VEKTÖRLER 1. BÖLÜM. Vektörel Büyüklüğün Matematiksel Tanımı : u = AB yada u ile gösterilir.

Benzer belgeler
1. BÖLÜM VEKTÖRLER 1

Mekanik olayları ölçmekte ya da değerlendirmekte kullanılan matematiksel büyüklükler:

VEKTÖRLER DOÇ.DR. KAMİLE TOSUN FELEKOĞLU

Nokta (Skaler) Çarpım

VECTOR MECHANICS FOR ENGINEERS: STATICS

BÖLÜM 5 İDEAL AKIŞKANLARDA MOMENTUMUN KORUNUMU

açılara bölünmüş kutupsal ızgara sisteminde gösteriniz. KOORDİNATLAR Düzlemde seçilen bir O başlangıç noktası ve bir yarı doğrudan oluşan sistemdir.

3. EŞPOTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ. Bir çift elektrot tarafından oluşturulan elektrik alan ve eş potansiyel çizgilerini görmek.

Bölüm 5 Manyetizma. Prof. Dr. Bahadır BOYACIOĞLU

VIII ) E-M DALGA OLUŞUMU

Yönlü doğru parçası: Zıt yönlü doğru parçaları: Eş yönlü doğru parçaları: Örnek-1. Paralel yönlü doğru parçaları:

BÖLÜM 2 GAUSS KANUNU

LYS LYS MATEMATİK Soruları

13. İlk çemberin çevresi f ( x ) doğrusal fonksiyon ise a 1. Cevap A. 14. x = log 0,125. sonuç yayınları. Cevap D. 15. log ( x 3 )

ÇEMBERİN ANALİTİK İNCELENMESİ

( ) ( ) ÖABT Analitik Geometri KONU TESTİ Noktanın Analitik İncelemesi. Cevap D. Cevap C. noktası y ekseni üzerinde ise, a + 4 = 0 A 0, 5 = 1+

Basit Makineler. Test 1 in Çözümleri

T.C. TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ HELMHOLTZ DENKLEMİ VE ONBİR KOORDİNAT SİSTEMİNDE ÇÖZÜMÜ OĞUZ BAĞRAN YÜKSEK LİSANS TEZİ

AYT FİZİK. Ünite 1. Test. 1. Bir sayı ya da birimin yanında, yönüyle de ifade edilen büyüklüklere vektörel büyüklük denir. 3. d.

Gauss Kanunu. Gauss kanunu:tanım. Kapalı bir yüzey boyunca toplam elektrik akısı, net elektrik yükünün e 0 a bölümüne eşittir.

4. f ( x ) = x m x + m. Cevap C. m açılımındaki bir terim, x. 5. cx 3 + Cevap D. 6. x 2 + ( a + 4 ) x + 3a + 3 ifadesinin tam kare olması için

Dairesel Hareket. Düzgün Dairesel Hareket

LYS TÜREV KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

MLER Bundan önce cismin tek bir parçacıktan olu unu kabul ettik. Genelde cismin çok sayıda parçacı ın (noktasal cismin) bile

TG 8 ÖABT İLKÖĞRETİM MATEMATİK

1. BÖLÜM VEKTÖRLER MOMENT DENGE PARALEL KUVVETLER KÜTLE MERKEZİ BASİT MAKİNALAR

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ KONGRÜANSLARIN DİFERENSİYEL GEOMETRİSİ. Ufuk ÖZTÜRK MATEMATİK ANABİLİM DALI ANKARA 2011

Katı Cismin Uç Boyutlu Hareketi

DENEY 4 ÇARPIŞMALAR VE LİNEER MOMENTUMUN KORUNUMU

METALURJİ VE MALZEME MÜHENDİSLİĞİ BÖLÜMÜ METALURJİ. Doç. Dr. İlven MUTLU.

5. ( 8! ) 2 ( 6! ) 2 = ( 8! 6! ). ( 8! + 6! ) Cevap E. 6. Büyük boy kutu = 8 tane. Cevap A dakika = 3 saat 15 dakika olup Göksu, ilk 3 saatte

Basit Makineler. Test 1 in Çözümleri. 3. Verilen düzenekte yük 3 ipe bindiği için kuvvetten kazanç 3 tür. Bu nedenle yoldan kayıp da 3 olacaktır.

