Elektrik - Elektronik Fakültesi

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Elektrik - Elektronik Fakültesi"

Transkript

1 . Elektrik - Elektronik Fakültesi KON314 Kontrol Sistem Tasar m Ödev #1 Birol Çapa-4645 Doç. Dr. Mehmet Turan Söylemez

2 1.a.Amaç Transfer fonksiyonu ( n 1 ve n üzerine konulan bir kontrolör ile kontrol edilmek istenmektedir. bir kontrolörü F( s) = KP n 1 =1 ve n =2 seçmelidir. 2. a. AppendTo[$Path,"P:\\Muhendis\Mathematica\macsybox"]; <<Control` Gs= 3.2+ n s 2 + H3.5+.3n 1 L s+ 4+.2n n= olmak üzere s + s 2 transfer fonksiyonu F= K p Kontrolörün ifadesi olmak üzere ileri yol ifadesi L=F Gs 2

3 3.2 K p s + s 2 o T= TogetherAExpandA L 1+ L EE 3.2 K p s + s K p pcs=denominator[t] s + s K p Asim =.3; Log@AsimD ζdesired = è!!!!!!!!!!!!!!!!!!!!!!!!!!!!! π 2 + Log@AsimD 2 b ζdesired= Buna uygun bir karakteristik polinom elde etmek için pds= s 2 + 2ζ w n s+ w n 2 ê. ζ ζdesired s s w n + w n 2 polinomdur. 3

4 sol=solve[coefficientlist[pcs,s] CoefficientList[pds,s]] 88K p , w n << ç Kontrolör K p K p = w n = settime= 4 ζdesired w n ê.sol@@1dd AchievedTs=T/.sol[[1]] s + s 2 TimeDomainCharacteristics[AchievedTs,ShowMessages Settling Time (Ts) : sec Overshoot Time (Tp): sec Overshoot : Delay Time (Td) : sec 4

5 Rise Time (Tr) : sec SteadyStateError[AchievedTs] dir y ss = AchievedTs ê.s e ss = Simplify@1 y ss D.35529, 3. a.simülasyon Step[AchievedTs]; YHtL Time Response Time 5

6 Gain 3.2 s 2+5s+4 Transfer Fcn Step Scope 4. a.sonuç Sonuç olarak, %. 6

7 1. b.i.ii.iii.amaç Sonuç1.a sonuçta elde bir faz ilerlemeli kontrolör tasarlanmak isteniyor: Matlab veya Mathematica kullanara hal 2.b..i.ii.iii. AppendTo[$Path,"P:\\Muhendis\Mathematica\macsybox"]; <<Control` n 1 = 5 n = Sistem Gs= 3.2+ n s 2 + H3.5+.3n 1 L s+ 4+.2n 3.2` 4+ 5.`s+s 2 pzm=polezeromap[gs] 7

8 1 Pole Zero Map.5 I m HsL PolesZeros[Gs] {{-4.,-1.},{}} Sisteme RootLoci[Gs] ReHsL Root Locus Plot I m HsL ReHsL RootLoci[Gs,KRange {-2,2.5,.1}] 8

9 3 2 1 Root Locus Plot I m HsL ReHsL rl=rootloci[gs,joingraphics {pzm}] Root Locus Plot I m HsL ReHsL Show[{rl,pzm}] Root Locus Plot I m HsL ReHsL 9

10 3 2 1 Root Locus Plot I m HsL Kontrolör ifadesi Asim=.3; Buradan ζ: ReHsL Fs= K s+ z 1 s+ p 1 K Hs+ z 1 L s+ p 1 ζdesired = Log@AsimD è!!!!!!!!!!!!!!!!!!!!!!!!!!!!! π 2 + Log@AsimD SettlingTime= ` targetsettlingtime=settlingtime/ ` Buradanw n 1

11 wdesired = 4 ζdesired targetsettlingtime ` Bu iki yeni veriye göre tasarlanan karakteristik polinom pds= s 2 + 2ζ w n s+ w n 2 ê. 8ζ ζdesired, wn wdesired< ` `s+ s 2 L=Gs Fs 3.2`K Hs+ z 1 L H4+ 5.`s+s 2 L Hs+ p 1 L T fazil = TogetherAExpandA faz ilerlemeli kontrolöre sahip transfer fonksiyonunun karakteristik denklemi L 1+ L EE 3.2`K s+ 3.2`K z 1 4.`s+ 3.2`K s+5.`s 2 + s ` p `s p 1 + s 2 p `K z 1 p fazil = Denominator@T fazil D 4.`s+ 3.2`K s+ 5.`s 2 + s ` p `s p 1 + s 2 p `K z 1 residue polinomu gerekli: p istenen = Expand@pds Hs+ ald ` a ` s `as `s 2 + as 2 +s 3 karakteristik denklemler çözülürse 11

12 clst1= fazil, sd 84.` p `K z 1, 4.`+ 3.2`K + 5.` p 1, 5.`+ p 1, 1< clst2 = CoefficientList@p istenen, sd { a, a, a,1} ve bu çözüm eklenen a kutbunu serbest parametre olarak kabul edilerek verilirse sol2= Solve@clst1 clst2, 8K, p 1, z 1 <D `*^ `*^23a 99z `*^ `*^22a, p `*^-8 H `*^ `*^7 al, K `*^-24 H `*^ `*^23 al== olsun ve O halde a z in a - r ifade K c (s)g(s) ifadesindeki G c üsttekine göre çok - 12

13 sol3=sol2/.a 4 88z 1 4., p , K << 88z `, p `, K `<< edilebilir Bu çözüme göre Kontr yeniden düzenlenirse Fs K Hs+ z 1 L s+ p 1 Fbulunan=Fs/.sol3[[1]] ` H ` + sl `+ s Lbulunan=L/.sol3[[1]] ` H ` + sl PolesSISO[Lbulunan] { ,-4.,-1.} ZerosSISO[Lbulunan] {-4.} H `+sL H4+ 5.`s+ s 2 L Tbulunan= T fazil ê.sol3@@1dd ` `s ` `s `s 2 +s 3 PolesZeros[Tbulunan] {{ , ,-4.},{-4.}} 13

14 pzm2=polezeromap[lbulunan] 1 Pole Zero Map.5 I m HsL ReHsL pzm3=polezeromap[tbulunan] 4 Pole Zero Map 2 I m HsL ReHsL rloci=rootloci[lbulunan,joingraphics {pzm2}] 14

15 1 Root Locus Plot 5 I m HsL ReHsL Tbulunan ` ` s ` `s `s 2 + s 3 Step[Tbulunan] YHtL Time Response Time Zaman bölgesi analizi: TimeDomainCharacteristics[Tbulunan,ShowMessages True] Reducing tmax to Settling Time (Ts) : sec Overshoot Time (Tp):.7547 sec 15

16 Overshoot :.3 Delay Time (Td) : sec Rise Time (Tr) : sec {.3,.7547,.92757, ,.36492} SteadyStateError[Tbulunan] b..i.ii.iii.simülasyon Step[Tbulunan] YHtL Time Response Time Step Gain s+4 s Transfer Fcn s 2+5s+4 Transfer Fcn Scope Display

17 4. b..i.ii.iii.sonuç

18 4 Pole Zero Map 2 I m HsL ReHsL (Kutup- Burada dikkat çekilecek husus: S , , -4) bu 18

19 1.b.iv.Amaç 4. b..i.ii.iii.sonucuna dayanarak b ilerlemeli-gerilemeli AppendTo[$Path,"P:\\Muhendis\Mathematica\macsybox"]; <<Control`. z 1 = ` p 1 = ` K = ` F= K Hs+ z 1L Hs+ z 2 L Hs+ p 1 L Hs+ p 2 L H4. + sl Hs + z 2 L H sl Hs + p 2 L Bir e ss1 = ` e ss = e ss1 ê Kp= H1êe ss L 1 19

