Cebir Notları. Geometrik Dizi ( ) ( ) Mustafa YAĞCI,
|
|
|
- Gözde Vural
- 9 yıl önce
- İzleme sayısı:
Transkript
1 006 Cebi Notlı Mustf YAĞCI, Geometik Dizi Aitmetik diziyi bi htılylım bklım. Tüm dışık teimlei sıdki fkl sbitti. Yi stgele bi ilk teim vdı, o ilk teime bi d eel syısı ekleiyo ve ikici teim buluuyodu, dh so ikici teime yı d syısı ekleeek üçücü teim buluuyodu ve bu böyle devm ediyodu. Yi itmetik dizide he teim bi öceki teimi d fzlsıydı. Geometik dizide de he teim bi öceki teimi d ktıdı. Am biz itmetik diziyle kışmsı diye geometik dizide bu sbit syıyı yle gösteeceğiz. Kıscsı, geometik dizilede ikici teimi elde etmek içi biici teim kçl çpılmışs, üçücü teimi bulmk içi de ikici teimi o syıyl çpmmız geeki ve bu böyle devm edesek dizii tüm teimleii bulbiliiz. Alşıl o ki, itmetik dizide dışık teimlei fklı eşit m geometik dizide dışık teimlei olı eşitti. Hehgi bi teimi, kedide bi öce gele teime böleek bulduğumuz bu o d, yi bi teimi bulmk içi bi öceki teimi çptığımız değeie de bu geometik dizii otk çpı dei. Şimdi söyledikleimize uyck şekilde bi geometik dizi iş etmeye klklım. İlk teim cımız e istese o olsu. Öeği olsu. Şimdi de bi eel syısı uydulım. Bu d öeği olsu. O hlde ikici teim ilk teimi ktı olmlı diye ikici teim 6 dı. Üçücü teim de ikici teimi ktı olmlıdı, o hlde üçücü teim di. Dödücü teim de üçücü teimi ktı, o hlde dödücü teim. Bu oyuu böyle devm ettieek oluştuduğuuz dizii he teimii bulbilisiiz. İşte bu yzıd geometik dizilei teimlei sıd bi tkım ilişkile bulk, hiç dki teimlei hesplmy geek klmd öeği yüzücü teimi hemececik bulbileceğiz. Dhsı ilk 00 teimi toplmıı d hemececik bulbileceğiz. Sbedi hepsi z so. Öce şu yptığımız geometik diziyi bi kşımız llım. Htılsız =, = 6, =, = diye bulmuştuk. 5 = ve 6 = 6 olduğuu bulmk d pek zo olms geek. O hlde dizimiz =, 6,,,, 6,... ( ) ( ) şeklidedi. Güzel güzel m bi bkışt dizimizi 00 ücü teimii söylemek o kd d koly göümüyo. Keşke bi fomülümüz ols ve yeie 00 yzsk, bize 00 ücü teimi vese değil mi? Olck, sbedi. Htt o fomüle de dizii geel teimi diyeceğiz. Amy bşlylım o zm. = = = =... diye devm ediyo. He teimi diye bi çpıı olduğuu ldık. Bi de he teimde bi mikt çpı v. Kç te diye bktığımızd kçıcı teimse, od eksik syıd çpı olduğuu göüyouz. O hlde dizii ici teimi yi = olmlıdı. Aye itmetik dizide olduğu gibi dizii ici teimi geel teimdi. Şimdi bşk geometik dizile ştılım ve bu dizilei geometik olup olmdıklı k veelim. Sou. ( ) = (,,,, 6,,, ) dizisi bi geometik dizi midi? Öyleyse ede, değilse ede olduğuu belitiiz. Çözüm: İlk bikç dışık teimi olı bkmk bizi yıltbili. ( + ) ci teimi ici teime böleek bulduğumuz syı eğe sbit bi eel syıys, dizi geometikti yoks değildi diyece- = olduğud + = ve = ğiz.( ) ( ) + olu. = = R olduğud ( ) bi geometik dizidi. Otk çpı d di.
2 Mustf YAĞCI Geometik Dizi Sou. (,,,,, ) bi geometik dizi midi? Öyleyse otk çpı Çözüm: Tbii ki geometik dizidi. Buu bi öceki soudki gibi + + = = eşitliğide lıyouz. Aslıd bu oktd bi geelleme ypıp, = şeklideki he dizii geometik dizi ( ) ( ) olduğuu söyleyebiliiz. Otk çpı d olu. Sou. c,, p ve k bie eel syı ve 0 olmk = c p+ k geometik dizisii otk üzee ( ) ( ) çpı p+ p+ k p+ k p + c c Çözüm: = = = p+ k p+ k c c Sou. (,,,,, ) bi geometik dizi midi? Öyleyse otk çpı Çözüm: He teim kedide bi öce gele teimi ktı olduğud tbii ki geometik dizidi. Bi öceki soud bulduğumuz kuld c =, p = 0 ve k = 0 olduğuu d düşüebilisiiz. Sou 5. ( ) = ( ) bi geometik dizi midi? + ( + ) + + Çözüm: = = = + + olduğu bksk, dışık iki teimi oıı sbit bi eel syı olmdığıı, devmlı değiştiğii lız, bu d bu dizii geometik olmdığı kıttı. İsteye ye,, değeleii veeek de otk bi çpı bulumdığıı lybilidi. Sou 6. Aşğıd geel teimlei veile dizilei hgisi vey hgilei geometik dizidile? ) ( ) = ( ) b) ( ) = ( ) c) d) ( ) = ( ) = ( ) ( ) e) ( ) (( ) = ) f) ( ) (( ) = ) g) ( ) = (( + )! ) Çözüm: Sdece b ve d seçeekleideki dizile geometikti. Diğe seçeekledeki dizilede sbit bi i bulumdığıı lmk oldukç kolydı. p Sou 7. ( ) = geometik dizisii otk çpı Çözüm: ( ),,, =,... = olduğud otk çp / tü. Sou. ( ) = geometik dizisii 5 ici teimi Çözüm: 5 ici teim 5 demek diye 5 = ti. 5 Geometik dizii teimlei sıdki ilişki. He teimi kedide bi öce gele teimi ktı olduğuu htılyk teimlei yzlım: =... = = = = Yukd d kolyc göüleceği üzee iki teimi oı, teimlei idislei fkı kd i çpımıdı. 7 6 Yi =, =, = gibi Sou. İlk teimi, otk çpı ol bi geometik dizii 0 ucu teimi Çözüm: 0 = = = = olu. Sou 0. Bi geometik dizide biici teim ve otk çp ise bu dizii ucu teimi 7 Çözüm: = = = = olu. Sou. Bi geometik dizide =, 5 = 6 ise bu dizii otk çpı Çözüm: = olduğud 6= olu ki 5 = olduğud = olk buluu.
