i oyunun sonsuza de sürebilme olasılığı 0 dır. Bunu anıtlayabildim! Dolayısıyla oyun %00 (yani ) olasılıla biter. Deme i oyun uramsal olara sonsuza de sürebilse bile, uygulamada sonlu sayıda yazı-tura atışından sonra biter. Bu yazıda işte bu sonucu anıtlayacağız. Oyunun il anlarda alabileceği durumları gösteren bir şema çizeceğiz. Önce oyunun alabileceği durumlarını saptayalım. Oyunun her durumunu ii sayıyla gösterebiliriz. Birinci sayı yosulun cebindei para olsun; iinci sayıysa bir sonrai atış için ortaya sürülen (daha doğrusu yosulun ortaya sürmesi gereen) para olsun. İinci sayı hep nin üstleri olma zorunda,,, 4, 8, 6 gibi. Oyunun en başındai durum (,) durumu. Çunü, yosul oyuna lirayla başlıyor ve il atışta ortaya lira sürüyor. Bu durumda yosul azanırsa oyun (,) durumuna geçece, aybederse de (0,) durumuna (ve oyun bitece.) (,) durumundan sonra oyun ya (,) durumuna ya da (3,) durumuna erişir. Birinci şıta oyun biter, iinci şıta sürer. Eğer bir durumdan sonra oyun bitmemişse, oyun ii durumdan birini alır: yosul o atışta ya azanmıştır ya da aybetmiştir. İşte oyunun il biraç yazı-tura atışında alabileceği durumlar:, 0,,, 3,, 4, 0,4 3, 5,,4 4, 6,,4 5, 7, 3,4 6, 8, 4,4 7, 9, 0,8 5,4 8, 0, (Gri arelerde oyun bitmiştir. Sola giden olar aybettiğimizi, sağa giden olarsa azandığımızı gösteriyorlar.) belirtebiliyorsa, bu sayıları da hiçbir zaman bilemeyebiliriz, hatta daha önceden adı onmuş sayılarla arasında cebirsel bir bağıntı bile olmayabilir. Özet olara deme istediğim, bu sayıların tam olara hesaplanamayabileceleri. Bu bağlamda ala gelen il soru şu: Hesaplayamadığım olasılılar esirli sayılar mıdır? Sanmıyorum. Bu oyunun olasılıla bitmesi yosulun cebindei paraya bağlı değildir. Aşağıdai şemadan da anlaşılacağı üzere, yosulun cebinde lira olduğunda oyun olasılıla biterse, yosulun cebinde aç para olursa olsun oyun gene olasılıla biter.
3 Yuarda da dediğimiz gibi oyunun sonsuza değin sürme olasılığının 0 olduğunu anıtlayacağız. (n, ) durumuna gelme olasılığına p(n, ) diyelim. Örneğin, p( =,) p(0 = /,) p( = /,) p( = /4,) p(3 = /4,) p( = /8,) p(4 = /8 + /6 = 3/6,) p(0 = /6,4) p(3 = /6 + /3 = 3/3,) p(5,) = /6 + /3 + /64 = 9/64 Oyunun sonsuza gidebilmesi için bütün (n,) durumlarına ulaşılmalıdır. Bu, şemadan olayca anlaşılıyor. Deme i oyunun sonsuza de sürebilme olasılığı, p(n,) dizisinin n sonsuza gittiğinde aldığı değerdir. Dolayısıyla, lim n p(n,) sayısını hesaplamamız gereiyor. Bu sayının 0 olduğunu göreceğiz. Bu limitin sıfır olduğunu anıtlama için, aşağıdai eşitliği bulma yeterlidir: lim n p( n,) = 0. (*) Bu son eşitliği anıtlama daha olay olaca. Önce p(n, ) sayılarını bulma istiyoruz. Bunun için biraz matemati yapmalıyız. Ourun, yapacağımız matematiği daha iyi anlaması için, sı sı yuardai şemaya baması gereecetir. İl olara, eğer > 0 ise, p(n, ) = p(n+, )/ () eşitliğine diatinizi çeerim. Çünü, eğer > 0 ise, > dir, yani oyuncumuz den büyü bir para ortaya sürmetedir; dolayısıyla (n, ) durumuna gelmenin bir te yolu vardır, o da bir öncei oyunda aybetmiş olma. Bir öncei oyunun durumu ne olabilir? (n, ) durumunda ortaya oyduğumuza göre, bir öncei oyunda ortaya oymuşuzdur (ve aybetmişizdir.) Dolayısıyla (n, ) durumuna anca (n+, ) durumundan geçilebilir. () eşitliği işte bu yüzden geçerlidir. Eğer > ise, () eşitliğinde yerine ve n yerine n + oyabiliriz ve p(n+, ) = p(n+ +, )/ eşitliğini elde ederiz. Bu son eşitliği () in sağ tarafına yerleştirere, p(n, ) = p(n+ +, )/4 eşitliğini elde ederiz. Bunu böylece sürdürürse, p(n, ) = p(n ,)/
