BÖLÜM-9 SİSTEM HASSASİYETİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "BÖLÜM-9 SİSTEM HASSASİYETİ"

Transkript

1 65 BÖLÜM-9 SİSTEM HASSASİYETİ Parametre Değişimlerinin Hassasiyeti Belirsiz sistem elemanlarının davranışı o Parametre değerlerinin hatalı bilgileri o Çevrenin değişimi o Yaşlanma vb nedenlerle bozulma Kapalı döngülü kontrol: o İşlem çıkışında hissedici değişimleri o Doğru çıkışlar için girişimler o Değişim için azalan hassasiyet Hassasiyeti ölçmek gereklidir Hassasiyet Fonksiyon değişim yüzdesi ile onun parametrelerindeki değişim yüzdesi oranıdır. 0 küçük artımlı değişimler için; Sistem Hassasiyeti Sistem transfer fonksiyonundaki değişim ile işlem transfer fonksiyonundaki değişim oranıdır.

2 66 G(s)H(s) değerinin artması işlem değişimleri için sistem hassasiyetini azaltır. Geri bildirim olmaksızın (H(s)=0), G(s) deki değişim sistemi doğrudan etkiler (S 1). Geri Bildirim Hassasiyeti G(s)H(s) arttığında H(s) deki değişim sistemi doğrudan etkiler (S~1). Geri bildirim elemanları değişmemelidir. işlem Parametresinin Hassasiyeti Zincir kuralını kullanın: Daha güvenilir olanı: 0 nominal parametre değeri etrafında hassasiyet konusunda endişe duyulabilir. 0 daki hassasiyeti değerlendirin. Kütle konum kontrol sistemi Oransal kontrol: e(t)=r(t)-y(t) x(t)=k c e(t)

3 67 Sistem transfer fonksiyonu Yay sabiti k nın hassasiyeti Nominal M, k, c değerlendirin. k c arttığında hassasiyet azalır. Hassasiyet s nin bir fonksiyonudur! Hassasiyet (daha sonra) giriş frekansı (s j ) nın bir fonksiyonu olarak gösterilmelidir.

4 68 Geri bildirim sistemleri birliğindeki hatalar Geri bildirim birliği: H(s)=1 Kararlı durum hatası Birim giriş adımı için: G(0) DC kazancıdır G(0) >>>1 ise e ss çok küçüktür. (yüksek kazanç) Termal işlem kontrolünde hata

5 69 Kararlı durum termal kontrol hatası BÖLÜM-10 SİSTEM CEVABI Kontrol Sistemlerin Performansı Spesifikasyonlar (zaman alanı) Tasarımda kullanılan standart giriş sinyalleri Bilinmeyen gerçek sinyaller Standart test sinyalleri: Adım, rampa, parabol, etki, vb. sinüs eğrisi (daha sonra frekans cevabı işlenecek) Geçiş cevabı Kararlı durum cevabı Kutuplar ve sıfırların konumları ile ilgilidir.

6 70 S-düzlemi S-düzlemi: Karmaşık Kök S-düzlemi: Karmaşık eşlenik kökler

7 71 S-düzlemi: Büyüklük ve alternatif açı A genliğinin giriş adımı A eğiminin rampa fonksiyonu

8 72 A direncinin giriş etkisi Giriş etkisi A alanının geniş genlikli, dar enli darbeli bir sistem yaklaşık deneysel olarak göz önüne alınabilir. Bir sistem cevabı için giriş etkisi sistemin basitçe transfer fonksiyonu olarak tanımlanabilir. 1.Dereceden Sistem Modeli Zaman sabiti, kazanç K ile karakterize edilir. Transfer fonksiyonu: Kutup (paydanın kökü)

9 73 1.Dereceden Sistem Cevabı 1.Dereceden Sistem Rampa Cevabı 1.Dereceden sistem etki cevabı

10 74 1.Derece sistem kutup yerleşimi 2.Derece sistem modeli 2.Dereceden sistem adım cevabı

11 75 Adım cevabı ölçümleri Yükselme zamanı (geçtiğimiz komutu yükselten zaman) Tepe(pik) zamanı (ilk tepe için geçen zaman) Aşma yüzdesi Yerleşme zamanı (sınır içine yerleşme zamanı) Anahtar faktörler Cevap (tepki) hızı (yükselme zamanı, tepe zamanı) İstenen cevabın yakınlığı (taşma yüzdesi, yerleşme zamanı) Genellikle tasarımda uzlaşmaya ihtiyaç duyulur. Yükselme zamanı, T r %10-%90 yükselme zamanı, T r

12 76 Tepe (pik) zamanı, T p Aşma yüzdesi, % Oturma zamanı, T s

13 77 2.Dereceden sistem rampa cevabı 2.Dereceden sistem etki cevabı S-düzlemi: İki gerçek kök

14 78 S-düzlemi: karmaşık eşlenik kökler S-düzlemi: Sabit sönümleme çizgileri S-düzlemi: Sabit d çizgileri

15 79 S-düzlemi: Sabit n daireleri BÖLÜM-11 KARARLI DURUM HATASI Kararlı durum hatasının önemi Kararlı durum şartları (değişimsiz) Kontrol sistemlerinin düzenlemesi: Ayar noktasından sapma (kumanda) Daha hassas düzenleme için küçük hataları Servo kontrol sistemleri: Yeni kumanda sonrasında geçiş hatası Rampa kumandasını takip eden hata Sistem tipi : Şayet kararlı durum sıfır ise sonlu olduğunu gösterir. Tekli geri besleme sistemlerinde hata

16 80 Tekli olmayan geri besleme sistemlerinde hata Sistem tip numarası Bir sistemin tip numarası s=0 da G(s) H(s) kutbunun derecesine işaret eder. Diğer bir deyişle tip numarası G(s) H(s) paydasında (S+0) N =s N denklemindeki N gücüdür.

17 81 0 sistem tipi: Birim adım cevabı 0 sistem tipi: Birim rampa cevabı 1 sistem tipi: Birim adım cevabı

18 82 1 sistem tipi: Birim rampa cevabı Kararlı durum hatası-tip numarası DC motor-yükseltici sistemi Motor konum kontrol sistemi Motor-yükseltici modeli

19 83 Oransal konum kontrolü Giriş ölçekleme değişimi Eşdeğer birlik geri bildirim sistemi Motor konumu: Birim adım cevabı

20 84 Motor konumu: Birim adım cevabı Oransal motor kontrolü: adım girişi Oransal motor kontrolü: rampa girişi

21 85 Entegral motor kontrol sistemi? Entegral+sıfır motor kontrol sistemi

22 86 BÖLÜM-12 KÖKLERİN S-DÜZLEMİNE YERLEŞİMLERİ S Düzlemine Kök Yerleşimlerinin Önemi Geçici cevap, köklerin yerleşimi ile yakından ilgilidir. (kutuplar ve sıfırlar) Kök yerleşimlerinin grafiksel gösterimi: Kutuplar ve sıfırlar arasındaki ilişkiler Etkin ve önemsiz kökler Kararlılık Tasarım aletleri ve yöntemleri: Kök-yer eğrisi (parametrelere karşılık kök değişimleri) Kök yerleşimi değişimi için ödünler Adım Cevabı-S Düzlemi Yerleşimi 1.Dereceden sistemler için bir kutup ekleme Bir kutup ile transfer fonksiyonu: İlave kutup ile transfer fonksiyonu:

