2. TEMEL İSTATİSTİK KAVRAMLARI
|
|
|
- Umut Nazlı
- 8 yıl önce
- İzleme sayısı:
Transkript
1 TEMEL İSTATİSTİK KAVRAMLARI İstatistik Kavamı İstatistik bi olaya (eve, aa kütle,toplu, kolektif ve yığı şeklideki) ait veilei (aket, deey ve gözlem vb) toplaaak sayısal olaak ifade edilmesii ve bu veilei çeşitli matematiksel yötemle ile aaliz edilmesii, değelediilmesii ve youmlamasıı içee bilim dalıdı Değişke Elde edile veilei değişkele (,y,z, vb) ile ifade edilebiliiz Değişke taımlı olduğu aalıkta he değei alıyosa süekli (öek: Boy uzuluğu, ağılık, hız) ve taımlı olduğu aalıkta bazı değelei alıyosa kesikli değişke ( öek : Bi evde yaşaya kişilei sayısı, bi limaa bi güde gie gemi sayısı vb) olaak adladıılı Bu edele bütü veilei(değişkele) oluştuduklaı dağılımla da süekli (omal, üstel, Gama dağılımlaı gibi) ve kesikli (öek: Uifom (düzgü), Beoulli, Biom, Poisso, Paskal (egatifbiom), Geometik dağılımla gibi) olmak üzee iki gupta toplaabili Ayı zamada aldıklaı değe bakımıda sayısal değele ala değişkelee icel (öek : boy uzuluğu, vücut ağılığı vb), sayısal değe alamaya değişkelee ise itel değişkele (öek : cisiyet, medei hal vb) dei 3İstatistik Tülei İstatistik taımlayıcı ve çıkaımsal istatistik olmak üzee iki gupta toplaabili Taımlayıcı İstatistik: Veilee ait otalama, mod, medya, stadat sapma, çapıklık ve basıklık katsayısı gibi mekezi eğilim değeleide yaalaaak veilei tablola, gafikle ile gösteilmesi ve özetlemesidi
2 Çıkaımsal İstatistik: Aa kütlede tesadüfe (asgele) seçile öek gubu üzeide yapıla gözlem ve ölçmelei değelediilmesi ile aa kütle hakkıda bilgi ediilmesi ve tahmide buluulmasıdı İstatistiği işlem adımlaı (Vei Aalizii Algoitması) aveilei toplaması (Yazılı Kayaklada, Gözlemsel, Deeysel, Aket ve buu gibi Yötemle ile) btoplaa veilei işleip düzelemesi (Toplaa veilei sayısal olaak ifade edilip kodlaması, veilei sıalaması, gupladıılması ve fekas tablolaıı oluştuulması ) cdüzelee veilei tablo veya gafikle şeklide gösteilmesi (Çizgi gafiği, çubuk gafiği, pasta gafiği, histogam vb) distatistiki aaliz, tahmi ve kaa aşaması (aaliz aşamasıda veilee ait otalama, mod, medya gibi mekezi eğilim değelei ve stadat sapma, basıklık, çapıklık gibi mekezi dağılım değelei belilei Ayı zamada uygu istatistiksel aaliz yötemi ile aaliz edileek, elde edile souçla youmlaı)
3 3 Mekezi Eğilim Ölçülei 3Otalamala 3 Aitmetik Otalama,,, şeklideki tae veii aitmetik otalaması ile taımlaı Fekaslı Veilei Otalaması f f f fekas (çokluk, sıklık) ayı sayıda bide fazla va Kodlama Yötemi Sayıla büyük olduğuda bu yötem tecih edili A Keyfi bi sayı (Geellikle fekası e büyük ola değeii alıması işlemlei kolaylaştıı) d i i A, i,,3,, A + ÖR: f d X d A Kodlama yötemi ile f d A + +,8,8 f d
4 Fekaslı Veile içi A + f d ÖR: X F d A f d Otalamayı hesaplayıız f d 6 A f 6, 8 - f d 6 Otalamaı Özelliklei - ( i ) - ( i a) m ia 3- f tae sayıı otalaması m f tae sayıı otalaması m fk tae sayıı otalaması m k ise f m fm + f m + f km f f + f + + f ÖR: 6,, ve, sayılaı veilsi k k f 3, f, ,
5 - hesabı kolaydı - Aşıı uç değelede etkilei(çok büyük ve çok küçük değele) 3 Ağılıklı (Tatılı) Otalama,,, k sayılaıı ağılıklaı, w,, w k w ile veili w ÖR: w ise Desi adı Not i Kedi w i Kedi ot w i i Aaliz 6 3 İstatistik 7 8 Fizik 3 w w 73 DNO w 73 6, 8 w Gupladıılmış (Sııfladıılmış) Veilei Otalaması Vei sayısı fazla ise veile sııfladıılaak işlem yapılı Otalama f 87 6, 8 geçek otalama
6 gupla Fekasla Limit Alt limit 8 7 Üst limit 6 3 Sııla Alt sıı Alt limit, 7, Üst sıı Üst limit +, 6, Sııf otası a lt limit+ ü slim t it 6, 3, C sııf geişliği (aalığı, uzuluğu) iki alt limit veya üst limit fakıdı bi sııfı üst sııı alt sıııdı d f u i N f u i ise A + C c 33 Geometik Otalama,,, sayılaıı geometik otalaması G,,, ile taımlaı Sııfladıılmış veile içi k : sııf sayısı i : sııf otası f f fk G k ÖR: sayılaı içi
7 G 369 7,8 Geometik Otalamaı Özelliklei Sayılada bii ise G dı Geometik otalama değişim oaıı hesabıda kullaılı ÖR: Yıl Nüfus Geometik üfus Otalama yıllaı aasıdaki üfusu otalama değişme miktaıı buluuz G NOT: Geometik otalama kullaılaak hesaplaa değele geçek değelele uyuşmaktadı H 3 Hamoik Otalama: H f Sııladıılmış veile içi ÖR:,,,, H,
8 ÖR: km yi 3 km/sa km yi 6 km/sa otalama hızı edi? 3, 6 H Hamoik Otalamaı Özelliklei Sayılada bii ise hamoik otalama hesaplamaz Otalama hız, işçi, havuz vb poblemlede sıklıkla kullaılı NOT: H G a ve b sayılaı içi: ab H G a b a + b a + b ab a + b a b a + b a b aa a + a a a a + a a a a 3Kaesel (Kuadatik) Otalama,,, sayılaıı kuadatik otalaması KO ÖR:, 8,,, içi KO? KO 8, 6 3 Medya (Otaca - Ota Değe) Sıalamış veilei eşit sayıda iki guba ayıa değee medya dei a- Vei sayısı tek ise:
