LYS1 / 1.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ
|
|
|
- Coskun Öz
- 8 yıl önce
- İzleme sayısı:
Transkript
1 .. (,! Z ) min için! `, j LYS /.NM MTMTİK TSTİ ÇÖZÜMLRİ evp:. {,,,,,, 7,, 9} Z/'te $ 7,,. $,,. $ 9,,. k ve k ve k ve k f p f p f p f pf pf p evp:. ` j! k 7 ` j! ` j` j 7 ` j!! `-j! `- j!!!.. b. c b c b c olsun. G.O.O olduğundn, `bj $ ck$ 9b c k 9 $ $ b $ c $ $ b$ c min evp: HRF ĞİTİM YYINILIĞI -... k b 9. ( ). (b ) b - b b z 9. ( ). (b ) b b b 9 t 9. ( ). (b ) b b b 7 > t > > z evp: evp:., `- j `- j `- j : `- j ` - j f - p - 7 evp:. 7 g!!! 7! g!!! 7! f - p f - p f - p g f - p!!!!!! 7! 7! - 7! 7! - 7! evp:.lys NM iğe sf geçiniz.
2 9. / `9. j b / `p' / p / j c / şıkkınd :_ / i ( / ` & j / olmlıdı. evp:. b b b b- b b ` j` - j b` - j ` - j` bj denkleminin eel kökü olmdığındn; b olmlıdı. b evp:. m n b k c (m n k) min 9. evp: ONOKUZ k k $ - ` Y j HRF ĞİTİM YYINILIĞI 9 s( '). f : R R evp:.! / `modj ve 9! / `mod j! /-`modj ve! /-`mod j - -! / / `modj ve 9! / / `mod j f(). lık ıl lık / `mod 7j ile tm bölünen ılld tık gün olduğu unutulmmlıdı. ( ) Yt doğu testinden dolı t doğulın bzılı gfiği biden fzl noktd kestiğinden biebi değildi. Öte ndn, bzı t doğul gfiği hiç kesmediğinden öten değil içinedi. Ylnız III. (mod 7) Slı Çşmb evp:.lys NM iğe sf geçiniz.
3 7. Z P() m n k t, P() 7 ve m n k t 7 -- Z ve m, n, k, t Z olduğundn 7 tne in tnesini eşit şekilde plştılım olmlıdı... Z f p$ f p f p$ f p$ f p f p$ f p$ f p Geie kln tni i, ktsı dğıtbilmek için tne ç kullnısk; / / /! fklı şekilde dğıtılbili.!.! evp:. ( ) ve (, ) ve (,, ) olmlıdı. 7 7 $ $ $ 7 7 evp:. z z z i z- i z i `z ij`z-ij `z ij`z-ij i z- i z i z i i z i z i 9. (b ) b b ( )( b) HRF ĞİTİM YYINILIĞI b tne ( b) b b. log7, log7 b log7 log7 log log7 log7 log7 b b. $ T Ç $ T.. T! T Ç! olmlıdı.. log log log log log 7 log evp: evp:.lys NM iğe sf geçiniz.
4 . ( ) ve (,, ) ve (,,,, )... olmlıdı. $ $ $ $ $ $ g J N $ f p g K O L P $ - $ evp:. cos - cos.k, Ç > H. P( ) polinomunun; tek deeceli teimleinin ktsıl toplmı P`-j- P`-j çift deeceli teimleinin ktsıl toplmı P`- j P`-j P`-j - P`- j P`- j P`- j P`- j 7 P`- j P() ( ). () ( b) ( )( ). () ( b) P`- j - b 7 P`- j - b - b ( b) ( ) evp: HRF ĞİTİM YYINILIĞI 9. Sinüs Teoiminden; sin sin sin sin cos cos sin evp: 7. sin. cos. cos. cos sin. cos. cos cos -sin -$ f p sin. cos. sin sin. k n m n evp: i - m - m lim - f - - _ i - m - " n evp:.lys NM iğe sf geçiniz.
5 . lim i - lim i " - " lim ` j - lim ` - j " " -`-j evp:. şıkkınd; ln e ln e ln e d Q 7. i. d ise,. 9 f` - j. d - u. d du 9 7 $ $ f`uj. du 9 7 f`uj. du! lim " ( ) fonksionu diğe fonksionl göe dh hızlı büüdüğünden; HRF ĞİTİM YYINILIĞI. 7. f'() f() zln tn zln tn III. f'() fonksionunun tblod tnımsız olduğu nokt olmdığındn f() eel sıld tüevlenebilidi. IV. f(), (-, ) lığınd zlndı. V. Fonksionun mutlk mksimumu oktu. II. Mutlk minimumunu belilemek için ise eteli vei oktu. I. f( ). f( ) eşitliğine önelik bi vei oktu. ve noktlınd oln fonksion f'() fonksionudu. - h sı h k - f - p k. lim k " k - f - p k k - olsun. k k " iken " olu. - lim " - `- j` j lim " `- j` j evp: - h benzeliðinden, h - olu. Vsilindi h. f - p. f - p V' _ i için f- p f - p olmcğındn olu. h - tü..lys NM iğe sf geçiniz.
6 . f() b - de eel ekstemumu olmsı için f'(-) olmlıdı. f'() b f'(-) - b - b _ I i de dönüm noktsı olmsı için f"() olmlıdı. f"() f"() - _ IIi (I) ve (II) den b -9 bulunu. f() f(-) (-) 9. ` j. e. d u e. d dv d du e v uv. - vdu. ` j. e - e. d ` j. e - e ` j. e e -e e - evp: 9. HRF ĞİTİM YYINILIĞI. m, < i * n, $ I. Süekli olmlı. m n. m n n-m () I II. f'( ) f'( - ) olmlı 7 n. n ( II) (I) ve (II) den n, m olu. f() m n evp: >, f() <, f'() <, f"() >.LYS NM (zln) (konveks) I. b f. _ il' i. f' _ i< - - II. III. ' f - f _ i p f _ i $ f' _ i - > tn ()' -f'_ i - fk >. - i IV. (f ( ))' f 7 ( ). f'( ) zln tn [, ] için fonksion ve tüev fonksionu tnımlı değildi. V. b f _ il' i. f' _ i> - - tn evp:. f'() sin (cos) f'(). sin(cos). cos(cos). ( sin) f' f p $ sinfcos p $ cosfcos p$ f- sin p. sin. cos. `- j... `- j evp: iğe sf geçiniz.