23 87 İlave Kutuplar ile Adım Cevabı Etkin ve Önemsiz Kutuplar Gerçek parçalar şiddet derecesinden farklı ise transfer fonksiyonları önemsiz kutuplar (ve sıfırlar) silinerek basitleştirilebilir. 2. Dereceden sistemler için bir kutup ekleme İki kutup ile transfer fonksiyonu: (sönümlenmemiş) İlave kutup ile transfer fonksiyonu:

24 88 İlave Kutuplar ile Adım Cevabı Etkin ve Önemsiz Kutuplar S-Düzlemi Üzerindeki Özellikler

25 89 Aşırı Sönümlenmiş Sistem Özellikleri Aşırı Sönümlenmiş Sistem İç Özellik 3. Dereceden Sistem İç Özellik

26 90 3.Dereceden Sistem Dış Özellik 4.Dereceden Sistem İç Özellik 4.Dereceden Sistem Dış Özellik

27 91 BÖLÜM-13 KARARLILIK Kararlılık Etkileri Kararsız bir sistem şunları sergiler: Düzensiz, güvensiz davranış Muhtemel yıkıcı davranış (Geçiş cevabı kontrolsüzdür) Bir kararlı sistem şunları sergiler: Yakınsak, güvenli davranış (Geçiş cevabı kontrollüdür) Tanımlama: Kararlı bir sistem sınırlı bir giriş için kontrollü bir cevaba sahiptir. Kararlı ve Kararsız Sistemler Kararlı ve Kararsız Sistemler 1.Dereceden sistemin etki cevabı

28 92 Kutup: -a a>0: üstel azalmalar 0 için (kararlı) a<0: üstel büyümeler için (kararsız) Etki Cevabı Kararlılık Kriteri Sistem transfer fonksiyonu: Kutuplar (paydanın kökleri): Mutlak kararlılık için: Sistem karakteristik eşitliği Sistem transfer fonksiyonu:

29 93 Karakteristik eşitlik: (paydayı sıfıra ayarlayın =0) Kutuplar karakteristik eşitliğin kökleridir. (Sistemin kararlı olabilmesi için tüp kutuplar negatif gerçek eksende olmalıdır.) Sınırlı Kararlılık Kutuplardan biri s=0 olduğunda sistem sınırlı kararlıdır. (Diğer kutup kararlı olsa da) S-Düzleminde Kararlılık Routh-Hurwitz Kararlılık Kriteri Routh kriteri, kökleri bulmadan kararlılık değerlendirmesi için bir yöntemdir. Yöntem tablolar halindedir, köklerin gerçek kısımlarını bulur ve birçok kontrol ders notlarında açıklanmıştır. Bu yöntem 1800 lü yılların sonunda bulunmuş olup o zamanlar kökleri bulmak zordu. Günümüzde güçlü hesaplama yazılımları mevcut olduğundan bu yöntemin önemi azalmıştır.

30 94 Routh-Hurwitz Kararlılık Kriteri Dizaynı yapılan bir sistem her zaman diliminde aynı ve istenilen performansı gösteriyorsa bu sistem kararlıdır. Routh-Hurwitz kararlılık kriteri; doğrusal, zamanla değişmeyen, sabit katsayılı karakteristik denklemlerin kararlılığı hakkında bilgi sağlayan cebirsel bir yöntemdir. Kriter, karakteristik denklem köklerinden herhangi birinin sağ yan s-düzleminde yer alıp almadığını belirler. Ayrıca jw- ekseni üzerindeki ve sağ yan s-düzleminde bulunan köklerin sayısını da verir. Routh-Hurwitz kriteri, sabit katsayılı polinom sıfırlarını, sağ ve sol yarı s-düzlemine göre, denklemi çözmeden belirleyen bir yöntemdir. Doğrusal zamanla değişmeyen, tek giriş, tek çıkışlı bir sistemin karakteristik denklemi, tüm katsayılar gerçek olmak üzere şeklinde verildiğinde denklemin pozitif gerçek kısımlı kökleri olmaması için aşağıdaki gerek ve yeter şartları sağlaması gerekir. 1. Denklem katsayılarının tümü aynı işaretli olmalı. 2. Katsayıların hiçbiri sıfır olmamalı. Bu matematiksel kurallara dayandırılan koşullar yukarıdaki denklemin katsayıları cinsinden şu şekilde ifade edilebilir: Buna göre köklerin pozitif gerçek kısımları olmadığı sürece bu oranların tümü sıfırdan farklı ve pozitif olmalıdır. Denklemin sağ yarı s-düzleminde bulunmamalı koşulu denklemler incelenerek belirlenebilir. Ancak bu koşullar yeterli değildir, sabit katsayılı bir denklemde katsayıların tümü sıfırdan farklı ve aynı işaretli olabilir. Buna rağmen köklerin tümü sol yarı s-düzleminde bulunmayabilir.

31 Çözüm aşamaları: 95

32 96

33 97 Örnek: Örnek:

34 98 Elde edilen yardımcı denkleme göre tabloyu tekrar düzenlersek; Elde edilen yardımcı denkleme göre tabloyu tekrar düzenlersek;

35 Konu ile ilgili örnekler: Örnek-1: 99

36 100 Örnek-2: Örnek-3:

37 101 BÖLÜM-14 KÖK YERİ YÖNTEMİ Kutup Yerleşiminin Önemi Bir kutup yerleşimi işlevinin performansı Geçiş cevabı Mutlak kararlılık (kararlı veya değil?) Bağıl kararlılık (nasıl kararlı?) Kontrol parametrelerindeki değişime bağlı kutup yer değişimi Kontrol kazançları, sıfırları ve köklerinin işlevi Hangi değerler iyi yerleşimi sağlar? Kök yeri (kutupların yeri) kullanılarak tasarım Geçiş Cevabı Mutlak Kararlılık

38 102 Routh-Hurwitz Kararlılık Kriteri Routh kriteri, kökleri bulmadan kararlılık değerlendirmesi için bir yöntemdir. Yöntem tablolar halindedir, köklerin gerçek kısımlarını bulur ve birçok kontrol ders notlarında açıklanmıştır. Bu yöntem 1800 lü yılların sonunda bulunmuş olup o zamanlar kökleri bulmak zordu. Günümüzde güçlü hesaplama yazılımları mevcut olduğundan bu yöntemin önemi azalmıştır. Bu noktada onu yüksek seviyede gözden geçireceğiz. Karakteristik Denklem Karakteristik Denklemin İşaretleri Karakteristik denklemin tüm katsayıları: Benzer işarete sahip olmak zorundadır Sıfır olmamak zorundadır Mutlak kararlılık için şart (fakat yeterli değildir) gereklidir (Routh s Kriteri) Örnekler: Bağıl Kararlılık Bir sistem nasıl kararlı olabilir? Bir diğer sistem ile karşılaştırılarak kararsızlık sınırlarına olan mesafesi ile Bağıl kararlılık ölçütleri Her kök ile ilişkili sönümleme Köklerin gerçek kısımları Kazanç ve faz payları (frekans cevap kavramı: daha sonra açıklanacaktır)