4 eşitliği elde edilir. Bu eşitlitei sayısı sayısına eşit olduğundan, eğer > 0 ise, ppppp niye > 0??? p(n, ) = p(n+,)/ () eşitliği geçerlidir. () eşitliğinden, p(n, ) sayılarını bulma için, p(n,) sayılarını bulmamız geretiği anlaşılıyor. Bu sayıları bulalım. (n,) durumuna anca azanara gelinir. Yani (n,), (n,), (n 4,4) gibi durumlardan. Dolayısıyla, p(n,) sayısı, p(n,)/, p(n,)/, p(n 4,4)/,... sayılarının toplamıdır. Yani, bir için, p(n, )/ biçiminde yazılabilen sayıların toplamıdır. () eşitliği, p(n, ) = p(n,)/ eşitliğini verdiğinden, p(n,) sayısının p(n,)/ + sayılarının toplamı olduğu anlaşılır. Ama buradai sayıları n oşulunu, yani + n oşulunu sağlamalıdır, çünü asi halde (n, ) durumunda oyun bitmiştir ve bu durumdan (n,) durumuna geçilmez. (n), n eşitsizliğini sağlayan sayılarının en büyüğü olsun. Deme i, p(n,) = ( n) p( n, ) / = ( n) = p(n, ) / = = p(n, )( / (n) ) Bu eşitliği n ez ullanara, buluruz. Ama p(,) =. Deme i, Burada n yerine n alırsa, p(n,) = p(,) ( / ) n n ( i) ( i) p(n,) = ( / ) n ( i) p( n,) = ( / ) buluruz. Şimdi herhangi bir doğal sayı olsun. Hangi i sayıları için (i) = eşitliğinin doğru olduğunu bulalım. i, (i) = eşitliğini sağlayan bir sayı olsun. sayısı, i eşitsizliğini sağlayan sayıların en büyüğü olduğundan, i < + eşitsizliği geçerlidir. Ve bunun tersi de doğrudur: eğer i < + ise, (i) = eşitliği geçerlidir. Bu eşitsizlileri sağlayan aç tane i sayısı vardır? Biraz düşünme, tane olduğunu gösterir. (4) eşitliğinin sağındai çarpılaca terimler bu tane i sayısı için birbirlerine eşittirler. Dolayısıyla (4) eşitliğini, n p( n,) = ( / ) olara yazabiliriz. Bu eşitliği ullanara p( n,) sayılarının n sonsuza gittiğinde sıfıra yaınsadılarını anıtlayacağız. Bunun için onumuzdan biraz uzalaşıp ii önsav anıtlayacağız: = Önsav. Eğer 0 < x < ise ve n > 0 bir doğal sayıysa, ( x) n nx + n(n ) x. (3) (4) (5)
5 Kanıt: Eğer n = ise önsav elbette doğru. Şimdi önsavın n için doğru olduğunu varsayıp n + için anıtlayalım. Deme i, ( x) n nx + n(n ) x eşitsizliğini biliyoruz, daha doğrusu bildiğimizi varsayıyoruz. Aynı eşitliği n yerine n+ için, yani ( x) n+ (n+)x + (n+)n x eşitsizliğini anıtlamaya çalışacağız. Her ii tarafı da x ile çarpalım, 0 < x olduğundan, ( x) n+ ( nx + n(n ) x )( x) elde ederiz. Üsttei eşitliğin sağ tarafını açaca olursa, ( x) n+ (n + )x + n(n+) x n(n+) buluruz. x > 0 olduğundan, yuardai son terimi atıp, ( x) n+ < (n + )x + n(n+) elde ederiz. Deme i önsav n+ için doğru. Tümevarımla önsav her doğal sayı için doğrudur. Önsavımız anıtlanmıştır. x x 3 Önsav. ise, ( / ) < /. Kanıt: Üsttei önsavda x = / ve n = alalım. ( / ) (/ ) + ( ) (/ ) elde ederiz. Eşitsizliğin sağ tarafındai il ii terim sadeleşir. En sağdai terimi hesaplayalım: ( ) + = + = + < İinci önsav da anıtlanmıştır 3. Şimdi (5) tei sayıların sıfıra yaınsadığını anıtlayabiliriz. İinci önsavı ve (5) eşitliğini ullanara, p( n,) / n buluruz. n sonsuza gittiğinde sağdai terimler 0 a yaınsadığından, p( n,) sayıları da sıfıra yaınsar. Deme i oyunun sonsuza de sürme olasılığı 0 dır ve oyun olasılıla biter. Oyundan yosulun zararlı (yani 0 lirayla) alma olasılığı nedir? Bu olasılığı bulma için p(0, ) sayılarını toplamalıyız. p o = = p( 0, ) olsun. p o, yosulun oyundan zararlı alma olasılığıdır. () eşitliğinde n = 0 alırsa, 3 Bu önsavın doğruluğu biraz analizle de çıabilir. ( / ) sayılarının /e sayısından (dolayısıyla / sayısından da) üçü olduları analiz ullanara olaylıla anıtlanabilir.