7 . f() -. f'() -! S S S f() f _ i.d S - S - f'() f() f"() S S S f"() f() f _ i.d S S S - f( ) S S f _ i.d Y S - S - evp: fonksionun gfiği şekildekine benze olmlıdı. Yni eel mksimum değei den fzl, eel minimum değei ise den z olmlıdı. f( ) > ve f() < > ve - < > ve < (, ) evp: HRF ĞİTİM YYINILIĞI. cos d. cos. cos d. ` sin j. cos d. sin u cos. d du ` - u j. du u u - c sin sin - c evp: 7. b - -` - jl. d S. i f. '_ i - i. d c i ' f p $ d c i c i c i c c i evp: S $ $ - S 9 - O.LYS NM 7 iğe sf geçiniz.
8 . ` - -. dj - `- j. d. d ` - j. d - `- j ` - j - b -`- jl `- j b -`-jl 9 evp:. H I. H oludu. oludu. H > H ise > H 9. II. Kplı lıkt fonksionun integllenebili olmsı için koşul nı lıkt tüevlenebili olmsıdı. Süekli olmsı etmez. II. H ise m` % j> m` % j > H iğe öncülle doğudu. evp: III. c > m` % j> m`h % j ise H olbili. H. f'() evp: O f'() f() c f() 9 c HRF ĞİTİM YYINILIĞI c - f() (-) evp: SIFIR. L K F. - için L K (, ) (, ) ln(fkl) b [] çplı çembein mekezi; M(, ) (, ) (, ) olu. ( ) F evp: evp:.lys NM iğe sf geçiniz.
9 . 7. β β β evp:. b m (, ) m. F(, ) ' b _ b c ` c b b b - evp: ' K m için - m için K(, ) noktsı mekezdi. ' HRF ĞİTİM YYINILIĞI 9. β β F β b K `- j b -`- jl k evp: & & b evp:. K N. b ln (KN) mksimum olmsı için, m(kn) 9 olmlıdı. b N b olu. evp: evp:.lys NM 9 iğe sf geçiniz.
10 . f, p. b f p! $ $ f- p - evp: [] [K] F K. (, ) d [] çıot olduğundn; & K ikizken üçgendi ve K olu. nı zmnd K üçgeninde [] ot tbn olduğundn; b olu. H. F md - mh$ md - mh (, ) noktsındn geçen ve eğimi oln doğu, - ` - j - için - f, - p HRF ĞİTİM YYINILIĞI 9 b evp: evp:.. YOKTUR tne tne tne f p$ b tne evp:.lys NM iğe sf geçiniz.
11 7. 7. O kiişle dötgeni olduğundn; m` % j m` % j c % m` j 7c % m`oj c olu. ıçplı çk st önünde 7 döndüüldüğünde; 7 ucu $ $ biimlik ol lı. π lik dönme ıçplı çk için tm tu, ıçplı çk için tm tu dönme nlmın geli. O O olduğundn; % m`oj c evp:. 9 nin sdece değei vdı. 9 nin hehngi bi geniş çı olk lınmsı bizi ht götüü. u üzden pisgo eşitsizliği kullnılmz. evp: HRF ĞİTİM YYINILIĞI 7. `, j, b `, mj, c `n, - j, d `nm, j b ise <, b >.. m m - // c ise n - n - d `mn, j `-, -j d `- j `- j b di. evp: M(, ) 7 9 M(, ) ve - < 9 < olduğundn nin lbileceği en küçük tm sı değei du. evp:.lys NM iğe sf geçiniz.
12 H H F K. ln` j ln_ Ki b evp: İkizken üçgende; ikizkenl çekilen ükseklikle eşit olduğundn, H H olu. & H, `c-c-9cj üçgeni olduğundn H H olu. & H, `c-c-9cj üçgeni olduğundn 7. 9 O F b olu. evp: 7. dikdötgeni sınılı bi şekil olduğundn izdüşümü, ʽoğuʼ olmz. HRF ĞİTİM YYINILIĞI 79. Ken ot dikmelein kesim noktsı çevel çembein mekezi olduğundn, % m`oj c olu. evp: 9 k 7. - oijin, k -, -k --- evp: k 9 9 k k 9 c c evp:. 7. H β β b M K k k N O & & O, H K b sin, b, b ln`j $ $ $ b evp: evp: OTUZİKİ.LYS NM iğe sf geçiniz.
LYS1 / 4.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ
. İki bsmklı toplm sı vdı. ile lınd sl olmsı için ve e tm bölünmemeli e bölünen sıl 8 det e bölünen sıl det LYS /.NM MTMTİK TSTİ ÇÖZÜMLİ 8. - ` j - 8 k - 8 8-8 8 nck ʼin ktı oln sıl ( tne) kee lındı. -
DRC. 1. x 2 + 2xy + y 2 = 25 x + y = ± , 4, 6,..., 48 numaralı bölmeler yakılıyor. ( 24 tane ) 5. f ( x + 3 ) = x.
eneme - 8 / YT / MT MTMTİK NMSİ. + + + ± + 8 9 9. s( + ) s() İ İ + 9 9 7... ( I ) + 9 + 9 7... ( II ) I ve II den [ 7, 7 ] fklı tm sı değei lbili. evp.,,,..., 8 numlı bölmele kılıo. ( tne ), 9,,..., numlı
LYS1 / 3.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ
. `n 5j- `n- j - n - n vey n- n n 8. 8 8 LYS /.NM MTMTİK TSTİ ÇÖZÜMLRİ evp: evp:. - f p$ f - p f p 9 - - 5! 5 -! 5 5 5. 8... 5 5. 5.. y 8 8 5 5... z < y < z _. ` j. $ ` j ` ise y. ` j y $ ` j ` j yk. `
LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ
YS / TTİ N ÇÖZÜRİ eneme -. +. + + ti. - + + - + + > ise - + - + evp. ^ + ^- ^- +. z z + + + + evp z + -. c- m z z + - + + + z z z ^ ^ evp. çift sı olmlı Ç+ T T. Ştı sğln sdece vdı.. + + lde tne sl sı vdı.
LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ
LYS / GOMRİ NM ÇÖZÜMLRİ eneme -. 9 9 de [] hem çı oty hem yükseklik olduğu için ikizken üçgen u duumd 9 cm ve olu. de [ ] ot tbn olduğu için cm. α 0 0 α 0 m ^ h α olsun. 0 - - 90 üçgenini çizip desek ve
LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ
LYS / MTMTİK NM ÇÖZÜMLRİ eneme -. ) - - + ) - 7 - + ) - - +. + m ; + m + ^ ^ > H + ) - - + ^ ) 7- - + Sılın plı eşit olduğun göe, pdsı en üük oln sı en küçüktü. un göe seçeneğindeki sının pdsı en üük olduğundn
LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ
Y / Rİ N ÇÖZÜRİ eneme -. de ' çizilise + olcğındn cm, cm ve cm bulunu. ikizken üçgeninde m^\ m ^\ desek iki iç çının toplmı bi dış çı olcğındn m^\ olu. ikizken üçgeninde m^\ m^\ dı. m^\ m^\ dı. (Yöndeş
( x y ) 2 = 3 2, x. y = 5 tir. x 2 + y 2 2xy = 9. x 2 + y 2 = 19 bulunur. Cevap D / 24 / 0 ( mod 8 ) Pikaçu.
eneme - / YT / MT MTMTİK NMSİ. I. KK (, ) = : Z II. KK (, ) = : Z III. KK ( 8, ) = 7 7 : Z. - - = = ( ) ile. rlrınd sl ise ( ) =,. = tir. + = + = bulunur. evp evp. + / / ( mod 8 ) Pikçu. M n + n n + 8
LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI
LYS LİMİT VE SÜREKLİLİK KONU ÖETLİ ÇÖÜMLÜ SORU BANKASI ANKARA İÇİNDEKİLER Limit Kvrmı ve Grfik Sorulrı... Limitle İlgili Bzı Özellikler...7 Genişletilmiş Reel Sılrd Limit... Bileşke Fonksionun Limiti...
LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ
YS / GMTİ NM ÇÖZÜMİ eneme -.. 70 70 b desek olu. b Ç ` j cm olduğundn + b b - dı. de 6 @ ot tbnı çizilise benzelik ydımıyl biim bulunu. 6@ ' 6@ olduğundn m^\ h m ^\ h 70c di. ikiz ken üçgen çıktığındn
TOPLAM FARK FORMÜLLERİ İKİ KAT AÇI FORMÜLLERİ TRİGONOMETRİK DENKLEMLER ANALİZ TESTLERİ
ÖÜ OP OÜİ inüs oplm - k omülü... osinüs oplm - k omülü...9 njnt ve otnjnt oplm - k omüllei... oplm - k omülleinin Geometik Şekillee ygulnmsı... G İ...9 ÖÜ İİ Ç OÜİ inüs İki t çı omülü... osinüs İki t çı
Mustafa YAĞCI, [email protected] Parabolün Tepe Noktası
Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, [email protected] Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.
LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ
LYS / MEMİK ENEME ÇÖZÜMLERİ enee -. - + - + - - + - + - 7 - evp E. - + + 9 ifdelei tf tf çplı. ^- h^ + + 9h - 7. + + + ifdesinde zlı. + 7 ise + 7 evp + + + + + + + + + + +. z + z + + + z + z + dı. z z
LYS Matemat k Deneme Sınavı
LYS Mtemtk Deneme Sınvı 8. sısının pozitif tek tmsı bölenlerinin sısı kçtır? 8. olmk üzere; kesrinin değeri şğıdkilerden hngisi olmz?. (8!) sısının sondn kç bsmğı sıfırdır? 8. ifdesinin sonucu kçtır? (
LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ
LYS / MATEMATİK DENEME ÇÖZÜMLERİ Deneme -. A) - - + B) - 7 - + C) 5-5 - 5 +. + m ; + me + > H + D) - 5 - + E) 7- - + Sılrın plrı eşit olduğun göre, pdsı en üük oln sı en küçüktür. Bun göre A seçeneğindeki
TYT / MATEMATİK Deneme - 3
TYT / MTEMTİK Deneme -. (0,) 0 (0,) = 0 00 00 0 80 00 = = = bulunu. 00 00 00 6. 7! 8! = 7 6! 8! =! ( 8) = 0! = 0 0 = = b c budn b c = = 8 bulunu.. Syı = olsun = & = 8 & = 0 u syının ü ise 0 = bulunu. 7.
LYS Matemat k Deneme Sınavı
LYS Mtemtk Deneme Sınvı. İki bsmklı bir sının rkmlrı toplmı dir. Rkmlrı er değiştirdiğinde elde edilen sı, ilk sının sinden fzldır.. Birbirinden frklı tne pozitif tmsının OKEK i olduğun göre, en çok kçtır?
5. 6 x = 3 x + 3 x x = f(x) = 2 x + 1
Üstlü Sılrd İşlemler, Üstel Fonksion BÖLÜM 0 Test 0. 7 7 denkleminin çözüm kümesi şğıdkilerden hngisidir?. 6 olduğun göre, ifdesinin değeri kçtır? A) B) C) D) E) 6 9 6 A) {, } B) {, } C) {, } D) {, } E)
21. İlk 5 dakikanın sonunda Burak ve Onur un bulundukları. Cevap B. Burak 100. = 45 olup farkları = 22 bulunur. Cevap C
Deneme - / Mt MEMİK DENEMESİ Çözümle.. c + m. d ı. 4 4 6 4 4 6 ( 6) ( 4) ( ) ( ) y 5 7. y c + m. y d ı. 4 8 6 ( ) ( ) ( ) olduğun göe, 6 6y 8y bulunu.. y - + + y - y - y y - y 6 6. ^009, h. ^0, 07h > c
LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ
YS / EETRİ EEE ÇÖZÜERİ enee -.. H E desek E E EH (E uğund ot tn) olu. ` j $ $ c hlde, ^h $ $ 0 0 0 0 üüüş esfesi 0 c di. ulunu. evp de 0 0 0 ile c di. de 0 0 0 ile c di. hlde, lnın nık klcğı üüüş esfesi
5. ( 8! ) 2 ( 6! ) 2 = ( 8! 6! ). ( 8! + 6! ) Cevap E. 6. Büyük boy kutu = 8 tane. Cevap A dakika = 3 saat 15 dakika olup Göksu, ilk 3 saatte
Deneme - / Mt MTEMTİK DENEMESİ Çözümle. 7 7 7, 0, 7, + + = + + 03, 00,, 3 0 0 7 0 0 7 =. +. +. 3 = + + = 0 ulunu.. P ve pd eklenecek sı olsun. - + =- + + & - + =-- - & + = ^--h + & =- ulunu. + 3. Veilen
4. f ( x ) = x m x + m. Cevap C. m açılımındaki bir terim, x. 5. cx 3 + Cevap D. 6. x 2 + ( a + 4 ) x + 3a + 3 ifadesinin tam kare olması için
Deneme - / YT / MT MTMTİ DNMSİ Çözümle. < n < 0. f ( ) m + m p ve q asal saıla olmak üzee, n p. q vea p şeklinde olmalıdı. n {.,.,. 7,.,.,. 7,. 9,.,. 9,.,. 7,.,.,. 7,. 9,. 7,.,, } 9 tane bulunu.. { 7,,,
LYS Matemat k Deneme Sınavı
LYS Mtemtk Deneme Sınvı., b olduğun göre, b. b ifdesinin değeri şğıdkilerden hngisidir?,,,9 8... b b ifdesinin eşiti şğıdkilerden hngisidir?.. Bun göre, verilior. ifdesinin değeri kçtır? 8. b b c 8 c d
YÜKSEKÖĞRETİM KURUMLARI SINAVI MATEMATİK SORU BANKASI ANKARA
YÜKSEKÖĞRETİM KURUMLARI SINAVI MATEMATİK SORU ANKASI ANKARA İÇİNDEKİLER Fonksionlr... Polinomlr... II. Dereceden Denklemler... 7 II. Dereceden Fonksionlrın Grfiği (Prbol)... 7 Krmşık Sılr... 9 Mntık...
Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =?
Lisns Yerleştirme Sınvı (Ls ) 6 Hirn Mtemtik Sorulrının Çöümleri 8 sı tnınd verilen ( ) 8 sısının sı tnınd ılışı? Bu durumd ( ) 8 sısı önce tnın çevrilir Sonr tnınd ılır ( ) 8 8 8 8 Bun göre ( ) 8 ( )
Öğrenci Yerleştirme Sınavı (Öys) / 20 Haziran Matematik Soruları Ve Çözümleri
Öğenci Yeleştime Sınvı (Öys) Hzin 99 Mtemtik Soulı Ve Çözümlei. Rkmlı bibiinden fklı oln üç bsmklı en büyük tek syı şğıdkileden hngisine klnsız bölünebili? A) B) C) 6 D) 8 E) 9 Çözüm Rkmlı bibiinden fklı
LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ
LYS / GOMTRİ NM ÇÖZÜMLRİ eneme -. m ( ) + m( ) > 0 m ( ) + m ( ) > 90 + m ( ) + m ( ) + m( ) + m ( ) > 0 m ( ) > 40 4444444444 0 O hlde, çısının çısının ölçüsünün lbileceği en küçük tmsı değeri 4 evp.
LYS MATEMATİK DENEME - 2
LYS MATEMATİK DENEME - BU SORULAR FİNAL EĞİTİM KURUMLARI TARAFINDAN SAĞLANMIŞTIR. İZİNSİZ KOPYALANMASI VE ÇOĞALTILMASI YASAKTIR, YAPILDIĞI TAKDİRDE CEZAİ İŞLEM UYGULANACAKTIR. LYS MATEMATİK TESTİ. Bu testte
4. 89 / 5 ( mod p ) 84 / 0 ( mod p ) 60 / 4 ( mod p ) 56 / 0 ( mod p ) Cevap E. Cevap C. 6. x 0 f ( 0 ) = 1, f ( 1 ) = 2,...
eneme - / YT / MT MTMTİK NMSİ Çözümle. O ( b, c ) d ise b dm, c dk O ( a, b ) d ise b dm, a dn I. d tek saı iken a çift ise m ve n nin otak böleni olu. O ( a, b ) d olmaz. d tek ise a tek saıdı. ( oğu
1983 ÖYS A) 410 B) 400 C) 380 D) 370 E) işleminin sonucu kaçtır. 7. a, b, c birer pozitif tam sayıdır. a= 2 A) 9 B) 3 C) 2 E) 8 D) 4
98 ÖYS. işleminin sonucu kçtır. 6. Bir stıcı ir mlı üzde 0 krl strken, stış fitı üzerinden üzde 0 indirim prk 8 lir stıor. Bu mlın mlieti kç lirdır? A) 0 B) 00 C) 80 D) 70 E) 60 7.,, c irer pozitif tm
LYS Matemat k Deneme Sınavı
LYS Mtemtk Deneme Sınvı.,, z rdışık pozitif tmsılr ve z olmk üzere; z olduğun göre, kçtır? C). olduğun göre, ifdesinin değeri şğıdkilerden hngisidir? C) 8 6., b, c Z olmk üzere; b c bc c b olduğun göre,,
LYS LİMİT. x in 2 ye soldan yaklaşması hangisi ile ifade edilir? şeklinde gösterilir. lim. şeklinde gösterilir. f(x) lim f(x) ise lim f(x) yoktur.
Mtemtik SAĞDAN VE SOLDAN YAKLAŞMA Yndki tblod bir değişkeninin 4 sısın sğdn ve soldn klşımı ifde edilmiştir. u durumu genellemek gerekirse; değişkeni re el s ı sın, dn kü çük de ğer ler le k l şı or s,
ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır.
