TG 9 ÖABT İLKÖĞRETİM MATEMATİK
|
|
|
- Levent Memiş
- 9 yıl önce
- İzleme sayısı:
Transkript
1 KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 9 ÖABT İLKÖĞRETİM MATEMATİK Bu testlein he hakkı saklıdı. Hangi amaçla olusa olsun, testlein tamamının veya bi kısmının İhtiyaç Yayıncılık ın yazılı izni olmadan kopya edilmesi, fotoğafının çekilmesi, hehangi bi yolla çoğaltılması, yayımlanması ya da kullanılması yasaktı. Bu yasağa uymayanla, geekli cezai soumluluğu ve testlein hazılanmasındaki mali külfeti peşinen kabullenmiş sayılı.
2 AÇIKLAMA DİKKAT! ÇÖZÜMLERLE İLGİLİ AŞAĞIDA VERİLEN UYARILARI MUTLAKA OKUYUNUZ.. Sınavınız bittiğinde he sounun çözümünü tek tek okuyunuz.. Kendi cevaplaınız ile doğu cevaplaı kaşılaştıınız.. Yanlış cevapladığınız soulaın çözümleini dikkatle okuyunuz.
3 ÖABT / MTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 9 ab - a. a, b = 99 ba - b b, a = 99 ab + ba- a- b a, b+ b, a = 99 a + b = = _ a+ bi y = + y = A = cot_ + yi + cosd - yn = coty+ sin y 7. AB = tani AB = : tan i : lim tan i lim tan i = : = i" i i" i : _ + tan ii = : lim i " = : 99 : _ a, b+ b, ai = a+ b =. A = = - A+ = ve / _ mod i çünkü ekob _, i = ve asald. _ Femat teo. i A + / _ mod i A / _ mod i 5. İçle dışla çapımı yapılısa + > - > - 5, olup =-. z = - = = z = y+ = y =- y iç ina_, - i olmak üzee z =, z = ve z = yy y yy yi D = z : z -_ z D_ Ai = > iken z = > olup A, z için bi yeel minimum noktasıdı.., f_ i = * -, < y. lim f _ i =+ ve lim f _ i =- " - - " - lim f _ i - lim f _ i = -_ - i = - - " " 9. f = y: z: cos_ : y: zi f d,, n = : cos = y = Diğe sayfaya geçiniz.
4 ÖABT / MTİ TG 9. f e tan cos _ i= : cos tan fl_ i = e : f + tan - : sin : cos p : cos : f p - : tan fld n = e : f + tan p : : f p fld n = e: : f- p. f _ i, eksenini = ve = de kesen = çift katlı düşey asimptotuna sahip olduğundan = de baca göünümlüdü. Ayıca yatay asimptot y = di.. : ln ln + I = d + nd : ln : ln = d + = + ln + d : ln _ : ln il d : ln = + ln_ : ln i + c = - e. y = ac sec_ i = sec y = secy: tan y: yl : cosy: cot y = yl yl = : : -. f _ i= : tan fonksiyonu, f_ - i=-f _ i olup tek fonksiyondu. O hâlde simetik bi aalık üzeindeki belili integali daima olu e = y: e dyd = _ + i: e d d + + yl = = e = e - e s y. fd : sin - n = sin sin + : cos : fld : sin - n : sin 5. ln loge e : cos d = e : cos d = : cos d = : cos d = sin + c. A bölgenin alanı y = A y = = : cos = + : : fld - n = : : : fl_ i = A = = dyd veya y A = ddy+ ddy y y integallei ile hesaplanı. Diğe sayfaya geçiniz.
5 ÖABT / MTİ TG 9 9. y y ei in P l + = ç _ i= ve Q _ i = e fonksiyonlaı in süekli fonksiyonlaı olup denklem lineedi. O hâlde denklem d e = ile ç ap lsa yl + y = e e _ : yi l = e : y = + c e - y = + c:. dy fl_ i= yl = = y d y dy = d ln y = + c + c y = e veya y = c: e fomundad. 5. m, k Z olmak üzee! + k _ m a i = a olacak şekildeki en küçük k ve m sayılaı için k = m k = 5m di. k = 5. y = e dönüşümü ile elde edilen denklemin köklei eel ise çözüm fonksiyonunda sadece üstel ifadele, kompleks ise çözümde üstel ifadelein yanı sıa tigonometik ifadele de ye alı. Buna uygun bi denklem yll + y = denklemidi. -. Ann ve A ise A = :. A Ek _ A i d Buna gö ea - = Ek_ Ai - R = - S- - T - V - W X. Z teo_ i = b_, i = l Z tde o_ 5i = b_ 5, i = l ob_ 5, il = : o_ i, o_ 5iD = 7, A = Not: _ a, bi= ebob_ a, bi, 7a, ba = ekok_ a, bi. yaıçapı olmak üzee küenin hacmi V = tü. d dv d =, ise = : : dt dt dt = : : 5 : = cm/ sn. aveb aasındaki açı i olmak üzee a, b = a : b : cos i bağıntısına göe I, II ve III ün doğuluğu aşikâdı. I. i = cos i = II. i = cos i =- III. i = 9 cos i = 7.! Ave = : için teoemde = ven= al nsa o_ i = = = 5 ebob_, i 5 Diğe sayfaya geçiniz.