3 Mustf YAĞCI Geometik Dizi Sou. Üstteki dizii ücü teimi Çözüm: ( ) 5 = = = =. Sou. ( ) geometik diziside = ve 5 = ise bu dizii geel teimii buluuz. Çözüm: Geel teimi, ici teim olduğuu tık dımız gibi biliyouz. Buu bulmk içi yi bilmeye ihtiyç v. O hlde = eşitliğide dehl yi bullım. = 5 diye = 5 olu. = = 5 = Sou. ile syılı sı, bu syıll bilikte geometik dizi oluştuck şekilde 7 teim dh yeleştiilise, bu dizii 6 cı teimi kç olu? Çözüm: Elimizde hli hzıd teim vdı zte, y 7 teim dh geldi, teimimiz oldu. Bu duumd = ve = oldu. = olduğud = olu ki bud = buluu = = = =. Sou 5. Adışık iki teimi ve ol geomet- ik dizii otk çpı ile te so gele te- imii çpımı Çözüm: Otk çpı olduğu sııtıyo. te so gele teim de bu yüzde di. O hlde istee değelei çpımı olu. Geometik dizi Geometik ot ilişkisi. Aitmetik diziyle itmetik ot sıd sıl bi ilişki vs, geometik dizide de yı ilişki vdı. Aitmetik dizide hehgi bi teim kedie eşit uzklıkt bulu teimlei itmetik otsı oluyodu y, geometik dizide de hehgi bi teim kedie eşit uzklıkt bulu teimlei geometik otsıdı. Buu d kıtlmk çok kolydı. Öeği, ici teimi ele llım. Komşul d ( p) ici ve ( + p) ici teimle olsu. Biliyouz ki, = + p p Eşitliği he iki yıı p ile çplım: p p ( ) = = = p + p p p p Göüldüğü üzee + p p = olduğud kıt tmmlmıştı. Soulı çözeke idislee bu yüzde dikkt etmekte fyd vdı. Rstgele mi veilmişle yoks iki tesi, bi tesie eşit uzklıktl mı? Buu gömek çözümlede oldukç hız kzdıı bize. Sou 6. Adışık üç teimi x, x +, 5x + 6 ol pozitif teimli bi geometik dizii otk çpı Çözüm: Mdem bu üç teim dışık, demek ki otdki teim komşulıı geometik otsıdı. (x+ ) = x (5x+ 6) 0 x + x+ = x + x x = olduğud x = vey x = di. Fkt dizi pozitif teimli dediğide sdece x = olbili. Bu duumd dışık teimle,, 6 olcğıd otk çp / = 6/ = olu. Sou 7., +, + bi geometik dizii dışık üç teimiyse Çözüm: Yukdkiyle yı duum v, o hlde çözümü de yı olck. Bud dizi pozitif teimli fil demediğie göe tek bi değei çıkcktı. ( + ) = (+ ) = ( + ) + 6+ = + = olduğud = / olk buluu. Sou. Bi geometik dizide 5 = ve = ise Çözüm: Dikkt edeseiz ü 5 ve e ol uzklıklı eşit. O hlde ücü teim, 5 ici ve ici teimi geometik otsı olmlıdı. = 5 = olduğud = 6 dı. Bud ede = 6 oldu d = 6 olmdı diye bi sou klıız gelebili. Geometik otı, he zm otsı lı syılı e küçüğüde büyük, e büyüğüde küçük olmsı geektiğii htılsız, o souy
4 Mustf YAĞCI Geometik Dizi cevp vemiş olusuuz. Zte geometik ot bu yüzde egtif syıld tımlmmıştı bile. Sou. 6 cı teimi, ücü teimi ol bi geometik dizii 0 ucu teimi Çözüm: Yie soul değei veile değelei tm otsıd buluduğuu fk ediyouz. Bu yüzde 0, 6 ile ü geometik otsı olmlı. 0 = 6 = = 6 olduğud 0 = di. Sou 0. ( ) = (, x, y, z, ) pozitif teimli geometik diziside x y z çpımı 7 Çözüm: y değei hem x ile z i hem de le /7 syısıı geometik otsıdı. Yi y = x z olduğud x y z çpımı y e eşitti. y yi bulduk mu sou çözülmüş olck lycğıız. y = = olduğud y = 7 ve y =. 7 Sou. ( ) bi geometik dizi ve 0 = ise Çözüm:, hem ile ü hem de 0 l ü geometik otsı olduğud veile eşitliği 5 = diye göeceğiz. Bud = buluu. Sou. teimli bi geometik dizide = 6 ve = ise tüm teimlei çpımı 6 Çözüm: = olduğud veile değelei 6 yeleie yzsk = 6 yi = buluuz. O hlde = ve = / di. Şimdi bu teimi 5 0 çpcğız: =. Sou. Mooto t bi geometik dizide = 7 ve bu üç teimi itmetik otlmsı ise bu dizii geel teimii buluuz. Çözüm: Dizi geometik olduğud, ile değeleii geometik otsıdı. = 7= olduğud = di. Diğe yd bu üç teimi itmetik otsı ise toplmlı 6 tü, bud + = 5 olu. = = olduğud = ve = çık. Tm tesi lmzdık çükü dizi mooto tmış. Bu duumd dizii ilk üç teimi (,, ) olk buluduğud = olu. Dizii geel teimi, ici teim diye = = olk buluu. Geometik dizilede ilk teimi toplmı. Aitmetik dizilede ilk teimi toplmıı sıl bulduysk, bud d yı işlemi teklycğız. Tüm teimlei lt lt yzıp, toplycğız. =... = = = = = toplmıı yie S ile gösteelim. S = ( ) = olk buluu. Demek ki ilk teim toplmıı bulmk içi ilk teim ve otk çpı bilmek lzım. Bilmiyosk d diğe veilede bulmk lzım. Sou. İlk teimi, otk çpı ol bi geometik dizii ilk 0 teimii toplmı Çözüm: S = olduğud, 0 0 S0 = = = ( ) = 0 Sou 5. Bi geometik dizii ilk teimi ve otk çpı ise bu dizii ilk teimii top- lmı Çözüm: S = olduğud,