Bölüm 30. Biot-Savart Yasası Giriş. Biot-Savart Yasası Gözlemler. Biot-Savart Yasası Kurulum. Serbest Uzayın Geçirgenliği. Biot-Savart Yasası Denklem

Yatay sürtünmeli zemin ile eğik sürtünmesiz duvar arasındaki f=0

AB yönlü doğru parçası belirtilmiş olur. Doğrultusu, uzunluğu ve yönünden söz edilebilir.

1. HAFTA. Statik, uzayda kuvvetler etkisi altındaki cisimlerin denge koşullarını inceler.

ASTRONOTİK DERS NOTLARI 2014

DUAL BİRİM KÜRE VE STUDY DÖNÜŞÜMÜ

r r r r

11. SINIF SORU BANKASI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 2. Konu ELEKTRİKSEL POTANSİYEL TEST ÇÖZÜMLERİ

11 SINIF MATEMATİK. Trigonometri Doğrunun Analitik İncelenmesi

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

Kominikayon da ve de Sinyal Đşlemede kullanılan Temel Matematiksel Fonksiyonlar:

FİZ102 FİZİK-II. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B-Grubu Bahar Yarıyılı Bölüm-III Ankara. A.

A(OD &A) = Kenarların orta noktaları sırasıyla E(1, 1), F(3, 1), Çözüm Yayınları. 1 + m = m = 4

VEKTÖRLER SORULAR 1.) 3.) 4.) 2.)

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Otomotiv Mühendisliği Bölümü Dinamik Ders Notu

AST413 Gezegen Sistemleri ve Oluşumu. Ders 1 : Tarihçe ve Temel Yasalar

4. 89 / 5 ( mod p ) 84 / 0 ( mod p ) 60 / 4 ( mod p ) 56 / 0 ( mod p ) Cevap E. Cevap C. 6. x 0 f ( 0 ) = 1, f ( 1 ) = 2,...

Elektromanyetik Teori Bahar Dönemi. KOORDİNAT SİSTEMLERİ ve DÖNÜŞÜMLER



ÜNİTE: KUVVET VE HAREKETİN BULUŞMASI - ENERJİ KONU: Evrende Her Şey Hareketlidir

2. KUVVET SİSTEMLERİ 2.1 Giriş

MÜHENDİSLİK MEKANİĞİ DİNAMİK DERS NOTLARI

FİZ101 FİZİK-I. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B Grubu 3. Bölüm (Doğrusal Hareket) Özet

TORK VE DENGE. İçindekiler TORK VE DENGE 01 TORK VE DENGE 02 TORK VE DENGE 03 TORK VE DENGE 04. Torkun Tanımı ve Yönü

Dönerek Öteleme Hareketi ve Açısal Momentum

Ankara Üniversitesi Diş Hekimliği Fakültesi Ankara Aysuhan OZANSOY

LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ

Vektörler Bölüm Soruları 1. İki vektör eşit olmayan büyüklüklere sahiptir. Toplamları sıfır olabilir mi? Açıklayınız.

Örnek...1 : Çapı 4 birim olan bir dairenin yarı çevresi ve alan ın ın sa yısal değerleri toplam ı kaçtır? 6π. Örnek...4 : Örnek...2 : Örnek...

VEKTÖRLER. DOĞRU PARÇASI: Doğrunun A ve B noktaları ile bunların arasında kalan bütün noktalarından oluşan kümeye [AB] DOĞRU PARÇASI denir.

ŞİFRELİ MATEMATİK. Trigonometri Youtube Şifreli Matematik. Matematik-Geometri Ders Videoları

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

BÖLÜM 2 KORUNUM DENKLEMLERİ

Elektromanyetik Teori Bahar Dönemi MANYETİK ALAN (2)

FİZK Ders 6. Gauss Kanunu. Dr. Ali ÖVGÜN. DAÜ Fizik Bölümü.