20 n 1 = 5 n = Gs= 3.2+ n s 2 + H3.5+.3n 1 L s+ 4+.2n s + s 2 : L=F Gs K p = lim s Gc ( s) G p ( s) : Kpl=L/.s H4. + sl Hs+ z 2 L H sl H s + s 2 L Hs+ p 2 L z 2 p 2 tasarlanan sistemin sol=solve[kpl-kp ] 88z p 2 << Normalde Sistemin transfer fonksiyonunun -1 ve - Faz ilerlemeli kontrolör ile - ve - Bu kontrolör ile sistemin -4 teki kutbunun etkisini - Geriye - - ku 2

21 - eklenmelidir. O yüzen p 2 kutbu da z 2 - Bu fikirden hareketle bulunabilir: F Gs L p 2 =.8121 z 2 = ` p H sl H4. + sl H sl H sl s + s H sl H4.+ sl H sl H sl H s + s 2 L PolesSISO[L] ZerosSISO[L] { ,-4.,-1.,-.8121} {-4.,-1.679} 21

22 T fazilgeri = TogetherAExpandA l. { , ,-4.,-1.871} {-4.,-1.679} pzml=polezeromap[l] L 1+ L EE s s s s s 3 + s 4 pch= Denominator@T fazilgeri D s s s 3 + s 4 PolesSISO@T fazilgeri D ZerosSISO@T fazilgeri D 1 Pole Zero Map.5 I m HsL ReHsL Graphics rloci=rootloci[l,joingraphics {pzml}] 22

23 1 Root Locus Plot 5 I m HsL ReHsL Graphics pzmt= PoleZeroMap@T fazilgeri D Pole Zero Map I m HsL ReHsL Graphics TimeDomainCharacteristics@T fazilgeri, ShowMessages TrueD Reducing tmax to Settling Time (Ts) : sec Overshoot Time (Tp): sec Overshoot :.373 Delay Time (Td) : sec Rise Time (Tr) :.4717 sec 23

24 {.373,.84647,1.4155, ,.4717} fazilgeri D b.iv.Simülasyon Step@T fazilgeri D 1 Time Response.8.6 YHtL Time Sistem Matlab Step Gain s+4 s Transfer Fcn 1 s s Transfer Fcn s 2+5s+4 Transfer Fcn Scope.9786 Display 24

25 1.b.iv.Sonuç Sonuç olarak, n.373 % 3, bir önceki sistemde idi olarak de bulunan kut k 1/ görülebilir. 25

26 1.c.Amaç AppendTo[$Path,"P:\\Muhendis\Mathematica\macsybox"]; <<Control` n 1 = 5 n = Gs= 3.2+ n s 2 + H3.5+.3n 1 L s+ 4+.2n s + s 2 Fs= K p + K d s s K d + K p Ls=Fs Gs 3.2 Hs K d + K p L s + s 2 T PD = TogetherAExpandA 3.2 s K d K p Ls 1+ Ls EE s + s s K d K p p PD = Denominator@T PD D s + s s K d K p Asim=.3; 26

27 ζdesired = Log@AsimD è!!!!!!!!!!!!!!!!!!!!!!!!!!!!! π 2 + Log@AsimD SettlingTime= ` targetsettlingtime=settlingtime/ wdesired = 4 ζdesired targetsettlingtime pds= s ζ w n s+ w n ê. 8ζ ζdesired, wn wdesired< s + s 2 clst1 = CoefficientList@p PD, sd K p, K d, 1< clst2=coefficientlist[pds,s] { , ,1} sol= Solve@clst1 clst2, 8K p, K d <D 88K d , K p << Fsfix=Fs/.sol[[1]] s Solve[Fsfix ] {{s }} AchievedL=Ls/.sol[[1]] 3.2 H sl s + s 2 27

28 PolesSISO[AchievedL] {-4.,-1.} ZerosSISO[AchievedL] { } AchievedTs2 = T PD ê.sol@@1dd s s + s 2 poles=polessiso[achievedts2] { , } ZerosSISO[AchievedTs2] { } TimeDomainCharacteristics[AchievedTs2,ShowMessages True] Reducing tmax to Settling Time (Ts) : sec Overshoot Time (Tp): sec Overshoot : Delay Time (Td) : sec Rise Time (Tr) : sec { , , ,.11844, } SteadyStateError[AchievedTs2]

29 1.c.Simülasyon Step[AchievedTs2] YHtL Time Response Time GraphicsArray 1.c.Sonuç Sonuç olarak, b saniye %96 %5.3 bulundu. Bu sonuç beklenenden hayli fazla. Bunun sebebi ise ev etkeninin 29

30 1.d.Amaç {- - Bu takdirde PID Kontrolörü yüzünden eklenecek ikinci yine onun kutbun et F( s) = KP + KDs kontrolörünün kökü -8 idi. Ki F( s) = KP + KDs + s KP + KDs Ki F( ) = KP + KDs terim K i eksi yönde bir ötelemeye neden olur. O halde bu negatif ötelemenin bir pozitif öteleme ile giderilmesi gerekir ki F( s) K P + K Ds - - K P terimi K Ds Ki teriminden büyük olacak ve bu pozitif fark, s AppendTo[$Path,"P:\\Muhendis\Mathematica\macsybox"]; <<Control`, Fs= TogetherAExpandAK p + K d s+ K i s EE 3

31 s 2 K d + K i + s K p s Fsn=Numerator[Fs] s 2 K d + K i + s K p Solve[Fsn,{s}] - -8 den biraz küçük) olsun daha ::s K p "###################### 4 K d K i + K2 p 2 K d >, :s K p + "###################### 4 K d K i + K2 p 2 K d >> f= K p "###################### 4K d K i + K2 p 2K d H 7.619L K p "###################### 4 K d K i + K2 p 2 K d sol=solve[f ] 88K i H K d K p L<< düzenlenirse Fsyeni=Fs/.sol[[1]] s 2 K d + s K p H K d K p L s n 1 = 5 n = Gs= 3.2+ n s 2 + H3.5+.3n 1 L s+ 4+.2n 31

32 s + s 2 Ls=Gs Fsyeni H3.2 Hs 2 K d + s K p H K d K p LLL Hs H4+ 5. s + s 2 LL = TogetherA Ls 1+ Ls E H K d s 2 K d K p s K p L H4. s+ 5. s 2 + s K d s 2 K d K p s K p L 4. s+ 5. s 2 + s K d s 2 K d K p s K p bulunur. Asim=.3; ζdesired = Log@AsimD è!!!!!!!!!!!!!!!!!!!!!!!!!!!!! π 2 + Log@AsimD SettlingTime= ` targetsettlingtime=settlingtime/ wdesired = 4 ζdesired targetsettlingtime

33 pds= s 2 + 2ζ w n s+ w n 2 ê. 8ζ ζdesired, wn wdesired< s + s 2 residue i olsun: pes=s+a a+s pds2=expand[pds pes] a s a s s 2 + a s 2 + s K d K p, K p, K d, 1< clst2=coefficientlist[pds2,s] { a, a, a,1} sol2=solve[clst1 clst2] 88a , K d , K p << Bu noktadan hareketle K p,k d,k i ifadeleri yerlerine konursa: Fs s 2 K d + K i + s K p s K i =.1`H `K d `K p L ê.sol2@@1dd Fsyeni/.sol2[[1]] 33

34 s s 2 s LT=Ls/.sol2[[1]] 3.2 H s s 2 L s H4+ 5. s + s 2 L RootLoci[LT] Root Locus Plot 4 2 I m HsL ReHsL Graphics s s s s 2 + s 3 PolesZeros[AT] {{ , , },{-7.619, }} da olan Yine daki kutup sayesinde etkisini giderebilecek bir kutbun o bölgeye geldi. 34

35 ( ) kutbu sayesinde( ) etkisiz hale geliyor. beklenir. Zaman Bölges TimeDomainCharacteristics[AT,ShowMessages True] Reducing tmax to Settling Time (Ts) : sec Overshoot Time (Tp): sec Overshoot : Delay Time (Td) : sec Rise Time (Tr) : sec {.35389, , , ,.26472} SteadyStateError[AT]. 1.d.Simülasyon Step[AT] 1.8 Time Response YHtL Time GraphicsArray 35