LYS- MTEMTİK MTEMTİK TESTİ. u testte Mtemtik lnın it toplm 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için yrıln kısmın işretleyiniz.. = 5! +! olduğun göre,! syısının türünden eşiti şğıdkilerden
Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının İhtiyaç Yayıncılık ın yazılı izni olmadan kopya
KMU PERSONEL SEÇME SINVI LİSNS ÖĞRETMENLİK LN BİLGİSİ ORTÖĞRETİM MTEMTİK TESTİ ÇÖZÜM KİTPÇIĞI T.C. KİMLİK NUMRSI : DI : SOYDI : TG Mıs DİKKT! ÇÖZÜMLERLE İLGİLİ ŞĞID VERİLEN UYRILRI MUTLK OKUYUNUZ.. Tstli
M1003 ÇÖZÜM : 4 YANIT : E M1101. ÇÖZÜM : x YANIT : C M0102 ÇÖZÜM : 6 YANIT : E
- 8. LYS Mtemtik Soulı Ve Çözümlei M + +. eel sısının değei kçtı? M. > eşitsizliğinin en geniş çözüm kümesi şğıdkileden hngisidi? ) ) ÇÖZÜM : ve ) ) ve olduğundn di.. YNIT : ) ) R ) Z ) R + ) R {} ) R
Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ
Ö.Y.S. 998 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Üç bsmklı bir doğl syısının ktı, iki bsmklı bir y doğl syısın eşittir. 7 Bun göre, y doğl syısı en z kç olbilir? A) B) C) 8 D) E) Çözüm y 7 7y (, en küçük bsmklı,
LYS 2016 MATEMATİK ÇÖZÜMLERİ
LYS 06 MATEMATİK ÇÖZÜMLERİ 6.. 5. 5. ( ) 8 6 65 buluruz. 5. 5 5 Doğru Cevp: C Şıkkı 8 7 ()... 9 buluruz. Doğru Cevp : D Şıkkı 9 8 8 9 8 9 8 9 9 9 9 9 8 buluruz. 8 8 8 8 8 Doğru Cevp : A Şıkkı (n )! (n
ÜNITE. Analitik Geometri. Düzlemde Vektörler Test Düzlemde Vektörler Test Düzlemde Vektörler Test
ÜNITE nlitik Geometi üzleme Vektöle Test -... üzleme Vektöle Test -... üzleme Vektöle Test -... üzleme Vektöle Test -... önüşüm Geometisi Test -... önüşüm Geometisi Test -... önüşüm Geometisi Test -...7
Cevap C. 400 / 0 ( mod 8 ) A harfi. 500 / 4 ( mod 8 ) D harfi. Cevap C. 6. I. n tam sayı ise. n 2 = 4k 2 4k + 1 veya n 2 = 4k 2
MTMTİ NMSİ. 8 h + + h. ( a, b ) 0 h. + h h+ h h. + h + bulunu. 0... 7 sayısında asal çapanladan bie tane olduğundan pozitif bölen sayısı kada ( a, b ) sıalı ikilisi vadı. ( + ). ( + ). ( + ). ( + ) tane
Belirsiz İntegral...415. İntegral Alma Yöntemleri... 425 Değişken Değiştirme Yöntemi... 425
Belisiz İntegl... İntegl Alm Yöntemlei... Değişken Değiştime Yöntemi... d c Biçimindeki İnteglle... 9 A B d Biçimindeki integlle... c Kesili Fonksionlın İntegli... 8 Tigonometik Fonksionlın İntegli...
ÜNİVERSİTEYE GİRİŞ SINAV SORULARI
ÜNİVERSİTEYE GİRİŞ SINV SORULRI. 99 ÖYS D C 5. 99 ÖYS fonksionunun ba lan g ç nok ta s na en a k n olan nok ta s n n, ba lan g ç nok ta s na uzak l kaç bi im di? O bi im olan bi a çem be in içi ne çi zi
Tek ve Çift Fonksiyonlar. Özel Tanýmlý Fonksiyonlar. Bir Fonksiyonun En Geniþ Taným Kümesi. 1. Parçalý Fonksiyonlar. 2. Mutlak Deðer Fonksiyonu
Fonksionlr Konu Özeti. Köklü fonksionlrın en geniş tnım kümesi: f( f( n f( g( fonksionun en geniş tnım kümesi, g( koşulunu sğln noktlr kümesidir. f( f( n f( g( tüm reel sılrd tnımlıdır. fonksionu g( in
ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI
EGE BÖLGESİ OKULLAR ARASI 7. MATEMATİK YARIŞMASI. SINIF TEST SORULARI. + işleminin sonucu kçtır? 5 5 A) 0 B) 0 C) 0 7 D) 0 9 E). y = x x + prbolünün y = x doğrusun en ykın noktsının koordintlrı toplmı
Ünite 5 ÜSTEL VE LOGARİTMİK FONKSİYONLAR. 5.1. Üstel Fonksiyon. 5.2. Logaritma Fonksiyonu. 5.3. Üstel ve Logaritmik Denklem ve Eşitsizlikler
Ünite ÜSTEL VE LOGARİTMİK FONKSİYONLAR f() g() log.. Üstel Fonksion / / / /.. Logritm Fonksionu.. Üstel ve Logritmik Denklem ve Eşitsizlikler . ÜNİTE: ÜSTEL ve LOGARİTMİK FONKSİYONLAR KAZANIM ve İÇERİK.
ELEKTRIKSEL POTANSIYEL
FİZK 14-22 Des 7 ELEKTRIKSEL POTANSIYEL D. Ali ÖVGÜN DAÜ Fizik Bölümü Kynkl: -Fizik 2. Cilt (SERWAY) -Fiziğin Temellei 2.Kitp (HALLIDAY & RESNIK) -Ünivesite Fiziği (Cilt 2) (SEARS ve ZEMANSKY) www.ovgun.com
Belirsiz İntegral İntegral Alma Yöntemleri Değişken Değiştirme Yöntemi
Belisiz İntegl... İntegl Alm Yöntemlei... Değişken Değiştime Yöntemi... d c Biçimindeki İnteglle... 9 A B d Biçimindeki integlle... c Kesili Fonksionlın İntegli... 8 Tigonometik Fonksionlın İntegli...
TİK TESTİ TEMA - 5 ÇÖZÜMLER
TYT / Temel Mtemtik TML MTMTİ TSTİ eneme - ÇÖZÜMLR.. < < 9 9 < b < 6 < c < 6 c = 6 = verilen rlıkt değildir. oylı olmyn üçgen syısı = = Tüm üçgenlerin syısı 6. - = - - - = - - = - = 0 sonuç yyınlrı 6..
LOGARİTMA. çözüm. için. Tanım kümesindeki 1 elemanını değer kümesindeki herhangi. çözüm. çözüm
LOGARİTMA Üstel Fonksion >0 ve olmk üzere f:r R +, f() = şeklindeki fonksionlr üstel fonksion denir. Üstel fonksionlr birebir ve örtendir. f:r R +, f()=( ) bğıntısının üstel fonksion olup olmdığını inceleiniz.