39 103 Bağıl kararlılık Sistem 1 ve 2 nin adım cevabı Kök Yeri Tanımlama: Kök yeri, karakteristik denklemin köklerinin s-düzlemine, sistem parametreleri değişimine bağlı olarak çizilmesi yöntemidir. Tasarım: Parametre değerini, s-düzleminde iyi alana yerleşecek şekilde seçin. (burada dinamik gereksinimler geçerlidir) Tekrarlama: Şayet s-düzleminde iyi alana yerleştirilecek kök yeri kısmı yoksa kontrolün yapısını değiştirmek üzere kökü değiştirin. Sonra parametre değerini değiştirin. Kök eğrilerinin temel özellikleri ve sistematik çizilişi ilk kez W. R. Evans tarafından geliştirilmiştir. Kök eğrilerinin kullanımı kontrol sistemlerinin incelenmesiyle sınırlı değildir. Genelde yöntem değişken parametreli matematiksel denklemlerin köklerini incelemede de kullanılabilir. Genel kök eğrisi problemi, karmaşık s değişkenine bağlı olarak aşağıdaki matematiksel denklemle ifade edilebilir. F(s) = P(s) + KQ(s) = 0 Burada P(s)

40 104 şeklinde n inci mertebeden, Q(s) ise Şeklinde m inci mertebeden s e bağlı bir polinom, n ve m ise pozitif iki tam sayıdır. Başlangıçta n ve m nin karşılıklı göreli değerleri ile ilgili herhangi bir sınırlandırma getirilmemektedir. F(s) denkleminde K gerçek sabiti -? ile +? arasında değişebilir. Ancak a0,a1,,an-1 ile b0,b1,,bm-1 sabitlerinin gerçek ve belirli oldukları varsayılır. Çok parametre değişkenli kök eğrileri her seferinde bir parametre değiştirilerek incelenebilir. Bu eğrilere kök çevreleri adı verilir. Benzer şekilde P(s) ve Q(s) ilişkilerinde s yerine z yazmak suretiyle doğrusal ayrık verili sistemlere ilişkin karakteristik denklemlerin de kök eğrileri oluşturulabilir. K nın işaretine ve değişken sayısına bağlı olarak aşağıdaki kök eğri türleri tanımlanır. PKE (Pozitif kök eğrisi) : Pozitif K değerlerine ilişkin kök yer eğrisi; 0? K < +? NKE (Negatif kök eğrisi) : Negatif K değerlerine ilişkin kök yer eğrisi; -? < K? 0 KÇ (Kök çevreleri) : Birden fazla parametrenin değiştiği kök eğrileri KE (Kök eğrisi) : Toplam KE= PKE+NKE kök eğrisini ifade eder. -? <K<? Kök Eğrilerinin Temel Özellikleri Transfer fonksiyonu yukarıdaki gibi olan bir kapalı çevrim sistemin karakteristik denklemi payda polinomu sıfıra eşitlenerek elde edilir. Buna göre karakteristik denklem kökleri 1 + G(s).H(s) = 0 ilişkisini sağlamalıdır. G(s).H(s) ifadesinde değişken parametre olarak K çarpanının bulunduğunu, P(s) ve Q(s) polinomlarının aşağıdaki gibi tanımlandığını düşünelim. Buna göre çevrim transfer fonksiyonun da aşağıdaki gibi tanımlandığını düşünelim. Bu durumda 1 + G(s).H(s) = 0 denklemi aşağıdaki gibi yazılabilir. Bu denklemin pay polinomu F(s) = P(s) + KQ(s) = 0 denklemine eşdeğerdir. Öyleyse G(s).H(s) açık çevrim transfer fonksiyonu KQ(s) / P(s) biçiminde ifade edilebildiği sürece, sistemin kök yer eğrisi, genel kök eğrisi problemi ile özdeşleşmiş olur. Eğer değişken K parametresi G(s).H(s) nin bir çarpanı olarak düzenlenmezse fonksiyon her zaman F(s) = P(s) + KQ(s) = 0 ifadesine eşit olur. Genlik Koşulu: Açı Koşulları: i= 0, ±1, ±2,..şeklinde herhangi bir tamsayı olmak üzere;

41 105 G1(s).H1(s) = (2i +1).3,14, K? 0 için = tek sayıda 3,14 radyan ya da 180 nin katı G1(s).H1(s) = 2i 3.14, K? 0 için = çift sayıda 3,14 radyan ya da 180 nin katı s-düzleminde kök eğrilerine ilişkin noktalar yukarıdaki açı koşullarından yararlanılarak belirlenir. Kök eğrisi bir kez çizildikten sonra eğriye ilişkin K değerleri genlik koşulundan değiştirilir. Kök eğrilerinin çizimi için, bazı özellikler matematiksel olarak türetilse de genellikle grafiksel bir temele dayanır. Kök eğrilerini grafiksel çizmek için G(s).H(s) fonksiyonunun kutup ve sıfırlarını bilmek gerekir. Bu nedenle G(s).H(s) nin sıfır ve kutupları öncelikle aşağıdaki denklemle ifade edilmelidir. Eğer bu denkleme yukarıdaki genlik ve açı koşulları uygulanırsa; şeklinde ifade edilebilir ve bir kez kök eğrisi çizildikten sonra, kök eğrisi boyunca K değerleri ilişkisi aşağıdaki gibi hesaplanır.

42 106 Yer Kök Eğrisi Kök Yerlerinin Çiziminde Sıra İle İzlenmesi Gereken Kurallar

43 107

44 Dereceden Kök Yeri =0.707 için k nın seçimi k=3.5 için birim adım cevabı

45 109 BÖLÜM-15 KÖK YERİ YÖNTEMİ KULLANILARAK TASARIM Kök Yeri Yönteminin Kullanımı Aşağıdakiler kapalı döngülü bir sistemin karakteristik denkleminin kök yerleşimleri ile doğrudan ilişkilidir: Geçiş cevabı Bağıl kararlılık Uygun kök yerleşimleri alabilmek için sistem parametrelerini ayarlamak gereklidir (uygun geçiş cevabı, kararlılık, ) Değişik parametreleri ve tasarımı kullanarak kök yerlerini çizin (seçilmiş değerleri kullanın) Kök yeri çizim prosedürü (MATLab kullanılarak) 1. Karakteristik denklemi şu şekilde yazın: Buradaki k parametresi ilginçtir. 2. ( x ) p i kutuplarını ve ( 0 ) z j sıfırlarını çizin. 3. k değeri sıfırdan sonsuza kadar artırılarak karakteristik denklemin köklerini çizin. 3.Dereceden sistemlerin kök yeri 3.Dereceden sistemlerin kök yeri

46 3.Dereceden sistemlerin kök yeri 110

47 111

48 112 2.Dereceden sistemlerin kök yeri 3.Dereceden sistemlerin kök yeri

49 113 k c nin fonksiyonu olarak kutup yeri k c nin seçimi Kök yeri tasarım prosedürü S-düzleminde istenen baskın kök yerlerini belirleyin. İsteğe uygun s x kök yerlerini seçin. (Şayet yoksa sistemi veya karakteristikleri değiştirin) s x e bağlı k değerlerini bulun.