6 p(0, ) = p(,)/ buluruz. (5) eşitliğini de ullanara, elde ederiz. Dolayısıyla, p o = dir. Bu sayıyı hesaplayamadım. p(0, ) = ( / i ) = ( / ) i i i
Yoksulun Kazanabildi i Bir Oyun
Yoksulun Kazanabildi i Bir Oyun B u yaz da yoksulu kazand raca z. Küçük bir olas l kla da olsa, yoksul kazanabilecek. Oyunu aç klamadan önce, Sonlu Oyunlar adl yaz m zdaki (sayfa 17) oyunu an msayal m:
yaz -tura at yor. Yaz gelirse birinci oyuncu, tura gelirse ikinci oyuncu kazanacak. Birinci oyuncu oyunun bafl nda ortaya 1 lira koyuyor.
Sonlu Oyunlar B u kitapta s k s k oyunlar konu edece iz. Oyunlar sonlu ve sonsuz oyunlar diye ikiye ay raca z. Sonsuz oyunlar da ilerde ikiye ay raca z: Uygulamada sonsuza dek sürebilen ve süremeyen oyunlar.
Bu yaz girifle gereksinmiyor. Do rudan, kan tlayaca m z
Yoksulun fians Bu yaz girifle gereksinmiyor. Do rudan, kan tlayaca m z sonuca geçelim: Teorem. Yoksulun zengine karfl flans yoktur. Bu çok bilinen teorem i kan tlayabilmek için her fleyden önce önermeyi
Bir önceki yaz da, yaz -tura oyununda yoksulun zengine karfl
Zü ürt Tesellisi Bir önceki yaz da, yaz -tura oyununda yoksulun zengine karfl flans n n çok az oldu unu kan tlam flt k. Öyle ki, zengin sonsuz zengin oldu unda oyunu 1 olas l kla (yani yüzde yüz) kazanacakt
Cahit Arf Liseler Arası Matematik Yarışması 2008
Cahit Arf Liseler Arası Matemati Yarışması 2008 İinci Aşama 11 Mayıs 2008 Notlar: Birnci tasla. 1. Tamsayılardan gerçel sayılara tanımlı fonsiyonlar ümesi üzerinde şöyle bir operatörü tanımlayalım: f(x)
Gerçekten Asal Var mı? Ali Nesin
Bu yazıda hile yapıyorum... Bir yerde bir hata var. Gerçekten Asal Var mı? Ali Nesin K endinden ve birden başka sayıya bölünmeyen a asal denir. Örneğin, 2, 3, 5, 7, 11, 13, 17, 19 asal dır. Ama 35 asal
Yüzde Yüz Sonlu Sonsuz Oyunlar
Yüzde Yüz Sonlu Sonsuz Oyunlar T avla Üzerine Bir Soru adl yaz da kuramsal olarak sonsuz bir oyun olan tavlan n gerçekte, yani uygulamada, sonsuz olup olmad sorusunu sorduk. Bu yaz da kuramsal olarak sonsuz,
Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.
Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal
NİM Ali Nesin. 1 d2 d4 müydü bu hamle acaba?
NİM Ali Nesin D oktora yaptığım okulun en büyük odası toplumsal etkinliklere ayrılmıştı. Bu odanın hemen yanında çay ve kahve ocağı vardı. Matematikçiler çalışmaktan bunaldıklarında, sohbet etmek istediklerinde
Sevdiğim Birkaç Soru
Sevdiğim Birkaç Soru Matematikte öyle sorular vardır ki, yanıtı bulmak önce çok zor gibi gelebilir, sonradan saatler, günler, aylar, hatta kimi zaman yıllar sonra yanıtın çok basit olduğu anlaşılır. Bir
Bir tavla maç 5 te biter. Yani 5 oyun kazanan ilk oyuncu
Bir Tavla Sorusu Bir tavla maç 5 te biter. Yani 5 oyun kazanan ilk oyuncu tavla maç n kazan r. Kimi tavlac lar maç n 5-4 bitmesine raz olmazlar, aradaki fark n en az 2 olmas n isterler, 6-4, 7-5, 8-6 gibi...
Blöfün Matematiği Ali Nesin
Blöfün Matematiği Ali Nesin 0) Giriş Bu yazıda, basitleştirilmiş birkaç poker oyunu oynayacağız Yazıyı anlamak için poker bilmeye gerek yoktur Oyunlarımızı iki kişi arasında ve as ve papazdan oluşan büyük
Bu dedi im yaln zca 0,9 say s için de il, 0 la 1 aras ndaki herhangi bir say için geçerlidir:
Yak nsamak B u yaz da, ilerde s k s k kullanaca m z bir olguyu tan mlayaca z ve matemati in en önemli kavramlar ndan birine (limit kavram na) de inece iz. Asl nda okur anlataca m kavram sezgisel olarak
1) Toplam gelir fonksiyonu olarak verildiğine göre marjinal gelir fonksiyonu MG aşağıdakilerden hangisidir? A) ** B) C) D) E)
İktisadi ve İdari Bilimler Fakültesi MAT 152 Genel Matematik II Final Sorularının Çözümleri: 1) Toplam gelir fonksiyonu olarak verildiğine göre marjinal gelir fonksiyonu MG aşağıdakilerden hangisidir?
Oyunlar mdan s k lan okurlardan -e er varsa- özür dilerim.