LYS TÜREV KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI
LYS TÜREV KONU ÖZETLİ LÜ SORU BANKASI ANKARA İÇİNDEKİLER Tüev... Sağdan Ve Soldan Tüev... Tüev Alma Kuallaı...7 f n () in Tüevi... Tigonometik Fonksionlaın Tüevi... 6 Bileşke Fonksionun Tüevi... Logaitma
r r r r
997 ÖYS. + 0,00 0,00 = k 0,00 olduğuna göe, k kaçtı? B) C). [(0 ) + ( 0) ] [(9 0) (0 ) ] işleminin sonucu kaçtı? B) C) 9 6. Bi a doğal sayısının ile bölündüğünde bölüm b, kalan ; b sayısı ile bölündüğünde
c) Bire bir fonksiyon: eğer fonksiyonun görüntü kümesindeki her elemanının tanım kümesinde yalnız bir karşılığı varsa bu fonksiyonlara denir.
FONKSİYONLAR Boş kümeden frklı oln A ve B kümeleri verildiğinde, A kümesindeki her elemnı B kümesindeki ir elemn krşı getiren ğıntıy A dn B ye fonksiyon denir. y=f(x) ile gösterilir. Bir diğer ifdeyle
Cevap D. 6. x = 3, y = 7, z = 9 olduğundan x + y < y ve. Cevap C. 7. x ile y aralarında asal olduğundan x 2 ile y sayıları da. Cevap A.
eneme - / Mt MTEMTİK ENEMESİ. c - m. c - m -.., bulunur. y. 7, + 7 y + + 00 y + + + y + +, y lınr ı.. ^ - h. ^ + h. ^ + h ^ - h. ^ + h - & & bulunur.. ΩΩΩΩΔφφφ ΩΩφφ ΩΩΔφ 0 evp. ise ^ h ^h 7 ise ^ 7h b
DENEME - 3 DENEME - 5. Değerli öğrencilerimiz,
eğerli öğrencilerimiz, eneme kitbımızın bir bskısınd dizgi son kıt şmsınd bzı zım htlrı oluşmuştur. enemelere bşlmdn önce şğıd kırmızı ile gösterilen düzeltmeleri pınız denemee çözmee ondn sonr bşlınız.
a üstel fonksiyonunun temel özellikleri şunlardır:
1 Üstel Fonksiyon: >o, 1 ve herhngi bir reel syı olmk üzere f: fonksiyon denir. R fonksiyonun üstel R, f()= 1 2, f()= ve f()= f()= gibi tbnı sbit syı (pozitif ve 1 den frklı) ve üssü 4 değişken oln bu
LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ
LYS / MATEMATİK DENEME ÇÖZÜMLERİ Dnm. ^ h ^ h ^h ^^h h ^^h h. ^ h ^ h ^ h Cvp C m. ^ h ^ h Cvp C 9 9 9, ulunur.. Cvp A Cvp B. İfdlri trf trf topllım.. n n n _ n n,,,,, için ifd tmsı olur. 9 ulunur. ^ h
x ise x kaçtır?{ C : }
İZMİR FEN LİSESİ LOGARİTMA ÇALIŞMA SORULARI LOGARİTMA FONKSİYONU. ( ) ( ) f m m m R C : fonksionunun m { ( 0,) } dim tnımlı olmsı için?.. f ( ) ( ) fonksionunun tnım kümsind kç tn tm sı vrdır?{ C : }.
Adı ve Soyadı : Nisan 2011 No :... Bölümü :... MÜHENDİSLİK FAKÜLTESİ ARA SINAV SORULARI
Adı ve Soydı :................ 16 Nisn 011 No :................ Bölümü :................ MÜHENDİSLİK FAKÜLTESİ ARA SINAV SORULARI 1) Aşğıdkile hngisi/hngilei doğudu? I. Coulomb yssındki Coulomb sbiti k
13. İlk çemberin çevresi f ( x ) doğrusal fonksiyon ise a 1. Cevap A. 14. x = log 0,125. sonuç yayınları. Cevap D. 15. log ( x 3 )
eneme - / YT / MT MTMTİ NMSİ Çözümle.. =. 0 +. ( asal) tam saı bölen saısı 97 + = 00.. ( + ). ( + ) = 00 ( + ). ( + ) = 00 = 9 bln.. a + 7 = ( b + ). ( c ) ( + ).( + ) = ( b + ).( c ) b =, c =, a =, a
KATI CİSİMLER. Aşağıdaki şekilde, ABCDEFGH tabanlı ABCDEFGHA B C D E F G H sekizgen dik prizması verilmiştir.
I İSİMLR tı isimlein İsimlendiilmesi ve Özeliklei şğıdki şekilde, tnlı sekizgen dik pizmsı veilmişti. Pizml tnlındki çokgene ve diklikeğiklik duumun göe ' ' ' ' isim lıl., ' ' ' ', dikdötgenleine ynl yüzey
YILLAR ÖSS-YGS /LYS /1 0/1 ÇÖZÜM: 1) xοy A ise ο işlemi A da kapalıdır.
YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS /LYS - - - 0/ 0/ ĐŞLEM ( ) ( ) (+ ) ( ) 7 6 76+ bulunur ve e bğlı bütün tnımlı fonksionlr bir işlem belirtir i göstermek için +,,*, gibi işretler kullnılır
SORU. m(cdo ) = = 20 olur. OB = OD = OC = r den; m(bco ) = 30, m(dco ) = 20 ve. [AB ile [AD B ve D noktalar nda çembere te ettir.
GMR eginin bu sy s nd Çembede ç l, Kiiflle ötgeni, e et Kiifl Özelliklei konusund çözümlü soul ye lmktd. u konud, ÖSS de ç kn soul n çözümü için geekli temel bilgilei ptik yoll, soul m z n çözümü içinde
MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.
MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı
DRC ile tam bölünebilmesi için bir tane 2 yi ayırıyoruz. 3 ile ) x 2 2x < (
nm - / YT / MT MTMTİK NMSİ. il tam bölünbilmsi için bir tan i aırıoruz. il bölünmmsi için bütün lri atıoruz... 7 saısının pozitif tam böln saısı ( + ). ( + ). ( + ) bulunur. vap. 0 + + 0 + ) < ( 0 + +
TEST 12-1 KONU. çembersel hareket. Çözümlerİ ÇÖZÜMLERİ s ise. 1. H z ve ivme vektörel olduğundan her ikisinin yönü değişkendir. 7.
KOU çebesel heket Çözüle S - ÇÖÜMLR. H z ve ive vektöel olduğundn he ikisinin yönü değişkendi. 6. 30 s ise 3 4 sniye f Hz 4. F, ıçp vektöü ile hız vektöü sındki çı 90 di. k 7. 000 7. 7 h 3600s 0 /s X t
1. y(m) Kütle merkezinin x koordinatı x = 3 br olduğundan, Kütle merkezinin x koordinatı, ... x KM = = 5m + 4m K = 10m olur.
