Bu uygulama saatinde, ders kapsamında şu ana kadar bahsedilen konulara ilişkin MATLAB fonksiyonları tanıtılacaktır.

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Bu uygulama saatinde, ders kapsamında şu ana kadar bahsedilen konulara ilişkin MATLAB fonksiyonları tanıtılacaktır."

Transkript

1 Bu uygulama saatinde, ders kapsamında şu ana kadar bahsedilen konulara ilişkin MATLAB fonksiyonları tanıtılacaktır. Polinomial Bir Fonksiyonun Tanıtılması P s s s şeklindeki bir fonksiyona ilişkin nesne, aşağıdaki gibi oluşturulur: P1=[ ] Çarpım Şeklindeki Polinomların Tanıtılması poly P ( s )( s 5)( s 6) gibi çarpım formundaki polinamial fonksiyonlara ilişkin nesne, aşağıdaki gibi tanıtılır: P=poly([- -5 6]) Polinomial Köklerinin Bulunması roots 4 3 5s 7s 9s 3s gibi bir polinom köklerine ilişkin nesne, aşağıdaki gibi oluşturulur: kokler=roots([ ]) Yukarıdaki kod parçasının çalıştırılmasından sonra, kokler nesnesi, ilgili polinomun köklerine ilişkin bilgiyi taşır, yani her bir elemanı bu polinomun kökleri olan bir vektördür. İki Polinomun Çarpılması conv P3 s 7s 9 s 3s 6s s 1 gibi iki ayrı polinomun çarpılmasına ilişkin nesne, aşağıdaki gibi oluşturulur: P3=conv([1 7 9], [ ]) 1

2 Kısmi Kesirlere Ayırma residue Özellikle Ters Laplace Dönüşümünün hesaplanmasında residue fonksiyonu oldukça kullanışlıdır. Yani Fs () N( s) N( s) D s s p s p s p ( ) 1... n gibi bir rasyonel ifadenin Ters Laplace Dönüşümünün hesaplanabilmesi için, bu ifadenin Fs A A 1 n ( )... s p s p s p 1 şeklinde kısmi kesirlerine ayrılması gerekir. Bu işlem MATLAB ortamında [r,p,k]=residue(n,d) kod parçası yardımıyla yapılır. Burada r: rezidüler, yani A i katsayıları, p: kutuplar, yani p i değerleri k: (eğer varsa) doğrudan(rasyonel olmayan) terim n: pay polinomu nesnesi d: payda polinomu nesnesidir. Buradaki r, p, k, n, d standart olmayan semboller/değişkenlerdir, yani başka isimler de verilebilir. Standart olan residue fonksiyonudur. Örnek olarak, bir sistemin transfer fonksiyonu A n Fs () 3 s( s 4)( s 8) olsun. Bu fonksiyonun kısmi kesirlerine ayrılmış hali Fs () A A A 1 1 s s p s p s s 4 s şeklindedir. Aynı sonucu MATLAB kodu ile bulalım:

3 n=3; p=poly([ -4-8]); % pay nesnesi % payda nesnesi [r,p,k]=residue(n,p) Yukarıdaki kod işletildiğinde r = 1-1 p= -4-8 k= çıktısı elde edilir. Bu örnek için herhangi bir rasyonel olmayan terim yoktur (k=). Alıştırma: Aşağıdaki transfer fonksiyonunun kısmi kesirlere ayrılmış formunu bulunuz: Fs () s s 3 1s 3 3

4 Transfer Fonksiyonu Nesnesinin Oluşturulması tf Ts ( ) 3s s1 3 s s s 4 3 pay=[3 1]; payda=[1 4-3]; tf(pay,payda) Transfer function: 3 s^ + s s^3 + s^ + 4 s - 3 Eğer transfer fonksiyonunun payı ve paydası, çarpanlar şeklinde sunulmuşsa, bu transfer fonksiyonuna ilişkin nesnenin oluşturulması için zpk fonksiyonu kullanılıbilir. Bu fonksiyonun genel formu zpk(pay,payda,k) şeklindedir. Burada pay ve payda sırasıyla sırasıyla sıfırlar ve kutuplardan oluşan vektörler, K ise (eğer varsa) sabit çarpandır. Örneğin, ( s)( s3) Ts () ( s 7)( s 8)( s 9) şeklindeki bir transfer fonksiyonuna ilişkin nesne şu şekilde oluşturulur: pay=[- -3]; payda=[ ]; K=; T=zpk(pay,payda,K) 4

5 Durum-Uzay Nesnesinin Oluşturulması ss Durum uzayı formunda sunulmuş 1 7 x 1 x 8 u y 3 4 x şeklindeki bir sisteme ilişkin nesne şu şekilde oluşturulur: A=[ 1 ; 1 ; ]; B=[7 ; 8 ; 9]; C=[ 3 4]; D=; ss(a,b,c,d) Bu kod çalıştırıldığında aşağıdaki çıktıyı üretir: a = x1 x x3 x1 1 x 1 x b = u1 x1 7 x 8 x3 9 5