9 Medya Sıalamış veilede (+)/ değe medya değeidi Medya (+) / ÖR: i,,,, 7,, 7 Sıalamış veile:,, 7,,,, Medya (+) / (7+) / değe b- Vei sayısı çift ise: Medya / değe ile + değelei otalaması / + / + ÖR: i,,, 6, 6, 7, 8, 8, 9, Medya [ / + / + ] / [ + 6 ] / (6 + 7) / 6, Sııfladıılmış Veilei Medyaı Medya sııfı: / değei içide buluduğu sııftı / f M el a + d f m L a f f a m a c : Medya sııfıı e alt sıııdı : Medya sııfıda öceki sııflaı fekaslaı toplamıdı : Medya sııfıı fekası c : Sııf geişliği Biikimli (komülatif ) fekasla: Bi sııfta öceki sııflaı fekaslaı toplamıdı
10 Medya Özelliklei - Hesap yapmada buluu - Sııladıma geektimesi bi kusu 3- Aşıı uç değelede etkilemez - Sayı olması geekmez - i m e d my a 33 Mod ( Tepe Değe) Fekası e büyük ola (e çok tekalaa) değedi ÖR: 8 mod ÖR: 7 8 mod yok ÖR: modlu: bimodal Sııfladıılmış Veile İçi Mod Mod sııfı: Fekası e büyük ola sııftı M ol a + d L a + c : Mod sııfıı alt sıııdı : Mod sııfıı fekası - bi öceki sııfı fekası
11 : Mod sııfıı fekas ı- bi soaki sııfı fekası c : Sııf geişliği Mod Özelliklei - Hesabı kolaydı - Veilei sııflaa ayılışıda çok etkilei 3- Sayı olmaya değe içide geçelidi(ö İsalaı çoğu kalp hastalığıda ölüyosa, mod değei kalp hastalığıdı) Mekezi Dağılım Ölçülei Otalama (Mutlak) Sapma Veilei otalamada uzaklaşma miktaıı ölçüleide biidi,,, sayılaıı otalama sapması OS i i ile taımlaı Sııfladıılmış Veile İçi: OS f ÖR:, 8, 6, 7,, 9, 36 8 OS ( ) Stadat Sapma Veilei otalamada ola uzaklaşma miktalaıı ölçüsüdü,,, sayılaıı stadat sapması
12 s σ ile taımlaı σ σ σ Sııfladıılmış veile içi: f f σ f d f d σ f u f u σ Stadat Sapmaı Özelliklei - ve elemalı iki sayı gubu içi stadat sapmala s ve s ise bu iki gubu otak (bileşik) stadat sapması s s + + σ )s ( )s ( + + σ - Nomal dağılım içi %68,7 si σ ve σ + aasıda
13 %9, i σ ve + σ aasıda %99,73 üi 3σ ve + 3σ aasıda 3 Vayas Stadat sapmaı kaesie vayas dei V() Mometle Sıfıa Göe Momet,,, sayılaıı sıfıa göe mometlei σ m ile taımlaı m,,3, Otalamaya göe momet m ( ) i ( ) m ( ) m σ v ya a Hehagi bi A sayısı içi vayas: ( A) m di
14 Gupladıılmış veile içi m f, M ( ) f, : sııf otası M f d c f u 3 Biimsiz Momet a M M σ a a σ a 3 sağa çapık M M çapıklık katsayısı a 3 sola çapık 3 3 a / σ M a 3 simetik M odm ed Sola Çapık Dağılım Sağa Çapık Dağılım
15 a σ M a 3 sivi eği M M basıklık katsayısı a 3 basık eği a 3 omal eği Mekezi Dağılım Ölçülei Çeyeklikle (Katille) Sıalamış vei dizisii eşit paçaya ayıa değelee çeyeklikle (dötte bilikle) dei çift ise tek ise d ğ e e ğ Q + Q d ğ e e ğ ( + ) 3 Q 3 d ğ e e ğ 3( + ) ÖR:, 7, 9,,,, 7 + Q Q ( + ) Q Q 3( + ) Q 6 Q ÖR:, 6, 7, 7, 8, 8, 9, 8 çift ise, Q Q / + / + M e d , / / +
16 Q , / / + 3 Sııfladıılmış Veile içi: Q K k fa L L K + c fk K,,3 L k çeyeklik sııfı e alt sıııdı çeyeklik sııfı: k/ değei buluduğu sııf Olukla Veilei o eşit paçaya böle değelee olukla dei k k Sııfladıılmış veile içi: k fa L k k + c fk k,,3,,9 3Yüzdelikle Veilei yüz eşit paçaya ayıa değeledi Sııfladıılmış veile içi: k fa P L k k + c k,,3,,99 fk
17 Taşlamış (kıpılmış) Otalama: Veile e büyük ve e küçük % değelei atılı Kala veilei otalamasıa kıpılmış otalama (TRMEAN) dei ÖR: tae sayı içi % / / E küçük iki değe (9-) E büyük iki değe (73-76) atılı ÖR: 7,6 6 Sııfla f X d -9 d u d/9 u u 3 u f f f d f d f u f u f u f 8 7,9 9 Medya Sııfı 3 L a,, f d 8 A + + 9,9 f a Med L c, 9 7 a + +, 7 f m fa 7 fm c 9
18 f u 9 A + c + 99,9 3 L a + c, Mod, 8 Q,3+ 9,3 9 Q 9,7 3 9 Q 3,+ 3 9,3 fu 6 σ f f 8 7 8,7 7 σ σ f d f d f f u u,73,73 f u m c, M M m -m 88,7 f u m c 3 f u 3 m3 c 7,3 9,7 M 3 m 3 3 m m + m 3,97 M m m m m m -3m 97, m f c u 3 3 a / σ M 9, 3 M M,7 > hafif sağa çapık M M,7 < 3 hafif basık eği a σ M
19 GRAFİKLER - Histogam Tabaı sııf aalığı ve boyu sııf fekaslaı ola dikdötgelede oluşa gafikti fekası c X sııf otası - Çubuk Diagamı Kesikli astgele değişkele içi oluştuulu veya sııf otalaı kullaılaak çizili fekası X sııf otası 3- Sepme (Saçılma) Gafiği Veile -eksei üzeide y-ye paalel üst üste sıalamış oktala şeklide işaetlei y ,,,,,,,,,
20 - Çizgi Gafiği: Sııf otalaı ve sııf fekaslaıı oluştuduğu ( i,y i ) okta çiftleii bileştie eğidi f f - Daiesel Gafik: Fekaslaı mekezi daiei mekezide ola ve alaı sıfııa kaşılık gele fekasla oatılı daie kesmeleidi Mekezi açıla f i 3 6 f i 6- Stem ad Leaf (Dal ve Yapak) Gafiği: ()