36 1.d.Sonuç Sonuç olarak, n % 3, olarak bir sonraki. 36

37 2.1.Amaç Sistem transfer fonksiyonunun Gs= 3.2+ n Hs 2 + H3.5+.3n 1 L s n L H.1s + 1L v -Nichols (osilasyon) yöntemiyle belirleyiniz. Mathematica nda Sonuç olarak verilen sistemi kontrol 2.2. AppendTo[$Path,"P:\\Muhendis\Mathematica\macsybox"]; <<Control` n 1 = 5 n = Sistemin transfer fonksiyonu: Gs= 3.2+ n Hs 2 + H3.5+.3n 1 L s n L H.1s + 1L Ziegler- F=K K L=Gs K 3.2 H1 +.1 sl H s + s 2 L 3.2 K H1 +.1 sl H s + s 2 L T= TogetherAExpandA L 1+ L EE 37

38 3.2 K K s s s 3 polinom pcs=denominator[t] K s s s 3 rtblnichols=routhtabulation[pcs] :.1, 1.5, K, H KL H KL K Map[(#>)&,rtblnichols] > :True, True, K >, H KL H KL K > > cond=apply[and,map[(#>)&,rtblnichols]] K > && H KL H KL K > Reduce[cond] -1.25<K< <K< pcsnichols=pcs/.k s s s 3 s1=solve[pcsnichols ] 88s 15.<, 8s <, 8s << 38

39 K c = : w c = Buradan Ziegler- P c = 2 π w c K p =.6K c T r =.5P c T d = P c i FNichols= ExpandAK p j1+ 1 k T r s + T d s y ze { s Ziegler- Gs s 39

40 LNichols=Gs FNichols ç 3.2 H1 +.1 sl H s + s 2 L 3.2 I sm s H1 +.1 sl H s + s 2 L TNichols= TogetherAExpandA Step[TNichols] LNichols 1+ LNichols EE s s s s s s 4 Time Response YHtL Time TimeDomainCharacteristics[TNichols,ShowMessages True] Settling Time (Ts) : sec Overshoot Time (Tp): sec Overshoot : Delay Time (Td) : sec Rise Time (Tr) : sec { , , , ,.54311} 4

41 Bir F PID = 1 s I ` `s `s 2 M s s 2 s L PID = GsF PID 3.2 H s s 2 L H1 +.1 sl s H s+ s 2 L T PID = TogetherAExpandA L PID 1+ L PID EE s s s s s s 4 Buna göre elde edilen transfer fonksiyonunun Step@T PID D Time Response 1.8 YHtL Time Yine TimeDomainCharacteristics@T PID, ShowMessages TrueD 41

42 Reducing tmax to Settling Time (Ts) : sec Overshoot Time (Tp): sec Overshoot : Delay Time (Td) : sec Rise Time (Tr) : sec {.39457, , , ,.24758} 42

43 2.3.Simülasyon Step[TNichols] YHtL TimeDomainCharacteristics[TNi chols,showmessages True] Settling Time (Ts) : sec Overshoot Time (Tp): sec Overshoot : Time Response Time Delay Time (Td) : sec Rise Time (Tr) : sec Step[T PID ] YHtL Time TimeDomainCharacteristics [T PID,ShowMessages True] Settling Time (Ts) : sec Overshoot Time (Tp): sec Overshoot : Time Response Delay Time (Td) : sec Rise Time (Tr) : sec { , , , , } {.39457, , , , } 43

44 2.4.Sonuç - PID çok daha olumsuz sonuçlar Ziegler- Nichols c göre; Ziegler- Nichols, önceki 3 kat ve önceki Buna göre önceki PID Verilen sistemi kontrol etmek için 44

KON 314 KONTROL SİSTEM TASARIMI

KON 314 KONTROL SİSTEM TASARIMI KON 34 KONTROL SİSTEM TASARIMI PROJE 2 Öğretim Üyesi: Doç. Dr. Mehmet Turan SÖYLEMEZ HAZIRLAYANLAR TAKIM 6 45437 Burak BEŞER 45442 Elif KÖKSAL 464 Muharrem ULU 4645 Birol ÇAPA Teslim Tarihi: 24.4.29 GİRİŞ

Detaylı

Tanım: Kök yer eğrisi sistem parametrelerinin değişimi ile sistemin kapalı döngü köklerinin s düzlemindeki yerini gösteren grafiktir.

Tanım: Kök yer eğrisi sistem parametrelerinin değişimi ile sistemin kapalı döngü köklerinin s düzlemindeki yerini gösteren grafiktir. Kök Yer Eğrileri Kök Yer Eğrileri Bir kontrol tasarımcısı sistemin kararlı olup olmadığını ve kararlılık derecesini bilmek, diferansiyel denklem çözmeden bir analiz ile sistem performansını tahmin etmek

Detaylı

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ OTOMATİK KONTROL SİSTEMLERİ DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ 1) İdeal Sönümleme Elemanı : a) Öteleme Sönümleyici : Mekanik Elemanların Matematiksel Modeli Basit mekanik elemanlar, öteleme hareketinde;

Detaylı

Sayısal Kontrol - HAVA HARP OKULU Bölüm 4 Sayısal Kontrolör Tasarımı

Sayısal Kontrol - HAVA HARP OKULU Bölüm 4 Sayısal Kontrolör Tasarımı Sayısal Kontrol - HAVA HARP OKULU Bölüm 4 Sayısal Kontrolör Tasarımı İbrahim Beklan Küçükdemiral Yıldız Teknik Üniversitesi 2015 1 / 72 Bu bölümde aşağıdaki konular incelenecektir: Tasarım Yöntemlerine

Detaylı

Ders İçerik Bilgisi. Sistem Davranışlarının Analizi. Dr. Hakan TERZİOĞLU. 1. Geçici durum analizi. 2. Kalıcı durum analizi. MATLAB da örnek çözümü

Ders İçerik Bilgisi. Sistem Davranışlarının Analizi. Dr. Hakan TERZİOĞLU. 1. Geçici durum analizi. 2. Kalıcı durum analizi. MATLAB da örnek çözümü Dr. Hakan TERZİOĞLU Ders İçerik Bilgisi Sistem Davranışlarının Analizi 1. Geçici durum analizi 2. Kalıcı durum analizi MATLAB da örnek çözümü 2 Dr. Hakan TERZİOĞLU 1 3 Geçici ve Kalıcı Durum Davranışları

Detaylı

Bu uygulama saatinde, ders kapsamında şu ana kadar bahsedilen konulara ilişkin MATLAB fonksiyonları tanıtılacaktır.

Bu uygulama saatinde, ders kapsamında şu ana kadar bahsedilen konulara ilişkin MATLAB fonksiyonları tanıtılacaktır. Bu uygulama saatinde, ders kapsamında şu ana kadar bahsedilen konulara ilişkin MATLAB fonksiyonları tanıtılacaktır. Polinomial Bir Fonksiyonun Tanıtılması P s s s şeklindeki bir fonksiyona ilişkin nesne,

Detaylı

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ 6.2. Laplace Dönüşümü Tanımı Bir f(t) fonksiyonunun Laplace alındığında oluşan fonksiyon F(s) ya da L[f(t)] olarak gösterilir. Burada tanımlanan s; ÇÖZÜM: a) b) c) ÇÖZÜM: 6.3.

Detaylı

Otomatik Kontrol (Doğrusal sistemlerde Kararlılık Kriterleri) - Ders sorumlusu: Doç.Dr.HilmiKuşçu

Otomatik Kontrol (Doğrusal sistemlerde Kararlılık Kriterleri) - Ders sorumlusu: Doç.Dr.HilmiKuşçu 1 2 1 3 4 2 5 6 3 7 8 4 9 10 5 11 12 6 K 13 Örnek Kararlılık Tablosunu hazırlayınız 14 7 15 Kapalı çevrim kutupları ve kararlıkları a. Kararlı sistem; b. Kararsız sistem 2000, John Wiley & Sons, Inc. Nise/Cotrol

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 301 Kontrol Sistemleri I.

TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 301 Kontrol Sistemleri I. TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE Kontrol Sistemleri I Final Sınavı 9 Ağustos 24 Adı ve Soyadı: Bölüm: No: Sınav süresi 2 dakikadır.

Detaylı

ULUDAĞ ÜNİVERSİTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN3052 OTOMATİK KONTROL

ULUDAĞ ÜNİVERSİTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN3052 OTOMATİK KONTROL ULUDAĞ ÜNİVERSİTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN3052 OTOMATİK KONTROL 2009-200 BAHAR ÖDEV 3 Konu: MATLAB ve Simulink programı ile PID ayarlarının bulunması ÖDEVDE İSTENENLER: Örnek olarak belirlenen

Detaylı

İstanbul Teknik Üniversitesi Elektrik Elektronik Fakültesi

İstanbul Teknik Üniversitesi Elektrik Elektronik Fakültesi İstanbul Teknik Üniversitesi Elektrik Elektronik Fakültesi Kontrol Sistem Tasarımı PROJE 3 Öğretim Üyesi: Doç. Dr. Mehmet Turan SÖYLEMEZ Hazırlayanlar TAKIM 8 Burak Beşer 45437 Elif Köksal 45442 Muharrem

Detaylı

MAK669 LINEER ROBUST KONTROL

MAK669 LINEER ROBUST KONTROL MAK669 LINEER ROBUST KONTROL Prof.Dr. Selim SİVRİOĞLU s.selim@gyte.edu.tr 26.09.2014 1 Ders takvimi Toplam 12 hafta içinde 10 hafta ders 1 hafta laboratuar uygulaması ve 1 hafta sınav yapılacaktır. Derse

Detaylı

ELN3052 OTOMATİK KONTROL MATLAB ÖRNEKLERİ - 2 TRANSFER FONKSİYONU, BLOK ŞEMA VE SİSTEM BENZETİMİ UYGULAMALARI:

ELN3052 OTOMATİK KONTROL MATLAB ÖRNEKLERİ - 2 TRANSFER FONKSİYONU, BLOK ŞEMA VE SİSTEM BENZETİMİ UYGULAMALARI: ELN35 OTOMATİK KONTROL MATLAB ÖRNEKLERİ - TRANSFER FONKSİYONU, BLOK ŞEMA VE SİSTEM BENZETİMİ UYGULAMALARI: Control System Toolbox içinde dinamik sistemlerin transfer fonksiyonlarını tanımlamak için tf,

Detaylı

Otomatik Kontrol (Doğrusal sistemlerde Kararlılık Kriterleri) - Ders sorumlusu: Doç.Dr.HilmiKuşçu

Otomatik Kontrol (Doğrusal sistemlerde Kararlılık Kriterleri) - Ders sorumlusu: Doç.Dr.HilmiKuşçu ROOT-LOCUS TEKNİĞİ Lineer kontrol sistemlerinde en önemli kontrollerden biri belirli bir sistem parametresi değişirken karakteristik denklem köklerinin nasıl bir yörünge izlediğinin araştırılmasıdır. Kapalı

Detaylı

KST Lab. Shake Table Deney Föyü

KST Lab. Shake Table Deney Föyü KST Lab. Shake Table Deney Föyü 1. Shake Table Deney Düzeneği Quanser Shake Table, yapısal dinamikler, titreşim yalıtımı, geri-beslemeli kontrol gibi çeşitli konularda eğitici bir deney düzeneğidir. Üzerine

Detaylı

İşaret ve Sistemler. Ders 11: Laplace Dönüşümleri

İşaret ve Sistemler. Ders 11: Laplace Dönüşümleri İşaret ve Sistemler Ders 11: Laplace Dönüşümleri Laplace Dönüşüm Tanımı Bir f(t) fonksiyonunun Laplace alındığında oluşan fonksiyon F(s) yada L[f(t)] olarak gösterilir. Burada tanımlanan s: İşaret ve Sistemler

Detaylı

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri. Hazırlayan: Dr. Nurdan Bilgin

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri. Hazırlayan: Dr. Nurdan Bilgin Otomatik Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Hazırlayan: Dr. Nurdan Bilgin Kapalı Çevrim Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Tüm uygulamalar için aşağıdaki

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 7- SAYISAL TÜREV Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ İntegral işlemi gibi türev işlemi de mühendislikte çok fazla kullanılan bir işlemdir. Basit olarak bir fonksiyonun bir noktadaki

Detaylı

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi 1) Giriş Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Pendulum Deneyi.../../2018 Bu deneyde amaç Linear Quadratic Regulator (LQR) ile döner ters sarkaç (rotary inverted

Detaylı

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Otomatik Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri H a z ı r l aya n : D r. N u r d a n B i l g i n Kapalı Çevrim Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Bir önceki

Detaylı

30. HAZERFAN İHA nın UZUNLAMASINA HAREKET DİNAMİĞİ ve KONTROLÜ. Özet

30. HAZERFAN İHA nın UZUNLAMASINA HAREKET DİNAMİĞİ ve KONTROLÜ. Özet 3. HAZERAN İHA nın UZUNLAMASINA HAREKET DİNAMİĞİ ve KONTROLÜ Özet Gelişen havacılık teknolojisiyle birlikte gelişimini sürdüren İHAları son zamanlarda üzerinde araştırmalar ve yatırımlar yapılan öncelikli

Detaylı

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ OTOMATİK KONTROL SİSTEMLERİ DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ Modelleme Önceki bölümlerde blok diyagramları ve işaret akış diyagramlarında yer alan transfer fonksiyonlarındaki kazançlar rastgele

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 301 Kontrol Sistemleri I.

TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 301 Kontrol Sistemleri I. TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 3 Kontrol Sistemleri I Ara Sınav 8 Haziran 4 Adı ve Soyadı: Bölüm: No: Sınav süresi dakikadır.

Detaylı

MAK669 LINEER ROBUST KONTROL

MAK669 LINEER ROBUST KONTROL MAK669 LINEER ROBUS KONROL s.selim@gyte.edu.tr 14.11.014 1 State Feedback H Control x Ax B w B u 1 z C x D w D u 1 11 1 (I) w Gs () u y x K z z (full state feedback) 1 J ( u, w) ( ) z z w w dt t0 (II)

Detaylı

DENEY.3 - DC MOTOR KONUM-HIZ KONTROLÜ

DENEY.3 - DC MOTOR KONUM-HIZ KONTROLÜ DENEY.3 - DC MOTOR KONUM-HIZ KONTROLÜ 3.1 DC MOTOR MODELİ Şekil 3.1 DC motor eşdeğer devresi DC motor eşdeğer devresinin elektrik şeması Şekil 3.1 de verilmiştir. İlk olarak motorun elektriksel kısmını

Detaylı

Transfer Fonksiyonu. Dürtü yanıtı h[n] olan sisteme x[n]=z n girişi uygulandığında

Transfer Fonksiyonu. Dürtü yanıtı h[n] olan sisteme x[n]=z n girişi uygulandığında Z DÖNÜŞÜMÜ Transfer Fonksiyonu Dürtü yanıtı h[n] olan sisteme x[n]=z n girişi uygulandığında Burada toplamı n ye bağımlı olmayıp sadece sistemin dürtü yanıtı ve z değerine bağlı bir katsayıdır. şeklinde

Detaylı

Mat-Lab ile Kök Yer Eğrileri

Mat-Lab ile Kök Yer Eğrileri Mat-Lab ile Kök Yer Eğrileri Prof.Dr. Galip Cansever 1 MatLab ile Kök yer eğrisi çiziminde num = = num 1 + K = 0 den ( s s m + z 1 b s 1 )( s m 1 z m formunu kullanacağız. )...( s +... + b m z m ) den

Detaylı

1. DENEY ADI: Rezonans Deneyi. analitik olarak bulmak denir. Serbestlik Derecesi: Genlik: Periyot: Frekans: Harmonik Hareket:

1. DENEY ADI: Rezonans Deneyi. analitik olarak bulmak denir. Serbestlik Derecesi: Genlik: Periyot: Frekans: Harmonik Hareket: 1. DENEY ADI: Rezonans Deneyi 2. analitik olarak bulmak. 3. 3.1. denir. Serbestlik Derecesi: Genlik: Periyot: Frekans: Harmonik Hareket: Harmonik Hareket Rezonans: Bu olaya rezonans denir, sistem için

Detaylı

U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN3102 OTOMATİK KONTROL Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı

U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN3102 OTOMATİK KONTROL Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN30 OTOMATİK KONTROL 00 Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı Sınav Süresi 90 dakikadır. Sınava Giren Öğrencinin AdıSoyadı :. Prof.Dr.