0. BÖLÜM AĞIRLI MEREZİ ALIŞTIRMALAR ÇÖZÜMLER AĞIRLI MEREZİ. y(m) m m m 8m (m) 0 8m ütle mekezinin koodintı, m+ m+ M m + m + m.( ) + m. + 8m. + m.( ) + 8m. m+ m+ 8m+ m+ 8m + 9+ 8+ 6 8 m olu. ütle mekezinin
a 2 =h 2 +r 2 DERS: MATEMATĐK 8 KONU:KONĐ FORMÜLLERĐ ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN ADI: SOYADI:
1) KONĐ: Bi çembein bütün noktlının çembein dışındki bi nokt ile bileştiilmesinden elde edilen cisme koni deni. Kısc Koni, tbnı die oln pimitti. DĐK KONĐ PĐRAMĐT 1-A)DĐK KONĐ: Bi dik üçgenin, dik kenlındn
ÜNİTE - 7 POLİNOMLAR
ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri
2013 2013 LYS LYS MATEMATİK Soruları
LYS LYS MATEMATİK Soulaı. LYS 5. LYS ( + a ) = 8 < < olmak üzee, olduğuna öe, a kaçtı? I. A) D) II. + III. (.) ifadeleinden hanileinin değei neatifti? A) Yalnız I Yalnız II Yalnız III D) I ve III II ve
MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08
LİSNS YRLŞTİRM SINVI- MTMTİK-GMTRİ SINVI MTMTİK TSTİ SRU KİTPÇIĞI 08 U SRU KİTPÇIĞI LYS- MTMTİK TSTİ SRULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik Testi
TYT / MATEMATİK Deneme - 6
. Herbir hücrenin sol üst köşesinde kreler içine yzıln syılrın işlemin sonucunu verdiğine dikkt ederek syılrı yerleştirmeliyiz. 7 6 T N M 5 6 T X. ^ h ^ h bulur. M N. 0 6 6 6 0 5 5 5 6 6 5 5 ^5h ^5h ^h
MATEMATİK 2 TESTİ (Mat 2)
009 - ÖSS / MT- MTEMTİK TESTİ (Mt ). u testte sırsıl, Mtemtik ( 8) Geometri (9 7) nlitik Geometri (8 0) lnlrın it 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için rıln kısmın işretleiniz..
G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90
G O M T R İ. ÖLÜM Üçgende çılr. ÜÇGN oğrusl olmyn üç noktyı birleştiren doğru prçlrının birleşim kümesine üçgen denir. ış çı ış çı ış çı. ÇILRIN GÖR ÜÇG N ÇŞİTLR İ r çılı Üçgen Üç çının ölçüsü de 90 den
DERS 12. Belirli İntegral
DERS Belili İntegl.. Bi eği ltınd kln ln. Bi [, ] kplı lığı üzeinde süekli i onksionu veilmiş olsun ve e [, ] için olduğunu kul edelim. in giği ile ekseni sınd kln ölgenin lnı ile u deste göeeğimiz elili
UZAY GEOMETRİ HAKKINDA GENEL HATIRLATMALAR
UZY MRİ IN NL IRLMLR UZY SİYMLRI kı iki noktdn i tek doğu geçe oğus omyn fkı noktdn i tek düzem ÜÇ İM RMİ tı isim souını çözmede çok fydı i igidi geçe i doğu ve u doğu üzeinde uunmyn i nokt düzem eiti
LYS MATEMATİK ÖZET ÇÖZÜMLERİ TEST 1
LYS MATEMATİK ÖZET ÇÖZÜMLERİ TEST. (pʹ qʹ)ʹ ʹ 0 (pʹ q)ʹ 0 ve ʹ 0 pʹ q pʹ, q p 0 p, q, öneeleinin doğuluk değei 0,,. (pʹ q)ʹ olu (pʹ q)ʹ, pʹ q 0 pʹ, q 0 p 0 I. p q 0 0 totoloji II. (p q) (0 0) 0 totoloji
ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen
ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler
2005/2006 ÖĞRETİM YILI GÜZ YARIYILI MUKAVEMET 1 DERSİ FİNAL SORU VE CEVAPLARI
5/6 ÖĞRETİ GÜZ R UKVEET 1 ERSİ FİN SORU VE EVPR SORU 1 8 P Şekildeki gerilme durumund; ) sl gerilmeleri ve düzlemlerini ulrk elemn üzerinde gösteriniz. ) ksimum km gerilmesi ve düzlemini ulrk elemn üzerinde
DRC üst taban, 6 alt taban olmak üzere 12 mavi kare vardır. 4. Sekiz basamaklı herhangi bir özel sayı x = abcdefgh olsun. Deneme - 2 / Mat.
Deneme - / Mt MATEMATİK DENEMESİ. 6 üst tn, 6 lt tn olmk üzere mvi kre vrdır. Ypının tüm yüzeyi kreden oluştuğun göre, 6 7. 0,.., f -, 0, p. 0,. c- m.,,. ^- h.. 7. ^- h 7 - ulunur. +. c m olur. ( ) 9 c
1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5
7 ÖYS. 0,00 0,00 k 0,00 olduğun göre, k kçtır? 6. Bir ust günde çift ykkbı, bir klf ise günde çift ykkbı ypmktdır. İkisi birlikte, 8 çift ykkbıyı kç günde yprlr? 0 C) 0 D) 0 C) D). (0 ) ( 0) işleminin
YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1
YGS-YS GOMTRİ ÖZT ÇÖZÜMRİ TST 1 1. 1. y 1 1 + 1 1ʺ 1 1ʹ 17 0ʹ 1 1ʹ ʹ + ʹ 1ʺ ʹ + ʹ 1ʺ 7 0ʹ 1ʺ 0 0ʹ 1ʺ bulunur. 1 y < + 1 y dir. y < 7 + 1 < 7 0 < < 1 in en büyü tm syı değeri 17 in en üçü tm syı değeri
ÜNITE. Uzay Geometri. Katı Cisimler Test Katı Cisimler Test Katı Cisimler Test Katı Cisimler Test
ÜNI Uzy Geometi tı isimle est -... tı isimle est -... tı isimle est -... tı isimle est -... tı isimle est -...7 tı isimle est -...9 Uzy oğu ve üzlem est -...0 Uzy oğu ve üzlem est -... Uzy oğu ve üzlem
İstatistik I Bazı Matematik Kavramlarının Gözden
İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit
1992 ÖYS. 1. Bir öğrenci, harçlığının 7. liralık otobüs biletinden 20 adet almıştır. Buna göre öğrencinin harçlığı kaç liradır?