6 ÖABT / MTİ TG 9. Eule Teoemi: ebob(a, n) = olmak üzee z_ a n i / _ mod ni di. Buna göe z_ 5i z _ 5i+ / / _ mod 5i / _ mod 5i. Deteminantın sıfı olma duumudu. a - a+ = olup - a = 5. Va_ ax+ bi = a : Va_ Xi olup Va_ Xi = EX _ i -b EX _ il = - = di. Ohâ lde Va_ : X+ i = : Va_ Xi = 9. u = _,, - i vev= _,, i olmak üzee Alan = uv metodu ile i j k uv= = i - j + k. u = v u, v = u: v = - a+ a+ ab- b = ba _ - i= a a b = a - 5. X in ikinci momenti Mll_ i di. Ml_ ti = : e Mll_ ti = : e Mll_ i= = f _ i f_ t t 7i = : 7 = = i- 5j+ k uv = + 5+ = b. R ün alt uzaylaı _,, i dan mutlaka geçmelidi. Bu koşula uygun tüm doğu ve düzlemle R ün bi alt uzayıdı. Buna z göe = y = doğusu R ün bi alt uzayıdı.. Hamonik Otalama Geometik otalama Aitmetik Otalama yz + y + z yz y + z + yz yz _ yzi y + z + yz = 9 : y: z / t. E _ i = : P_ i M_ ti = E_ e i ti. / / = Ee _ ti t t = e : P_ i = e : P _ i t t t M_ ti = e : + e : + e : : M_ ln i = + + = 9 Diğe sayfaya geçiniz.
7 ÖABT / MTİ TG 9 7. B a A E b a + b = a: _ a+ bi ve = a: _ a+ bi = a: _ a+ bi = 7 = b F. Mekezi A olan ve B, C, D noktalaından geçen çembe çizilise B A 5 5 m( CD) = vem( CD) = olup = C D. M_ 5, - i ve= di. OM = 5 + _- i = b olduğundan en kısa uzaklık - b di.. Asya Öğetmen sayma pullaından + ile + tam sayısını, - ile tam sayısını ifade edeek _ + 7i-_ - i işlemini modellemek istemişti.. Pogamında, öğencilein öz düzenleme ile ilgili beceileinin gelişimi önemli bi ye tutmaktadı. Öz düzenleme ile ilgili beceilein bi kısmı beceile ve duyuşsal özellikle bölümleinde ye almıştı. Bunlaa ek olaak öğencilee aşağıdaki öz düzenleme beceileinin de kazandıılması hedeflenmişti: Matematikle ilgili konulada kendini motive ede. Matematik desi için hedefle belileyeek bunlaa ulaşmada kendini yönlendii. Matematik desinde istenenlei zamanında ve düzenli olaak yapa. Matematikle ilgili çalışmalada kendi kendini sogula. Geektiğinde ailesinde, akadaşlaından ve öğetmenleinden yadım iste. Matematik desine veimli bi şekilde çalışı. Matematik sınavlaında heyecanlı ve panik hâlde olmaz. Matematik desinde ilişkileinde saygının, değe vemenin, onuun, hoşgöünün, yadımlaşmanın, paylaşmanın, düüstlüğün ve sevginin önemini takdi ede. Matematik desinde yapılan çalışmalada temiz ve düzenli olu. Matematik desinde eşyalaı ve mateyallei kullanıken özen göstei. Kaslaını aktivite sıasında etkin kullanma ve des aaç geeçleini geliştiip bunlaı etkin kullanma psikomoto beceiledendi. 9. y = z = yaz lsa - - = _ + i _ - i= =- ve = - = biim. Etkinlikte adımla sıası ile uygulanısa ile kesinin çapımı elde edili. O hâlde bu etkinlik asyonel sayılala çapma işlemini yapa, kazanımı ile ilişkilidi. 7 Diğe sayfaya geçiniz.
8 ÖABT / MTİ TG 9. Bölme işlemine ilişkin poblem duumlaında kalanı youmlama ilk kez 5. sınıfta, doğal sayılada döt işlem yapmayı geektien poblemi çözme ilk kez. sınıfta, dik koniyi tanıma ve temel elemanlaını belileme ilk kez. sınıfta, düzgün çokgenlein kena ve açı özellikleini açıklama ilk kez 7. sınıfta ele alınmaktadı. 5. Veilen adımla sıası ile uygulandığında AABCD _ i = z: _ + yi olu. A_ AEFDi = zvea_ EFCDi = zy di. AABCD _ i = A_ AEFDi + A_ EFCDi z _ + yi = z+ zyelde edili. Yeşim Öğetmen bu etkinlik ile öğencileine otak çapan paantezine almayı modellemişti. 7. Otaokul Matematik Öğetim Pogamı nın öğencilede kazandımayı hedeflediği genel amaçla aşağıdaki gibidi: Matematiksel kavamlaı anlayabilecek, bunla aasında ilişkile kuabilecek, bu kavam ve ilişkilei günlük hayatta ve diğe disiplinlede kullanabilecekti. Matematikle ilgili alanlada ilei bi eğitim alabilmek için geekli matematiksel bilgi ve beceilei kazanabilecekti. Poblem çözme süecinde kendi düşünce ve akıl yüütmeleini ifade edebilecekti. Matematiksel düşünceleini mantıklı bi şekilde açıklamak ve paylaşmak için matematiksel teminoloji ve dili doğu kullanabilecekti. Tahmin etme ve zihinden işlem yapma beceileini etkin kullanabilecekti. Poblem çözme statejilei geliştiebilecek ve bunlaı günlük hayattaki poblemlein çözümünde kullanabilecekti. Kavamlaı faklı temsil biçimlei ile ifade edebilecekti. Matematiğe yönelik olumlu tutum geliştiebilecek, öz güven duyabilecekti. Sistemli, dikkatli, sabılı ve soumlu olma özellikleini geliştiebilecekti. Aaştıma yapma, bilgi üetme ve kullanma beceileini geliştiebilecekti. Ölçme ve değelendime yapma öğetmenin sahip olması geeken özellikleden biidi. 9. yılında yayımlanan Otaokul Matematik Desi Öğetim Pogamı nda çapanlaa ayıma. sınıfta, aitmetik dizilein kualını hafle ifade 5. sınıfta işlenmektedi. Bu nedenle sınavda I ve IV. soulaın kullanılması uygundu. 5. Veilenle sıası ile uygulandığında C D M N A K K N L M L B elde edili. m( WK ) + m( VL ) + m( XM ) + m( XN ) = di. O hâlde öğetmenin bu etkinliği yapmadaki amacı bi dötgenin iç açıla toplamının olduğunu göstemekti.. Veilen kazanımlada I ve II. kazanım 5. sınıf geometi ve ölçme öğenme alanında, III. kazanım ise 5. sınıf vei işleme öğenme alanında ele alını.. Rasyonel sayılaı sayı doğusunda gösteme, sıalama ve ondalık gösteimle. sınıf sayıla ve işlemle öğenme alanında ele alınmaktadı. O hâlde Beyza Öğetmen. sınıfta bu etkinliği yaptımıştı.