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Sistem Dinamiği. Bölüm 2- Dinamik Cevap ve Laplace Dönüşümü. Doç.Dr. Erhan AKDOĞAN

Sistem Dinamiği. Bölüm 2- Dinamik Cevap ve Laplace Dönüşümü. Doç.Dr. Erhan AKDOĞAN Sistem Dinamiği - Dinamik Cevap ve Laplace Dönüşümü Doç. Sunumlarda kullanılan semboller: El notlarına bkz. Yorum Soru MATLAB Bolum No.Alt Başlık No.Denklem Sıra No Denklem numarası Şekil No Şekil numarası

Detaylı

DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EET305 OTOMATİK KONTROL I Dr. Uğur HASIRCI

DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EET305 OTOMATİK KONTROL I Dr. Uğur HASIRCI KARARLILIK Kontrol sistemlerinin tasarımında üç temel kriter göz önünde bulundurulur: Geçici Durum Cevabı Kararlılık Kalıcı Durum Hatası Bu üç temel spesifikasyon arasında en önemlisi kararlılıktır. Eğer

Detaylı

SAYISAL KONTROL 2 PROJESİ

SAYISAL KONTROL 2 PROJESİ SAYISAL KONTROL 2 PROJESİ AUTOMATIC CONTROL TELELAB (ACT) ile UZAKTAN KONTROL DENEYLERİ Automatic Control Telelab (ACT), kontrol deneylerinin uzaktan yapılmasını sağlayan web tabanlı bir sistemdir. Web

Detaylı

Dr. Uğur HASIRCI. Blok Diyagramlar Geribeslemeli Sistemlerin Analizi ve Tasarımı

Dr. Uğur HASIRCI. Blok Diyagramlar Geribeslemeli Sistemlerin Analizi ve Tasarımı EET305 MM306 OTOMATİK SİSTEM DİNAMİĞİ KONTROL I Blok Diyagramlar Geribeslemeli Sistemlerin Analizi ve Tasarımı 1 Birçok kontrol sistemi, aşağıdaki örnekte görüldüğü gibi çeşitli altsistem ler içerir. Dolayısıyla

Detaylı

MEKATRONİK VE KONTROL LABORATUARI DENEY FÖYÜ

MEKATRONİK VE KONTROL LABORATUARI DENEY FÖYÜ MEKATRONİK VE KONTROL LABORATUARI DENEY FÖYÜ DENEYİN ADI: Ters Sarkaç Kontrol Deneyi AMAÇ: Bu laboratuar deneyinde matematik denklemleri sıkça karşımıza çıkan arabalı ters sarkacın kontrolünü gerçekleştireceğiz.

Detaylı

H(s) B(s) V (s) Yer Kök Eğrileri. Şekil13. V s R s = K H s. B s =1için. 1 K H s

H(s) B(s) V (s) Yer Kök Eğrileri. Şekil13. V s R s = K H s. B s =1için. 1 K H s Yer Kök Eğrileri R(s) K H(s) V (s) V s R s = K H s 1 K H s B s =1için B(s) Şekil13 Kapalı çevrim sistemin kutupları 1+KH(s)=0 özyapısal denkleminden elde edilir. b s H s = a s a s K b s =0 a s K b s =0

Detaylı

Ders İçerik Bilgisi. Dr. Hakan TERZİOĞLU Dr. Hakan TERZİOĞLU 1

Ders İçerik Bilgisi. Dr. Hakan TERZİOĞLU Dr. Hakan TERZİOĞLU 1 Dr. Hakan TERZİOĞLU Ders İçerik Bilgisi PID Parametrelerinin Elde Edilmesi A. Salınım (Titreşim) Yöntemi B. Cevap Eğrisi Yöntemi Karşılaştırıcı ve Denetleyicilerin Opamplarla Yapılması 1. Karşılaştırıcı

Detaylı

BÖLÜM-9 SİSTEM HASSASİYETİ

BÖLÜM-9 SİSTEM HASSASİYETİ 65 BÖLÜM-9 SİSTEM HASSASİYETİ Parametre Değişimlerinin Hassasiyeti Belirsiz sistem elemanlarının davranışı o Parametre değerlerinin hatalı bilgileri o Çevrenin değişimi o Yaşlanma vb nedenlerle bozulma

Detaylı

EEM 452 Sayısal Kontrol Sistemleri /

EEM 452 Sayısal Kontrol Sistemleri / EEM 452 Sayısal Kontrol Sistemleri / Yrd. Doç. Dr. Rıfat HACIOĞLU Bahar 2016 257 4010-1625, hacirif@beun.edu.tr EEM452 Sayısal Kontrol Sistemleri (3+0+3) Zamanda Ayrık Sistemlerine Giriş. Sinyal değiştirme,

Detaylı

MM 409 MatLAB-Simulink e GİRİŞ

MM 409 MatLAB-Simulink e GİRİŞ MM 409 MatLAB-Simulink e GİRİŞ 2016-2017 Güz Dönemi 28 Ekim 2016 Arş.Gör. B. Mahmut KOCAGİL Ajanda-İçerik Simulink Nedir? Nerelerde Kullanılır? Avantaj / Dezavantajları Nelerdir? Simulink Arayüzü Örnek

Detaylı

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Ball and Beam Deneyi.../../205 ) Giriş Bu deneyde amaç kök yerleştirme (Pole placement) yöntemi ile top ve çubuk (ball

Detaylı

ELE401/ /17 GÜZ ÖDEV 2 - ÇÖZÜMLER

ELE401/ /17 GÜZ ÖDEV 2 - ÇÖZÜMLER ELE40/50 06/7 GÜZ ÖDEV - ÇÖZÜMLER -) Lyapunov kararlılığı için = 0, V( ) = 0 0, V( ) > 0 biçiminde bir Lyapunov fonksiyonu 0, V( ) 0 eşitsizliğini sağlanmalıdır. Asimptotik kararlılık için 0, V( ) < 0

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI. Deney No:2 Birinci-İkinci Dereceden Denklemler Açık-Kapalı Çevrim Sistemler

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI. Deney No:2 Birinci-İkinci Dereceden Denklemler Açık-Kapalı Çevrim Sistemler TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI DENEY RAPORU Deney No:2 Birinci-İkinci Dereceden Denklemler Açık-Kapalı Çevrim Sistemler Öğr. Gör. Cenk GEZEGİN Arş.