Barbut Oyunlar mdan s k lan okurlardan -e er varsa- özür dilerim. Ne yapal m ki ben oyun oynamay çok severim. Birinci Oyun. ki oyuncu s rayla zar at yorlar. fiefl (6) atan ilk oyuncu oyunu kazan yor. Ve
Pokerin Matematiği açık oyun renk
Pokerin Matematiği atrançta bir oyuncunun bilip de öbür oyuncunun bilmediği bilgi yoktur. Bu tür oyunlara açık oyun diyelim. STavlada da bir oyuncunun bildiğini öbür oyuncu bilir. Birinin öbüründen gizlisi
Beyin Cimnastikleri (I) Ali Nesin
Beyin Cimnastikleri (I) Ali Nesin S eks, yemek ve oyun doğal zevklerdendir. Her memeli hayvan hoşlanır bunlardan. İlk ikisi konumuz dışında. Üçüncüsünü konu edeceğiz. 1. İlk oyunumuz şöyle: Aşağıdaki dört
MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.
SU DALGALARINDA GİRİŞİM
SU DALGALARINDA GİRİŞİM Yukarıda iki kaynağın oluşturduğu dairesel su dalgalarının meydana getirdiği girişim deseni gösterilmiştir Burada kesikli çizgiler dalga çukurlarını, düz çizgiler dalga tepelerini
ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14
ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Analiz Cilt 2 Ünite 8-14 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1082 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 600
Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n,
DİZİLER Tamamen belirli bir kurala göre sıralanmış sayılar topluluğuna veya kümeye Dizi denir. Belirli bir kurala göre birbiri ardınca gelen bu sayıların her birine dizinin terimi ve hepsine birden dizinin
LYS Matemat k Deneme Sınavı
LYS Matemat Deneme Sınavı. ii basamalı doğal saıdır. 6 en büü saısı ile en üçü saısının toplamı açtır? 8 89 8 6. için, 9 ( ) ifadesinin sonucu aşağıdailerden hangisidir? 6. ile saıları arasındai çift saıların
Limit Oyunları. Ufuk Sevim [email protected] 10 Ekim 2012
Limit Oyunları Ufuk Sevim [email protected] 10 Ekim 2012 1 Giriş Limit ve sonsuzluk kavramlarının anlaşılması birçok insan için zor olabilir. Hatta bazı garip örnekler bu anlaşılması zor kavramlar
Doğrusal Denklem Sistemlerini Cebirsel Yöntemlerle Çözme. 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira
2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira 1 16 soruluk bir testte 5 ve 10 puanlık sorular bulunmaktadır. Soruların tamamı doğru cevaplandığında 100 puan alındığına göre testte
Saf Stratejilerde Evrimsel Kararlılık Bilgi Notu Ben Polak, Econ 159a/MGT 522a Ekim 9, 2007
Saf Stratejilerde Evrimsel Kararlılık Ben Polak, Econ 159a/MGT 522a Ekim 9, 2007 Diyelim ki oyunlarda stratejiler ve davranışlar akıl yürüten insanlar tarafından seçilmiyor, ama oyuncuların genleri tarafından
TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar
TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c
2. (v+w+x+y+z) 8 ifadesinin açılımında kaç terim vardır? 3. log 5 0, 69897 olduğuna göre 50 10 sayısı kaç basamaklıdır?
Ayrık Hesaplama Yapıları A GRUBU 3.03.0 Numarası Adı Soyadı : CEVAP : ANAHTARI SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem
MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için
MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret
MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için
MIT Açı Ders Malzemeleri http://ocw.mit.edu Bu materyallerde alıtı yapma veya Kullaım Koşulları haıda bilgi alma içi http://ocw.mit.edu/terms veya http://www.aciders.org.tr adresii ziyaret ediiz. 18.102
Ders 9: Bézout teoremi
Ders 9: Bézout teoremi Konikler doğrularla en fazla iki noktada kesişir. Şimdi iki koniğin kaç noktada kesiştiğini saptayalım. Bunu, çok kolay gözlemlerle başlayıp temel ve ünlü Bézout teoremini kanıtlayarak
Fonksiyonlarda limiti öğrenirken değişkenlerin limitini ve sağdan-soldan limit kavramlarını öğreneceksiniz.
8.2. Fonksiyonlarda Limit Fonksiyonlarda limiti öğrenirken değişkenlerin limitini ve sağdan-soldan limit kavramlarını öğreneceksiniz. 8.2.1. Değişkenin Limiti Sonsuz sayıda değer alabilen bir x değişkeninin
( ) FAKTÖRĐYEL YILLAR /LYS. Örnek( 4.)