Eğrisel harekette çok sık kullanılan tanımlardan biri de yörünge değişkenlerini içerir. Bunlar, hareketin her bir anı için ele alınan biri yörüngeye

Tork ve Denge. Test 1 in Çözümleri P. 2 = F 1 = 2P 2P. 1 = F F F 2 = 2P 3P. 1 = F F 3. Kuvvetlerin büyüklük ilişkisi F 1 > F 3

Evrensel kuvvet - hareket eşitlikleri ve güneş sistemi uygulaması

LYS MATEMATİK DENEME - 2

( t) ( ) ( ) ( ) ( ) ( )

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK

Cevap C. 400 / 0 ( mod 8 ) A harfi. 500 / 4 ( mod 8 ) D harfi. Cevap C. 6. I. n tam sayı ise. n 2 = 4k 2 4k + 1 veya n 2 = 4k 2

TEST 1 ÇÖZÜMLER KÜTLE ÇEKİMİ VE KEPLER KANUNLARI

Ödev 1. Ödev1: 600N luk kuvveti u ve v eksenlerinde bileşenlerine ayırınız. 600 N

EMAT ÇALIŞMA SORULARI

Kutu Poblemlei (Tekalı Kombiasyo) c) faklı dağıtılabili! Özdeş üç kutuya pay, pay, pay dağıtımı yapılısa; pay ala kutuu diğeleiyle ola özdeşliği bozul

BİLGİ TAMAMLAMA VEKTÖRLER

F 1 = 4. Yanıt B dir. Nihat Bilgin Yayıncılık = 1 2 P 3, = P, P F 4 F 4 2F 5 3, = P, kuvveti en küçüktür. a = 3

Cevap D 6. P ( 1 ) = 2, P ( 2 ) = 1. x = 1 P ( P ( 1 ) ) = a + b. Cevap E. x = 2 P ( P ( 2 ) ) = 2a + b. a + b = 1 2a + b = 2

Noktasal Cismin Dengesi

ZnX (X=S, Se, Te) FOTONİK KRİSTALLERİNİN ÖZFREKANS KONTURLARI * Eigenfrequency Contours of ZnX (X=S, Se, Te) Photonic Crystals

En Küçük Kareler Ve Toplam En Küçük Kareler Yöntemleri İle Deformasyon Analizi

MADDESEL NOKTANIN EĞRİSEL HAREKETİ

Kafes Sistemler Genel Bilgiler

Fizik II Elektrik ve Manyetizma Manyetik Alan Kaynakları-2

Doç.Dr. Cesim ATAŞ MEKANİK ŞEKİL DEĞİŞTİREN CİSİMLER MEKANİĞİ DİNAMİK

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması. 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile Çarpımı RİJİT CİSİMLER MEKANİĞİ

Bölüm-4. İki Boyutta Hareket

KUVVET, MOMENT ve DENGE

ELEKTRİKSEL POTANSİYEL

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI

VEKTÖRLER KT YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU

UZAYDA VEKTÖRLER ve DOĞRU DÜZLEM

Transkript:

. BÖLÜM VEKTÖRLER Tanım:Matematik, istatistik, mekanik, gibi çeşitli bilim dallaında znlk, alan, hacim, yoğnlk, kütle, elektiksel yük, gibi büyüklükle, cebisel kallaa göe ifade edilile. B tü çoklklaa Skale büyüklükle deni. Tanım: haeket, hız, kvvet, gibi hem yönü, hem doğlts, hem de büyüklüğü olan çoklklaa Vektöel Büyüklükle deni. Vektöel Büyüklüğün Matematiksel Tanımı : Yönlü doğ paçalaına vektö deni. A : Başlangıç noktası, B : Bitim noktasıdı. = AB yada ile gösteili. A B 3 4

GENEL TANIMLAR Tanım: Başlangıç ve bitim noktalaı çakışık olan vektöe SIFIR vektöü deni. AA ya da 0 Sıfı vektöü sonsz sayıda doğlt ve yöne sahipti. Tanım: Sabit bi başlangıç noktasına sahip olan vektöe KONUM/YER vektöü deni. Tanım: Başlangıç noktası sabit bi doğ üzeinde değişen vektöe KAYAN vektö deni. Tanım: Eğe başlangıç noktası üzeinde hiçbi kısıt yoksa SERBEST vektö deni. GENEL TANIMLAR Tanım: ile v gibi iki vektöün, yönlei aynı ve büyüklüklei eşit ise EŞİT vektöledi. =v Tanım: ile yönü zıt fakat büyüklüğü eşit olan vektö - ile gösteili. v - 6 VEKTÖREL İŞLEMLER: Toplama Tanım: ve v gibi ili vektöün toplamı, v vektöünün başlangıç noktasını vektöünün bitim noktasına yeleştidikten sona vektöünün başlangıç noktasını v vektöünün bitim noktasına bileştien vektödü. = (, ) v = ( v, v ) ise + v = ( + v, + v ) Vektölein toplamı yine bi vektödü. v VEKTÖREL İŞLEMLER: Toplama Paalelkena Yöntemi +v toplam vektöü ve v vektöleinin olştdğ Paalelkenaın köşegenleinden biine eşitti. w