5 Mustf YAĞCI Geometik Dizi S 0 = = ( ) = buluu. Sou 6. ( ) = + geometik dizisii ilk teimii toplmı edi? Çözüm: Bize ilk teimle, otk fk lzım. İkisii de bulmyı öğemiştik. = ve = di. S = = = buluu. Sou 0. de e kd umldıılmış kutuu biiciside ceviz vdı. Bud soki kutuld ise bi öceki kutudki ceviz syısıı ktı kd ceviz vdı. Bu göe tüm kutuldki toplm ceviz syısı Çözüm: Kutuldki ceviz syısı devmlı bi öceki kutudki ceviz syısıı ktı kd olduğud kutuldki ceviz syılı bi geometik dizi oluştuul. İlk teimi olup, otk çpı olduğud bu dizii geel teimi di. O hlde kutudki toplm ceviz syısı demek S demek olu. S = = Sou 7. Bi geometik dizide S = ise bu dizii 0 ucu teimi Çözüm: Bu sou tipii itmetik dizilede htılsıız. İlk 0 teim toplmıd ilk teim toplmıı çıktısk, 0 ucu teimi buluuz. 0 0 S0 S = ( ) = = ( ) = Sou. İlk teimii toplmı S = ol geometik dizii 6 cı teimi Çözüm: 6 cı teimi bulmk içi ilk 6 teim toplmıd ilk 5 teim toplmıı çıktmmız geeki = S6 S5 = 6 5 = Sou. İlk teimi, otk çpı ve ici teimi b ol bi geometik dizii ilk teimii toplmı ve b ciside sıl yzılı? Çözüm: = olduğud b= yi b= b olu. Bud d = çık. b S = = = ( ) = b Alıştıml. Geometik dizii ve otk çpı tımı ypıız.. (,,, 7,, ) bi geometik dizi midi? Değilse ede değildi?. Aşğıd geel teimlei veile dizilei hgisi vey hgilei geometik dizidile? ) ( ) = ( ) b) ( ) = ( ) c) d) ( ) = ( + ) ( ) = ( + ) e) ( ) =! f) ( ) = (( ) ). (,,,,,,, ) bi geometik dizi midi? Öyleyse otk çpı 5. (0, 0, 0,, 0, ) bi geometik dizi midi? Öyleyse otk çpı 5
6 Mustf YAĞCI Geometik Dizi 6. ( ) = π 7. ( ) = geometik dizisii otk çpı geometik dizisii 5 ici teimi 5. Adışık iki teimi ve ol geometik dizii otk çpı ile de so gele teimii çpımı 6. Adışık üç teimi x, x +, 5x + 6 ol pozitif teimli bi geometik dizii beşici teimi. ( ) ( ) = ede bi geometik dizi değildi?. İlk teimi, otk çpı ol bi geometik dizii 0 ucu teimi 0. Bi geometik dizide biici teim ve otk çp ise bu dizii ucu teimi 7., +, + bi geometik dizii dışık üç teimiyse bu dizii otk çpı. Bi geometik dizide 5 = ve = ise. 6 cı teimi, ücü teimi ol bi geometik dizii 0 ucu teimiyle ici teimii toplmı. Bi geometik dizide =, 5 = 6 ise bu dizii otk çpı 0. Bi geometik dizide ici teim ve otk çp ise 5 ici teim. Üstteki dizii ücü teimi. ( ) geometik diziside = 0 ve = 0 ise bu dizii geel teimii buluuz.. ile syılı sı, bu syıll bilikte geometik dizi oluştuck şekilde 7 teim dh ye- leştiilise, bu dizii 6 cı teimi kç olu?. Bi geometik dizide = 6 ve 7 = ise 0. ( ) = (, x, y, z, ) pozitif teimli geometik diziside x y z çpımı. Bi geometik dizii dışık beş teimi,, b, c, ise b c b fkı 6
7 Mustf YAĞCI Geometik Dizi. ( ) bi geometik dizi ve = ise 5. 0 teimli bi geometik dizide = 6 ve = ise ilk 5 teimi çpımı. ( ) = + geometik dizisii ilk teimii toplmı edi?. ( ) bi geometik dizidi. = ve = ise... çpımı 6. Mooto t bi geometik dizide = 000 ve bu üç teimi itmetik otlmsı ise bu dizii geel teimii buluuz. 7. Bi geometik dizii sekizici teimi ve otk çpı ise bu dizii ici teimi. İlk teimii toplmı S = ol geometik dizii 6 cı teimi 5. İlk teimi, otk çpı ve ici teimi b ol bi geometik dizii ilk teimii toplmı ve b ciside sıl yzılı?. Bi geometik dizide = ve 0 = 6 ise 0. İlk teimi, otk çpı ol bi geometik 6. de e kd umldıılmış kutuu biiciside ceviz vdı. Bud soki kutuld ise bi öceki kutudki ceviz syısıı ktı kd ceviz vdı. Bu göe tüm kutuldki toplm ceviz syısı dizii ilk teimii toplmı 0. Bi geometik dizii ilk teimi ve otk çpı ise bu dizii ilk 0 teimii toplmı. Bi geometik dizide S = 5 ise bu dizii ucu teimi CEVAP ANAHTARI
ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Diziler. 1. Aşağıdakilerden kaç tanesi bir dizinin genel
ÖĞRENCİNİN ADI SOYADI: NUMARASI: Dersi Adı SINIFI: KONU: Diziler Dersi Kousu. Aşğıdkilerde kç tesi bir dizii geel terimi olbilir? I. II. log III. IV. V. 7 7 9 9 t 4 4 E). Aşğıdkilerde hgisi bir dizii geel
4. DEVİRLİ ALT GRUPLAR
4. DEVİRLİ ALT GRUPLAR Tım 4.1. M, bi G gubuu bi lt kümei olu. M yi kpy, G i bütü lt guplıı keitie M i üettiği (doğuduğu) lt gup dei ve M ile göteili. M i elemlı d M gubuu üeteçlei (doğuylı) dei. Öeme
Belirsizliği Belirsizliği Belirsizliği Belirsizliği Bir Dizinin Limiti...