YILLAR 00 003 004 005 006 007 008 009 00 0 ÖSS-YGS - - - - 0/ - / /LYS FAKTÖRĐYEL Örnek( 4) 3)!! ) )! 4 )!? den n e kadar olan sayıların çarpımına n! denir n! 34(n-)n 0!!! 3! 3 6 4! 34 4 5!3450 Örnek(
Lineer Denklem Sistemleri
Lineer Denklem Sistemleri Yazar Yrd. Doç.Dr. Nezahat ÇETİN ÜNİTE 3 Amaçlar Bu üniteyi çalıştıktan sonra; Lineer Denklem ve Lineer Denklem Sistemleri kavramlarını öğrenecek, Lineer Denklem Sistemlerinin
DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler
DÖRDÜNCÜ BÖLÜM 4.1. Aritmetik işlemler Bu bölümde öğrencilerin lisede bildikleri aritmetik işlemleri hatırlatacağız. Bütün öğrencilerin en azından tamsayıların toplama, çıkarma, çarpma ve bölme işlemlerini
Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları
Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları Projenin Amacı: Metalik Oranların elde edildiği ikinci dereceden denklemin diskriminantını ele alarak karmaşık sayılarla uygulama yapmak ve elde
Cebirsel Fonksiyonlar
Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş
PROJE ADI: TEKRARLI PERMÜTASYONA BİNOM LA FARKLI BİR BAKIŞ
PROJE ADI: TEKRARLI PERMÜTASYONA BİNOM LA FARKLI BİR BAKIŞ PROJENİN AMACI: Projede, permütasyon sorularını çözmek genellikle öğrencilere karışık geldiğinden, binom açılımı kullanmak suretiyle sorulara
Türev Uygulamaları. 9.1 Ortalama Değer teoremi
1 2 Bölüm 9 Türev Uygulamaları 9.1 Ortalama Değer teoremi Türevin çok farklı uygulamaları vardır. Bunlar arasında çok önemli olan bazılarını ele alacağız. Ortalama Değer Teoremi ni daha önce görmüştük.
Örnek...6 : Örnek...1 : Örnek...7 : Örnek...2 : Örnek...3 : Örnek...4 : Örnek...8 : Örnek...5 : MANTIK 2 MATEMATİKSEL ARAÇLAR AÇIK ÖNERMELER
MANTIK MATEMATİKSEL ARAÇLAR AÇIK ÖNERMELER İçerisinde değişken olan ve değişkenin değerlerine göre doğru ya da yanlış olabilen önermelere açık önerme denir. Açık önermeler değişkenine göre P( x), Q( a)
DENEY 3. HOOKE YASASI. Amaç:
DENEY 3. HOOKE YASASI Amaç: ) Herhangi bir uvvet altındai yayın nasıl davrandığını araştırma ve bu davranışın Hooe Yasası ile tam olara açılandığını ispatlama. ) Kütle yay sisteminin salınım hareeti için
MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.
Çemberin Çevresi, Dairenin Alanı, π nin Değeri
Çemerin Çevresi, Dairenin Alanı, π nin Değeri Ali Nesin B u yazıda, r yarıçaplı ir çemerin çevresinin neden 2πr, alanının neden πr 2 olduğunu göreceğiz. İlkokuldan eri ezerletilen u formüllerin kanıtlarını
İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN
İç-Çarpım Uzayları Yazar Öğr. Grv. Dr. Nevin ORHUN ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; R n, P n (R), M nxn vektör uzaylarında iç çarpım kavramını tanıyacak ve özelliklerini görmüş olacaksınız.
Ders 8: Konikler - Doğrularla kesişim
Ders 8: Konikler - Doğrularla kesişim Geçen ders RP 2 de tekil olmayan her koniğin bir dönüşümün ardından tek bir koniğe dönüştüğü sonucuna vardık; o da {[x : y : z x 2 + y 2 z 2 = 0]} idi. Bu derste bu
Birkaç Oyun Daha Ali Nesin
Birkaç Oyun Daha Ali Nesin B irinci Oyun. İki oyuncu şu oyunu oynuyorlar: Her ikisi de, birbirinden habersiz, toplamı 9 olan üç doğal sayı seçiyor. En büyük sayılar, ortanca sayılar ve en küçük sayılar
10. SINIF MATEMATİK FONKSİYONLARDA İŞLEMLER-1 ÇAKABEY ANADOLU LİSESİ MATEMATİK BÖLÜMÜ
10. SINIF MATEMATİK FONKSİYONLARDA İŞLEMLER-1 ÇAKABEY ANADOLU LİSESİ MATEMATİK BÖLÜMÜ 1. ÜNİTE 3.1 FONKSİYONLARLA İŞLEMLER VE UYGULAMALARI Neler öğreneceksiniz? Bir fonksiyon grafiğinden dönüşümler yardımıyla
İstatistik ve Olasılık
İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk
;] u Y hb* p(a/ > V aaa!a!a!a!!!!!a! BASIN KİTAPÇIĞI
BASIN KİTAPÇIĞI 00000000 AÇIKLAMA 1. Bu kitapç kta Lisans Yerle tirme S nav -1 Matematik Testi bulunmaktad r. 2. Bu test için verilen toplam cevaplama süresi 75 dakikadır. 3. Bu kitapç ktaki testlerde
MAT223 AYRIK MATEMATİK
MAT223 AYRIK MATEMATİK Binom Katsayıları ve Pascal Üçgeni 3. Bölüm Emrah Ayar Anadolu Üniversitesi Fen Faültesi Matemati Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Binom Teoremi Binom Teoremi ( ) n 1. Derste
VEKTÖR UZAYLARI 1.GİRİŞ
1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.