50 114 Beklentileri karşılayan k ve diğer yerleşimler için kökleri kontrol edin. 2.Dereceden sistemlerin kök yeri k kazancının belirlenmesi

51 115 k c nin belirlenmesi ( k p =1) Sıfır ile kök yerleşimi (s+10) Sıfır ile kök yerleşimi (s+5)

52 116 Sıfır ile kök yerleşimi (s+3) Sıfır ile kök yerleşimi (s+2)

25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ

25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ 25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ a-) Routh Hurwitz Kararlılık Ölçütü b-) Kök Yer Eğrileri Yöntemi c-) Nyquist Yöntemi d-) Bode Yöntemi 1 2 3 4 a) Routh Hurwitz Kararlılık

Detaylı

Bölüm 9 KÖK-YER EĞRİLERİ YÖNTEMİ

Bölüm 9 KÖK-YER EĞRİLERİ YÖNTEMİ Bölüm 9 KÖK-YER EĞRİLERİ YÖNTEMİ Kapalı-döngü denetim sisteminin geçici-durum davranışının temel özellikleri kapalı-döngü kutuplarından belirlenir. Dolayısıyla problemlerin çözümlenmesinde, kapalı-döngü

Detaylı

BÖLÜM-6 BLOK DİYAGRAMLARI

BÖLÜM-6 BLOK DİYAGRAMLARI 39 BÖLÜM-6 BLOK DİYAGRAMLARI Kontrol sistemlerinin görünür hale getirilmesi Bileşenlerin transfer fonksiyonlarını gösterir. Sistemin fiziksel yapısını yansıtır. Kontrol giriş ve çıkışlarını karakterize

Detaylı

Tanım: Kök yer eğrisi sistem parametrelerinin değişimi ile sistemin kapalı döngü köklerinin s düzlemindeki yerini gösteren grafiktir.

Tanım: Kök yer eğrisi sistem parametrelerinin değişimi ile sistemin kapalı döngü köklerinin s düzlemindeki yerini gösteren grafiktir. Kök Yer Eğrileri Kök Yer Eğrileri Bir kontrol tasarımcısı sistemin kararlı olup olmadığını ve kararlılık derecesini bilmek, diferansiyel denklem çözmeden bir analiz ile sistem performansını tahmin etmek

Detaylı

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ OTOMATİK KONTROL SİSTEMLERİ DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ 1) İdeal Sönümleme Elemanı : a) Öteleme Sönümleyici : Mekanik Elemanların Matematiksel Modeli Basit mekanik elemanlar, öteleme hareketinde;

Detaylı

U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN3102 OTOMATİK KONTROL Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı

U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN3102 OTOMATİK KONTROL Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN30 OTOMATİK KONTROL 00 Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı Sınav Süresi 90 dakikadır. Sınava Giren Öğrencinin AdıSoyadı :. Prof.Dr.

Detaylı

H(s) B(s) V (s) Yer Kök Eğrileri. Şekil13. V s R s = K H s. B s =1için. 1 K H s

H(s) B(s) V (s) Yer Kök Eğrileri. Şekil13. V s R s = K H s. B s =1için. 1 K H s Yer Kök Eğrileri R(s) K H(s) V (s) V s R s = K H s 1 K H s B s =1için B(s) Şekil13 Kapalı çevrim sistemin kutupları 1+KH(s)=0 özyapısal denkleminden elde edilir. b s H s = a s a s K b s =0 a s K b s =0

Detaylı

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ OTOMATİK KONTROL SİSTEMLERİ DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ Modelleme Önceki bölümlerde blok diyagramları ve işaret akış diyagramlarında yer alan transfer fonksiyonlarındaki kazançlar rastgele

Detaylı

Sistem Dinamiği. Bölüm 2- Dinamik Cevap ve Laplace Dönüşümü. Doç.Dr. Erhan AKDOĞAN

Sistem Dinamiği. Bölüm 2- Dinamik Cevap ve Laplace Dönüşümü. Doç.Dr. Erhan AKDOĞAN Sistem Dinamiği - Dinamik Cevap ve Laplace Dönüşümü Doç. Sunumlarda kullanılan semboller: El notlarına bkz. Yorum Soru MATLAB Bolum No.Alt Başlık No.Denklem Sıra No Denklem numarası Şekil No Şekil numarası

Detaylı

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Otomatik Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri H a z ı r l aya n : D r. N u r d a n B i l g i n Kapalı Çevrim Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Bir önceki

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EET305 OTOMATİK KONTROL I Dr. Uğur HASIRCI

DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EET305 OTOMATİK KONTROL I Dr. Uğur HASIRCI KARARLILIK Kontrol sistemlerinin tasarımında üç temel kriter göz önünde bulundurulur: Geçici Durum Cevabı Kararlılık Kalıcı Durum Hatası Bu üç temel spesifikasyon arasında en önemlisi kararlılıktır. Eğer

Detaylı

Ders İçerik Bilgisi. Sistem Davranışlarının Analizi. Dr. Hakan TERZİOĞLU. 1. Geçici durum analizi. 2. Kalıcı durum analizi. MATLAB da örnek çözümü

Ders İçerik Bilgisi. Sistem Davranışlarının Analizi. Dr. Hakan TERZİOĞLU. 1. Geçici durum analizi. 2. Kalıcı durum analizi. MATLAB da örnek çözümü Dr. Hakan TERZİOĞLU Ders İçerik Bilgisi Sistem Davranışlarının Analizi 1. Geçici durum analizi 2. Kalıcı durum analizi MATLAB da örnek çözümü 2 Dr. Hakan TERZİOĞLU 1 3 Geçici ve Kalıcı Durum Davranışları

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

SAYISAL İŞARET İŞLEME LABORATUARI LAB 5: SONSUZ DÜRTÜ YANITLI (IIR) FİLTRELER

SAYISAL İŞARET İŞLEME LABORATUARI LAB 5: SONSUZ DÜRTÜ YANITLI (IIR) FİLTRELER SAYISAL İŞARET İŞLEME LABORATUARI LAB 5: SONSUZ DÜRTÜ YANITLI (IIR) FİLTRELER Bu bölümde aşağıdaki başlıklar ele alınacaktır. Sonsuz dürtü yanıtlı filtre yapıları: Direkt Şekil-1, Direkt Şekil-II, Kaskad

Detaylı

Otomatik Kontrol (Doğrusal sistemlerde Kararlılık Kriterleri) - Ders sorumlusu: Doç.Dr.HilmiKuşçu

Otomatik Kontrol (Doğrusal sistemlerde Kararlılık Kriterleri) - Ders sorumlusu: Doç.Dr.HilmiKuşçu 1 2 1 3 4 2 5 6 3 7 8 4 9 10 5 11 12 6 K 13 Örnek Kararlılık Tablosunu hazırlayınız 14 7 15 Kapalı çevrim kutupları ve kararlıkları a. Kararlı sistem; b. Kararsız sistem 2000, John Wiley & Sons, Inc. Nise/Cotrol

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri. Hazırlayan: Dr. Nurdan Bilgin

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri. Hazırlayan: Dr. Nurdan Bilgin Otomatik Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Hazırlayan: Dr. Nurdan Bilgin Kapalı Çevrim Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Tüm uygulamalar için aşağıdaki