LİMİT VE SÜREKLİLİK Limit ve Süeklilik...8 Bi Foksiou Limiti... 9 Özel Tımlı Foksiolı Limiti... Pçlı Foksiolı Limiti... Mutlk Değe Foksiouu Limiti... 7 Limit Özelliklei... Geişletilmiş Geçel Sıl Kümeside
8. sınıf ders notları [email protected]
III - SAYI ÖRÜNTÜLERİ Htırltm: Syılrı virgülle yrılrk, birbirii rdı dizilmesie syı dizisi, dizideki her bir syıy d terim deir. hrfi verile örütüde syılrı sırsıı belirte semboldür ve ici syıy örütüü geel
İKİNCİ BÖLÜM REEL SAYI DİZİLERİ
Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce
21. İlk 5 dakikanın sonunda Burak ve Onur un bulundukları. Cevap B. Burak 100. = 45 olup farkları = 22 bulunur. Cevap C
Deneme - / Mt MEMİK DENEMESİ Çözümle.. c + m. d ı. 4 4 6 4 4 6 ( 6) ( 4) ( ) ( ) y 5 7. y c + m. y d ı. 4 8 6 ( ) ( ) ( ) olduğun göe, 6 6y 8y bulunu.. y - + + y - y - y y - y 6 6. ^009, h. ^0, 07h > c
Cebir Notları. Diziler Mustafa YAĞCI,
www.mustfygci.com, 006 Cebir Notlrı Mustf YAĞCI, [email protected] Diziler Mtemtiği e zevkli ve sürükleyici koulrıd birie geldik. Pek zorlcğımı thmi etmiyorum, çükü yei esil diziler e oldukç merklı. Kurtlr
İKTİSATÇILAR İÇİN MATEMATİK
Kostadi Teçevski Aeta Gatsovska Naditsa İvaovska Yovaka Teçeva Smileski İKTİSATÇILAR İÇİN MATEMATİK DÖRT YILLIK MESLEKİ OKULLARA AİT SINIF IV İKTİSAT - HUKUK MESLEĞİ EKONOMİ TEKNİSYENİ Deetleyele: D. Bilyaa
5. ( 8! ) 2 ( 6! ) 2 = ( 8! 6! ). ( 8! + 6! ) Cevap E. 6. Büyük boy kutu = 8 tane. Cevap A dakika = 3 saat 15 dakika olup Göksu, ilk 3 saatte
Deneme - / Mt MTEMTİK DENEMESİ Çözümle. 7 7 7, 0, 7, + + = + + 03, 00,, 3 0 0 7 0 0 7 =. +. +. 3 = + + = 0 ulunu.. P ve pd eklenecek sı olsun. - + =- + + & - + =-- - & + = ^--h + & =- ulunu. + 3. Veilen
a bir reel (gerçel) sayı ve n bir pozitif tam sayı olsun. 1 dir. n a ye üslü ifade
ÜSLÜ İFADELER A. Tı bir reel (gerçel syı ve bir pozitif t syı olsu.... te olck şekilde, te ı çrpıı ol deir. ye üslü ifde Kurl. sıfırd frklı bir reel syı olk üzere,. 0 0 0 ifdesi tısızdır.. ( R... 0 7..
TÜMEVARIM DİZİ - SERİ
99 A = {, N } ve P() öemes vels. Eğe :. P() doğu,. A ç P() doğu e P(+) öemes de doğu se; P() öemes A ç doğudu. TOPLAM SEMBOLÜ R ve N olm üzee;... dı. c c. c c b b < m < ç m m p p p 0 F F F F F F F F A
ASAL SAYILAR. Asal Sayılar YILLAR MATEMATĐK ĐM
YILLAR 00 003 004 00 006 007 008 009 00 0 ÖSS-YGS - - - - - - - ASAL SAYILAR ve kendisinden bşk pozitif böleni olmyn den büyük tmsyılr sl syı denir Negtif ve ondlıklı syılr sl olmz Asl syılrı veren bir
Taşkın, Çetin, Abdullayeva
1 BÖLÜM 1 KÜMELER VE SAYILAR 1.1 KÜMELER 1.1.1. TEMEL TANIMLAR Kesi ir tımı ypılmmkl erer,sezgisel olrk,kümeye iyi tımlmış iri iride frklı eseler topluluğudur diyeiliriz. Kümeyi meyd getire eselere kümei
TYT / MATEMATİK Deneme - 3
TYT / MTEMTİK Deneme -. (0,) 0 (0,) = 0 00 00 0 80 00 = = = bulunu. 00 00 00 6. 7! 8! = 7 6! 8! =! ( 8) = 0! = 0 0 = = b c budn b c = = 8 bulunu.. Syı = olsun = & = 8 & = 0 u syının ü ise 0 = bulunu. 7.
SORU. m(cdo ) = = 20 olur. OB = OD = OC = r den; m(bco ) = 30, m(dco ) = 20 ve. [AB ile [AD B ve D noktalar nda çembere te ettir.
GMR eginin bu sy s nd Çembede ç l, Kiiflle ötgeni, e et Kiifl Özelliklei konusund çözümlü soul ye lmktd. u konud, ÖSS de ç kn soul n çözümü için geekli temel bilgilei ptik yoll, soul m z n çözümü içinde
TYT Temel Yeterlilik Testi
Otöğetim lnı MF - 01 TYT Temel Yetelilik Testi Geometi Des Föyü Geometik Kvml Doğud çıl Nokt: Klemin syfy bıktığı ize deni. Uygulylım 1. şğıdki boşluklı dolduunuz. ) Doğu...boyutludu. Noktsı noktsı oyutsuzdu.,,
LYS1 / 1.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ
.. (,! Z ) min için! `, j LYS /.NM MTMTİK TSTİ ÇÖZÜMLRİ evp:. {,,,,,, 7,, 9} Z/'te $ 7,,. $,,. $ 9,,. k ve k ve k ve k f p f p f p f pf pf p evp:. ` j! k 7 ` j! ` j` j 7 ` j!! `-j! `- j!!!.. b. c b c b
YILLAR ÖSS-YGS ) a 0 ve b 0 olmak üzere; 8) Üslü Denklemler: a -1, a 0, a 1
YILLAR 00 00 00 00 00 00 008 009 00 0 ÖSS-YGS Böle: i,( 0 ÜSLÜ İFADELER R ve Z olk üzere te ı çrpıı deir. ii, (b 0 b b... te Not:.... dır. te... 0 ve... 0. 0 te 0 te ÜSLÜ ÇOKLUKLARLA İLGİLİ ÖZELLİKLER
ÜNİTE - 7 POLİNOMLAR
ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri
DİZİLER - SERİLER Test -1
DİZİLER - SERİLER Test -. a,,,,, dizisii altıcı terimi. Geel terimi, a ola dizii kaçıcı terimi dir? 6. Geel terimi, a! ola dizii dördücü terimi 8 8 6. Geel terimi, a k k ola dizii dördücü terimi 6 0 6
= + + = ETKİNLİK: ( n ) ( ) ETKİNLİK:
ERİLER Cebir kurllrı ile ck olu te yıyı toplybiliriz. Bu krşılık mtemtik de ouz yıd yıı toplmı ile de ık ık krşılşmktyız. Öreği; 3 yııı odlık çılımı; 3 3 3 = 0,333... = + + +... gibi bir ouz toplmdır.
TG 1 ÖABT ORTAÖĞRETİM MATEMATİK
KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT ORTAÖĞRETİM MATEMATİK Bu testlei he hı slıdı. Hgi mçl olus olsu, testlei tmmıı vey bi ısmıı İhtiyç Yyıcılı
DİZİLER... 213. Dizilerde İşlemler... 213. Dizilerin Eşitliği... 214. Monoton Diziler... 215. Alt Dizi... 216. Konu Testleri (1 6)...
ÜNİTE GERÇEK TOPLAM SAYI ÇARPIM DİZİLERİ ARİTMETİK SEMBOLÜ DİZİ Böüm Dizier GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ GEOMETRİK DİZİ SERİLER DİZİLER..................................................................