TG 8 ÖABT İLKÖĞRETİM MATEMATİK
KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN İLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖAT İLKÖĞRETİM MATEMATİK u testlein he hakkı saklıdı. Hangi amaçla olusa olsun, testlein tamamının veya bi
TG 1 ÖABT İLKÖĞRETİM MATEMATİK
KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT İLKÖĞRETİM MATEMATİK Bu testlein he hakkı saklıdı. Hangi amaçla olusa olsun, testlein tamamının vea bi
5 ÖABT / MTL ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG. 678 ( sin + cos )( sin- cos )( sin+ cos ) lim sin- cos " = lim ( sin+ cos ) = bulunu. ". # # I = sin d = sin sin d sin = u sin d = dv du = sin : cos
TG Haziran 2013 KAMU PERSONEL SEÇME SINAVI LİSANS ÖĞRETMENLİK ALAN BİLGİSİ ORTAÖĞRETİM MATEMATİK TESTİ ÇÖZÜM KİTAPÇIĞI
KAMU PERSNEL SEÇME SINAVI LİSANS ÖĞRETMENLİK ALAN BİLGİSİ RTAÖĞRETİM MATEMATİK TESTİ ÇÖZÜM KİTAPÇIĞI T.C. KİMLİK NUMARASI : ADI : SYADI : TG 9 Hazian DİKKAT! ÇÖZÜMLERLE İLGİLİ AŞAĞIDA VERİLEN UYARILARI
Çözüm Kitapçığı Deneme-7
KAMU PESONEL SEÇME SINAI ÖĞETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞETİM MATEMATİK ÖĞETMENLİĞİ 7-9 MAT 7 Çözüm Kitapçığı Deneme-7 Bu testlein he hakkı saklıdı. Hangi amaçla olusa olsun, testlein tamamının vea
TG 3 ÖABT ORTAÖĞRETİM MATEMATİK
KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ 9 Mat TG ÖABT ORTAÖĞRETİM MATEMATİK Bu testlein he hakkı saklıdı. Hangi amaçla olusa olsun testlein tamamının
Cevap C. 400 / 0 ( mod 8 ) A harfi. 500 / 4 ( mod 8 ) D harfi. Cevap C. 6. I. n tam sayı ise. n 2 = 4k 2 4k + 1 veya n 2 = 4k 2
MTMTİ NMSİ. 8 h + + h. ( a, b ) 0 h. + h h+ h h. + h + bulunu. 0... 7 sayısında asal çapanladan bie tane olduğundan pozitif bölen sayısı kada ( a, b ) sıalı ikilisi vadı. ( + ). ( + ). ( + ). ( + ) tane
KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 4 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının
TG 15 ÖABT İLKÖĞRETİM MATEMATİK
KMU PERSONEL SEÇME SINVI ÖĞRETMENLİK LN BİLGİSİ TESTİ İLKÖĞRETİM MTEMTİK ÖĞRETMENLİĞİ TG ÖBT İLKÖĞRETİM MTEMTİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir
KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 9 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının
KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 15 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının
TG Haziran 2013 KAMU PERSONEL SEÇME SINAVI LİSANS ÖĞRETMENLİK ALAN BİLGİSİ İLKÖĞRETİM MATEMATİK TESTİ ÇÖZÜM KİTAPÇIĞI
KAMU PERSONEL SEÇME SINAVI LİSANS ÖĞRETMENLİK ALAN BİLGİSİ İLKÖĞRETİM MATEMATİK TESTİ ÇÖZÜM KİTAPÇIĞI T.C. KİMLİK NUMARASI : ADI : SOYADI : TG 9 Haziran DİKKAT! ÇÖZÜMLERLE İLGİLİ AŞAĞIDA VERİLEN UYARILARI
r r r r
997 ÖYS. + 0,00 0,00 = k 0,00 olduğuna göe, k kaçtı? B) C). [(0 ) + ( 0) ] [(9 0) (0 ) ] işleminin sonucu kaçtı? B) C) 9 6. Bi a doğal sayısının ile bölündüğünde bölüm b, kalan ; b sayısı ile bölündüğünde
LYS TÜREV KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI
LYS TÜREV KONU ÖZETLİ LÜ SORU BANKASI ANKARA İÇİNDEKİLER Tüev... Sağdan Ve Soldan Tüev... Tüev Alma Kuallaı...7 f n () in Tüevi... Tigonometik Fonksionlaın Tüevi... 6 Bileşke Fonksionun Tüevi... Logaitma
KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının
ÜNİVERSİTEYE GİRİŞ SINAV SORULARI
ÜNİVERSİTEYE GİRİŞ SINV SORULRI. 99 ÖYS D C 5. 99 ÖYS fonksionunun ba lan g ç nok ta s na en a k n olan nok ta s n n, ba lan g ç nok ta s na uzak l kaç bi im di? O bi im olan bi a çem be in içi ne çi zi
4. f ( x ) = x m x + m. Cevap C. m açılımındaki bir terim, x. 5. cx 3 + Cevap D. 6. x 2 + ( a + 4 ) x + 3a + 3 ifadesinin tam kare olması için
Deneme - / YT / MT MTMTİ DNMSİ Çözümle. < n < 0. f ( ) m + m p ve q asal saıla olmak üzee, n p. q vea p şeklinde olmalıdı. n {.,.,. 7,.,.,. 7,. 9,.,. 9,.,. 7,.,.,. 7,. 9,. 7,.,, } 9 tane bulunu.. { 7,,,
KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ HAZİRAN 04 PAZAR TG 9 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun,