Detaylı

Otomatik Kontrol (Doğrusal sistemlerde Kararlılık Kriterleri) - Ders sorumlusu: Doç.Dr.HilmiKuşçu

Otomatik Kontrol (Doğrusal sistemlerde Kararlılık Kriterleri) - Ders sorumlusu: Doç.Dr.HilmiKuşçu ROOT-LOCUS TEKNİĞİ Lineer kontrol sistemlerinde en önemli kontrollerden biri belirli bir sistem parametresi değişirken karakteristik denklem köklerinin nasıl bir yörünge izlediğinin araştırılmasıdır. Kapalı

Detaylı

Yukarıdaki şekilde, birim geribeslemeli bir kontrol sisteminin ileri yol transfer fonksiyonuna ait, sistemin orijinal çevrim kazancı K = 1 için deneysel olarak elde edilmiş Bode eğrisi verilmiştir. Aşağıdaki

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME

TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME Amaç Elektronikte geniş uygulama alanı bulan geribesleme, sistemin çıkış büyüklüğünden elde edilen ve giriş büyüklüğü ile aynı nitelikte bir işaretin girişe gelmesi

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Ayrık zamanlı sinyaller için de ayrık zamanlı Fourier dönüşümleri kullanılmatadır.

Ayrık zamanlı sinyaller için de ayrık zamanlı Fourier dönüşümleri kullanılmatadır. Bölüm 6 Z-DÖNÜŞÜM Sürekli zamanlı sinyallerin zaman alanından frekans alanına geçişi Fourier ve Laplace dönüşümleri ile mümkün olmaktadır. Laplace, Fourier dönüşümünün daha genel bir şeklidir. Ayrık zamanlı

Detaylı

Ders İçerik Bilgisi. Dr. Hakan TERZİOĞLU Dr. Hakan TERZİOĞLU 1

Ders İçerik Bilgisi. Dr. Hakan TERZİOĞLU Dr. Hakan TERZİOĞLU 1 Dr. Hakan TERZİOĞLU Ders İçerik Bilgisi PID Parametrelerinin Elde Edilmesi A. Salınım (Titreşim) Yöntemi B. Cevap Eğrisi Yöntemi Karşılaştırıcı ve Denetleyicilerin Opamplarla Yapılması 1. Karşılaştırıcı

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 7 İç Kuvvetler Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 7. İç Kuvvetler Bu bölümde, bir

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

Transfer Fonksiyonu. Dürtü yanıtı h[n] olan sisteme x[n]=z n girişi uygulandığında

Transfer Fonksiyonu. Dürtü yanıtı h[n] olan sisteme x[n]=z n girişi uygulandığında Z DÖNÜŞÜMÜ Transfer Fonksiyonu Dürtü yanıtı h[n] olan sisteme x[n]=z n girişi uygulandığında Burada toplamı n ye bağımlı olmayıp sadece sistemin dürtü yanıtı ve z değerine bağlı bir katsayıdır. şeklinde

Detaylı

OTOMATİK KONTROL. Set noktası (Hedef) + Kontrol edici. Son kontrol elemanı PROSES. Dönüştürücü. Ölçüm elemanı

OTOMATİK KONTROL. Set noktası (Hedef) + Kontrol edici. Son kontrol elemanı PROSES. Dönüştürücü. Ölçüm elemanı OTOMATİK KONTROL Set noktası (Hedef) + - Kontrol edici Dönüştürücü Son kontrol elemanı PROSES Ölçüm elemanı Dönüştürücü Geri Beslemeli( feedback) Kontrol Sistemi Kapalı Devre Blok Diyagramı SON KONTROL

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 KÜMELER 11 1.1. Küme 12 1.2. Kümelerin Gösterimi 13 1.3. Boş Küme 13 1.4. Denk Küme 13 1.5. Eşit Kümeler 13 1.6. Alt Küme 13 1.7. Alt Küme Sayısı 14 1.8. Öz Alt Küme 16 1.9.

Detaylı

Analog Alçak Geçiren Filtre Karakteristikleri

Analog Alçak Geçiren Filtre Karakteristikleri Analog Alçak Geçiren Filtre Karakteristikleri Analog alçak geçiren bir filtrenin genlik yanıtı H a (jω) aşağıda gösterildiği gibi verilebilir. Ω p : Geçirme bandı kenar frekansı Ω s : Söndürme bandı kenar

Detaylı

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER LAGRANGE YÖNTEMİ Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde değişkenler ve kısıtlar genel olarak şeklinde gösterilir. fonksiyonlarının

Detaylı

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM Yavaş değişen akımların analizinde kullanılacak genel denklem bir kanal kesitindeki toplam enerji yüksekliği: H = V g + h + z x e göre türevi alınırsa: dh d V = dx dx

Detaylı

OTOMATİK KONTROL DERS NOTLARI. DERLEYEN: Doç. Dr. Hüseyin BULGURCU. Kasım 2014. BAU MMF Makine Müh. Bölümü

OTOMATİK KONTROL DERS NOTLARI. DERLEYEN: Doç. Dr. Hüseyin BULGURCU. Kasım 2014. BAU MMF Makine Müh. Bölümü 1 OTOMATİK KONTROL DERS NOTLARI DERLEYEN: Doç. Dr. Hüseyin BULGURCU BAU MMF Makine Müh. Bölümü Kasım 2014 2 BÖLÜM-1 OTOMATİK KONTROLE GİRİŞ Kontrol Mühendisliği Kontrol Mühendisliği hedef odaklı sistemlerin

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu) BÖLÜM I GİRİŞ 1.1 Sinyal Bir sistemin durum ve davranış bilgilerini taşıyan, bir veya daha fazla değişken ile tanımlanan bir fonksiyon olup veri işlemde dalga olarak adlandırılır. Bir dalga, genliği, dalga

Detaylı

Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop. Teorik Bilgi

Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop. Teorik Bilgi DENEY 8: PASİF FİLTRELER Deneyin Amaçları Pasif filtre devrelerinin çalışma mantığını anlamak. Deney Malzemeleri Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop.

Detaylı

Dr. Uğur HASIRCI. Blok Diyagramlar Geribeslemeli Sistemlerin Analizi ve Tasarımı

Dr. Uğur HASIRCI. Blok Diyagramlar Geribeslemeli Sistemlerin Analizi ve Tasarımı EET305 MM306 OTOMATİK SİSTEM DİNAMİĞİ KONTROL I Blok Diyagramlar Geribeslemeli Sistemlerin Analizi ve Tasarımı 1 Birçok kontrol sistemi, aşağıdaki örnekte görüldüğü gibi çeşitli altsistem ler içerir. Dolayısıyla

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

1. Açık Bir Ekonomide Denge Çıktı (Gelir)

1. Açık Bir Ekonomide Denge Çıktı (Gelir) IKTI 2 Mayıs 24 DERS NOTU 5 TOPLAM HARCAMALAR VE DENGE ÇIKTI (3) Dersin içeriği:. AÇIK BİR EKONOMİDE DENGE ÇIKTI (GELİR)... A. DENGE İÇİN SIZINTILAR/ENJEKSİYONLAR YAKLAŞIMI... 5 B. DEVLET HARCAMALARI ÇARPANI...