DERS 4. Determinantlar, Leontief Girdi - Çıktı Analizi
DERS Determitlr eotief Girdi - Çıktı lizi.. ir Kre Mtrisi Determitı. Determit kvrmıı tümevrıml tımlycğız. mtrisleri determitıı tımlyrk şlylım. Tım. tımlır. mtrisiidetermitı olrk Örek. mtrisii determitı
Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER
Bölüm 5 Olasılık ve Olasılık Dağılışlaı Doç.D. Suat ŞAHİNLE Olasılık ve Olasılık Dağılışlaı Olasılık: Eşit saşla meydaa gele tae olayda A taesi A olayı olsu. Bu duumda A olayıı meydaa gelme olasılığı;
ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK
ÖABT ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK DENEME SINAVI ÇÖZÜMLERİ ÖĞRETMENLİK ALAN BİLGİSİ DENEME SINAVI / çözümlei. DENEME. Veile öemelede yalız III kesi olaak doğudu. Bu edele doğu cevap seçeeği B di..
Küme Teorisi Ve Olasılık Hesapları. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK
Küme Teoisi Ve Olsılık Hesplı Yd. Doç. D. Tije ÖVER ÖZÇELİK [email protected] IV. Küme Teoisi Ve Olsılık Hesplı Küme Kvmı; Küme, tek bi isim ltıd toplbile ve beze özellik göstee biimlei meyd getidiği topluluk
SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI
YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - 1-1 1 SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = 100+10+b bc = 100+10b+c bcd =1000+100b+10c+d
... SERİLER Tanım: 2 3 toplamı kaçtır? Çözüm: serisinde 10. kısmi terimler. Ör: bir reel sayı dizisi olmak üzere
SERİLER Tım: bir reel syı dizisi olm üzere...... 3 toplmı SERİ deir. gerçel syısı serii geel terimi deir. S 3... toplmı SERİNİN N. KISMİ (PARÇA) TOPLAMI deir. S dizisie SERİNİN N. KISMİ TOPLAMLAR DİZİSİ
TOPLAM FARK FORMÜLLERİ İKİ KAT AÇI FORMÜLLERİ TRİGONOMETRİK DENKLEMLER ANALİZ TESTLERİ
ÖÜ OP OÜİ inüs oplm - k omülü... osinüs oplm - k omülü...9 njnt ve otnjnt oplm - k omüllei... oplm - k omülleinin Geometik Şekillee ygulnmsı... G İ...9 ÖÜ İİ Ç OÜİ inüs İki t çı omülü... osinüs İki t çı
www.ortokulmtemtik.org BİR BİLİNMEYENLİ DENKLEMLER İçerisinde en z bir bilinmeyen bulunn eşitliklere denklem denir. Denklemde semboller y d hrfler ile gösterilen değişkenlere bilinmeyen denir. Denklemde
LYS1 / 4.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ
. İki bsmklı toplm sı vdı. ile lınd sl olmsı için ve e tm bölünmemeli e bölünen sıl 8 det e bölünen sıl det LYS /.NM MTMTİK TSTİ ÇÖZÜMLİ 8. - ` j - 8 k - 8 8-8 8 nck ʼin ktı oln sıl ( tne) kee lındı. -
8. Bir aritmetik dizide a 2 = 2, a 7 = 8 ise, ortak fark aşağıdakilerden
MC TEST I Seriler ve Diziler www.matematikclub.com, 2006 Cebir Notları Gökha DEMĐR, [email protected] 8. Bir aritmetik dizide a 2 = 2, a 7 = 8 ise, ortak fark aşağıdakilerde hagisidir? A) 0,8 B) 0,9
Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...
MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, [email protected] Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız
Katı cisimlerin hareketlerinin tanımlanması ve analizi iki yönden önem taşır.
RİJİT (KTI) CİSMİN KİNEMTİĞİ Ktı cisimlein heketleinin tnımlnmsı e nlizi iki yönden önem tşı. iincisi sıkç kşılşıln bi duum olup mç, değişik tipte km, dişli, çubuk e bu gibi mkin elemnlını kullnk belili
Öğrenci Yerleştirme Sınavı (Öys) / 20 Haziran Matematik Soruları Ve Çözümleri
Öğenci Yeleştime Sınvı (Öys) Hzin 99 Mtemtik Soulı Ve Çözümlei. Rkmlı bibiinden fklı oln üç bsmklı en büyük tek syı şğıdkileden hngisine klnsız bölünebili? A) B) C) 6 D) 8 E) 9 Çözüm Rkmlı bibiinden fklı
ÖĞRENME ETKİLİ ÇİZELGELEME PROBLEMİNDE MAKSİMUM GECİKMENİN ENKÜÇÜKLENMESİ İÇİN ÇÖZÜM YAKLAŞIMLARI
V. Ulusl Üetim Aştımlı Sempozyumu, İstbul Ticet Üivesitesi, 25-27 Ksım 2005 ÖĞRENME ETKİLİ ÇİZELGELEME PROBLEMİNDE MAKSİMUM GECİKMENİN ENKÜÇÜKLENMESİ İÇİN ÇÖZÜM YAKLAŞIMLARI Tme EREN Kııkkle Üivesitesi
LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ
YS / TTİ N ÇÖZÜRİ eneme -. +. + + ti. - + + - + + > ise - + - + evp. ^ + ^- ^- +. z z + + + + evp z + -. c- m z z + - + + + z z z ^ ^ evp. çift sı olmlı Ç+ T T. Ştı sğln sdece vdı.. + + lde tne sl sı vdı.