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Kontrol Sistemlerinin Analizi

Kontrol Sistemlerinin Analizi Sistemlerin analizi Kontrol Sistemlerinin Analizi Otomatik kontrol mühendisinin görevi sisteme uygun kontrolör tasarlamaktır. Bunun için öncelikle sistemin analiz edilmesi gerekir. Bunun için test sinyalleri

Detaylı

MATLAB a GİRİŞ. Doç. Dr. Mehmet İTİK. Karadeniz Teknik Üniversitesi Makine Mühendisliği Bölümü

MATLAB a GİRİŞ. Doç. Dr. Mehmet İTİK. Karadeniz Teknik Üniversitesi Makine Mühendisliği Bölümü MATLAB a GİRİŞ Doç. Dr. Mehmet İTİK Karadeniz Teknik Üniversitesi Makine Mühendisliği Bölümü İçerik: MATLAB nedir? MATLAB arayüzü ve Bileşenleri (Toolbox) Değişkenler, Matris ve Vektörler Aritmetik işlemler

Detaylı

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7. Adi Diferansiyel Denklemlerin Sayısal Çözümü

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7. Adi Diferansiyel Denklemlerin Sayısal Çözümü Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7 Adi Diferansiyel Denklemlerin Sayısal Çözümü Copyright The McGraw-Hill Companies, Inc. Permission required

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16.MATEMATİK YARIŞMASI 10. SINIF FİNAL SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16.MATEMATİK YARIŞMASI 10. SINIF FİNAL SORULARI 10. SINIF FİNAL SORULARI 1. a,b,c,d sıfırdan farklı reel sayılar olmak üzere, + c + d = 0 denkleminin kökleri a ve b, + a + b = 0 denkleminin kökleri c ve d ise b + d değerini bulunuz.. sin + cos cos +

Detaylı

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI DEVRE VE SİSTEM ANALİZİ 01.1.015 ÇALIŞMA SORULARI 1. Aşağıda verilen devrede anahtar uzun süre konumunda kalmış ve t=0 anında a) v 5 ( geriliminin tam çözümünü diferansiyel denklemlerden faydalanarak bulunuz.

Detaylı

YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ Enerji Sistemleri Mühendisliği Bölümü ESM 413 Enerji Sistemleri Laboratuvarı-I

YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ Enerji Sistemleri Mühendisliği Bölümü ESM 413 Enerji Sistemleri Laboratuvarı-I YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ Enerji Sistemleri Mühendisliği Bölümü ESM 413 Enerji Sistemleri Laboratuvarı-I DENEY -8- PID KONTROL İLE DC MOTOR KONTROLÜ HAZIRLIK SORULARI: Arama motoruna PID

Detaylı

Sistem Dinamiği. Bölüm 5-Blok Diyagramlar, Durum-Değişken Modelleri ve Simülasyon Metodları. Doç.Dr. Erhan AKDOĞAN

Sistem Dinamiği. Bölüm 5-Blok Diyagramlar, Durum-Değişken Modelleri ve Simülasyon Metodları. Doç.Dr. Erhan AKDOĞAN Sistem Dinamiği Bölüm 5-Blok Diyagramlar, Durum-Değişken Modelleri ve Simülasyon Metodları Sunumlarda kullanılan semboller: El notlarına bkz. Yorum Soru MATLAB Bolum No.Alt Başlık No.Denklem Sıra No Denklem

Detaylı

Sembolik Programlama1. Gün. Sembolik Programlama. 20 Eylül 2011

Sembolik Programlama1. Gün. Sembolik Programlama. 20 Eylül 2011 Sembolik Programlama 1. Gün Şenol Pişkin 20 Eylül 2011 Sunum Kapsamı MuPAD İçerik Başlangıç 1. Bölüm: Cebirsel işlemler 2. Bölüm: Denklem çözümleri MuPAD Kısaca MuPAD Bilgisi ve Tarihçesi MuPAD Diğer Araçlar

Detaylı

25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ

25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ 25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ a-) Routh Hurwitz Kararlılık Ölçütü b-) Kök Yer Eğrileri Yöntemi c-) Nyquist Yöntemi d-) Bode Yöntemi 1 2 3 4 a) Routh Hurwitz Kararlılık

Detaylı

ş ç ö ç ç ş ş ö ş ş ç ö ö ş ç ç ş ö ö ö ş ş ş ş ş ş ş ö ö ç ç ç ş ş ö ş ö ö ş ö ö ö ş ö ş Ö Ü Ç ö ö Ğ ş ş ö Ö ö ç Ğ ş ş ö Ö ş ş şş ö ş ç ç ö ö ç ş ç ç ç Ö ç ç Ö ç ç ş ş Ö ç ö ş Ö ş ç ç ö ş ö ö ş ö ç ç

Detaylı

Deney 21 PID Denetleyici (I)

Deney 21 PID Denetleyici (I) Deney 21 PID Denetleyici (I) DENEYİN AMACI 1. Ziegler ve Nichols ayarlama kuralı I i kullanarak PID enetleyici parametrelerini belirlemek. 2. PID enetleyici parametrelerinin ince ayarını yapmak. GENEL

Detaylı

SAYISAL KONTROL SİSTEMLERİNİN z-düzleminde ANALİZİ

SAYISAL KONTROL SİSTEMLERİNİN z-düzleminde ANALİZİ SAYISAL KONTROL SİSTEMLERİNİN z-düzleminde ANALİZİ Bu derste ve takip eden derste, sayısal kontrol sistemlerinin z-düzleminde analizi ve tasarımı için gerekli materyal sunulacaktır. z-dönüşümü Yönteminin

Detaylı

AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ Elektrik Elektronik Mühendisliği Bölümü

AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ Elektrik Elektronik Mühendisliği Bölümü AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ Elektrik Elektronik Mühendisliği Bölümü Denetim Sistemleri Laboratuvarı Deney Föyü Öğr.Gör.Cenk GEZEGİN Arş.Gör.Birsen BOYLU AYVAZ DENEY 3-RAPOR PİD DENETİM Öğrencinin

Detaylı

Kontrol Sistemlerinin Tasarımı

Kontrol Sistemlerinin Tasarımı Kontrol Sistemlerinin Tasarımı Kök Yer Eğrileri ile Tasarım IV Geribesleme Üzerinden Denetim ve Fiziksel Gerçekleme Prof.Dr.Galip Cansever 2 3 Denetleyiciyi veya dengeleyiciyi geribesleme hattı üzerine

Detaylı

DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EET305 OTOMATİK KONTROL I Dr. Uğur HASIRCI

DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EET305 OTOMATİK KONTROL I Dr. Uğur HASIRCI Blok Diyagramlar Geribeslemeli Sistemlerin Analizi ve Tasarımı İşaret Akış Diyagramları Mason Kuralı Durum Denklemlerinin İşaret Akış Diyagramları Durum Uzayında Alternatif Gösterimler 1 Birçok kontrol

Detaylı

LYS Y OĞRU MTMTİK TSTİ LYS-. u testte Matematik ile ilgili soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a ve b asal

Detaylı

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi 1) Giriş Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Pendulum Deneyi.../../2015 Bu deneyde amaç Linear Quadratic Regulator (LQR) ile döner ters sarkaç (rotary inverted

Detaylı

Kamu Ekonomisi-I Sosyal Mallar ve Kişisel Mallar için Piyasa Talebinin Bulunması Kısmi Denge Modeli için Örnekler

Kamu Ekonomisi-I Sosyal Mallar ve Kişisel Mallar için Piyasa Talebinin Bulunması Kısmi Denge Modeli için Örnekler Kamu Ekonomisi-I Sosyal Mallar ve Kişisel Mallar için iyasa Talebinin Bulunması Kısmi Denge Modeli için Örnekler 1 1. Kişisel Malların Sağlanmasında KISMİ DENGE MODELİ (Yatay Toplama) Örnek: Adem ve Havva

Detaylı

İ İ ö ö ğ ğ ö İ İ ğç İ İç ğç İ ö İ ğ ö ğ ö İ Ş ğç İ ğ ğ Ö Ç ğ İ ö ö ö ö Ö ç ç ğ ğ ç ç ö Ç ğ ğ ö Ç Ç ç ö ğ ç ö ç ç ğ Ö ç ç ğ ç ç ğ ğ ö ç ğ Ş ç ç ğ Ş ç ğ ö ç ö Ş ğ ğ ğ ğ ğ Ş Ş Ö ç ç Ç ç İ İİ ğ ö ç İ ö ö

Detaylı

MEB YÖK MESLEK YÜKSEKOKULLARI PROGRAM GELĐŞTĐRME PROJESĐ. 1. Endüstride kullanılan Otomatik Kontrolun temel kavramlarını açıklayabilme.