6 c = x1 x x3 y1 3 4 d = u1 y1 Continuous-time model. Transfer fonksiyonu durum uzayı dönüşümü tfss Transfer fonksiyonu formunda sunulmuş Ts () 3s s1 3 s s s 4 3 şeklindeki bir sistemin durum uzayı modeli şu şekilde elde edilir: pay=[3 1]; payda=[1 4-3]; [A,B,C,D]=tfss(pay,payda) Bu kod çalıştırıldığında aşağıdaki çıktıyı üretir: 6

7 A = B = 1 C = 3 1 D = 7

8 Durum uzayı transfer fonksiyonu dönüşümü sstf 1 7 x 1 x 8 u y 3 4 x A=[ 1 ; 1; ]; B=[7;8;9]; C=[ 3 4]; D=; [pay,payda]=sstf(a,b,c,d) pay = payda =

9 Geribesleme nesnesinin oluşturulması feedback pay1=1; payda1=[1 4]; sys1=tf(pay1,payda1); pay=1; payda=[1 1]; sys=tf(pay,payda); feedback(sys1,sys) Transfer function: 1 s s^ + 5 s

10 Amplitude Kontrol Sistemleri Adım cevabının çizdirilmesi step pay1=1; payda1=[1 4]; sys1=tf(pay1,payda1); pay=1; payda=[1 1]; sys=tf(pay,payda); sys=feedback(sys1,sys) step(sys) 8 Step Response Time (sec) 1

Otomatik Kontrol (Doğrusal sistemlerde Kararlılık Kriterleri) - Ders sorumlusu: Doç.Dr.HilmiKuşçu

Otomatik Kontrol (Doğrusal sistemlerde Kararlılık Kriterleri) - Ders sorumlusu: Doç.Dr.HilmiKuşçu 1 2 1 3 4 2 5 6 3 7 8 4 9 10 5 11 12 6 K 13 Örnek Kararlılık Tablosunu hazırlayınız 14 7 15 Kapalı çevrim kutupları ve kararlıkları a. Kararlı sistem; b. Kararsız sistem 2000, John Wiley & Sons, Inc. Nise/Cotrol

Detaylı

ELN3052 OTOMATİK KONTROL MATLAB ÖRNEKLERİ - 2 TRANSFER FONKSİYONU, BLOK ŞEMA VE SİSTEM BENZETİMİ UYGULAMALARI:

ELN3052 OTOMATİK KONTROL MATLAB ÖRNEKLERİ - 2 TRANSFER FONKSİYONU, BLOK ŞEMA VE SİSTEM BENZETİMİ UYGULAMALARI: ELN35 OTOMATİK KONTROL MATLAB ÖRNEKLERİ - TRANSFER FONKSİYONU, BLOK ŞEMA VE SİSTEM BENZETİMİ UYGULAMALARI: Control System Toolbox içinde dinamik sistemlerin transfer fonksiyonlarını tanımlamak için tf,

Detaylı

DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EET305 OTOMATİK KONTROL I Dr. Uğur HASIRCI

DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EET305 OTOMATİK KONTROL I Dr. Uğur HASIRCI Blok Diyagramlar Geribeslemeli Sistemlerin Analizi ve Tasarımı İşaret Akış Diyagramları Mason Kuralı Durum Denklemlerinin İşaret Akış Diyagramları Durum Uzayında Alternatif Gösterimler 1 Birçok kontrol

Detaylı

Sistem Dinamiği. Bölüm 5-Blok Diyagramlar, Durum-Değişken Modelleri ve Simülasyon Metodları. Doç.Dr. Erhan AKDOĞAN

Sistem Dinamiği. Bölüm 5-Blok Diyagramlar, Durum-Değişken Modelleri ve Simülasyon Metodları. Doç.Dr. Erhan AKDOĞAN Sistem Dinamiği Bölüm 5-Blok Diyagramlar, Durum-Değişken Modelleri ve Simülasyon Metodları Sunumlarda kullanılan semboller: El notlarına bkz. Yorum Soru MATLAB Bolum No.Alt Başlık No.Denklem Sıra No Denklem

Detaylı

Mat-Lab ile Kök Yer Eğrileri

Mat-Lab ile Kök Yer Eğrileri Mat-Lab ile Kök Yer Eğrileri Prof.Dr. Galip Cansever 1 MatLab ile Kök yer eğrisi çiziminde num = = num 1 + K = 0 den ( s s m + z 1 b s 1 )( s m 1 z m formunu kullanacağız. )...( s +... + b m z m ) den

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İşaret ve Sistemler. Ders 11: Laplace Dönüşümleri

İşaret ve Sistemler. Ders 11: Laplace Dönüşümleri İşaret ve Sistemler Ders 11: Laplace Dönüşümleri Laplace Dönüşüm Tanımı Bir f(t) fonksiyonunun Laplace alındığında oluşan fonksiyon F(s) yada L[f(t)] olarak gösterilir. Burada tanımlanan s: İşaret ve Sistemler

Detaylı

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces TANIM n bir doğal sayı ve a 0, a 1, a 2,..., a n 1, a n birer gerçel sayı olmak üzere, P(x) = a 0 + a 1 x + a 2 x 2 +... + a n 1 x n 1 +a n x n biçimindeki ifadelere x değişkenine bağlı, gerçel (reel)

Detaylı

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ 6.2. Laplace Dönüşümü Tanımı Bir f(t) fonksiyonunun Laplace alındığında oluşan fonksiyon F(s) ya da L[f(t)] olarak gösterilir. Burada tanımlanan s; ÇÖZÜM: a) b) c) ÇÖZÜM: 6.3.