VEKTÖREL İŞLEMLER: n Adet Vektöün Toplanması v Tanım: Vektöle sıası ile biinin başlangıç noktası v v 3 v 4 diğeinin bitim noktasına gelecek şekilde yeleştiili ve ilk vektöün başlangıç noktasını son vektöün bitim noktası ile bileştien vektö TOPLAM ya da BİLEŞKE vektö olaak adlandıılı. v = v + v + L + v n ( v v v,, v v v ) v = + + L+ K + + L + n n n nn V v n VEKTÖREL İŞLEMLER: Vektöün Bi Skale İle Çapımı + Tanım: Bi vektöü ve k bi skale olmak üzee k çapımı, vektöü ile aynı yönde ve znlğ vektöün k katı olan bi vektödü. Bi vektöün bi skale ile çapım sonc yine bi vektödü. k VEKTÖREL İŞLEMLER: Vektöün Bi Skale İle Çapımı VEKTÖREL İŞLEMLER: Vektölein Fakı Tanım: Bi vektöünün k çapımında k=- ise, (-) Eğe k ise elde edilen k vektöü vektöü ile aynı doğltda fakat zıt yöndedi. vektöüne, vektöünün toplamaya göe tesi deni: +(-)=0 Tanım: ve v he hangi iki vektö ise bnlaın fakı, vektölein kaşılıklı elemanlaının cebisel fakı ile elde -k edilen vektödü: +(-v)=-v=w ( v v ) w =,, K n n w -v v +v

VEKTÖREL İŞLEMLER: Vektölein Fakı Paalelkena Yöntemi w fak vektöü ve v vektöleinin tanımladığı Paalelkenaın diğe köşegenidi. İki Noktanın Tanımladığı Vektö Tanım: İki boytl zayda (düzlemde) A(a,a ), B(b,b ) noktalaı veilmiş olsn. B iki noktanın tanımladığı vektöün elemanlaı: AB = OB OA AB = OB + ( OA ) AB = ( b, b ) + ( a, a ) AB = ( b a, b a ) AB = B A İki Noktanın Tanımladığı Vektö Tanım: İki boytl zayda (düzlemde) A(a,a ), B(b,b ) noktalaı veilmiş olsn. Düzlemdeki he K noktası için KB KA = AB VEKTÖRÜN UZUNLUĞU NORMU Tanım: Bi vektöünün znlğ vektö elemanlaının kaeleinin toplamının kaeköküdü ve ile tanımlanı: = + + L + n Uznlk skale bi değedi.

VEKTÖRÜN UZUNLUĞU NORMU: Geometisi Üç boytl konm vektöünün znlğnn kaesi; = OA = OC + CA = OB + BC + CA = x + y + z Uznlk, = x + y + z BİRİM (NORMALİZE) VEKTÖR Tanım: Uznlğ ya da salt değei BİR () e eşit olan vektölee BİRİM vektö deni. Bi vektöü, N = İşlemi ile biim vektöe dönüştüülebili. Bi vektöü biim vektö ve znlğ cinsinden yazılabili: = N NORMALİZE VEKTÖR Tanım: Bi vektöün nomalize edilmesi, znlğnn bi biim olacak şekilde ölçeklenmesidi. B amaçla vektöün tüm bileşenlei vektöün znlğna bölünüle. ise ( ) =,, K, n = + + L + n n N =,, K, İki Nokta Aasındaki Mesafe Tanım: Üç boytl zayda iki nokta P (x,y,z ) ve P (x,y,z ) veilmiş olsn. B iki nokta aasındaki mesafep P vektöünün, P P = ( x x, y y, z z ) znlğ olaak belileni ve d ile gösteili. ( ) ( ) ( ) d = P P = x x + y y + z z