MEB YÖK MESLEK YÜKSEKOKULLARI PROGRAM GELĐŞTĐRME PROJESĐ. 1. Endüstride kullanılan Otomatik Kontrolun temel kavramlarını açıklayabilme. PROGRAMIN ADI DERSĐN ADI DERSĐN ĐŞLENECEĞĐ YARIYIL HAFTALIK DERS SAATĐ DERSĐN SÜRESĐ ENDÜSTRĐYEL OTOMASYON SÜREÇ KONTROL 2. Yıl III. Yarıyıl 4 (Teori: 3, Uygulama: 1, Kredi:4) 56 Saat AMAÇLAR 1. Endüstride

Detaylı

PID NEDİR? P: Oransal. I: İntegral. D:Türevsel

PID NEDİR? P: Oransal. I: İntegral. D:Türevsel PID NEDİR? PID (Proportional-Integral-Derivative) günümüzde çok kullanılan bir kontrol yöntemidir. Endüstrideki uygulamaların %75 inde uygulanmıştır. Çok geniş bir uygulama alanının olmasına rağmen PID

Detaylı

T.C FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ

T.C FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ T.C FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ EET-343 KONTROL SİSTEMLERİ LABORATUVARI DENEY FÖYÜ Prof. Dr. Muammer GÖKBULUT Arş. Gör. Ahmet TOP DENEYLER Deney_: MATLAB PROGRAMLAMA-I

Detaylı

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Grup Adı: Sıvı Seviye Kontrol Deneyi.../..

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Grup Adı: Sıvı Seviye Kontrol Deneyi.../.. Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Grup Adı: Sıvı Seviye Kontrol Deneyi.../../2015 KP Pompa akış sabiti 3.3 cm3/s/v DO1 Çıkış-1 in ağız çapı 0.635 cm DO2

Detaylı

PROSES KONTROL DENEY FÖYÜ

PROSES KONTROL DENEY FÖYÜ T.C. SAKARYA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA TEORİSİ, SİSTEM DİNAMİĞİ VE KONTROL ANA BİLİM DALI LABORATUARI PROSES KONTROL DENEY FÖYÜ 2016 GÜZ 1 PROSES KONTROL SİSTEMİ

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

(Mekanik Sistemlerde PID Kontrol Uygulaması - 3) HAVA KÜTLE AKIŞ SİSTEMLERİNDE PID İLE SICAKLIK KONTROLÜ. DENEY SORUMLUSU Arş.Gör.

(Mekanik Sistemlerde PID Kontrol Uygulaması - 3) HAVA KÜTLE AKIŞ SİSTEMLERİNDE PID İLE SICAKLIK KONTROLÜ. DENEY SORUMLUSU Arş.Gör. T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK LABORATUVARI 1 (Mekanik Sistemlerde PID Kontrol Uygulaması - 3) HAVA KÜTLE AKIŞ SİSTEMLERİNDE PID İLE SICAKLIK

Detaylı

Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14.

Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14. 1. Ünite: Polinomlar Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Polinomlarda Bölme, Bölüm ve Kalan Bulma 1 1 1 1 1 1 1 1 1

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

Kübik Spline lar/cubic Splines

Kübik Spline lar/cubic Splines Kübik spline lar önceki metodların aksine bütün data noktalarına tek bir fonksiyon/eğri uydurmaz. Bunun yerine her çift nokta için ayrı ayrı üçüncü dereceden polinomlar uydurur. x i noktasından geçen soldaki

Detaylı

PID KONTROLÖR İLE TASARIM

PID KONTROLÖR İLE TASARIM ONTROLÖR İLE TASARM Öet:Bu konuda,,, kontrolörleri ile tasarım, hem aman tanım aralığında hem de frekans tanım aralığında ele alınarak incelenmiştir. Ayrıca ek olarak ise matematik modeli olmayan sistemlerde

Detaylı

SAYISAL İŞARET İŞLEME LABORATUARI LAB 5: SONSUZ DÜRTÜ YANITLI (IIR) FİLTRELER

SAYISAL İŞARET İŞLEME LABORATUARI LAB 5: SONSUZ DÜRTÜ YANITLI (IIR) FİLTRELER SAYISAL İŞARET İŞLEME LABORATUARI LAB 5: SONSUZ DÜRTÜ YANITLI (IIR) FİLTRELER Bu bölümde aşağıdaki başlıklar ele alınacaktır. Sonsuz dürtü yanıtlı filtre yapıları: Direkt Şekil-1, Direkt Şekil-II, Kaskad

Detaylı

DENKLEMLER CAUCHY-EULER DENKLEMİ. a n x n dn y dx n + a n 1x n 1 dn 1 y

DENKLEMLER CAUCHY-EULER DENKLEMİ. a n x n dn y dx n + a n 1x n 1 dn 1 y SABİT KATSAYILI DENKLEMLERE DÖNÜŞTÜREBİLEN DENKLEMLER Bu bölümde sabit katsayılı diferansiyel denklemlere dönüşebilen değişken katsayılı diferansiyel denklemlerden Cauchy Euler ve Legendre difarensiyel

Detaylı

( ) (0) ( ) (2 )... ( )...

( ) (0) ( ) (2 )... ( )... Hatırlanacağı gibi, analog kontrol sistemlerinde tüm sistemler diferansiyel denklemlerle modelleniyordu. Bu diferansiyel denklem Laplace Dönüşümü yoluyla s karmaşık değişkeninin cebirsel bir denklemine

Detaylı

Matlab & Simulink MATLAB SIMULINK

Matlab & Simulink MATLAB SIMULINK Matlab & Simulink MATLAB SIMULINK Simulink Oturumunu Başlatma SIMULINK icon üzerine tıkla Veya Matlab komut satırında simulink Yaz Simulink Kütüphanesi Yeni model iconu oluşturma Arama penceresi Model

Detaylı

ş şşş ş ç ş şş ş ş çş Ç Ğ Ü Ü ş ç ç Ü ç ç ç Ü ç Ş Ü ş ç ş Ü Ş Ü ç ç ş Ş ş Ş Ü ş ş ş ş ş ş ş ş ş ç Ç Ş ş Ş ş ş Ü Ş ş ş ş Ü Ü ş ş Ü ş ş Ö ş ç ş ç Ç ç ç ş ş ç Ğ Ğ ş ç ş Ğ ş ş Ş Ğ ş ş ş ş ş ş ş ç Ç ç Ü ş ç

Detaylı

T.C FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ

T.C FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ T.C FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ EET-35 KONTROL SİSTEMLERİ LABORATUVARI DENEY FÖYÜ Prof. Dr. Muammer GÖKBULUT DENEYLER Deney_: MATLAB PROGRAMLAMA-I Deney_: MATLAB

Detaylı

BÖLÜM 2 ÖRNEK SORULAR 2-23 İçinde ısı iletim denklemi en basit şekilde aşağıdaki gibi verilen bir ortamı göz önüne alınız.