TG 5 ÖABT ORTAÖĞRETİM MATEMATİK
KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 5 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlei he hı slıdı. Hgi mçl olus olsu testlei tmmıı vey i ısmıı İhtiyç Yyıcılı
YÜZDE VE FAĐZ PROBLEMLERĐ
YILLAR 00 003 00 00 006 007 008 009 010 011 ÖSS-YGS 3 1 1 1 3 YÜZDE VE FAĐZ PROBLEMLERĐ YÜZDE: Bir syının yüzde sı= dır ÖRNEK(1) % i 0 oln syıyı bullım syımız olsun 1 = 0 = 0 ÖRNEK() 800 ün % ini bullım
LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ
YS / GMTİ NM ÇÖZÜMİ eneme -.. 70 70 b desek olu. b Ç ` j cm olduğundn + b b - dı. de 6 @ ot tbnı çizilise benzelik ydımıyl biim bulunu. 6@ ' 6@ olduğundn m^\ h m ^\ h 70c di. ikiz ken üçgen çıktığındn
7 SAYISAL İNTEGRASYON YÖNTEMLERİ
Prof. Dr. Özc Klederli SAYISAL YÖNTEMLER 7 SAYISAL İNTEGRASYON YÖNTEMLERİ Syısl itegrsyo vey itegrl lm işlemi, litik olrk ir itegrli lımsıı çok zor vey olksız olduğu durumlrd vey ir işlevi değerlerii sdece
Cebir Notları Mustafa YAĞCI, Eşitsizlikler
www.mustfygci.com.tr, 4 Cebir Notlrı Mustf YAĞCI, [email protected] Eşitsizlikler S yılr dersinin sonund bu dersin bşını görmüştük. O zmnlr dın sdece birinci dereceden denklemleri içeren mnsınd Bsit Eşitsizlikler
2. BELİRLİ İNTEGRALİN TANIMI ve TEMEL ÖZELLİKLERİ
DERS: MATEMATİK II MAT II () ÜNİTE: BELİRLİ İNTEGRALLER KONU:. ARALIKLARIN PARÇALANMASI. BELİRLİ İNTEGRALİN TANIMI ve TEMEL ÖZELLİKLERİ GEREKLİ ÖN BİLGİLER. semolü ve temel toplm ormülleri. Limiti temel
BÖLÜM DETERMINANTLAR SD 1
SD 1 2. BÖLÜM DETERMINANTLAR 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 1. Permütsyo Tım: Bir tm syılr {1, 2,, } kümesideki elemlrı tekrr olmksızı frklı sırlmlrıı düzelemesie
DETERMINANTLAR. 1. Permütasyon. 1. Permütasyon ) permütasyonundaki ters dönüşüm. 1. Permütasyon 2. BÖLÜM ( )
. BÖÜM. Permütsyo Tım: Bir tm syılr {,,, } kümesideki elemlrı tekrr olmksızı frklı DETERMINNTR sırlmlrıı düzelemesie permütsyo deir. Örek: {,, 3} tm syılr kümesii ltı frklı permütsyou vrdır: (,, 3), (,,
Elektromanyetik Teori Bahar Dönemi. KOORDİNAT SİSTEMLERİ ve DÖNÜŞÜMLER
KOORDİNT SİSTEMLERİ ve DÖNÜŞÜMLER i önceki bölümde Kteen koodint sisteminde işlemleimii ptık. Kteen koodint sisteminden bşk biçok koodint sistemlei vdı. u bölümde kteen koodint sistemine ek olk silindiik
KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ KOMPLEKS FONKSİYONLARDA REZİDÜ VE BAZI UYGULAMALARI
KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ KOMPLEKS FONKSİYONLARDA REZİDÜ VE BAZI UYGULAMALARI SEVGİ İŞLER EYLÜL 5 ÖZET KOMPLEKS FONKSİYONLARDA REZİDÜ VE
SAYI ÖRÜNTÜLERİ VE CEBİRSEL İFADELER
ÖRÜNTÜLER VE İLİŞKİLER Belirli bir kurl göre düzenli bir şekilde tekrr eden şekil vey syı dizisine örüntü denir. ÖRNEK: Aşğıdki syı dizilerinin kurlını bulunuz. 9, 16, 23, 30, 37 5, 10, 15, 20 bir syı
DRC. 1. x 2 + 2xy + y 2 = 25 x + y = ± , 4, 6,..., 48 numaralı bölmeler yakılıyor. ( 24 tane ) 5. f ( x + 3 ) = x.
eneme - 8 / YT / MT MTMTİK NMSİ. + + + ± + 8 9 9. s( + ) s() İ İ + 9 9 7... ( I ) + 9 + 9 7... ( II ) I ve II den [ 7, 7 ] fklı tm sı değei lbili. evp.,,,..., 8 numlı bölmele kılıo. ( tne ), 9,,..., numlı
a 2 =h 2 +r 2 DERS: MATEMATĐK 8 KONU:KONĐ FORMÜLLERĐ ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN ADI: SOYADI:
1) KONĐ: Bi çembein bütün noktlının çembein dışındki bi nokt ile bileştiilmesinden elde edilen cisme koni deni. Kısc Koni, tbnı die oln pimitti. DĐK KONĐ PĐRAMĐT 1-A)DĐK KONĐ: Bi dik üçgenin, dik kenlındn
BASİT MAKİNELER BÖLÜM 4
BASİ AİNEER BÖÜ 4 ODE SORU DE SORUARIN ÇÖZÜER fi ip fiekil-i fi fiekil-i ip N fiekil-ii fiekil-ii Çuuklın he iinin ğılığın diyelim Şekil-I de: Desteğe göe moment lısk, Şekil-I de: Şekil-II de: 4 ESEN AINARI
SAYILAR DERS NOTLARI Bölüm 2 / 3
Örnek : 4 10 tbnindki (3 + 3 + 3 + 3) syisinin üç tbnindki yzilisi sgidkilerden hngisidir? A)10110 B)10001 C)1001 D)100011 E) 1100 4 (3 + 3 + 3 4 + 3) = 1 3 + 3 3 1 0 + 0 3 + 1 3 + 1 3 + 0 3 Burdn ( 10110)
a R, n tek ve Örneğin, a, b R + ve m, n Z + olmak üzere; 1. n a b a b dir. 2. n m n m a a n n n 5. m n m 6. 0 a b n a n b dir. Örnek 4.
Bölü. Köklü Syılr Muhrre Şhi. Köklü Syılr.. Köklü Syılrı Tıı Bu bölüde, kök dediğiiz sebollerle gösterile gerçek syılrı köklü syılr olrk tıtck ve bulrı gerçek syılrı rsyoel kuvvetleri olduğuu göstereceğiz.
RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere
RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0
T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI FİBONACCİ SAYILARI VE ÜÇGENSEL GRAFLAR
T.C. BALIKESİR ÜNİVERSİTESİ EN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI İBONACCİ SAYILARI VE ÜÇGENSEL GRALAR YÜKSEK LİSANS TEZİ HURİYE KORKMAZ BALIKESİR, OCAK - 06 T.C. BALIKESİR ÜNİVERSİTESİ EN BİLİMLERİ
5 ÖABT / MTL ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG. 678 ( sin + cos )( sin- cos )( sin+ cos ) lim sin- cos " = lim ( sin+ cos ) = bulunu. ". # # I = sin d = sin sin d sin = u sin d = dv du = sin : cos
DRC sayısının kendisi hariç en büyük üç farklı pozitif tam. Deneme - 3 / Mat. Cevap B. 2 ve 5 numaralı kutular açık olur. Cevap E.
nm - / Mt MTMTİK NMSİ Çözüml. + + -. + + + + + 8 + 8 bulunu. 8 y - 0, y 90 & 0, y y - y 90 y - 0+ y- & y - y 0y+ -y 9+ y 9y+ 7 + y 8y + 5 5y 5 y 5 5 +. + - ^ h - - 9-0 -9 bulunu. - - k. R vp. 5 6 çık çık
2009 Soruları. c
Hırvt ıstn Ulusl Mtemt ık Ol ımp ıytı Tkım Seçme Sınvı Geometr ı 2009 Sorulrı c www.sbelin.wordpress.com [email protected] Hırvtistn d ypıln 2009 yılı TST yni Tkım Seçme Sınvın it geometri sorulrı
Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT
Üite 9: Koelasyo Öğ. Elemaı: D. Mustafa Cumhu AKBULUT 9.Üite Koelasyo 2 Üitede Ele Alıa Koula 9. Koelasyo 9.1. Değişkele Aasıdaki İlişkile 9.2. Koelasyo katsayısı 9.Üite Koelasyo 3 Koelasyo Buda öceki
TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER
TEOG Tm Syılr ve Mutlk Değer TAMSAYILAR Eksi sonsuzdn gelip, rtı sonsuz giden syılr tm syılr denir ve tm syılr kümesi Z ile gösterilir. Z = {...,,, 1,0,1,,,... } Tmsyılr kümesi ikiye yrılır: ) Negtif Tmsyılr:
VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT
VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.
MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007)
MEKANİK TİTREŞİMLER TİTREŞİM ÖLÇÜMÜ: Titeşim ölçümü oldukça kapsamlı bi koudu ve mekaik, elektik ve elektoik bilgisi içeiklidi. Titeşim ölçümleide titeşim geliği (ye değiştime-displacemet, hız-velocity
DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24.
DENKLEM ÇÖZME + + = 0 + = 0 + = 0 + y = 0 İkinci dereceden ir ilinmeyenli denklemdir. İkinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden İki ilinmeyenli
1. x 1 x. Çözüm : (x 1 x. (x 1 x )2 = 3 2 x 2 2x = 1 x + 1 x2 = 9. x x2 = 9 x2 + 1 x2. 2. x + 1 x = 8 ise x 1 x
MC www.mtemtikclub.com, 006 Cebir Notlrı Çrpnlr Ayırm Gökhn DEMĐR, [email protected] Đki ifdenin çrpımı ypılırken, sonuc çbuk ulşmk için, bzı özel çrpımlrın eşitini klımızd tutr ve bundn yrrlnırız. Bu
İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları...
İÇİNDEKİLER Ön Söz... Mtris Cebiri... Elementer İşlemler... Determinntlr...7 Lineer Denklem Sistemleri...8 Vektör Uzylrı...6 Lineer Dönüşümler...48 Özdeğerler - Özvektörler ve Köşegenleştirme...55 Genel
TEST 12-1 KONU. çembersel hareket. Çözümlerİ ÇÖZÜMLERİ s ise. 1. H z ve ivme vektörel olduğundan her ikisinin yönü değişkendir. 7.
KOU çebesel heket Çözüle S - ÇÖÜMLR. H z ve ive vektöel olduğundn he ikisinin yönü değişkendi. 6. 30 s ise 3 4 sniye f Hz 4. F, ıçp vektöü ile hız vektöü sındki çı 90 di. k 7. 000 7. 7 h 3600s 0 /s X t
0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7.
MC. + + +.. Rsyonel Syılr TEST I sonsuz kesrinin eşiti kçtır? A) B) C) D) E) 4 www.mtemtikclu.com, 006 Ceir Notlrı. 8. Gökhn DEMĐR, [email protected] 0;0 0;0008 = 0; x ise x kçtır? A) 0,0 B) 0,000 C)
ÜSLÜ SAYILAR. (-2) 3 = (-2). (-2). (-2) = (-8) Kuvvet Tek; NEGATİF. (-2) 4 = (-2). (-2). (-2). (-2) = 16 Kuvvet Çift; POZİTİF.
SINIF ÜSLÜ SAYILAR www.tyfuolcu.co Üslü Syı : ifdesi ı te çrpıı lı gelektedir. =.... te =.. = 8 =. = 4 =. = 9 4 =... = 81 10 6 = 10.10.10.10.10.10 Teel Kvrlr ile. ifdeleri çok sık krıştırıl ifdelerdeir.
11. Sınıf ileri düzey matematik
. Sııf ilei düze tetik ÖZET Sevgili Öğecile, Bu özet kitp, okul üfedtı ugu olk hzılıştı. Kitptki koul, des kitbıızl uulu olk sılış ve çıklıştı. Özet kitbıızı hzılış cı, sizlei oğu ve boğucu ıtıll dolu
Matematik. Üstel ve Logaritmik Fonksiyonlar Diziler 1. FASİKÜL
Mtemtik. FASİKÜL Üstel ve Logritmik Foksiyolr Diziler 74 8 soru Kvrm Yılgılrı Müfredt Dışı Kou Uyrılrı Bilgi Tekolojileri Uyrlmlrı PISA Trzı Sorulr ÖSYM Çıkmış Sıv Sorulrı Video Çözümler Tmmı Çözümlü Öğretme
Bölüm- Parametrik Hesap
MAK 0: İNAMİK r. Ahmet Tşkese Fil hzırlık ölüm- Prmetrik Hesp 1 ölüm-rijit Cisim Sbit merk. Etr. döme * θ = 6 devir dödüğüde 4(6=3θ C θ C = 8 devir 8(5=4.5(θ A θ A = 8.889 devir α A =rd/s ω A = t + 5 rd/s
Üslü İfadelerde İşlemler (Temel Kurallar) - Çalışma Kağıdı Ortaokul Matematik Kafası $ = k) 81 $ 243 = Kerim Hoca. p) 125 $ 625 = w) 3
.Sınıf Mtemtik ÜSLÜ İFADELER Yyın No : / Kznım :... + Üssün Üssü ve Sırlm Bir üslü ifdenin üssü lındığınd üsler çrpılır.. Alıştırmlr Aşğıdki işlemlerin sonuçlrını üslü biçimde yzınız. y ^ h y ) ^ h b)
ANALİZ III DERS NOTLARI. Prof. Dr. Nurettin ERGUN
ANALİZ III DERS NOTLARI Prof. Dr. Nuretti ERGUN İ Ç İ N D E K İ L E R Syf No BÖLÜM Foksiyo Dizi ve Serileri... BÖLÜM Fourier Serileri... BÖLÜM 3 Özge Olmy Tümlevler...48 BÖLÜM 4 Dik Poliom Serileri...7
ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen
ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler
LYS MATEMATİK DENEME - 2
LYS MATEMATİK DENEME - BU SORULAR FİNAL EĞİTİM KURUMLARI TARAFINDAN SAĞLANMIŞTIR. İZİNSİZ KOPYALANMASI VE ÇOĞALTILMASI YASAKTIR, YAPILDIĞI TAKDİRDE CEZAİ İŞLEM UYGULANACAKTIR. LYS MATEMATİK TESTİ. Bu testte
MERAKLISINA MATEMATİK
TRİGONOMETRİ : Siüs i b c R si si y si z İsptı : m(ëo).m(ëa) m(ëo).m(ëb) m(ëo).m(ëc) m(ëo) m(ëo) y m(ëo) z b c b c & si & si y & si y R R R R R R si si y b si z c & & & R R R & R.si & b R.siy & c R.siz
15. ANTALYA MATEMATĐK OLĐMPĐYATI (2010) SORULARININ ÇÖZÜMLERĐ
. ANTALYA MATEMATĐK OLĐMPĐYATI (00) SORULARININ ÇÖZÜMLERĐ PROBLEM : vrdır? + y y deklemii pozitif tmsyılrd kç (, y ) çözüm ikilisi A) B) 6 C) 4 D) 8 E) Sosuz çoklukt ÇÖZÜM (L. Gökçe): + deklemide pyd eşitleyip
Başlangıç değerleri. olduğundan iterasyona devam!