İki Nokta Aasındaki Mesafe VEKTÖRLERİN ANALİTİK İNCELENMESİ Tanım: Üç boytl katezyen sistemde başlangıç (oijin) O (0,0,0) noktasını; (,0,0), (0,,0) ve (0,0,) noktalaına bileştien vektölee sıası ile ox, oy, oz eksenleinin BİRİM vektölei deni. i, j, k ile gösteilile: i = (,0,0 ) j = ( 0,,0 ) k = ( 0,0,) Tanım: n-boytl zayda eksenlein biim vektölei e, e,,e n VEKTÖRLERİN ANALİTİK İNCELENMESİ VEKTÖRLERİN ANALİTİK İNCELENMESİ Tanım: Üç boytl katezyen sisteminde başlangıç O (0,0,0) noktasını bi A noktasına bileştien OA vektöüne A noktasının KONUM vektöü adı veili. = OA = OB + BC + CA = OB + OD + OE

VEKTÖRLERİN ANALİTİK İNCELENMESİ Teoem: Üç boytl zaydaki he hangi bi = (,, ) 3 vektöü i, j, k biim vektöleinin doğsal delemesi olaak yazılabili: = i + j + k 3 B ifadeye vektöünün ANALİTİK gösteimi deni. VEKTÖRLERİN ANALİTİK İNCELENMESİ Teoem: n-boytl zaydaki he hangi bi = ( K ),,, n konm vektöü e, e,,e n biim vektöleinin doğsal delemesi olaak yazılabili: = e + e + L + e n n B ifadeye konm vektöünün ANALİTİK gösteimi deni. VEKTÖRLERİN ANALİTİK İNCELENMESİ Teoem: = i + j + k = (,, ) 3 3 (,, ) v = v i + v j + v k = v v v ve k olmak üzee, 3 3 ( v ) ( v ) ( v ) + v = + i + + j + + k 3 3 (,, ) k = k i + k j + k k = k k k 3 3 VEKTÖRLERİN ANALİTİK İNCELENMESİ: İki Boyt y j O i P M(x,y) M ( x, y ) x OM = OP + PM OP = xi PM = yj OM = xi + yj 8

VEKTÖRLERİN ANALİTİK İNCELENMESİ: Üç Boyt x i z k O j Şekil.5 M(x,y,z) y OM = [ x y z] OM = xi + y j + zk Vektölein Çapımı. Skale Çapım. Vektöel Çapım 9 Skale Çapım Tanım: ve v gibi sıfıdan faklı iki vektöün skale çapımı v ile gösteili: v = v Cosθ 0 < θ < π θ vektöle aasındaki açıdı. Önemli: Çapım sonc skale bi büyüklüktü. Skale çapım; İç (inne) Çapım ya da Nokta (dot) Çapım olaak da adlandıılı. Skale Çapım: Geometik Anlamı v = OAOB. = OC. OB = OC. OB OC Cosθ = OA OC = OA Cosθ v = OB OA Cosθ v = v Cosθ

Skale Çapım: Geometik Anlamı.İki vektö bibiine dik (otogonal) ise θ=π/ olp skale çapım: v = v Cosθ = 0. İki vektöün yönlei aynı ise θ=0 olp skale çapım: v = v Cosθ = v 3. İki vektöün yönlei zıt ise θ=π olp skale çapım: v = v Cosθ = v Skale Çapım: Analitik Anlamı Üç boytl iki vektöün; =,, v = ( ) 3 ( v, v, v ) 3 Skale çapımının analitik ifadesi: v = i + j + 3k vi + v j + v3k = v ii + vij + v3ik + v ji + v jj + v 3 jk + v ki + v kj + v kk ( )( ) 3 3 3 3 Skale Çapım: Analitik Anlamı Biim vektölein skale çapımı: ii = jj = kk = ve ij = ik = jk = 0 Skale çapım sonc: v = v + v + v 3 3 Genel dm: n-boytl vektöle için v = v + v + L + v n = v = n n Cosθ = İki Vektö Aasındaki Açı v v v + v + L+ v Cosθ = v n n v