Detaylı

Sistem Dinamiği ve Kontrolü Bütünleme 26 Ocak 2017 Süre: 1.45 Saat. Adı ve Soyadı : İmzası : Öğrenci Numarası :

Sistem Dinamiği ve Kontrolü Bütünleme 26 Ocak 2017 Süre: 1.45 Saat. Adı ve Soyadı : İmzası : Öğrenci Numarası : Adı ve Soyadı : İmzası : Öğrenci Numarası : SORU 1 Fiziki bir sistem yandaki işaret akış grafiği ile temsil edilmektedir.. a. Bu sistemin transfer fonksiyonunu Mason genel kazanç bağıntısını kullanarak

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

2. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

2. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 2. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 C.1.2. Piyasa Talep Fonksiyonu Bireysel talep fonksiyonlarının toplanması ile bir mala ait

Detaylı

Yrd. Doç. Dr. A. Burak İNNER

Yrd. Doç. Dr. A. Burak İNNER Yrd. Doç. Dr. A. Burak İNNER Kocaeli Üniversitesi Bilgisayar Mühendisliği Yapay Zeka ve Benzetim Sistemleri Ar-Ge Lab. http://yapbenzet.kocaeli.edu.tr Doğrusal Ara Değer Hesabı Lagrance Polinom İnterpolasyonu

Detaylı

Küçük sinyal analizi transistörü AC domende temsilş etmek için kullanılan modelleri içerir.

Küçük sinyal analizi transistörü AC domende temsilş etmek için kullanılan modelleri içerir. Küçük Sinyal Analizi Küçük sinyal analizi transistörü AC domende temsilş etmek için kullanılan modelleri içerir. 1. Karma (hibrid) model 2. r e model Üretici firmalar bilgi sayfalarında belirli bir çalışma

Detaylı

Şekil 7.1 Bir tankta sıvı birikimi

Şekil 7.1 Bir tankta sıvı birikimi 6 7. DİFERENSİYEL DENKLEMLERİN SAYISAL ÇÖZÜMLERİ Diferensiyel denklemlerin sayısal integrasyonunda kullanılabilecek bir çok yöntem vardır. Tecrübeler dördüncü mertebe (Runge-Kutta) yönteminin hemen hemen

Detaylı

Ders #9. Otomatik Kontrol. Kararlılık (Stability) Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr.

Ders #9. Otomatik Kontrol. Kararlılık (Stability) Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr. Der #9 Otomatik Kontrol Kararlılık (Stability) 1 Kararlılık, geçici rejim cevabı ve ürekli hal hataı gibi kontrol taarımcıının üç temel unurundan en önemli olanıdır. Lineer zamanla değişmeyen itemlerin

Detaylı

MAK1010 MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI

MAK1010 MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI .. MAK MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI Polinom MATLAB p=[8 ] d=[ - ] h=[ -] c=[ - ] POLİNOMUN DEĞERİ >> polyval(p, >> fx=[ -..9 -. -.9.88]; >> polyval(fx,9) ans =. >> x=-.:.:.; >> y=polyval(fx,;

Detaylı

1. Açık Bir Ekonomide Denge Çıktı (Gelir)

1. Açık Bir Ekonomide Denge Çıktı (Gelir) DERS NOTU 4 TOPLAM HARCAMALAR VE DENGE ÇIKTI (3) Dersin içeriği:. AÇIK BİR EKONOMİDE DENGE ÇIKTI (GELİR)... A. DENGE İÇİN SIZINTILAR/ENJEKSİYONLAR YAKLAŞIMI... 5 B. DEVLET HARCAMALARI ÇARPANI... 7 C. DIŞ

Detaylı

Bulanık Mantık Bilgisayar Mühendisliği Bölümü Arasınav - 11 Nisan 2014 Süre: 1 Saat 30 Dakika

Bulanık Mantık Bilgisayar Mühendisliği Bölümü Arasınav - 11 Nisan 2014 Süre: 1 Saat 30 Dakika SORU 1 (20P). Bir tartı aletinin kalibrasyonunu yapmak üzere kurulan düzenekte, kalibrasyon katası ±10 gram arasında bakılmaktadır. Öyleki -10 ve altı kesinlikle NEGATİF BÜYÜK hata, +10 ve üstü kesinlikle

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

Kontrol Sistemlerinin Tasarımı

Kontrol Sistemlerinin Tasarımı Kontrol Sistemlerinin Tasarımı Kök Yer Eğrileri ile Tasarım II PD Denetleyici ve Faz İlerletici Dengeleyici 1 Ardarda (Kaskat) bağlantı kullanılarak geri beslemeli sistemin geçici rejim cevabının iyileştirilmesi

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM309 Elektronik-2 Laboratuarı Deney Föyü Deney#6 İşlemsel Kuvvetlendiriciler (OP-AMP) - 2 Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA, 2015 DENEY

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Şekil 1.1 Genliği kuvantalanmamış sürekli zamanlı işaret. İşaretin genliği sürekli değerler alır. Buna analog işaret de denir.

Şekil 1.1 Genliği kuvantalanmamış sürekli zamanlı işaret. İşaretin genliği sürekli değerler alır. Buna analog işaret de denir. İŞARETLER Sayısal işaret işleme, işaretlerin sayısal bilgisayar ya da özel amaçlı donanımda bir sayılar dizisi olarak gösterilmesi ve bu işaret dizisi üzerinde çeşitli işlemler yaparak, istenen bir bilgi

Detaylı

4. Sunum: AC Kalıcı Durum Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

4. Sunum: AC Kalıcı Durum Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 4. Sunum: AC Kalıcı Durum Analizi Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Giriş Aşağıdaki şekillere ve ifadelere bakalım ve daha önceki derslerimizden

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI. Deney No:2 Birinci-İkinci Dereceden Denklemler Açık-Kapalı Çevrim Sistemler

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI. Deney No:2 Birinci-İkinci Dereceden Denklemler Açık-Kapalı Çevrim Sistemler TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI DENEY RAPORU Deney No:2 Birinci-İkinci Dereceden Denklemler Açık-Kapalı Çevrim Sistemler Öğr. Gör. Cenk GEZEGİN Arş.

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 301 Kontrol Sistemleri I.

TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 301 Kontrol Sistemleri I. TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE Kontrol Sistemleri I Final Sınavı 9 Ağustos 24 Adı ve Soyadı: Bölüm: No: Sınav süresi 2 dakikadır.