8.SINIF CEBirsel ifadeler
KAZANIM : 8.2.1.1. Basit cebirsel ifadeleri anlar ve farklı biçimlerde yazar. Hatırlatma 2 + 4y - 5 ifadesi bir cebirsel ifadedir ve değişkenler ve y dir. Cebirsel İfade: İçinde bir veya birden fazla bilinmeyen
RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN
RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi
Olas l k hesaplar na günlük yaflam m zda s k s k gereksiniriz.
Olas l k Hesaplar (I) Olas l k hesaplar na günlük yaflam m zda s k s k gereksiniriz. Örne in tavla ya da kâ t oyunlar oynarken. ki kap ya üstüste birkaç kez gele atmayan tavlac görmedim hiç. fianss zl
BASIN KİTAPÇIĞI ÖSYM
BASIN KİTAPÇIĞI 00000000 AÇIKLAMA 1. Bu kitapç kta Lisans Yerle tirme S nav -1 Matematik Testi bulunmaktad r. 2. Bu test için verilen toplam cevaplama süresi 75 dakikadır. 3. Bu kitapç ktaki testlerde
Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER
MATEMATİK Taşkın, Çetin, Abdullayeva BÖLÜM. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER. ÖZDEŞLİKLER İki cebirsel ifade içerdikleri değişkenlerin (veya bilinmeyenlerin) her değeri içinbirbirine eşit oluyorsa,
Cevap : B. Cevap : D Not : a b a b a. Cevap: C
07 KPSS GY-GK MATEMATİK SORULARI VE ÇÖZÜMLERİ (ÖSYM-.05.07) 7 7 7 4 9 4 9 4 9 0 5 5 5 6 6 6 5 9 0 4 9 5 6 5 5 5 6 6 buluruz. 5 9. 4. 4.0 0 5 0 0 5 5 0 5 5. 5 5 5 buluruz. 5 Cevap : Cevap : D Not : a b
18.034 İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
(14) (19.43) de v yi sağlayan fonksiyona karşılık gelen u = F v fonksiyonunun ikinci türevi sürekli, R de 2π periodik ve
nin her g L 2 (S için tek çözümünüm olması için gerekli ve yeterli koşulun her j için λ λ j olacak biçimde λ j ifadesini sağlayan R \ {} de bir λ j dizisinin olduğunu gösteriniz. (13) Her λ j için (19.43)
1. Fonksiyonlar Artan, Azalan ve Sabit Fonksiyon Alıştırmalar Çift ve Tek Fonksiyon
İçindekiler Cebir 1. Fonksiyonlar....... 1.1 Fonksiyonların Tanım, Değer ve Görüntü Kümesi...... 1.1.1 Fonksiyon.. 1.1. Görüntü Kümesi... 1.1.3 Eşit Fonksiyonlar. 1.1.4 Fonksiyonun Gösterimi. 1.1.4.1 Liste
İKİNCİ DERECEDEN DENKLEMLER
İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden
14.12 Oyun Teorisi Ders Notları
4.2 Oyun Teorisi Ders Notları Muhamet Yıldız Ders 2-3 Tekrarlı Oyunlar Bu ders notlarında, daha küçük bir oyunun tekrarlandığı ve bu tekrarlanan küçük oyunun statik oyun adını aldığı oyunları tartışacağız.
2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır?
017 LYS MATEMATİK DENEMESİ Soru Sayısı: 50 Sınav Süresi: 75 ı 1. 4. (1+ 5 ) 1+ 5 işleminin sonucu kaçtır? A) 5 B)3 5 C)+ 5 işleminin sonucu kaçtır? D)3+ 5 E)1+ 5 A) B) 1 C) 1 D) E) 3. 4 0,5.16 0,5 işleminin
Cebir Notları. Birinci Derecen Denklemler TEST I. Gökhan DEMĐR, x
MC www.matematikclub.com, 006 Cebir Notları Gökhan DEMĐR, [email protected] Birinci Derecen Denklemler TEST I. 7 [ [ ( )] ] + 6 = ( ) + denkleminin kökü 6. + 7 = 0 denkleminin köklerinin toplamı A) B)
İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ BİLİM OLİMPİYATLARI 2018 SINAVI
ÖGRENCİNİN ADI SOYADI : T.C. KİMLİK NO : OKULU / SINIFI : SINAVA GİRDİĞİ İLÇE: SINAVLAİLGİLİUYARILAR: İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ BİLİM OLİMPİYATLARI 018 SINAVI Kategori: Matematik 7-8 Soru Kitapçık
MERDİVENİN EN ÜST BASAMAĞINA KAÇ FARKLI YOLLA ÇIKILIR?