11 SINIF MATEMATİK. Trigonometri Doğrunun Analitik İncelenmesi
11 SINIF MATEMATİK Tigonometi Doğunun Analitik İncelenmesi 1 YAYIN KOORDİNATÖRÜ Oğuz GÜMÜŞ EDİTÖR Hazal ÖZNAR - Uğucan AYDIN DİZGİ Muhammed KARATAŞ SAYFA TASARIM - KAPAK F. Özgü OFLAZ Eğe bi gün sözleim
BÖLÜM 2 GAUSS KANUNU
BÖLÜM GAUSS KANUNU.1. ELEKTRİK AKISI Elektik akısı, bi yüzeyden geçen elektik alan çizgileinin sayısının bi ölçüsüdü. Kapalı yüzey içinde net bi yük bulunduğunda, yüzeyden geçen alan çizgileinin net sayısı
2013 2013 LYS LYS MATEMATİK Soruları
LYS LYS MATEMATİK Soulaı. LYS 5. LYS ( + a ) = 8 < < olmak üzee, olduğuna öe, a kaçtı? I. A) D) II. + III. (.) ifadeleinden hanileinin değei neatifti? A) Yalnız I Yalnız II Yalnız III D) I ve III II ve
TG 12 ÖABT İLKÖĞRETİM MATEMATİK
KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT İLKÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının
LYS MATEMATİK DENEME - 2
LYS MATEMATİK DENEME - BU SORULAR FİNAL EĞİTİM KURUMLARI TARAFINDAN SAĞLANMIŞTIR. İZİNSİZ KOPYALANMASI VE ÇOĞALTILMASI YASAKTIR, YAPILDIĞI TAKDİRDE CEZAİ İŞLEM UYGULANACAKTIR. LYS MATEMATİK TESTİ. Bu testte
DRC. 5. ab b = 3 b ( a 1 ) = Deponun hacmi 24x olsun, 3. y = 6 için = 3. 7 MATEMATİK DENEMESİ. a 9 b. a 2 b b = 12 b ( a 2 1 ) = 12.
MTEMTİK DENEMESİ Çözümle.. ab b = b ( a ) = a 9 b a b b = b ( a ) =. c d 7,,,,,, 7,, 9 + +... + 9 = : = a + + = a = b =, c = + 7 + d = d = = 7 < < & > > 7 & > > 7 =,,,, olup in alabileceği faklı değelein
5. ( 8! ) 2 ( 6! ) 2 = ( 8! 6! ). ( 8! + 6! ) Cevap E. 6. Büyük boy kutu = 8 tane. Cevap A dakika = 3 saat 15 dakika olup Göksu, ilk 3 saatte
Deneme - / Mat MTEMTİK DENEMESİ Çözümle. 7 7 7, 0, 7, + + = + + 03, 00,, 3 0 0 7 0 0 7 =. +. +. 3 = + + = 0 bulunu.. Pa ve padaa eklenecek saı olsun. a- b+ b =- a+ b+ a & a - ab+ a =-ab-b -b & a + b =
ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK
ÖABT ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK DENEME SINAVI ÇÖZÜMLERİ ÖĞRETMENLİK ALAN BİLGİSİ DENEME SINAVI / çözümlei. DENEME. Veile öemelede yalız III kesi olaak doğudu. Bu edele doğu cevap seçeeği B di..
açılara bölünmüş kutupsal ızgara sisteminde gösteriniz. KOORDİNATLAR Düzlemde seçilen bir O başlangıç noktası ve bir yarı doğrudan oluşan sistemdir.
KUTUPSAL KOORDİNATLAR (POLAR Düzlemde seçilen bi O başlangıç noktası ve bi yaı doğudan oluşan sistemdi. açılaa bölünmüş kutupsal ızgaa sisteminde gösteiniz. Not: Kolaylık olması açısından Katezyen Koodinat
13. İlk çemberin çevresi f ( x ) doğrusal fonksiyon ise a 1. Cevap A. 14. x = log 0,125. sonuç yayınları. Cevap D. 15. log ( x 3 )
eneme - / YT / MT MTMTİ NMSİ Çözümle.. =. 0 +. ( asal) tam saı bölen saısı 97 + = 00.. ( + ). ( + ) = 00 ( + ). ( + ) = 00 = 9 bln.. a + 7 = ( b + ). ( c ) ( + ).( + ) = ( b + ).( c ) b =, c =, a =, a
BÖLÜM 5 İDEAL AKIŞKANLARDA MOMENTUMUN KORUNUMU
BÖLÜM 5 İDEAL AKIŞKANLARDA MOMENTUMUN KORUNUMU Linee İmpuls-Momentum Denklemi Haeket halinde bulunan bi cismin hehangi bi andaki doğusal hızı, kütlesi m olsun. Eğe dt zaman aalığında cismin hızı değişiyosa,
LİMİT TÜREV İNTEGRAL SORU BANKASI
LİMİT TÜREV İNTEGRAL SORU BANKASI ANKARA İÇİNDEKİLER LİMİT Limitin Özelliklei... Paçalı Fonksionlada Limit... Mutlak Değeli Fonksionlada Limit... Gafikte Limit... Genişletilmiş Reel Saılada Limit... Belisizliği
Mekanik olayları ölçmekte ya da değerlendirmekte kullanılan matematiksel büyüklükler:
VEKTÖRLER KT 1 Mekanik olaylaı ölçmekte ya da değelendimekte kullanılan matematiksel büyüklükle: Skale büyüklük: sadece bi sayısal değei tanımlamakta kullanılı, pozitif veya negatif olabili. Kütle, hacim
A A A A A A A A A A A
LYS MATEMATİK TESTİ. Bu testte 5 sou vadı.. Cevaplaınızı, cevap kâğıdının Matematik Testi için aılan kısmına işaetleiniz.. Veilen, ve z tamsaılaı için. =. z =. =f() olduğuna göe, + + z toplamı en çok kaçtı?