21 Bileşik Toplam tae Med () + KAYNAKLAR İşletme ve iktisat içi istatistik / Paul Newbold; çev Ümit Şeese İstatistiğe giiş : sosyal bilimle içi istatistiğe giiş / Nilgü Köklü, Nilgü Köklü; Şee Büyüköztük Temel istatistik / Fazıl Güle Schaum's outlie of theoy ad poblems of statistics ad ecoometics / Domiick Salvatoe, Domiick Salvatoe, Deick Reagle ÇÖMLEKÇ, Necla: Temel İstatistik İlke ve Tekiklei, Baskı, Bilim Tekik Yayıevi, Eskişehi, 99 GÜRTAN, Kea: İstatistik ve Aaştıma Metodlaı, İstabul Üivesitesi Yayılaı, No 6, İstabul, 977 HARPER, WM: Statistics, ed, Pitma Pub Comp,988 JOHNSON, Robet: Elemetay Statistics, 6 ed, PSWKENT Pub Comp, Bosto, 99 MELNYK, M: Piciple of Applied Statistics, Pegamo Pess Ic, New Yok, 97 Bilimsel aaştımalada istatistik uygulamalaı, Ocak Yayıevi, Mustafa ERGÜN, 99 İstatistik, Schaum Seisi, Çev Alpteki ESİN ve Salih ÇELEBİOĞLU, Nobel Yay
22 Uygulamalı İstatistik, Ege Üiv Yay No:, Şaslı BASKAN, 993 İstatistiğe Giiş, Fiket İKİZ, Halis PÜSKÜLLÜ ve Şaba EREN, Baış Yay 996 İstatistik, Aadolu Üiv Açık Öğetim Fak Yay No77, Editö: Ali Fuat YÜZER, 3 İstatistik, KPSS, Kaaca Yay Eğitim Komisyou7 Matematiksel İstatistik, Ezgi Kitabevi, Mustafa AYTAÇ, İstatistik II, Ezgi Yay Öze SERPER, Matematiksel İstatistik, Gazi Büo Yay Bediye SARAÇOĞLU ve Feha ÇEVİK, 99 İstatistiğe Giiş, İstabul Üiv Yay Salih KARAALİ, 993 Bilimsel aaştımalada istatistik uygulamalaı, Ocak Yayıevi, Mustafa ERGÜN, 99
Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER
Bölüm 5 Olasılık ve Olasılık Dağılışlaı Doç.D. Suat ŞAHİNLE Olasılık ve Olasılık Dağılışlaı Olasılık: Eşit saşla meydaa gele tae olayda A taesi A olayı olsu. Bu duumda A olayıı meydaa gelme olasılığı;
Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT
Üite 9: Koelasyo Öğ. Elemaı: D. Mustafa Cumhu AKBULUT 9.Üite Koelasyo 2 Üitede Ele Alıa Koula 9. Koelasyo 9.1. Değişkele Aasıdaki İlişkile 9.2. Koelasyo katsayısı 9.Üite Koelasyo 3 Koelasyo Buda öceki
ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK
ÖABT ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK DENEME SINAVI ÇÖZÜMLERİ ÖĞRETMENLİK ALAN BİLGİSİ DENEME SINAVI / çözümlei. DENEME. Veile öemelede yalız III kesi olaak doğudu. Bu edele doğu cevap seçeeği B di..
MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007)
MEKANİK TİTREŞİMLER TİTREŞİM ÖLÇÜMÜ: Titeşim ölçümü oldukça kapsamlı bi koudu ve mekaik, elektik ve elektoik bilgisi içeiklidi. Titeşim ölçümleide titeşim geliği (ye değiştime-displacemet, hız-velocity
BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER
BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii
TANIMLAYICI İSTATİSTİKLER
4 TANIMLAYICI İSTATİSTİKLER 4.. Mekez Eğlm Ölçüle 4... Atmetk Otalama 4... Ağılıklı Atmetk Otalama 4... Geometk Otalama 4..4. Hamok Otalama 4..5 Kuadatk Otalama 4..6. Medya 4..7. Katlle 4..8. Decle ve
4/4/2013. Ders 8: Verilerin Düzenlenmesi ve Analizi. Betimsel İstatistik Merkezsel Eğilim Ölçüleri Dağılım Ölçüleri Grafiksel Gösterimler
Ders 8: Verileri Düzelemesi ve Aalizi Betimsel İstatistik Merkezsel Eğilim Ölçüleri Dağılım Ölçüleri Grafiksel Gösterimler Bir kitlei tamamıı, ya da kitlede alıa bir öreklemi özetlemekle (betimlemekle)
İKTİSATÇILAR İÇİN MATEMATİK
Kostadi Teçevski Aeta Gatsovska Naditsa İvaovska Yovaka Teçeva Smileski İKTİSATÇILAR İÇİN MATEMATİK DÖRT YILLIK MESLEKİ OKULLARA AİT SINIF IV İKTİSAT - HUKUK MESLEĞİ EKONOMİ TEKNİSYENİ Deetleyele: D. Bilyaa
8. f( x) 9. Almanca ve İngilizce dillerinden en az birini bilenlerin
. MAEMAİK çapıldığıda, çapım olu? 6 ifadesi aşağıdakilede hagisi ile ) 6 + ifadesie eşit ) D) 6 + 8. f( ) ile taımlı f foksiouu e geiş taım kümesi aşağıdaki sg( ) lede hagisidi? 6,@ ) 6,@ ) ^, h, ^, +
KUYRUK SİSTEMİ VE BİLEŞENLERİ SİSTEM SİMULASYONU KUYRUK SİSTEMİ VE BİLEŞENLERİ ÖRNEKLER BİR KUYRUK SİSTEMİNİN ÖRNEKLER
KUYRUK SİSTEMİ VE SİSTEM SİMULASYONU 5. KUYRUK SİSTEMLERİ Bi kuyuk sistemi; hizmet veen bi veya biden fazla sevise sahipti. Sisteme gelen müşteile tüm sevislei dolu bulusa, sevisin önündeki kuyuğa ya da
DENEY 1-A MÜHENDĐSLĐKTE ĐSTATĐSTĐKSEL YÖNTEMLER
ühedislikte Đstatistiksel Yötele /. AAÇ DENEY -A ÜHENDĐSLĐKTE ĐSTATĐSTĐKSEL YÖNTELER Deeyi aacı, istatistiksel yötelei düzesiz davaış göstee oluşulaa uygulaasıı gösteekti. Çap ve oto devi sayısı ölçüleek
İstatistik ve Olasılık
İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri
Ankara Üniversitesi Diş Hekimliği Fakültesi Ankara Aysuhan OZANSOY
FİZ11 FİZİK Ankaa Üniesitesi Diş Hekimliği Fakültesi Ankaa Aysuhan OZANSOY Bölüm-III : Doğusal (Bi boyutta) Haeket 1. Ye değiştime e Haeketin Tanımı 1.1. 1 Mekanik Nedi? 1.. Refeans çeçeesi, Konum, Ye
A A A A A A A A A A A
LYS MATEMATİK TESTİ. Bu testte 5 sou vadı.. Cevaplaınızı, cevap kâğıdının Matematik Testi için aılan kısmına işaetleiniz.. Veilen, ve z tamsaılaı için. =. z =. =f() olduğuna göe, + + z toplamı en çok kaçtı?