99 ÖYS. Bir öğrenci, hrçlığının 7 si ile, 000 lirlık otobüs biletinden 0 det lmıştır. Bun göre öğrencinin hrçlığı kç lirdır? 0 000 B) 0 000 C) 60 000 D) 80 000 E) 00 000 6. Bir lstik çekilip uztıldığınd
A A A A A A A A A A A
LYS MATEMATİK TESTİ. Bu testte 5 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz.. - - ^- h + c- m - (-5 )-(- ) işleminin sonucu kaçtır? A) B) C) D) 5 E).
1994 ÖYS. 6. x, y, z sıfırdan büyük birer tam sayı ve 2x+3y-z=94 olduğuna göre, x in en küçük değeri kaçtır?
99 ÖYS. Üç basamaklı abc sayısının birler basamağı tür. Birler basamağı ile yüzler basamağı değiştirildiğinde oluşan yeni sayı, abc sayısından 97 küçüktür. Buna göre, abc sayısının yüzler basamağı kaçtır?.,
DRC sayısının kendisi hariç en büyük üç farklı pozitif tam. Deneme - 3 / Mat. Cevap B. 2 ve 5 numaralı kutular açık olur. Cevap E.
nm - / Mt MTMTİK NMSİ Çözüml. + + -. + + + + + 8 + 8 bulunu. 8 y - 0, y 90 & 0, y y - y 90 y - 0+ y- & y - y 0y+ -y 9+ y 9y+ 7 + y 8y + 5 5y 5 y 5 5 +. + - ^ h - - 9-0 -9 bulunu. - - k. R vp. 5 6 çık çık
9. log1656 x, log2 y ve log3 z
ÖĞRENCİNİN ADI SOYADI: NUMARASI: Dersin Adı SINIFI: KONU: Logritm Alm Kurllrı Dersin Konusu. log4 loge ln4 işleminin sonucu kçtır? D) ln E) ln 6. olduğun göre, 8 9 log 9 4 ifdesi nee eşittir? D) E). log
LYS Y OĞRU MTMTİK TSTİ LYS-. u testte Matematik ile ilgili soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a ve b asal
12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır?
. SINIF M Fonksionlar. f ( + a ) + vef( ) 7 olduğuna göre a kaçtır? E) TEST. f ( ) k + 6 fonksionu sabit fonksion olduğuna f ( ) göre aşağıdakilerden k E). f( ) 6 k ve f ( ) olduğuna göre k kaçtır? E)
1993 ÖYS. 1. Rakamları birbirinden farklı olan üç basamaklı en büyük tek sayı aşağıdakilerden hangisine kalansız bölünebilir?
ÖYS. Rkmlrı birbirinden frklı oln üç bsmklı en büyük tek syı şğıdkilerden hngisine klnsız bölünebilir? D) 8 E) 7. +b= b olduğun göre, b kçtır? D) 8 E). İki bsmklı, birbirinden frklı pozitif tmsyının toplmı
LİNEER CEBİR MATRİSLER: şeklindeki tablosuna mxn tipinde bir matris denir. [a ij ] mxn şeklinde gösterilir. m satır, n sütun sayısıdır.
LİNEER CEBİR MTRİSLER: i,,,...,m ve j,,,..., n için ij sılrının. m m...... n n mn şeklindeki tblosun mn tipinde bir mtris denir. [ ij ] mn şeklinde gösterilir. m stır, n sütun sısıdır. 5 mtrisi için ;
LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ
LYS / GMİ NM ÇÖZÜMLİ eneme -. 0 ' 0 ile l eş üçgenle olduğundan; = 0 cm l = 0 cm ve = desek l = olu. l de pisago ise l = cm. 0 @ nin ota noktasını olaak işaetlielim. u duumda, = cm ( de ota taan) = cm
KKKKKKK. Adı Soyadı : Numarası : Bölümü : İmzası : VERİLER
Adı Soydı : Numsı : Bölümü : İmzsı : EİLE e - =e + =p=1,6x10-19 C Metik Ön Tkıl g=10 m/s 2 k=(1/4πε0)=9x10 9 N.m 2 /C 2 10 9 gig G εo=9,0x10-12 C 2 /N.m 2 10 6 meg M π=3 10 3 kilo k mp =1,7x10-27 kg 10-2
YARDIRMALI MATEMATİK TÜREV FASİKÜLÜ
YRIRMLI MTEMTİK TÜREV FSİKÜLÜ Maksimum-Minimum Problemleri MESUT ERİYES MKSİMUM - MİNİMUM PROLEMLERİ Maksimum ve minimum problemlerini çözmek için şu kurallar ugulanır; 1) Maksimum a da minimum olması
6. loga log3a log5a log4a. 7. x,y R olmak üzere;
log. 5 5 0 olduğuna göre, değeri kaçtır? A) 5 B) 0 C) 6 8 E) 6. loga loga log5a loga eşitliğini sağlaan a değeri kaçtır? 5 A) 5 5 B) 5 5 C) 5 E) 5. loga logb logc ifadesinin eşiti aşağıdakilerden a c A)
Trigonometri - I. Isınma Hareketleri. 1 Aşağıda verilenleri inceleyiniz. 2 Uygun eşleştirmeleri yapınız. 3 Uygun eşleştirmeleri yapınız.
Isınm Hreketleri şğıd verilenleri inceleyiniz. Yönlü çı: Trigonometrik irim Çember: Merkezi orjin, yrıçpı br oln çemberdir. O + yön éo Pozitif yönlü (Stin tersi) O yön éo Negtif yönlü (St yönü) O y x Denklemi:
DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ
DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan
ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik)
ÜÇGN LN Üçgende ln Şekilde verilen üçgeninde,, üçgenin köşeleri, [], [], [] üçgenin kenrlrıdır. c b üçgeninin kenrlrı dlndırılırken, her kenr krşısınd bulunn köşenin hrfi ile isimlendirilir. üçgeninin