Detaylı

Elektromanyetik Dalga Teorisi Ders-3

Elektromanyetik Dalga Teorisi Ders-3 Elektromanyetik Dalga Teorisi Ders-3 Faz ve Grup Hızı Güç ve Enerji Düzlem Dalgaların Düzlem Sınırlara Dik Gelişi Düzlem Dalgaların Düzlem Sınırlara Eğik Gelişi Dik Kutuplama Paralel Kutuplama Faz ve Grup

Detaylı

1. Açık Bir Ekonomide Denge Çıktı (Gelir)

1. Açık Bir Ekonomide Denge Çıktı (Gelir) IKTI 02 20 Mart, 202 DERS NOTU 04 TOPLAM HARCAMALAR VE DENGE ÇIKTI - III Bugünki dersin içeriği:. AÇIK BİR EKONOMİDE DENGE ÇIKTI (GELİR)... A. DENGE İÇİN SIZINTILAR/ENJEKSİYONLAR YAKLAŞIMI... 5 B. DEVLET

Detaylı

SAYISAL KARARLILIK. Zaman Uzayı Sonlu Farklar Yöntemi

SAYISAL KARARLILIK. Zaman Uzayı Sonlu Farklar Yöntemi Dr. Serkan Aksoy SAYISAL KARARLILIK Sayısal çözümlerin kararlı olması zorunludur. Buna göre ZUSF çözümleri de uzay ve zamanda ayrıklaştırma kapsamında kararlı olması için kararlılık koşullarını sağlaması

Detaylı

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri. Hazırlayan: Dr. Nurdan Bilgin

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri. Hazırlayan: Dr. Nurdan Bilgin Otomatik Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Hazırlayan: Dr. Nurdan Bilgin Kapalı Çevrim Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Tüm uygulamalar için aşağıdaki

Detaylı

Deney 5 : Ayrık Filtre Tasarımı. Prof. Dr. Aydın Akan Bahattin Karakaya Umut Gündoğdu Yeşim Hekim Tanç

Deney 5 : Ayrık Filtre Tasarımı. Prof. Dr. Aydın Akan Bahattin Karakaya Umut Gündoğdu Yeşim Hekim Tanç İ. Ü. Elektrik&Elektronik Müh. Böl. İŞARET İŞLEME ve UYGULAMALARI Deney 5 : Ayrık Filtre Tasarımı Prof. Dr. Aydın Akan Bahattin Karakaya Umut Gündoğdu Yeşim Hekim Tanç Deney 5 : Ayrık Filtre Tasarımı 1.

Detaylı

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir.

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir. TÜREV y= f(x) fonksiyonu [a,b] aralığında tanımlı olsun. Bu aralıktaki bağımsız x değişkenini h kadar arttırdığımızda fonksiyon değeri de buna bağlı olarak değişecektir. Fonksiyondaki artma miktarını değişkendeki

Detaylı

Sembolik Programlama1. Gün. Sembolik Programlama. 20 Eylül 2011

Sembolik Programlama1. Gün. Sembolik Programlama. 20 Eylül 2011 Sembolik Programlama 1. Gün Şenol Pişkin 20 Eylül 2011 Sunum Kapsamı MuPAD İçerik Başlangıç 1. Bölüm: Cebirsel işlemler 2. Bölüm: Denklem çözümleri MuPAD Kısaca MuPAD Bilgisi ve Tarihçesi MuPAD Diğer Araçlar

Detaylı

RF MİKROELEKTRONİK GÜRÜLTÜ

RF MİKROELEKTRONİK GÜRÜLTÜ RF MİKROELEKTRONİK GÜRÜLTÜ RASTGELE BİR SİNYAL Gürültü rastgele bir sinyal olduğu için herhangi bir zamandaki değerini tahmin etmek imkansızdır. Bu sebeple tekrarlayan sinyallerde de kullandığımız ortalama

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces TANIM n bir doğal sayı ve a 0, a 1, a 2,..., a n 1, a n birer gerçel sayı olmak üzere, P(x) = a 0 + a 1 x + a 2 x 2 +... + a n 1 x n 1 +a n x n biçimindeki ifadelere x değişkenine bağlı, gerçel (reel)

Detaylı

Hatalar ve Bilgisayar Aritmetiği

Hatalar ve Bilgisayar Aritmetiği Hatalar ve Bilgisayar Aritmetiği Analitik yollardan çözemediğimiz birçok matematiksel problemi sayısal yöntemlerle bilgisayarlar aracılığı ile çözmeye çalışırız. Bu şekilde Sayısal yöntemler kullanarak

Detaylı

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever Ders #2 Otomatik Kontrol Laplas Dönüşümü Prof.Dr.Galip Cansever Pierre-Simon Laplace, 1749-1827 Matematiçi ve Astronomdur. http://www-history.mcs.st-andrews.ac.uk/biographies/laplace.html LAPLAS DÖNÜŞÜMÜ

Detaylı

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI Konu Başlıkları Lineer Denklem Sistemlerinin Çözümü İntegral ve Türev İntegral (Alan) Türev (Sayısal Fark ) Diferansiyel Denklem çözümleri Denetim Sistemlerinin

Detaylı

Fiziksel Sistemlerin Matematik Modeli. Prof. Neil A.Duffie University of Wisconsin-Madison ÇEVİRİ Doç. Dr. Hüseyin BULGURCU 2012

Fiziksel Sistemlerin Matematik Modeli. Prof. Neil A.Duffie University of Wisconsin-Madison ÇEVİRİ Doç. Dr. Hüseyin BULGURCU 2012 Fiziksel Sistemlerin Matematik Modeli Prof. Neil A.Duffie University of Wisconsin-Madison ÇEVİRİ Doç. Dr. Hüseyin BULGURCU 2012 Matematik Modele Olan İhtiyaç Karmaşık denetim sistemlerini anlamak için

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 8- SAYISAL İNTEGRASYON 1 GİRİŞ Mühendislikte sık karşılaşılan matematiksel işlemlerden biri integral işlemidir. Bilindiği gibi integral bir büyüklüğün toplam değerinin bulunması

Detaylı

Şekil 5-1 Frekans modülasyonunun gösterimi

Şekil 5-1 Frekans modülasyonunun gösterimi FREKANS MODÜLASYONU (FM) MODÜLATÖRLERİ (5.DENEY) DENEY NO : 5 DENEY ADI : Frekans Modülasyonu (FM) Modülatörleri DENEYİN AMACI :Varaktör diyotun karakteristiğinin ve çalışma prensibinin incelenmesi. Gerilim

Detaylı

BÖLÜNMÜŞ FARKLAR (DİVİDED DİFFERENCES)

BÖLÜNMÜŞ FARKLAR (DİVİDED DİFFERENCES) BÖLÜNMÜŞ FARKLAR (DİVİDED DİFFERENCES) Lagrange ve Neville yöntemlerinin bazı olumsuz yanları vardır: İşlem sayısı çok fazladır (bazı başka yöntemlere kıyasla) Data setinde bir nokta ilavesi veya çıkartılması

Detaylı

ELEKTRONİK DEVRE ELEMANLARI

ELEKTRONİK DEVRE ELEMANLARI ELEKTRONİK DEVRE ELEMANLARI 1. Direnç Renk Kodları Direnç Renk Tablosu Renk Sayı Çarpan Tolerans SİYAH 0 1 KAHVERENGİ 1 10 ± %1 KIRMIZI 2 100 ± %2 TURUNCU 3 1000 SARI 4 10.000 YEŞİL 5 100.000 ± %0.5 MAVİ

Detaylı

(Mekanik Sistemlerde PID Kontrol Uygulaması - 3) HAVA KÜTLE AKIŞ SİSTEMLERİNDE PID İLE SICAKLIK KONTROLÜ. DENEY SORUMLUSU Arş.Gör.