FİZ101 FİZİK-I. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B Grubu 3. Bölüm (Doğrusal Hareket) Özet
FİZ11 FİZİK-I Ankaa Üniesitesi Fen Fakültesi Kimya Bölümü B Gubu 3. Bölüm (Doğusal Haeket) Özet.1.14 Aysuhan Ozansoy Haeket Nedi? Mekanik; kuetlei e onlaın cisimle üzeine etkileini inceleyen fizik dalıdı
BÖLÜM 2 GAUSS KANUNU
BÖLÜM GAUSS KANUNU.1. ELEKTRİK AKISI Elektik akısı, bi yüzeyden geçen elektik alan çizgileinin sayısının bi ölçüsüdü. Kapalı yüzey içinde net bi yük bulunduğunda, yüzeyden geçen alan çizgileinin net sayısı
RADYAL EPİTÜREVLERİN BAZI ÖZELLİKLERİ ÜZERİNE BİR ARAŞTIRMA
ISSN:306-3 e-joual of New Wold Scieces Academ 009 Volume: 4 Numbe: 4 Aticle Numbe: 3A006 PHSIAL SIENES eceived: abua 009 Accepted: Septembe 009 Seies : 3A ISSN : 308-7304 009 www.ewwsa.com Goca İceoğlu
SİSTEM SİMULASYONU KUYRUK SİSTEMİ VE BİLEŞENLERİ KUYRUK SİSTEMİ VE BİLEŞENLERİ
SİSTEM SİMULASYONU KUYRUK SİSTEMLERİ KUYRUK SİSTEMİ VE BİLEŞENLERİ Bi kuyuk sistemi; hizmet veen bi veya biden fazla sevise sahipti. Sisteme gelen müşteile tüm sevislei dolu bulusa, sevisin önündeki kuyuğa
Test İstatistikleri AHMET SALİH ŞİMŞEK
Test İstatistikleri AHMET SALİH ŞİMŞEK İçindekiler Test İstatistikleri Merkezi Eğilim Tepe Değer (Mod) Ortanca (Medyan) Aritmetik Ortalama Merkezi Dağılım Dizi Genişliği (Ranj) Standart Sapma Varyans Çarpıklık
İstatistik ve Olasılık
İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri
LYS TÜREV KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI
LYS TÜREV KONU ÖZETLİ LÜ SORU BANKASI ANKARA İÇİNDEKİLER Tüev... Sağdan Ve Soldan Tüev... Tüev Alma Kuallaı...7 f n () in Tüevi... Tigonometik Fonksionlaın Tüevi... 6 Bileşke Fonksionun Tüevi... Logaitma
Örnek 1. Çözüm: Örnek 2. Çözüm: 60 30000 300 60 = = = 540
Önek 1 1.8 kn yük altında 175 dev/dak dönen bi mil yatağında çalışacak bilyeli ulman için, 5 saat ömü ve %9 güvenililik istemekteyiz. Öneğin SKF kataloğundan seçmemiz geeken inamik yük sayısı (C 1 ) nedi?
3. EŞPOTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ. Bir çift elektrot tarafından oluşturulan elektrik alan ve eş potansiyel çizgilerini görmek.