Çözüm Kitapçığı Deneme-6
KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ -5 MART Çözüm Kitapçığı Deneme-6 Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının
VEKTÖRLER 1. BÖLÜM. Vektörel Büyüklüğün Matematiksel Tanımı : u = AB yada u ile gösterilir.
. BÖLÜM VEKTÖRLER Tanım:Matematik, istatistik, mekanik, gibi çeşitli bilim dallaında znlk, alan, hacim, yoğnlk, kütle, elektiksel yük, gibi büyüklükle, cebisel kallaa göe ifade edilile. B tü çoklklaa Skale
4. 89 / 5 ( mod p ) 84 / 0 ( mod p ) 60 / 4 ( mod p ) 56 / 0 ( mod p ) Cevap E. Cevap C. 6. x 0 f ( 0 ) = 1, f ( 1 ) = 2,...
eneme - / YT / MT MTMTİK NMSİ Çözümle. O ( b, c ) d ise b dm, c dk O ( a, b ) d ise b dm, a dn I. d tek saı iken a çift ise m ve n nin otak böleni olu. O ( a, b ) d olmaz. d tek ise a tek saıdı. ( oğu
SORU. m(cdo ) = = 20 olur. OB = OD = OC = r den; m(bco ) = 30, m(dco ) = 20 ve. [AB ile [AD B ve D noktalar nda çembere te ettir.
GMR eginin bu sy s nd Çembede ç l, Kiiflle ötgeni, e et Kiifl Özelliklei konusund çözümlü soul ye lmktd. u konud, ÖSS de ç kn soul n çözümü için geekli temel bilgilei ptik yoll, soul m z n çözümü içinde
Basit Makineler. Test 1 in Çözümleri
Basit Makinele BASİ MAİNELER est in Çözümlei. Şekil üzeindeki bilgilee göe dinamomete değeini göstei. Cevap D di.. Makaa ve palanga sistemleinde kuvvetten kazanç sayısı kada yoldan kayıp vadı. uvvet kazancı
T.C. Ölçme, Seçme ve Yerleştirme Merkezi
T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının
T.C. Ölçme, Seçme ve Yerleştirme Merkezi
T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının
Nokta (Skaler) Çarpım
Nokta (Skale) Çapım Statikte bazen iki doğu aasındaki açının, veya bi kuvvetin bi doğuya paalel ve dik bileşenleinin bulunması geeki. İki boyutlu poblemlede tigonometi ile çözülebili, ancak 3 boyutluda
Dairesel Hareket. Düzgün Dairesel Hareket
Daiesel Haeket Daiesel haeket, sabit bi mekez etafında olan ve yaıçapın değişmediği haekete deni. Daiesel haekette hız vektöünün büyüklüğü değişmese de haeketin doğası geeği, yönü haeket boyunca süekli
KUYRUK SİSTEMİ VE BİLEŞENLERİ SİSTEM SİMULASYONU KUYRUK SİSTEMİ VE BİLEŞENLERİ ÖRNEKLER BİR KUYRUK SİSTEMİNİN ÖRNEKLER
KUYRUK SİSTEMİ VE SİSTEM SİMULASYONU 5. KUYRUK SİSTEMLERİ Bi kuyuk sistemi; hizmet veen bi veya biden fazla sevise sahipti. Sisteme gelen müşteile tüm sevislei dolu bulusa, sevisin önündeki kuyuğa ya da
İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9
İÇİNDEKİLER Ön Söz... Adi Diferansiyel Denklemler... Birinci Mertebeden ve Birinci Dereceden Diferansiyel Denklemler...9 Homojen Diferansiyel Denklemler...15 Tam Diferansiyel Denklemler...19 Birinci Mertebeden
Katı Cismin Uç Boyutlu Hareketi
Katı Cismin Uç outlu Haeketi KĐNEMĐK 7/2 Öteleme : a a a ɺ ɺ ɺ ɺ ɺ / / /, 7/3 Sabit Eksen Etafında Dönme : Hız : wx bwe bwe wx be he x we wx bwe e d b be d be he b h O n n n ɺ ɺ θ θ θ θ θ ( 0 Đme : d d
VIII ) E-M DALGA OLUŞUMU
94 VIII ) E-M DALGA OLUŞUMU A. HELMHOLTZ DENKLEMİNE GEÇİŞ B. F k : YAPI ÇARPANI 4-VEKTÖRÜ C. RADYASYON ALANLARI D. ELEKTRİK DİPOL RADYASYONU E. MAGNETİK DİPOL RADYASYONU 95 A) HELMHOLTZ DENKLEMİNE GEÇİŞ
ŞİFRELİ MATEMATİK. Trigonometri Youtube Şifreli Matematik. Matematik-Geometri Ders Videoları
Yasal Uyaı: Soulaın çözüm videolaına, tamamı video çözümlü süpe KİTAPLARIMA, güncel konu anlatımlaı ve daha fazlasına en güncel haliyle adesinden ulaşabilisiniz. de kanalına bekliyoum. Başaıla dileim...video
VECTOR MECHANICS FOR ENGINEERS: STATICS
Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Fedinand P. Bee E. Russell Johnston, J. Des Notu: Hayi ACAR İstanbul Teknik Üniveistesi Tel: 285 31 46 / 116 E-mail: [email protected] Web: http://atlas.cc.itu.edu.t/~acah
ÇEMBERİN ANALİTİK İNCELENMESİ
ÇEMBERİN ANALİTİK İNCELENMESİ Öncelikle çembein tanımını hatılayalım. Neydi çembe? Çembe, düzlemde bi noktaya eşit uzaklıkta bulunan noktala kümesiydi. O halde çembein analitik incelenmesinde en önemli
DRC. 1. x 2 + 2xy + y 2 = 25 x + y = ± , 4, 6,..., 48 numaralı bölmeler yakılıyor. ( 24 tane ) 5. f ( x + 3 ) = x.
eneme - 8 / YT / MT MTMTİK NMSİ. + + + ± + 8 9 9. s( + ) s() İ İ + 9 9 7... ( I ) + 9 + 9 7... ( II ) I ve II den [ 7, 7 ] fklı tm sı değei lbili. evp.,,,..., 8 numlı bölmele kılıo. ( tne ), 9,,..., numlı
TÜREV VE UYGULAMALARI
TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun
MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.
MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu
SİSTEM SİMULASYONU KUYRUK SİSTEMİ VE BİLEŞENLERİ KUYRUK SİSTEMİ VE BİLEŞENLERİ
SİSTEM SİMULASYONU KUYRUK SİSTEMLERİ KUYRUK SİSTEMİ VE BİLEŞENLERİ Bi kuyuk sistemi; hizmet veen bi veya biden fazla sevise sahipti. Sisteme gelen müşteile tüm sevislei dolu bulusa, sevisin önündeki kuyuğa
FİZ101 FİZİK-I. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B Grubu 3. Bölüm (Doğrusal Hareket) Özet
FİZ11 FİZİK-I Ankaa Üniesitesi Fen Fakültesi Kimya Bölümü B Gubu 3. Bölüm (Doğusal Haeket) Özet.1.14 Aysuhan Ozansoy Haeket Nedi? Mekanik; kuetlei e onlaın cisimle üzeine etkileini inceleyen fizik dalıdı
Eğrisel harekette çok sık kullanılan tanımlardan biri de yörünge değişkenlerini içerir. Bunlar, hareketin her bir anı için ele alınan biri yörüngeye
Eğisel haekee çok sık kullanılan anımladan bii de yöünge değişkenleini içei. Bunla, haekein he bi anı için ele alınan bii yöüngeye eğe, diğei ona dik iki koodina eksenidi. Eğisel haekein doğal bi anımıdıla
Örnek 1. Çözüm: Örnek 2. Çözüm: 60 30000 300 60 = = = 540
Önek 1 1.8 kn yük altında 175 dev/dak dönen bi mil yatağında çalışacak bilyeli ulman için, 5 saat ömü ve %9 güvenililik istemekteyiz. Öneğin SKF kataloğundan seçmemiz geeken inamik yük sayısı (C 1 ) nedi?
Basit Makineler Çözümlü Sorular
Basit Makinele Çözümlü Soula Önek 1: x Çubuk sabit makaa üzeinde x kada haeket ettiilise; makaa kaç tu döne? x = n. n = x/ olu. n = sabit makaanın dönme sayısı = sabit makaanın yaıçapı Önek : x Çubuk x
Ö.Y.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ
Ö.Y.S. 996 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Bir sınıftaki örencilerin nin fazlası kız örencidir. Sınıfta erkek öğrenci olduğuna göre, kız öğrencilerin sayısı kaçtır? A) B) 8 C) 6 D) E) Çözüm Toplam öğrenci
KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ MATEMATİK (LİSE) ÖĞRETMENLİĞİ 20 TEMMUZ 2014 PAZAR
T.C. Ölçme, Seçme ve Yerleştirme Merkezi KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ MATEMATİK (LİSE) ÖĞRETMENLİĞİ 20 TEMMUZ 2014 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa
UYGULAMALI MATEMATİK ÇÖZÜMLÜ SORU BANKASI
ÖABT UYGULAMALI MATEMATİK ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT UYGULAMALI MATEMATİK ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı ya da bir kısmı, yazarın izni olmaksızın, elektronik, mekanik,
VEKTÖRLER DOÇ.DR. KAMİLE TOSUN FELEKOĞLU
VEKTÖRLER DOÇ.DR. KMİLE TOSUN ELEKOĞLU 1 Mekanik olaylaı ölçmekte ya da değelendimekte kullanılan matematiksel büyüklükle: Skale büyüklük: sadece bi sayısal değei tanımlamakta kullanılı, pozitif veya negatif
ÜNİVERSİTEYE HAZIRLIK 11. SINIF OKULA YARDIMCI KONU ANLATIMLI SORU BANKASI ÇEMBER GEOMETRİ
ÜNİVRSİTY HZIRLI 11. SINIF UL YRIMI NU NLTIMLI SRU NSI ÇMR GMTRİ ÜNİVRSİTY HZIRLI 11. SINIF UL YRIMI NU NLTIMLI SRU NSI ISN 978 605 7 6 0 izgi ÇP izgi iimi apak Tasaım Fatma Özgü FLZ. askı kim 018 İLTİŞİM
12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır?
. SINIF M Fonksionlar. f ( + a ) + vef( ) 7 olduğuna göre a kaçtır? E) TEST. f ( ) k + 6 fonksionu sabit fonksion olduğuna f ( ) göre aşağıdakilerden k E). f( ) 6 k ve f ( ) olduğuna göre k kaçtır? E)
İçindekiler 3. Türev... 3.1 Türev kavramı.. 001 3.2 Bir fonksiyonun bir noktadaki türevi. 003. Alıştırmalar 3 1...
İçindekiler. Türev......... Türev kavramı.. 00. Bir fonksiyonun bir noktadaki türevi. 00. Alıştırmalar.... 005. Bir fonksiyonun bir noktadaki soldan ve sağdan türevi..... 006.4 Bir fonksiyonun bir noktadaki
Final sınavı konularına aşağıdaki sorular dahil değildir: 1, 2, 3, 4, 5, 6, 7, 19, 20, 21, 25, 27, 28, 29, 30, 33-b.