BÖLÜM 2 ÖRNEK SORULAR 2-23 İçinde ısı iletim denklemi en basit şekilde aşağıdaki gibi verilen bir ortamı göz önüne alınız. BÖLÜM 2 ÖRNEK SORULAR 2-23 İçinde ısı iletim denklemi en basit şekilde aşağıdaki gibi verilen bir ortamı göz önüne alınız. 22 TT xx 2 = 1 αα (a) Isı transferi sürekli midir yoksa zamana mı bağlıdır? (b)

Detaylı

Otomatik Kontrol. Kontrol Sistemlerin Temel Özellikleri

Otomatik Kontrol. Kontrol Sistemlerin Temel Özellikleri Otomatik Kontrol Kontrol Sistemlerin Temel Özellikleri H a z ı r l aya n : D r. N u r d a n B i l g i n Açık Çevrim Kontrol Kontrol Edilecek Sistem () Açık Çevrim Kontrolcü () () () () C : kontrol edilecek

Detaylı

Kontrol Sistemleri Tasarımı. Açık ve Kapalı Çevrim Kontrol

Kontrol Sistemleri Tasarımı. Açık ve Kapalı Çevrim Kontrol Kontrol Sistemleri Tasarımı Açık ve Kapalı Çevrim Kontrol Prof. Dr. Bülent E. Platin Kontrol Eilecek Sistem D Sistem U C C : kontrol eilecek çıktı U : kontrol girisi D : bozc etken C = U D Prof. Dr. Bülent

Detaylı

Sağ Taraf Fonksiyonu İle İlgili Özel Çözüm Örnekleri(rezonans durumlar)

Sağ Taraf Fonksiyonu İle İlgili Özel Çözüm Örnekleri(rezonans durumlar) 3.1.2.1. Sağ Taraf Fonksiyonu İle İlgili Özel Çözüm Örnekleri(rezonans durumlar) ÖRNEK: y + 4.y + 4.y = 5.sin2x diferensiyel denkleminin genel çözümünü bulalım: Homojen kısmın çözümü: y + 4.y + 4.y = 0

Detaylı

İÇİNDEKİLER 1. GİRİŞ.3 2. OTOMATİK KONTROL 3 3. TESİSLERDE PROSES KONTROLÜNÜN GEREKLİLİĞİ.3 4. KONTROL SİSTEMLERİNİN TÜRLERİ

İÇİNDEKİLER 1. GİRİŞ.3 2. OTOMATİK KONTROL 3 3. TESİSLERDE PROSES KONTROLÜNÜN GEREKLİLİĞİ.3 4. KONTROL SİSTEMLERİNİN TÜRLERİ PROSES KONTROLÜ İÇİNDEKİLER 1. GİRİŞ...3 2. OTOMATİK KONTROL 3 3. TESİSLERDE PROSES KONTROLÜNÜN GEREKLİLİĞİ...3 4. KONTROL SİSTEMLERİNİN TÜRLERİ....4 4.1. AÇIK ÇEVRİM KONTROL SİSTEMLERİ..... 4 4.2. KAPALI

Detaylı

SİMULİNK KULLANIMI: Model oluşturmak 2( Basit bir oransal denetleyici tasarımı)

SİMULİNK KULLANIMI: Model oluşturmak 2( Basit bir oransal denetleyici tasarımı) SİMULİNK DERSLERİ SİMULİNK KULLANIMI: Model oluşturmak 2( Basit bir oransal denetleyici tasarımı) Bu yazımızda Simulink'i kullanarak basit bir otomatik kontrol sisteminin simulasyonunu yapacağız.böylelikle

Detaylı

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI BİREYSEL YARIŞMA SORULARI CEVAPLARI CEVAP KAĞIDI ÜZERİNE YAZINIZ. SORU KİTAPÇIĞINI KARALAMA MAKSATLI KULLANABİLİRSİNİZ 1

Detaylı

BÖLÜM 1. stanbul Kültür Üniversitesi. Fonksiyonlar - Özellikleri ve Limit Kavram. ³eklinde tanmlanan fonksiyona Dirichlet fonksiyonu ad verilir.

BÖLÜM 1. stanbul Kültür Üniversitesi. Fonksiyonlar - Özellikleri ve Limit Kavram. ³eklinde tanmlanan fonksiyona Dirichlet fonksiyonu ad verilir. BÖLÜM 1 0, Q 1. f() = 1, R/Q, Fonksiyonlar - Özellikleri ve Limit Kavram ³eklinde tanmlanan fonksiyona Dirichlet fonksiyonu ad verilir. Buna göre a³a da verilen tanm bölgeleri altnda görüntü cümlelerini

Detaylı

Sayısal Kontrol - HAVA HARP OKULU

Sayısal Kontrol - HAVA HARP OKULU Sayısal Kontrol - HAVA HARP OKULU İbrahim Beklan Küçükdemiral Yıldız Teknik Üniversitesi 2015 1 / 50 Bu bölümde aşağıdaki konular incelenecektir: Sürekli ve Ayrık Kontrol Problemlerinin Tanımı Ayrık Zamanlı

Detaylı

Çözümlü Limit ve Süreklilik Problemleri

Çözümlü Limit ve Süreklilik Problemleri Bölüm 5 Çözümlü Limit Süreklilik Problemleri. 2 fonksiyonunun tanım bölgesini = noktasındaki itini bulunuz. Paydanın 0 değerini aldığı = noktasında fonksiyon tanımlı değldir. Tanım bölgesini T (f ) ile

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Process Control EEE423 7 3+2 4 5

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Process Control EEE423 7 3+2 4 5 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Process Control EEE423 7 3+2 4 5 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Seçmeli / Yüz Yüze Dersin

Detaylı

RES CONTROL TDC 3. Montaj ve Kullan m K lavuzu. Control TDC. Montaj, devreye alma ve i letmeden önce dikkatlice okuyunuz

RES CONTROL TDC 3. Montaj ve Kullan m K lavuzu. Control TDC. Montaj, devreye alma ve i letmeden önce dikkatlice okuyunuz RES CONTROL TDC 3 Montaj ve Kullan m K lavuzu Control TDC Montaj, devreye alma ve i letmeden önce dikkatlice okuyunuz A.1 3 A.2 3 A.3 3 A.4 4 A.5 4 B.1 5 B.2 6 B.3 6 B.4 6 B.5 H 7 C.1 8 C.2 9 C.3 10 D

Detaylı

FGATool - Kesir Dereceli Sistemler için Grafiksel Analiz Programı FGATool Graphical Analysis Tool for Fractional Order Systems

FGATool - Kesir Dereceli Sistemler için Grafiksel Analiz Programı FGATool Graphical Analysis Tool for Fractional Order Systems FGATool - Kesir Dereceli Sistemler için Grafiksel Analiz Programı FGATool Graphical Analysis Tool for Fractional Order Systems Bilal Şenol 1, Celaleddin Yeroğlu 1 1 Bilgisayar Mühendisliği Bölümü İnönü

Detaylı

MATEMATİK 1 - FÖY İZLEME TESTLERİ. ÜNİTE 1: TEMEL KAVRAMLAR Temel Kavramlar. 4. a.b + a b 10 = x ve y farklı birer pozitif tam sayı,

MATEMATİK 1 - FÖY İZLEME TESTLERİ. ÜNİTE 1: TEMEL KAVRAMLAR Temel Kavramlar. 4. a.b + a b 10 = x ve y farklı birer pozitif tam sayı, MATEMATİK - FÖY İZLEME TESTLERİ 0/U UYGULAMA ÜNİTE : TEMEL KAVRAMLAR Temel Kavramlar. x, y, z birer rakam ve x < y < 6 < z olmak üzere, x + 3y z ifadesinin en büyük değeri A) B) 3 C) 6 D) 0 E) 9 4. a.b

Detaylı

Tek-faz Yarım Dalga Doğrultucu

Tek-faz Yarım Dalga Doğrultucu 427 GÜÇ ELEKTRONİĞİ Tek-faz Yarım Dalga Doğrultucu Simülasyon. Amaç: Bu simülasyonun amacı R ve RL yüklerine sahip tek-faz yarım dalga diyot doğrultucunun çalışma ve karakteristiğinin incelenmesidir..2

Detaylı

İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere 2. ÜNİTE. İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR

İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere 2. ÜNİTE. İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR - 1-2 ÜNİTE İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR ÖĞRENME ALANI CEBİR İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere Şeklindeki açık önermelere, ikinci dereceden bir bilinmeyenli

Detaylı

TANIM : a, a, a, a,..., a R ve n N olmak üzere,

TANIM : a, a, a, a,..., a R ve n N olmak üzere, MATEMAT K TANIM : a, a, a, a,..., a R ve n N olmak üzere, 0 1 2 3 n P(x) = a x n a x n 1... a x 3 a x 2 a x n n 1 3 2 1 a ifadesine reel katsay l POL NOM denir. 0 a, a, a,..., a say lar na KATSAYILAR,

Detaylı