3. EŞPOTNSİYEL VE ELEKTRİK LN ÇİZGİLERİ MÇ i çift elektot taafından oluştuulan elektik alan ve eş potansiyel çizgileini gömek. RÇLR Güç kaynağı Galvanomete Elektot (iki adet) Pob (iki adet) İletken sıvı
Kutu Poblemlei (Tekalı Kombiasyo) c) faklı dağıtılabili! Özdeş üç kutuya pay, pay, pay dağıtımı yapılısa; pay ala kutuu diğeleiyle ola özdeşliği bozul
Kutu Poblemlei (Tekalı Kombiasyo) KUTU PROBLEMLERİ Bu kouyu öekle üzeide iceleyeek geellemele elde edelim Öek a) faklı ese, kutuya pay, kutuya pay ve kutuya pay olacak şekilde kaç faklı dağıtılabili? b)
NÜKLEER FİZİĞİN BORSAYA UYGULANMASI: OPSİYON FİYATLARININ MESH FREE YÖNTEM ile MODELLENMESİ
NÜKLEER FİZİĞİN BORAYA UYGULANMAI: OPİYON FİYATLARININ MEH FREE YÖNTEM ile MODELLENMEİ M. Bilge KOÇ ve İsmail BOZTOUN Eciyes Üi. Fe-Ed. Fak. Fizik Bölümü 38039 Kaysei ÖZET Bu çalışmada eoik üklee fiziği
Fresnel Denklemleri. 2008 HSarı 1
Feel Deklemle 8 HSaı 1 De İçeğ Aa Yüzeyde Mawell Deklemle Feel şlkle Yaıma Kıılma 8 HSaı Kayak(la Oc ugee Hech, Alfed Zajac Addo-Weley,199 Kuaum leko-diamğ (KDİ, Rchad Feyma, (Çev. Ömü Akyuz, NAR Yayılaı,
TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı)
3 TAHMİNLEYİCİLERİN ÖZELLİKLERİ 3.1. Sapmasızlık 3.. Tutarlılık 3.3. Etkilik miimum varyas 3.4. Aralık tahmii (güve aralığı) İyi bir tahmi edici dağılımı tahmi edilecek populasyo parametresie yakı civarda
Çözüm Kitapçığı Deneme-3
KAMU PESONEL SEÇME SINAVI ÖĞETMENLİK ALAN İLGİSİ TESTİ İLKÖĞETİM MATEMATİK ÖĞETMENLİĞİ - OCAK 7 Çözüm Kitapçığı Deeme- u testlei he hakkı saklıdı. Hagi amaçla olusa olsu, testlei tamamıı vea i kısmıı Mekezimizi
İSTANBUL TEKNİK ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK MÜHENDİSLİĞİ PROGRAMI
İSTANBUL TEKNİK ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK MÜHENDİSLİĞİ PROGRAMI ADİ TÜREVLİ DİFERANSİYEL DENKLEMLERİN BAŞLANGIÇ DEĞER PROBLEMLERİNİN CHEBYSHEV POLİNOMLARI İLE ÇÖZÜMÜ BİTİRME ÖDEVİ Sema
TG 8 ÖABT İLKÖĞRETİM MATEMATİK
KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN İLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖAT İLKÖĞRETİM MATEMATİK u testlein he hakkı saklıdı. Hangi amaçla olusa olsun, testlein tamamının veya bi
r r r r
997 ÖYS. + 0,00 0,00 = k 0,00 olduğuna göe, k kaçtı? B) C). [(0 ) + ( 0) ] [(9 0) (0 ) ] işleminin sonucu kaçtı? B) C) 9 6. Bi a doğal sayısının ile bölündüğünde bölüm b, kalan ; b sayısı ile bölündüğünde
TEBLİĞ. Enerji Piyasası Düzenleme Kurumundan: PERAKENDE SATIŞ HİZMET GELİRİ İLE PERAKENDE ENERJİ SATIŞ FİYATLARININ DÜZENLENMESİ HAKKINDA TEBLİĞ
30 Aalık 2012 PAZAR Resmî Gazee Sayı : 28513 (2. Mükee) TEBLİĞ Eeji Piyasası Düzeleme Kmda: PERAKENDE SATIŞ HİZMET GELİRİ İLE PERAKENDE ENERJİ SATIŞ FİYATLARININ DÜZENLENMESİ HAKKINDA TEBLİĞ BİRİNCİ BÖLÜM
TG 2 ÖABT ORTAÖĞRETİM MATEMATİK
KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT ORTAÖĞRETİM MATEMATİK Bu testlei he hakkı saklıdı. Hagi amaçla olusa olsu, testlei tamamıı veya bi kısmıı
BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testlerine Giriş Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH
BİYOİSTATİSTİK İstatistiksel Tahmileme ve Hipotez Testlerie Giriş Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üiversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr
KÜTLE VE AĞIRLIK MERKEZİ
ÜTE VE AĞIRI MEREZİ BÖÜM 0 Alıştıala ÇÖZÜMER ütle ve Ağılık Mekezi y() () 0 ütle ekezinin koodinatı, + + M + + ( ) + + + ( ) + + + + + + 9+ 8+ 6 8 olu y() A 0 () 5 ütle ekezinin koodinatı b olduğundan,
ARAŞTIRMA MAKALESİ /RESEARCH ARTICLE
AADOLU ÜİERSİTESİ BİLİM E TEKOLOJİ DERGİSİ AADOLU UIERSIT JOURAL OF SIEE AD TEHOLOG ilt/ol.:0-saı/o: : 549-556 (009) ARAŞTIRMA MAKALESİ /RESEARH ARTILE KAIP GÖZLEM OLDUĞUDA KİTLE ORTALAMASII TAHMİİ Esa
Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER
Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Gözden Geçirilmiş ve Genişletilmiş 8. Baskı Frekans Dağılımları Varyans Analizi Merkezsel
13. Olasılık Dağılımlar
13. Olasılık Dağılımlar Mühendislik alanında karşılaşılan fiziksel yada fiziksel olmayan rasgele değişken büyüklüklerin olasılık dağılımları için model alınabilecek çok sayıda sürekli ve kesikli fonksiyon
İSTATİSTİK MHN3120 Malzeme Mühendisliği
İSTATİSTİK MHN3120 Malzeme Mühendisliği CBÜ - Malzeme Mühendisliği Bölümü Ofis: Mühendislik Fakültesi A Blok Ofis no:311 Tel: 0 236 2012404 E-posta :[email protected] YARDIMCI KAYNAKLAR Mühendiler
4. f ( x ) = x m x + m. Cevap C. m açılımındaki bir terim, x. 5. cx 3 + Cevap D. 6. x 2 + ( a + 4 ) x + 3a + 3 ifadesinin tam kare olması için
Deneme - / YT / MT MTMTİ DNMSİ Çözümle. < n < 0. f ( ) m + m p ve q asal saıla olmak üzee, n p. q vea p şeklinde olmalıdı. n {.,.,. 7,.,.,. 7,. 9,.,. 9,.,. 7,.,.,. 7,. 9,. 7,.,, } 9 tane bulunu.. { 7,,,
REEL ANALĐZ UYGULAMALARI
www.uukcevik.com REE NĐZ UYGUMRI Sou : (, Α, µ ) ölçü uzayı olsu. = N, Α= ( N ) ve µ ( E) olduğuu östeiiz. N üzeide alması içi eek ve yete koşul < di. Gösteiiz. µ oksiyouu veile taımıı uyulayalım; µ (
Tahmin Edici Elde Etme Yöntemleri
6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme
2013 2013 LYS LYS MATEMATİK Soruları
LYS LYS MATEMATİK Soulaı. LYS 5. LYS ( + a ) = 8 < < olmak üzee, olduğuna öe, a kaçtı? I. A) D) II. + III. (.) ifadeleinden hanileinin değei neatifti? A) Yalnız I Yalnız II Yalnız III D) I ve III II ve
KREMAYER TİPİ KESİCİ TAKIMLA İMAL EDİLMİŞ EVOLVENT DÜZ DİŞLİ ÇARKLARIN MATEMATİK MODELLENMESİ
Uludağ Üivesitesi Mühedislik Fakültesi Degisi, Cilt 21, Saı 1 ARAŞTIRMA DOI: 10.17482/uujfe.90925 KREMAYER TİPİ KESİCİ TAKIMLA İMAL EDİLMİŞ EVOLVENT DÜZ DİŞLİ ÇARKLARIN MATEMATİK MODELLENMESİ Tufa Güka
SAE 10, 20, 30 ve 40 d = 200 mm l = 100 mm W = 32 kn N = 900 d/dk c = mm T = 70 C = 2. SAE 10 için
ÖRNEK mm çapında, mm uzunluğundaki bi kaymalı yatakta, muylu 9 d/dk hızla dönmekte ve kn bi adyal yükle zolanmaktadı. Radyal boşluğu. mm alaak SAE,, ve yağlaı için güç kayıplaını hesaplayınız. Çalışma
açılara bölünmüş kutupsal ızgara sisteminde gösteriniz. KOORDİNATLAR Düzlemde seçilen bir O başlangıç noktası ve bir yarı doğrudan oluşan sistemdir.