(Mekanik Sistemlerde PID Kontrol Uygulaması - 3) HAVA KÜTLE AKIŞ SİSTEMLERİNDE PID İLE SICAKLIK KONTROLÜ. DENEY SORUMLUSU Arş.Gör. T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK LABORATUVARI 1 (Mekanik Sistemlerde PID Kontrol Uygulaması - 3) HAVA KÜTLE AKIŞ SİSTEMLERİNDE PID İLE SICAKLIK

Detaylı

Ders # Otomatik Kontrol. Kök Yer Eğrileri. Prof.Dr.Galip Cansever. Otomatik Kontrol. Prof.Dr.Galip Cansever

Ders # Otomatik Kontrol. Kök Yer Eğrileri. Prof.Dr.Galip Cansever. Otomatik Kontrol. Prof.Dr.Galip Cansever Ders #-3 Kök Yer Eğrileri Bir kontrol tasarımcısı sistemin kararlı olup olmadığını ve kararlılık derecesini bilmek, diferansiyel denklem çözmeden bir analiz ile sistem performasını tahmin etmek ister.

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Birinci Mertebeden Adi Diferansiyel Denklemler

Birinci Mertebeden Adi Diferansiyel Denklemler Birinci Mertebeden Adi Diferansiyel Denklemler Bir veya daha çok bağımlı değişken, bir veya daha çok bağımsız değişken ve bağımlı değişkenin bağımsız değişkene göre (diferansiyel) türevlerini içeren bağıntıya

Detaylı

Şekil 1. Geri beslemeli yükselteçlerin genel yapısı

Şekil 1. Geri beslemeli yükselteçlerin genel yapısı DENEY 5: GERİ BESLEME DEVRELERİ 1 Malzeme Listesi Direnç: 1x82K ohm, 1x 8.2K ohm, 1x12K ohm, 1x1K ohm, 2x3.3K ohm, 1x560K ohm, 1x9.1K ohm, 1x56K ohm, 1x470 ohm, 1x6.8K ohm Kapasite: 4x10uF, 470 uf, 1nF,4.7uF

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

Deney 2: FARK YÜKSELTEÇ

Deney 2: FARK YÜKSELTEÇ Deney : FARK YÜKSELTEÇ Fark Yükselteç (Differential Amplifier: Dif-Amp) Fark Yükselteçler, çıkışı iki giriş işaretinin cebirsel farkıyla orantılı olan amplifikatörlerdir. O halde bu tip bir amplifikatörün

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 2- HATA VE HATA KAYNAKLARI Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ Bir denklemin veya problemin çözümünde kullanılan sayısal yöntem belli bir giriş verisini işleme tabi tutarak sayısal

Detaylı

= 2 6 Türevsel denkleminin 1) denge değerlerinin bulunuz. 2) Bulmuş olduğunuz dengenin istikrarlı olup olmadığını tespit ediniz.

= 2 6 Türevsel denkleminin 1) denge değerlerinin bulunuz. 2) Bulmuş olduğunuz dengenin istikrarlı olup olmadığını tespit ediniz. Siyasal Bilgiler Fakültesi İktisat Bölümü Matematiksel İktisat Ders Notu Prof. Dr. Hasan Şahin Faz Diyagramı Çizimi Açıklamarı = 2 6 Türevsel denkleminin 1) denge değerlerinin bulunuz. 2) Bulmuş olduğunuz

Detaylı

11. Sunum: İki Kapılı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

11. Sunum: İki Kapılı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 11. Sunum: İki Kapılı Devreler Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Giriş İki kapılı devreler giriş akımları ve gerilimleri ve çıkış akımları

Detaylı

OTOMATİK KONTROL SİSTEMLERİ TEMEL KAVRAMLAR VE TANIMLAR

OTOMATİK KONTROL SİSTEMLERİ TEMEL KAVRAMLAR VE TANIMLAR OTOMATİK KONTROL SİSTEMLERİ TEMEL KAVRAMLAR VE TANIMLAR KONTROL SİSTEMLERİ GİRİŞ Son yıllarda kontrol sistemleri, insanlığın ve uygarlığın gelişme ve ilerlemesinde çok önemli rol oynayan bir bilim dalı

Detaylı

6. Bölüm: Alan Etkili Transistörler. Doç. Dr. Ersan KABALCI

6. Bölüm: Alan Etkili Transistörler. Doç. Dr. Ersan KABALCI 6. Bölüm: Alan Etkili Transistörler Doç. Dr. Ersan KABALCI 1 FET FETler (Alan etkili transistörler) BJTlere çok benzer yapıdadır. Benzerlikleri: Yükselteçler Anahtarlama devreleri Empedans uygunlaştırma

Detaylı

2 Hata Hesabı. Hata Nedir? Mutlak Hata. Bağıl Hata

2 Hata Hesabı. Hata Nedir? Mutlak Hata. Bağıl Hata Hata Hesabı Hata Nedir? Herhangi bir fiziksel büyüklüğün ölçülen değeri ile gerçek değeri arasındaki farka hata denir. Ölçülen bir fiziksel büyüklüğün sayısal değeri, yapılan deneysel hatalardan dolayı

Detaylı

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi 1) Giriş Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Pendulum Deneyi.../../2018 Bu deneyde amaç Linear Quadratic Regulator (LQR) ile döner ters sarkaç (rotary inverted

Detaylı

EĞİTİM ÖĞRETİM YILI. ANADOLU LİSESİ 11.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLLIK PLANI 11.SINIF KAZANIM VE SÜRE TABLOSU

EĞİTİM ÖĞRETİM YILI. ANADOLU LİSESİ 11.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLLIK PLANI 11.SINIF KAZANIM VE SÜRE TABLOSU 08-09 EĞİTİM ÖĞRETİM YILI. ANADOLU LİSESİ.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLLIK PLANI.SINIF KAZANIM VE SÜRE TABLOSU No Konular Kazanım sayısı Ders Saati Ağırlık (%).. TRİGONOMETRİ 7 6 6.. Yönlü

Detaylı

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM EŞİTSİZLİKLER A. TANIM f(x)>0, f(x) - eşitsizliğinin

Detaylı

İşaret ve Sistemler. Ders 2: Spektral Analize Giriş

İşaret ve Sistemler. Ders 2: Spektral Analize Giriş İşaret ve Sistemler Ders 2: Spektral Analize Giriş Spektral Analiz A 1.Cos (2 f 1 t+ 1 ) ile belirtilen işaret: f 1 Hz frekansında, A 1 genliğinde ve fazı da Cos(2 f 1 t) ye göre 1 olan parametrelere sahiptir.

Detaylı

6. DENEY Alternatif Akım Kaynağı ve Osiloskop Cihazlarının Kullanımı

6. DENEY Alternatif Akım Kaynağı ve Osiloskop Cihazlarının Kullanımı 6. DENEY Alternatif Akım Kaynağı ve Osiloskop Cihazlarının Kullanımı Deneyin Amacı: Osiloskop kullanarak alternatif gerilimlerin incelenmesi Deney Malzemeleri: Osiloskop Alternatif Akım Kaynağı Uyarı:

Detaylı

ELKE315-ELKH315 Introduction to Control Systems FINAL January 2, 2016 Time required: 1.5 Hours

ELKE315-ELKH315 Introduction to Control Systems FINAL January 2, 2016 Time required: 1.5 Hours SORU. Yanda serbest uyarmalı bir DA motorunun elektromekanik şeması verilmiştir. Bu doğru akım motoru, hızı kontrol edilmek üzere modellenecektir. Hız kontrolü hem endüvi devresi hem de uyarma devresi

Detaylı