MERDİVENİN EN ÜST BASAMAĞINA KAÇ FARKLI YOLLA ÇIKILIR? Amaç: n basamaklı bir merdivenin en üst basamağına her adımda 1, 2, 3, veya m basamak hareket ederek kaç farklı şekilde çıkılabileceğini bulmak. Giriş:
BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER
YILLAR 00 00 00 00 00 00 007 008 009 00 ÖSS-YGS - - - - - - - - BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER a,b R ve a 0 olmak üzere ab=0 şeklindeki denklemlere Birinci dereceden bir bilinmeyenli denklemler
LYS Matemat k Deneme Sınavı
LYS Matematk Deneme Sınavı. abba dört basamaklı, ab iki basamaklı doğal saıları için, abba ab. a b eşitliğini sağlaan kaç farklı (a, b) doğal saı ikilisi vardır? 7 olduğuna göre, a b toplamı kaçtır? 9.,,
Oyunumuz iki kifli aras nda ve n m boyutlu bir dikdörtgenin
Kimin Kazand Bilinen Ama Nas l Kazand Bilinmeyen Bir Oyun Oyunumuz iki kifli aras nda ve n m boyutlu bir dikdörtgenin içindeki larla oynan yor. Örne in, 5 3 boyutlu bir oyun, afla daki fleklin en solundan
Uzayda iki doğrunun ortak dikme doğrusunun denklemi
Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse
DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ
DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan
KESİN PROJE RAPORU PROJENİN ADI PROJEYİ HAZIRLAYANLAR BABÜR NEDİM ÇAĞATAY OKUL ADI VE ADRESİ DANIŞMAN ÖĞRETMEN
KESİN PROJE RAPORU PROJENİN ADI HANGİ ADAYI SEÇELİM? PROJEYİ HAZIRLAYANLAR BABÜR NEDİM ÇAĞATAY OKUL ADI VE ADRESİ ÖZEL KÜLTÜR FEN LİSESİ ATAKÖY 9.-10. KISIM, 34156 BAKIRKÖY - İSTANBUL DANIŞMAN ÖĞRETMEN
Final Sınavı. Güz 2005
Econ 159a/MGT 522a Ben Polak Güz 2005 Bu defter kitap kapalı bir sınavdır. Sınav süresi 120 dakikadır (artı 60 dakika okuma süresi) Toplamda 120 puan vardır (artı 5 ekstra kredi). Sınavda 4 soru ve 6 sayfa
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
Ard fl k Say lar n Toplam
Ard fl k Say lar n Toplam B u yaz da say sözcü ünü, 1, 2, 3, 4, 5 gibi, pozitif tamsay lar için kullanaca z. Konumuz ard fl k say lar n toplam. 7 ve 8 gibi, ya da 7, 8 ve 9 gibi ardarda gelen say lara
Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu
Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri Ders izlence Formu Dersin Kodu ve İsmi Dersin Sorumlusu Dersin Düzeyi MAT407 REEL ANALİZ Prof. Dr. Ertan İBİKLİ ve
Hesaplamalı Tarifler I: Newton ve Benzeri Metodlar
Matemati Dünyası Hesaplamalı Tarifler I: Newton ve Benzeri Metodlar İler Birbil / sibirbil@sabanciunivedutr / wwwbolbilimcom Princeton Üniversitesi Yayınları ndan 15 yılında bir itap çıtı [1] Kapsamlı
Deney Dizaynı ve Veri Analizi Ders Notları
Deney Dizaynı ve Veri Analizi Ders Notları Binom dağılım fonksiyonu: Süreksiz olaylarda, sonuçların az sayıda seçenekten oluştuğu durumlarda kullanılır. Bir para atıldığında yazı veya tura gelme olasılığı
1991 ÖYS. )0, 5 işleminin sonucu kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 A) 123 B) 432 C) 741 D) 864 E) 987
99 ÖYS.,8 (, ), işleminin sonucu açtır? A) B) C) D) E) 7. Raamları sıfırdan ve birbirinden farlı, üç basamalı en büyü sayı ile raamları sıfırdan ve birbirinden farlı, üç basamalı en üçü sayının farı açtır?
Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV
Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm
Matematik Ders Notları. Doç. Dr. Murat Donduran
Matematik Ders Notları Doç. Dr. Murat Donduran Mart 18, 28 2 İçindekiler 1 Tanımlı Integral Uygulamaları 5 1.1 Olasılık.............................. 5 3 4 İÇINDEKILER Bölüm 1 Tanımlı Integral Uygulamaları
a) BP = P H olmalıdır. b) BP = 2 P H olmalıdır. c) P H = 2 BP olmalıdır. d) Böyle bir P noktası yoktur. e) Hiçbiri
TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 7. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 00 Birinci Bölüm Soru kitapçığı türü A 1. Bir ikizkenar
Saymak San ld Kadar Kolay De ildir
Saymak San ld Kadar Kolay De ildir B ir matematikçinin bir zamanlar dedi i gibi, saymas n bilenler ve bilmeyenler olmak üzere üç tür insan vard r Bakal m siz hangi türdensiniz? Örne in bir odada bulunan
256 = 2 8 = = = 2. Bu kez de iflik bir yan t bulduk. Bir yerde bir yanl fl yapt k, ama nerde? kinci hesab m z yanl fl.
Bölünebilme B ir tamsay n n üçe ya da dokuza tam olarak bölünüp bölünmedi ini anlamak için çok bilinen bir yöntem vard r: Say - y oluflturan rakamlar toplan r. E er bu toplam üçe (dokuza) bölünüyorsa,
sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1
TAM KARELER 1. Bir 1000 basamaklı sayıda bir tanesi dışında tüm basamaklar 5 tir. Bu sayının hiçbir tam sayının karesi olamayacağını kanıtlayınız. (2L44) Çözüm: Son rakam 5 ise, bir önceki 2 olmak zorunda.