KUTUPSAL KOORDİNATLAR (POLAR Düzlemde seçilen bi O başlangıç noktası ve bi yaı doğudan oluşan sistemdi. açılaa bölünmüş kutupsal ızgaa sisteminde gösteiniz. Not: Kolaylık olması açısından Katezyen Koodinat
DRC. 5. ab b = 3 b ( a 1 ) = Deponun hacmi 24x olsun, 3. y = 6 için = 3. 7 MATEMATİK DENEMESİ. a 9 b. a 2 b b = 12 b ( a 2 1 ) = 12.
MTEMTİK DENEMESİ Çözümle.. ab b = b ( a ) = a 9 b a b b = b ( a ) =. c d 7,,,,,, 7,, 9 + +... + 9 = : = a + + = a = b =, c = + 7 + d = d = = 7 < < & > > 7 & > > 7 =,,,, olup in alabileceği faklı değelein
5 ÖABT / MTL ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG. 678 ( sin + cos )( sin- cos )( sin+ cos ) lim sin- cos " = lim ( sin+ cos ) = bulunu. ". # # I = sin d = sin sin d sin = u sin d = dv du = sin : cos
OLASILIK SAYMA PROBLEMLERİ:
OLASILIK SAYMA PROBLEMLERİ: TOPLAMA YÖNTEMİ: Bi E olayı E veya E olaylaıda biii geçekleşmesiyle oluşuyo, E olayı içi seçeek, E olayı içi m seçeek vasa, E olayı içi +m seçeek vadı. E=E E ve E E =Ø içi:
BÖLÜM 5 İDEAL AKIŞKANLARDA MOMENTUMUN KORUNUMU
BÖLÜM 5 İDEAL AKIŞKANLARDA MOMENTUMUN KORUNUMU Linee İmpuls-Momentum Denklemi Haeket halinde bulunan bi cismin hehangi bi andaki doğusal hızı, kütlesi m olsun. Eğe dt zaman aalığında cismin hızı değişiyosa,
İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.
OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre
ŞANS DEĞİŞKENLERİNİN BEKLENEN DEĞER VE MOMENTLERİ
BÖLÜ 3 ŞANS DĞİŞKNLRİNİN BKLNN DĞR ONTLRİ atematsel belet avamı şas oyulaıda doğmuştu. yalı bçmyle, b oyucuu azaableceğ mta le azama olasılığıı çapımıdı. Sözgelm büyü ödülü 4800TL olduğu b çelşte 0.000
İki veri setinin yapısının karşılaştırılması
İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu
TG 3 ÖABT ORTAÖĞRETİM MATEMATİK
KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ 9 Mat TG ÖABT ORTAÖĞRETİM MATEMATİK Bu testlein he hakkı saklıdı. Hangi amaçla olusa olsun testlein tamamının
LİMİT TÜREV İNTEGRAL SORU BANKASI
LİMİT TÜREV İNTEGRAL SORU BANKASI ANKARA İÇİNDEKİLER LİMİT Limitin Özelliklei... Paçalı Fonksionlada Limit... Mutlak Değeli Fonksionlada Limit... Gafikte Limit... Genişletilmiş Reel Saılada Limit... Belisizliği
Ders 8: Verilerin Düzenlenmesi ve Analizi
Ders 8: Verilerin Düzenlenmesi ve Analizi Betimsel İstatistik Merkezsel Eğilim Ölçüleri Dağılım Ölçüleri Grafiksel Gösterimler Bir kitlenin tamamını, ya da kitleden alınan bir örneklemi özetlemekle (betimlemekle)
EME 3117 SİSTEM SIMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9
..7 EME 37 Girdi Aalizi Prosedürü SİSTEM SIMÜLASYONU Modelleecek sistemi (prosesi) dokümate et Veri toplamak içi bir pla geliştir Veri topla Verileri grafiksel ve istatistiksel aalizii yap Girdi Aalizi-II
MATLAB GUI TABANLI ELEKTROMIKNATIS DEVRE TASARIMI VE ANALİZİ
PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 005 : 11 : 1 : 13-19
İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37
İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar
Aritmetik Fonksiyonlar
BÖÜM V Aiteti osiyola Taı 5. Taı üesi oğal sayıla ola, : N C, şeliei osiyolaa aiteti osiyola ei., içi.. oşuluu sağlaya aiteti osiyolaa ise çaısal osiyola ei. Öe He N içi, ve 3 0 şelie taılaa osiyola bie
EMEKLILIK SİSTEMLERİ SINAV SORULARI WEB-ARALIK 2015. Bireysel emeklilik sistemine ilişkin olarak aşağıdakilerden hangisi(leri) yanlıştır?