Final sınavı konularına aşağıdaki sorular dahil değildir:,,,, 5, 6, 7, 9,,, 5, 7, 8, 9,, -b. MAT -MATEMATİK (- GÜZ DÖNEMİ) FİNAL ÇALIŞMA SORULARI. Tabanı a büyük eksenli, b küçük eksenli elips ile sınırlanan
LYS1 / 4.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ
. İki bsmklı toplm sı vdı. ile lınd sl olmsı için ve e tm bölünmemeli e bölünen sıl 8 det e bölünen sıl det LYS /.NM MTMTİK TSTİ ÇÖZÜMLİ 8. - ` j - 8 k - 8 8-8 8 nck ʼin ktı oln sıl ( tne) kee lındı. -
2. (1 + y ) ln(x + y) = yy dif. denk. çözünüz. 3. xy dy y 2 dx = (x + y) 2 e ( y/x) dx dif. denk. çözünüz.
D DİFERANSİYEL DENKLEMLER ÇALIŞMA SORULARI Fakülte No:................................................... Adı ve Soyadı:................................................. Bölüm:...................................................................
Gauss Kanunu. Gauss kanunu:tanım. Kapalı bir yüzey boyunca toplam elektrik akısı, net elektrik yükünün e 0 a bölümüne eşittir.
Gauss Kanunu Gauss kanunu:tanım Kapalı bi yüzey boyunca toplam elektik akısı, net elektik yükünün e a bölümüne eşitti. yüzeydeki Gauss kanunu Coulomb kanununa eşdeğedi. Gauss kanunu : Tanım Bi yük dağılımını
Ankara Üniversitesi Diş Hekimliği Fakültesi Ankara Aysuhan OZANSOY
FİZ11 FİZİK Ankaa Üniesitesi Diş Hekimliği Fakültesi Ankaa Aysuhan OZANSOY Bölüm-III : Doğusal (Bi boyutta) Haeket 1. Ye değiştime e Haeketin Tanımı 1.1. 1 Mekanik Nedi? 1.. Refeans çeçeesi, Konum, Ye
TORK. τ = 2.6 4.sin30.2 + 2.cos60.4 = 12 4 + 4 = 12 N.m Çubuk ( ) yönde dönme hareketi yapar. τ K. τ = F 1. τ 1. τ 2. τ 3. τ 4. 1. 2.
AIŞIRMAAR 8 BÖÜM R ÇÖZÜMER R cos N 4N 0 4sin0 N M 5d d N ve 4N luk kuv vet lein çu bu ğa dik bi le şen le i şekil de ki gi bi olu nok ta sı na gö e top lam tok; τ = 6 4sin0 + cos4 = 4 + 4 = Nm Çubuk yönde
T.C. Ölçme, Seçme ve Yerleştirme Merkezi
T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 GEOMETRİ TESTİ 19 HAZİRAN 2016 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının
TG 11 ÖABT İLKÖĞRETİM MATEMATİK
KAMU PERSONEL SEÇME SINAVI ÖĞREMENLİK ALAN BİLGİSİ ESİ İLKÖĞREİM MAEMAİK ÖĞREMENLİĞİ G ÖAB İLKÖĞREİM MAEMAİK Bu testlein he hkkı sklıdı. Hngi mçl olus olsun, testlein tmmının ve i kısmının İhtiç Yıncılık
KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ
T.C. Ölçme, Seçme ve Yerleştirme Merkezi KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ OKUL ÖNCESİ ÖĞRETMENLİĞİ 16 TEMMUZ 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun,
LYS Y ĞRU MTMTİK TSTİ. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.., y reel sayılar
TG 2 ÖABT ORTAÖĞRETİM MATEMATİK
KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT ORTAÖĞRETİM MATEMATİK Bu testlei he hakkı saklıdı. Hagi amaçla olusa olsu, testlei tamamıı veya bi kısmıı
Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında yılmayarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören
Gelecek için hazılanan vatan evlâtlaına, hiçbi güçlük kaşısında yılmayaak tam bi sabı ve metanetle çalışmalaını ve öğenim göen çocuklaımızın ana ve babalaına da yavulaının öğeniminin tamamlanması için
Bölüm 5 Manyetizma. Prof. Dr. Bahadır BOYACIOĞLU
ölüm 5 Manyetizma Pof. D. ahadı OYACOĞLU Manyetizma Manyetik Alanın Tanımı Akım Taşıyan İletkene Etkiyen Kuvvet Düzgün Manyetik Alandaki Akım İlmeğine etkiyen Tok Yüklü bi Paçacığın Manyetik Alan içeisindeki
Komisyon İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TAMAMI ÇÖZÜMLÜ 10 DENEME ISBN
Komisyon İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TAMAMI ÇÖZÜMLÜ 0 DENEME ISBN 978-605-8-8-5 Kitapta yer alan bölümlerin tüm sorumluluğu yazarlarına aittir. Pegem Akademi Bu kitabın basım, yayın ve satış hakları
MATEMATİK ÖĞRETİMİ I. Dersin Tanıtılması
MATEMATİK ÖĞRETİMİ I Dersin Tanıtılması Ders Bilgileri Ders Adı MATEMATİK ÖĞRETİMİ I Ders Koordinatörü YRD. DOÇ. DR. MESUT TABUK İletişim Bilgileri Oda No: E-304 Mail: [email protected] Web: www.mtmtk.weebly.com
AÖĞRENCİLERİN DİKKATİNE!