ESKİŞEHİR OSMANGAZİ ÜNİVERSİESİ Mühedl Mmlı Fülte İşt Mühedlğ Bölümü E-Pot: [email protected] Web: http://mmf.ogu.edu.t/topcu Blgy Detel Nüme Alz De otlı Ahmet OPÇU m X X X.5.5.5.5.75 -.5.5.875.75
GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1
IAAOJ, Scietific Sciece, 23,(2), 22-25 GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE Adullh AKKURT, Hüseyi YILDIRIM Khrmmrş Sütçü İmm Üirsitesi, Fe-Edeiyt Fkültesi
LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ
Y / Rİ N ÇÖZÜRİ eneme -. de ' çizilise + olcğındn cm, cm ve cm bulunu. ikizken üçgeninde m^\ m ^\ desek iki iç çının toplmı bi dış çı olcğındn m^\ olu. ikizken üçgeninde m^\ m^\ dı. m^\ m^\ dı. (Yöndeş
LOGARİTMA. çözüm. için. Tanım kümesindeki 1 elemanını değer kümesindeki herhangi. çözüm. çözüm
LOGARİTMA Üstel Fonksion >0 ve olmk üzere f:r R +, f() = şeklindeki fonksionlr üstel fonksion denir. Üstel fonksionlr birebir ve örtendir. f:r R +, f()=( ) bğıntısının üstel fonksion olup olmdığını inceleiniz.
TG 10 ÖABT İLKÖĞRETİM MATEMATİK
KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT İLKÖĞRETİM MATEMATİK Bu testlei he hkkı sklıdı. Hgi mçl olus olsu, testlei tmmıı vey i kısmıı İhtiyç
REEL ANALĐZ UYGULAMALARI
www.uukcevik.com REE NĐZ UYGUMRI Sou : (, Α, µ ) ölçü uzayı olsu. = N, Α= ( N ) ve µ ( E) olduğuu östeiiz. N üzeide alması içi eek ve yete koşul < di. Gösteiiz. µ oksiyouu veile taımıı uyulayalım; µ (
LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ
LYS / MTMTİK NM ÇÖZÜMLRİ eneme -. ) - - + ) - 7 - + ) - - +. + m ; + m + ^ ^ > H + ) - - + ^ ) 7- - + Sılın plı eşit olduğun göe, pdsı en üük oln sı en küçüktü. un göe seçeneğindeki sının pdsı en üük olduğundn
TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi
LYS 2016 MATEMATİK ÇÖZÜMLERİ
LYS 06 MATEMATİK ÇÖZÜMLERİ 6.. 5. 5. ( ) 8 6 65 buluruz. 5. 5 5 Doğru Cevp: C Şıkkı 8 7 ()... 9 buluruz. Doğru Cevp : D Şıkkı 9 8 8 9 8 9 8 9 9 9 9 9 8 buluruz. 8 8 8 8 8 Doğru Cevp : A Şıkkı (n )! (n
MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır.
gösterilir. MUTLAK DEĞER Syı doğrusu üzerinde syısının sıfır oln uzklığın in mutlk değeri denir ve ile B O A 0 OA = OB =, 0 =, < 0 olrk tnımlnır. < 0 < y için y = y işleminin eşitini bulunuz. < 0 için
ÇARPANLARA AYIRMA ÇÖZÜMLÜ TEST 1
ÇARPANLARA AYIRMA ÇÖZÜMLÜ TEST 1 1) ( y) (y ) ifdesinin çrpnlrındn biri şğıdkilerden hngisidir? A) y B) y C) y D) y E) y 1) ( y) (y ) ifdesini düzenleyip, ortk prnteze lmy çlışlım. ( y) (y ) ( y)( y) (
LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ
LYS / GOMRİ NM ÇÖZÜMLRİ eneme -. 9 9 de [] hem çı oty hem yükseklik olduğu için ikizken üçgen u duumd 9 cm ve olu. de [ ] ot tbn olduğu için cm. α 0 0 α 0 m ^ h α olsun. 0 - - 90 üçgenini çizip desek ve
Geometri Köflesi. Diklik Merkezi. Üçgen Eflitsizli inin Bir Sonucu Bilindi i üzere bir üçgenin alan, taban yükseklik/2 dir.
Mtemtik üns, 2004 Güz Geometi Köflesi Mustf Y c [email protected] iklik Mekezi i üçgenin üç üksekli i dim tek noktd kesifli. u nokt üçgenin diklik mekezi deni. = iklik mekezi genelde ile gösteili. Üçgen
TG 3 ÖABT ORTAÖĞRETİM MATEMATİK
KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ 9 Mat TG ÖABT ORTAÖĞRETİM MATEMATİK Bu testlein he hakkı saklıdı. Hangi amaçla olusa olsun testlein tamamının
LYS1 / 3.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ
. `n 5j- `n- j - n - n vey n- n n 8. 8 8 LYS /.NM MTMTİK TSTİ ÇÖZÜMLRİ evp: evp:. - f p$ f - p f p 9 - - 5! 5 -! 5 5 5. 8... 5 5. 5.. y 8 8 5 5... z < y < z _. ` j. $ ` j ` ise y. ` j y $ ` j ` j yk. `
A A A A A A A A A A A
LYS MATEMATİK TESTİ. Bu testte 5 sou vadı.. Cevaplaınızı, cevap kâğıdının Matematik Testi için aılan kısmına işaetleiniz.. Veilen, ve z tamsaılaı için. =. z =. =f() olduğuna göe, + + z toplamı en çok kaçtı?
c
Mtemt ık Ol ımp ıytı Çlışm Sorulrı c www.sbelin.wordpress.com [email protected] Bu çlışm kğıdınd mtemtik olimpiytlrı sınvlrın hzırlnn öğrenciler ve öğretmenler için hzırlnmış sorulr bulunmktdır.
Adı ve Soyadı : Nisan 2011 No :... Bölümü :... MÜHENDİSLİK FAKÜLTESİ ARA SINAV SORULARI
Adı ve Soydı :................ 16 Nisn 011 No :................ Bölümü :................ MÜHENDİSLİK FAKÜLTESİ ARA SINAV SORULARI 1) Aşğıdkile hngisi/hngilei doğudu? I. Coulomb yssındki Coulomb sbiti k