EMEKLILIK SİSTEMLERİ SINAV SORULARI WEB-ARALIK 2015 Sou-1 Bieysel emeklilik sistemine ilişkin olaak aşağıdakileden hangisi(lei) yanlıştı? I. Bieysel emeklilik sistemindeki biikimle Sosyal Güvenlik Sistemine
4. DEVİRLİ ALT GRUPLAR
4. DEVİRLİ ALT GRUPLAR Tım 4.1. M, bi G gubuu bi lt kümei olu. M yi kpy, G i bütü lt guplıı keitie M i üettiği (doğuduğu) lt gup dei ve M ile göteili. M i elemlı d M gubuu üeteçlei (doğuylı) dei. Öeme
BİR ÇUBUĞUN MODAL ANALİZİ. A.Saide Sarıgül
BİR ÇUBUĞUN MODAL ANALİZİ A.Saide Sarıgül DENEYİN AMACI: Akastre bir çubuğu modal parametrelerii (doğal frekas, titreşim biçimi, iç söümü) elde edilmesi. TANIMLAMALAR: Modal aaliz: Titreşe bir sistemi
VERİ KÜMELERİNİ BETİMLEME
BETİMLEYİCİ İSTATİSTİK VERİ KÜMELERİNİ BETİMLEME Bir amaç için derlenen verilerin tamamının olduğu, veri kümesindeki birimlerin sayısal değerlerinden faydalanarak açık ve net bir şekilde ilgilenilen özellik
Tümevarım ve Özyineleme
Tümevaım ve Özyieleme CSC-59 Ayı Yapıla Kostati Busch - LSU Tümevaım Tümevaım ço ullaışlı bi ispat teiğidi. Bilgisaya bilimleide, tümevaım algoitmalaıı özellileii aıtlama içi ullaılı. Tümevaım ve öz yieleme
DUAL KUATERNİYONLAR ÜZERİNDE SİMPLEKTİK GEOMETRİ E. ATA
DÜ Fe Blmle Esttüsü Degs Dual Kuateyola 6. Sayı (Em l004) Üzede Smlet Geomet DUAL KUATERNİYONLAR ÜZERİNDE SİMLEKTİK GEOMETRİ E. ATA Özet Bu maalede dual uateyola üzede smlet gu, smlet etö uzayı e smlet
TMMOB ELEKTRİK MÜHENDİSLERİ ODASI ELEKTRİK TESİSLERİNDE TOPRAKLAMA ÖLÇÜMLERİ VE ÖLÇÜM SONUÇLARININ DEĞERLENDİRİLMESİ
TMMOB ELEKTİK MÜHENDİSLEİ ODASI ELEKTİK TESİSLEİNDE TOPAKLAMA ÖLÇÜMLEİ VE ÖLÇÜM SONUÇLAININ DEĞELENDİİLMESİ Not : Bu çalışma Elk.Y.Müh. Tane İİZ ve Elk.Elo.Müh. Ali Fuat AYDIN taafından Elektik Mühendislei
ÖLÇME DEĞERLENDİRME ÜNİTE BAŞLIKLARI
ÖLÇME DEĞERLENDİRME ÜNİTE BAŞLIKLARI 1. TEMEL KAVRAMLAR 2. ÖLÇMEDE HATA (GÜVENİRLİK GEÇERLİK) 3. İSTATİSTİK 1. TEMEL KAVRAMLAR Ölçme, Ölçüm, Ölçme Kuralı, Ölçüt, Değerlendirme. Ölçme Türleri: Doğrudan,
BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ
1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma
LYS MATEMATİK DENEME - 2
LYS MATEMATİK DENEME - BU SORULAR FİNAL EĞİTİM KURUMLARI TARAFINDAN SAĞLANMIŞTIR. İZİNSİZ KOPYALANMASI VE ÇOĞALTILMASI YASAKTIR, YAPILDIĞI TAKDİRDE CEZAİ İŞLEM UYGULANACAKTIR. LYS MATEMATİK TESTİ. Bu testte
LEFKE AVRUPA ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ PSİKOLOJİ BÖLÜMÜ PSK 106 İSTATİSTİK YÖNTEMLER I BAHAR DÖNEMİ ARASINAV SORULARI
LEFKE AVRUPA ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ PSİKOLOJİ BÖLÜMÜ PSK 106 İSTATİSTİK YÖNTEMLER I 2015-2016 BAHAR DÖNEMİ ARASINAV SORULARI Tarih: 22/04/2016 Istructor: Prof. Dr. Hüseyi Oğuz Saat: 11:00-12:30
Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir.
BİYOİSTATİSTİK Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. Veri Analiz Bilgi El ile ya da birtakım bilgisayar programları
Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014
Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?
OLASILIK ve KURAMSAL DAĞILIMLAR
OLASILIK ve KURAMSAL DAĞILIMLAR Kuramsal Dağılımlar İstatistiksel çözümlemelerde; değişkenlerimizin dağılma özellikleri, çözümleme yönteminin seçimi ve sonuçlarının yorumlanmasında önemlidir. Dağılma özelliklerine
YX = b X +b X +b X X. YX = b X +b X X +b X. katsayıları elde edilir. İlk olarak denklem1 ve denklem2 yi ele alalım ve b
Kadelen Bisküvi şiketinin on şehideki eklam statejisi Radyo-TV ve Gazete eklamı olaak iki şekilde geçekleşmişti. Bu şehiledeki satış, Radyo-TV ve Gazete eklam veilei izleyen tabloda veilmişti. Şehi No
EGM96 JEOPOTANSİYEL MODELİ,TG99 TÜRKİYE JEOİDİ VE GPS/NİVELMAN İLE ELDE EDİLEN JEOİT ONDÜLASYONLARININ KARŞILAŞTIRILMASI
Selçuk Üivesitesi Jeodezi ve Fotogameti Müedisliği Öğetimide 30. Yõl Semozyumu16-18 Ekim 00 Koya SUNULMUŞ BİLDİRİ EGM96 JEOPOTANSİYEL MODELİTG99 TÜRKİYE JEOİDİ VE GPS/NİVELMAN İLE ELDE EDİLEN JEOİT ONDÜLASYONLARININ
ATOM MODELLER THOMSON ATOM MODEL. -parçacığının sapma açısı, ( ) ; tan θ = k. q α.q ç 1. 2 2.E k b
ATOM MODLLR THOMSON ATOM MODL TOR ; Bu modele göe atom yaklaşık 10 10 mete çaplı bi küe şeklidedi. Pozitif yükle bu küe içie düzgü olaak Dağıtılmıştı. Negatif yüklü elektola ise küe içide atomu leyecek