A KİTAPÇIK TÜRÜ T.C. MİLLÎ EĞİTİM BAKANLIĞI 8. SINIF MATEMATİK 2015 8. SINIF 2. DÖNEM MATEMATİK DERSİ MERKEZİ ORTAK SINAVI (GÖRME ENGELLİ) 29 NİSAN 2015 Saat: 10.10 Adı ve Soyadı :... Sınıfı :... Öğrenci
VECTOR MECHANICS FOR ENGINEERS: STATICS
Seventh Edition VECTOR MECHANICS OR ENGINEERS: STATICS edinand P. Bee E. Russell Johnston, J. Des Notu: Hai ACAR İstanbul Teknik Üniveistesi Tel: 285 31 46 / 116 E-mail: [email protected] Web: http://atlas.cc.itu.edu.t/~acah
F 1 = 4. Yanıt B dir. Nihat Bilgin Yayıncılık = 1 2 P 3, = P, P F 4 F 4 2F 5 3, = P, kuvveti en küçüktür. a = 3
Basit Makinele Test in Çözümlei. aldıaçlada sistem dengede ise; uvvet x uvvet kolu Yük x Yük kolu. z bağıntısı geçelidi. y 5 5 x y z İpteki geilme kuvvetlei Bijon anataında kuvvet kolu y di. Bu nedenle
2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır?
017 LYS MATEMATİK DENEMESİ Soru Sayısı: 50 Sınav Süresi: 75 ı 1. 4. (1+ 5 ) 1+ 5 işleminin sonucu kaçtır? A) 5 B)3 5 C)+ 5 işleminin sonucu kaçtır? D)3+ 5 E)1+ 5 A) B) 1 C) 1 D) E) 3. 4 0,5.16 0,5 işleminin
Kominikayon da ve de Sinyal Đşlemede kullanılan Temel Matematiksel Fonksiyonlar:
Kominikayon da ve de Sinyal Đşlemede kllanılan Temel Matematiksel Fonksiyonla: Unit Step fonksiyon, Implse fonksiyon: Unit Step Fonksiyon: Tanim: Unit Step fonksiyon aşağıdaki gibi iki şekilde tanımlanabili
ÇÖZÜM SORU. Küpün yan yüzünü açal m. En k sa yol, do rusal uzakl k oldu undan, Bir dikdörtgenler prizmas n n ayr tlar a, b, c dir.
GMTR eginin bu sy s nd Uzy Geometi, isimlein ln ve Hcimlei konusund çözümlü soul ye lmktd. u konud, ÖSS de ç kn soul n çözümü için geekli temel bilgilei ve ptik yoll, soul m z n çözümü içinde t ltmy mçld
EMEKLILIK SİSTEMLERİ SINAV SORULARI WEB-ARALIK 2015. Bireysel emeklilik sistemine ilişkin olarak aşağıdakilerden hangisi(leri) yanlıştır?
EMEKLILIK SİSTEMLERİ SINAV SORULARI WEB-ARALIK 2015 Sou-1 Bieysel emeklilik sistemine ilişkin olaak aşağıdakileden hangisi(lei) yanlıştı? I. Bieysel emeklilik sistemindeki biikimle Sosyal Güvenlik Sistemine
Mat Matematik II / Calculus II
Mat - Matematik II / Calculus II Çalışma Soruları Çok Değişkenli Fonksiyonlar: Seviye eğri ve yüzeyler, Limit ve süreklilik wolframalpha.com uygulamasında bir fonksiyonun tanım kümesini bulmak için: x
Basit Makineler. Test 1 in Çözümleri. 3. Verilen düzenekte yük 3 ipe bindiği için kuvvetten kazanç 3 tür. Bu nedenle yoldan kayıp da 3 olacaktır.
9 Basit Makinele BASİ MAİNEER est in Çözülei.. Veilen düzenekte yük ipe bindiği için kuvvetten kazanç tü. Bu nedenle yoldan kayıp da olacaktı. kasnak ükün 5x kada yükselesi için kasnağa bağlı ipin 5x.
VİDALAR VE CIVATALAR. (DĐKKAT!! Buradaki p: Adım ve n: Ağız Sayısıdır) l = n p
VİDALA VE CIVAALA d : Miniu, inö yada diş dibi çapı (=oot) d : Otalaa, noinal çap yada böğü çapı (=ean) d : Maksiu, ajö çap, diş üstü çapı λ : Helis açısı p : Adı (p=pitch) l (hatve): Civatanın bi ta dönüşüne
T.C. Ölçme, Seçme ve Yerleştirme Merkezi
T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 19 HAZİRAN 2016 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının
BÖLÜM 2 KORUNUM DENKLEMLERİ
BÖLÜM KORUNUM DENKLEMLERİ.-Uzayda sabit konumlu sonlu kontol hacmi.- Debi.3- Haeketi takiben alınmış tüev.4- üeklilik denklemi.5- Momentum denklemi.6- Eneji Denklemi.7- Denklemlein bilançosu Kounum Denklemlei
ASTRONOTİK DERS NOTLARI 2014
YÖRÜNGE MEKANİĞİ Yöüngeden Hız Hesabı Küçük bi cismin yöüngesi üzeinde veilen hehangi bi noktadaki hızı ve bu hızın doğultusu nedi? Uydu ve çekim etkisinde bulunan cisim (Ye, gezegen, vs) ikili bi sistem
LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ
Y / Rİ N ÇÖZÜRİ eneme -. de ' çizilise + olcğındn cm, cm ve cm bulunu. ikizken üçgeninde m^\ m ^\ desek iki iç çının toplmı bi dış çı olcğındn m^\ olu. ikizken üçgeninde m^\ m^\ dı. m^\ m^\ dı. (Yöndeş
Dönerek Öteleme Hareketi ve Açısal Momentum
6 Döneek Ötelee Haeketi e Açısal Moentu Test 'in Çözülei.. R L P N yatay M Çebe üzeindeki bi noktanın yee göe hızı, o noktanın ekeze göe çizgisel hızı ile çebein ötelee hızının ektöel toplaına eşitti.
SİSTEM MODELLEME VE OTOMATİK KONTROL FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ
SİSTEM MODELLEME VE OTOMATİK KONTROL FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ.Gup: Vize sou önekleindeki son gup (Routh-Huwitz testi) soula dahildi. Bunla PID soulaıyla bilikte de soulabili..) Tansfe fonksiyonu