Otogonal (Dik) Vektöle n- boytl iki vektö; =,,, n ( K ) v = ( v v K v ),,, n Bibiine Otogonal (dik) ise v = v + v + L + v = n n 0 Skale Çapımın Özelliklei, v, w sıfı olmayan üç vektö olmak üzee; a). v = v. b). =, ( = ) c).( v + w) =. v +. w d ) m (. v ) = ( m ). v =.( m v ) (m : skale) e ) =. = f ) v. v = 0 38 Vektöel Çapım Tanım: Sıfıdan faklı ve v gibi iki vektöün vektöel çapımı v v ya da v ile gösteili: θ w = v = e v Sinθ Vektöel çapımın sonc bi vektödü. Doğlts ve v vektöleinin olştdğ düzleme dikti. v v Vektöel Çapım: Paalelkenaın Alanı ve v vektölei düzlemde bi paalelkena tanımla. Paalelkenaın alanı A olsn. Şekilden göülebileceği gibi sinθ paalelkenaın yüksekliği v paalelkenaı taban znlğn vei. A = ( taban)( yükseklik ) = v sinθ

Vektöel Çapım: Sonç ve v vektöleinin vektöel çapımından elde edilen w = v vektöünün znlğ ve v vektöleinin tanımladığı paalelkenaın alanına eşitti. Biim Vektölein Vektöel Çapımı Daiesel Pemütasyon i i = 0 i j = k i k = j j i = k j j = 0 j k = i k i = j k j = i k k = 0 Vektöel Çapım: Analitik İfadesi Üç boytl iki vektöün; =,, v = ( ) 3 ( v, v, v ) 3 Skale çapımının analitik ifadesi: v = i + j + 3k vi + v j + v3k = v i i + vi j + v3i k + v j i + v j j + v 3 j k + v k i + v k j + v k k ( ) ( ) 3 3 3 3 Vektöel Çapım: Analitik İfadesi Biim vektölein vektöel çapımlaı kllanılaak: v = v v i + v v j + v v k ( ) ( ) ( ) 3 3 3 3 ( v v, v v, v v ) = 3 3 3 3 Not: Deteminant kons ile ilişkilidi.

Vektöel Çapım Teoem: Eğe ve v üç boytl zaydaki iki vektö ise,.. ( v ) = 0 v vektöü vektöüne otogonaldi.. v. ( v ) = 0 v vektöü v vektöüne otogonaldi. 3. v = v (. v ) Lagange özdeşliği Vektöel Çapım: Deteminant İfadesi v v = i j k x x y y z z Üçlü Vektöel Çapım Tanım:, v ve w vektöleinin üçlü vektöel çapımı: v w = w v v w ( ) ( ) ( ) Üçlü vektöel çapımın sonc yine bi vektödü. v w çapım vektöü ( ) v ve w vektöleinin olştdğ düzleme paalel, v w ikili vektöel çapım vektöüne dik bi vektödü. Vektöel Çapımın Özelliklei, v, w sıfı olmayan üç vektö olmak üzee; a) v = v b) ( v + w) = v + w c) m ( v) = ( m ) v = ( m v) (m : skale) d ) v = 0 ile v paaleldi. e) ve v vektöleinin vektöel çapımının değei (skale büyüklüğü) ve v vektölei üzeine klan PARALELKENAR ın alanını vei. 48

Kaışık Çapım Tanım:, v ve w aynı düzlemde blnmayan üç vektö olmak üzee, v w = v w Cosθ ( ) çapımına kaışık çapım deni. Kaışık çapım v w vektöü ile vektöünün skale çapımı oldğ için sonç bi skaledi. Kaışık Çapım: Geometik Anlamı Kaışık Çapım: Geometik Anlamı ( v w) = v w Cosθ İlk bileşen v w : OBCD paalelkenaının alanı İkinci bileşen Cosθ : paalelyüzün yüksekliği Kaışık Çapım:, v ve w vektölei üzeine klan paalelyüzün hacmine eşitti. Kaışık Çapım :Deteminatİfadesi x.( v w ) = x x 3 y y y 3 z z z 3 5

Vektölein İzdüşümü Vektöel İzdüşüm Skale İzdüşüm Vektölein İzdüşümü ox ekseni için biim vektö e olsn. OA vektöünün ox ekseni üzeindeki vektöel izdüşümü: izd. OA = OB OB = OB e OB = OA Cosθ e OA vektöünün ox ekseni üzeindeki skale izdüşümü: OB = OA Cosθ ya da OB = OA. e Vektölein İzdüşümü: Geometik BİRİNCİ BÖLÜM BİTTİİİİİİİ 56