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
TOBB-ETU, Iktisat Bölümü Macroeconomics II (IKT 234) Ozan Eksi Çal şma Sorular - Cevaplar. 1 Ozan Eksi (TOBB-ETU)
TOBB-ETU, Iktisat Bölümü Macroeconomics II (IKT 234) Ozan Eksi Çal şma Sorular - Cevaplar 1 1-) (Faizler) Y ll k %10 basit faizden bankaya koyulan 100 tl nin 2 y l sonraki getirisini hesaplay n z? Cevap:
28/04/2014 tarihli LYS-1 Matematik-Geometri Testi konu analizi SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 1 / 31
SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 11 32159 Rasyonel sayı kavramını açıklar. 2 12 32151 İki ya da daha çok doğal sayının en büyük ortak bölenini ve en küçük ortak katını bulur.
Ç.Ü Fen ve Mühendislik Bilimleri Dergisi Yıl:2012 Cilt:28-2
SERBEST LİE CEBİRLERİNİN ALT MERKEZİ VE POLİSENTRAL SERİLERİNİN TERİMLERİNİN KESİŞİMLERİ * Intersections of Terms of Polycentral Series and Lower Central Series of Free Lie Algebras Zeynep KÜÇÜKAKÇALI
1956 da... Ali Nesin
1956 da... Ali Nesin Nesin Yayıncılık Ltd. Şti. künye... Ali Nesin Analiz IV İçindekiler Üçüncü Basıma Önsöz.......................... 1 İkinci Basıma Önsöz........................... 1 Önsöz...................................
{ x,y x y + 19 = 0, x, y R} = 3 tir. = sonlu kümesinin 32 tane alt kümesinde
1. Aşağıdaki kümelerden hangisi sonsuz küme belirtir? A) A = { x 4 < x < 36,x N} B) B = { x 19 < x,x asal sayı} C) C = { x x = 5k,0 < x < 100,k Z} D) D = { x x = 5, x Z} E) E = { x x < 19,x N}. A, B ve
8.04 Kuantum Fiziği Ders IV. Kırınım olayı olarak Heisenberg belirsizlik ilkesi. ise, parçacığın dalga fonksiyonu,
Geçen Derste Kırınım olayı olarak Heisenberg belirsizlik ilkesi ΔxΔp x 2 Fourier ayrışımı Bugün φ(k) yı nasıl hesaplarız ψ(x) ve φ(k) ın yorumu: olasılık genliği ve olasılık yoğunluğu ölçüm φ ( k)veyahut
Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?
DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer
13.Konu Reel sayılar
13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık
8. SINIF MATEMATiK KAREKÖKLÜ SAYILAR
0 8. SINIF MATEMATiK KAREKÖKLÜ SAYILAR KAREKÖKLÜ SAYI KAVRAMI Karekök ile gösterilir. karekökünün içi negatif bir sayıya eşit olamaz. ÖR: Aşağıda verilen eşitliklere göre x lerin alabileceği değerleri
Mustafa Sezer PEHLİVAN. Yüksek İhtisas Üniversitesi Beslenme ve Diyetetik Bölümü
* Yüksek İhtisas Üniversitesi Beslenme ve Diyetetik Bölümü SAYILAR Doğal Sayılar, Tam Sayılar, Rasyonel Sayılar, N={0,1,2,3,,n, } Z={,-3,-2,-1,0,1,2,3, } Q={p/q: p,q Z ve q 0} İrrasyonel Sayılar, I= {p/q
MAT223 AYRIK MATEMATİK
MAT223 AYRIK MATEMATİK Gezgin Satıcı Problemi 9. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Gezgin Satıcı Problemi Soru n tane şehri olan bir
8.04 Kuantum Fiziği Ders XII
Enerji ölçümünden sonra Sonucu E i olan enerji ölçümünden sonra parçacık enerji özdurumu u i de olacak ve daha sonraki ardışık tüm enerji ölçümleri E i enerjisini verecektir. Ölçüm yapılmadan önce enerji
8. HOMOMORFİZMALAR VE İZOMORFİZMALAR
8. HOMOMORFİZMALAR VE İZOMORFİZMALAR Şimdiye kadar bir gruptan diğer bir gruba tanımlı olan fonksiyonlarla ilgilenmedik. Bu bölüme aşağıdaki tanımla başlayalım. Tanım 8.1: G, ve H, iki grup ve f : G H
T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A
T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents 1 İyi Sıralama 5 Bibliography 13 1 İyi Sıralama Well Ordering İyi sıralama kavramı, doğal sayıların
1 Primitif Kökler. [Fermat ] p asal, p a a p 1 1 (mod p) a Z, a p a (mod p) [Euler] ebob(a, m) = 1, a φ(m) 1 (mod m) φ(1) := 1
Primitif Kökler [Fermat ] p asal, p a a p (mod p) a Z, a p a (mod p) [Euler] ebob(a, m) =, a φ(m) (mod m) φ : Z + Z + φ() := φ(m) := {x Z x < m, ebob(x, m) = } φ fonksiyonunun özellikleri: ) m >, φ(m)