ş ş ğ Ö ş Ç ş ö Ü Ü Ö Ü Ç Ö ö ö ş ğ ğ Ç ğ ş Ö ş ş ğ ş ö ö ş ş ğ Ö ş ş ş Ç ğ ğ ğ ğ ş ğ ş ğ ğ ğ ö ş ğ ş ğ Ç ğ ş ş ö ğ ö ğ ş ö ğ ş ö ğ ş ş Ç ğ ö ö ş ş ğ
ş ş ğ Ö ş Ç ş ö ş ğ ğ ğ ğ ş ğ ö ğ ş ş ş ğ ş ş ş ğ ş ş ğ Ü ş ş ö öş Ü ö ğ ö ğ ş ğ ş ö Ç ğ ş ö ğ ğ ş ş ş ö ş ö ğ ö ş ğ ş Ç ğ ş ş ö ş ğ ğ ş ö ş ğ Ü ş ş ğ ğ ö Ö Ç ş ö Ç ş ö Ç ş ö ş ş ö ş ö ğ ş ş ö ş ş ş ğ
Konum ve Dağılım Ölçüleri. BBY606 Araştırma Yöntemleri Güleda Doğan
Konum ve Dağılım Ölçüleri BBY606 Araştırma Yöntemleri Güleda Doğan Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl? Yakın, uzak? Sıklık dağılımlarının karşılaştırılması
DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ
DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati (T+U+L) Kredi AKTS OLASILIK VE İSTATİSTİK FEB-222 2/ 2.YY 3+0+0 3 3 Dersin Dili Dersin Seviyesi
Basit Makineler. Test 1 in Çözümleri
Basit Makinele BASİ MAİNELER est in Çözümlei. Şekil üzeindeki bilgilee göe dinamomete değeini göstei. Cevap D di.. Makaa ve palanga sistemleinde kuvvetten kazanç sayısı kada yoldan kayıp vadı. uvvet kazancı
MALİ UZLAŞTIRMA HESAPLAMALARI
ELEKTRİK PİYASASI DENGELEME ve UZLAŞTIRMA YÖNETMELİĞİ MALİ UZLAŞTIRMA HESAPLAMALARI 11 Ekim 2011, Ankaa Hüseyin ALTUNTAŞ Piyasa Mali Uzlaştıma Mekezi Gündem Uzlaştıma Uzlaştıma Süeçlei Gün Öncesi Piyasası
T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI FİBONACCİ SAYILARI VE ÜÇGENSEL GRAFLAR
T.C. BALIKESİR ÜNİVERSİTESİ EN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI İBONACCİ SAYILARI VE ÜÇGENSEL GRALAR YÜKSEK LİSANS TEZİ HURİYE KORKMAZ BALIKESİR, OCAK - 06 T.C. BALIKESİR ÜNİVERSİTESİ EN BİLİMLERİ
VEKTÖRLER 1. BÖLÜM. Vektörel Büyüklüğün Matematiksel Tanımı : u = AB yada u ile gösterilir.
. BÖLÜM VEKTÖRLER Tanım:Matematik, istatistik, mekanik, gibi çeşitli bilim dallaında znlk, alan, hacim, yoğnlk, kütle, elektiksel yük, gibi büyüklükle, cebisel kallaa göe ifade edilile. B tü çoklklaa Skale
ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ
İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama
ZAMAN DOMENİNDE SONLU FARKLAR METODU İLETEK BOYUTLU YAPILARDA ELEKTROMANYETİK DALGA YAYILIMININ SİMÜLASYONU
UBMK :. ULUSAL BİLİŞİM-MULTİMDYA KONFRANSI 76 ZAMAN DOMNİND SONLU FARKLAR MTODU İLTK BOYUTLU YAPILARDA LKTROMANYTİK DALGA YAYILIMININ SİMÜLASYONU Yavu ROL asa. BALIK [email protected]. [email protected]. Fıa Üivesiesi
FİZ102 FİZİK-II. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B-Grubu Bahar Yarıyılı Bölüm-III Ankara. A.
FİZ12 FİZİK-II Ankaa Ünivesitesi Fen Fakültesi Kimya Bölümü B-Gubu 214-215 Baha Yaıyılı Bölüm-III Ankaa A. Ozansoy Bölüm-III: Gauss Kanunu 1. lektik Akısı 2. Gauss Kanunu 3. Gauss Kanununun Uygulamalaı
( ) ( ) ( ) ϕ ( ) ( )
TRANFORMATORLAR Genel Elektiksel Özelliklei ve Gücünün Belilenmesi TRGT ODABAŞ Fiziksel Temelle Giiş Tansfomatole geilim ve akımın ölçülmesi veya sinyal ve gücün taşınması gibi özel maksatla için dizayn
TG 9 ÖABT İLKÖĞRETİM MATEMATİK
KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 9 ÖABT İLKÖĞRETİM MATEMATİK Bu testlein he hakkı saklıdı. Hangi amaçla olusa olsun, testlein tamamının veya
AVRASYA ÜNİVERSİTESİ
Ders Tanıtım Formu Dersin Adı Öğretim Dili İSTATİSTİK Türkçe Dersin Verildiği Düzey Ön Lisans (X) Lisans ( ) Yüksek Lisans( ) Doktora( ) Eğitim Öğretim Sistemi Örgün Öğretim (X) Uzaktan Öğretim( ) Diğer
İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. [email protected]
İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI [email protected] İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık
TEMEL KAVRAMLAR GİRİŞ
TEMEL KAVRAMLAR GİRİŞ İstatistik kelimesii kökei Almaca olup devlet alamıa gelmektedir. İstatistik kelimesi gülük hayatta farklı alamlarda kullaılmaktadır. Televizyoda bir futbol müsabakasıı izleye bir
İçindekiler. Ön Söz... xiii
İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1
Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ
Taımlayıcı İstatstkler (Descrptve Statstcs) Dr. Musa KILIÇ TANIMLAYICI ÖRNEK İSTATİSTİKLERİ YER ÖLÇÜLERİ (Frekas dağılışıı abss eksedek durumuu belrtr.) DEĞİŞİM ÖLÇÜLERİ ( Frekas dağılışıı şekl belrtr.).
İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği
İSTATİSTİK E GİRİŞ TEMEL KAVRAMLAR İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği Elemanlarıl AMAÇ İstatistiğe