Detaylı

Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14.

Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14. 1. Ünite: Polinomlar Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Polinomlarda Bölme, Bölüm ve Kalan Bulma 1 1 1 1 1 1 1 1 1

Detaylı

KONU: ÇARPANLARA AYIRMA TARİH: YER:LAB.4 _PC5

KONU: ÇARPANLARA AYIRMA TARİH: YER:LAB.4 _PC5 KONU: ÇARPANLARA AYIRMA TARİH:29.11.2011 YER:LAB.4 _PC5 İçindekiler KONU HAKKINDA GENEL BİLGİ :...3 A.ORTAK ÇARPAN PARANTEZİNE ALMA :...3 B.GRUPLANDIRARAK ÇARPANLARA AYIRMA:...3 C.İKİ KARE FARKI OLAN İFADELERİN

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri. Hazırlayan: Dr. Nurdan Bilgin

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri. Hazırlayan: Dr. Nurdan Bilgin Otomatik Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Hazırlayan: Dr. Nurdan Bilgin Kapalı Çevrim Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Tüm uygulamalar için aşağıdaki

Detaylı

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI DEVRE VE SİSTEM ANALİZİ 01.1.015 ÇALIŞMA SORULARI 1. Aşağıda verilen devrede anahtar uzun süre konumunda kalmış ve t=0 anında a) v 5 ( geriliminin tam çözümünü diferansiyel denklemlerden faydalanarak bulunuz.

Detaylı

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI Konu Başlıkları Lineer Denklem Sistemlerinin Çözümü İntegral ve Türev İntegral (Alan) Türev (Sayısal Fark ) Diferansiyel Denklem çözümleri Denetim Sistemlerinin

Detaylı

KONTROL SİSTEMLERİ-1 LABORATUVARI DENEY FÖYÜ

KONTROL SİSTEMLERİ-1 LABORATUVARI DENEY FÖYÜ KONTROL SİSTEMLERİ-1 LABORATUVARI DENEY FÖYÜ Dr. Öğr. Üyesi Güzin ÖZMEN Arş. Gör. Fehmi SEVİLMİŞ Konya, 2018 İÇİNDEKİLER Laboratuvar Kuralları ve Deney Grupları...... 3 Deney-1: MATLAB Programının Kullanımı...5

Detaylı

Ders 5 : MATLAB ile Grafik Uygulamaları

Ders 5 : MATLAB ile Grafik Uygulamaları Ders 5 : MATLAB ile Grafik Uygulamaları Kapsam Polinomlar Enterpolasyon Grafikler 5.1. Polinomlar 5.1.1. Polinom Girişi Matlab de polinomlar katsayılarının vektörü ile tanımlanır. Örnek: P(x) = -6x 5 +4x

Detaylı

( ) (0) ( ) (2 )... ( )...

( ) (0) ( ) (2 )... ( )... Hatırlanacağı gibi, analog kontrol sistemlerinde tüm sistemler diferansiyel denklemlerle modelleniyordu. Bu diferansiyel denklem Laplace Dönüşümü yoluyla s karmaşık değişkeninin cebirsel bir denklemine

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Elektrik - Elektronik Fakültesi

Elektrik - Elektronik Fakültesi . Elektrik - Elektronik Fakültesi KON314 Kontrol Sistem Tasar m Ödev #1 Birol Çapa-4645 Doç. Dr. Mehmet Turan Söylemez 23.3.29 1 1.a.Amaç Transfer fonksiyonu ( n 1 ve n üzerine konulan bir kontrolör ile

Detaylı

Çözümlü Limit ve Süreklilik Problemleri

Çözümlü Limit ve Süreklilik Problemleri Bölüm 5 Çözümlü Limit Süreklilik Problemleri. 2 fonksiyonunun tanım bölgesini = noktasındaki itini bulunuz. Paydanın 0 değerini aldığı = noktasında fonksiyon tanımlı değldir. Tanım bölgesini T (f ) ile

Detaylı

Ayrık zamanlı sinyaller için de ayrık zamanlı Fourier dönüşümleri kullanılmatadır.

Ayrık zamanlı sinyaller için de ayrık zamanlı Fourier dönüşümleri kullanılmatadır. Bölüm 6 Z-DÖNÜŞÜM Sürekli zamanlı sinyallerin zaman alanından frekans alanına geçişi Fourier ve Laplace dönüşümleri ile mümkün olmaktadır. Laplace, Fourier dönüşümünün daha genel bir şeklidir. Ayrık zamanlı

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

MATLAB a GİRİŞ. Doç. Dr. Mehmet İTİK. Karadeniz Teknik Üniversitesi Makine Mühendisliği Bölümü

MATLAB a GİRİŞ. Doç. Dr. Mehmet İTİK. Karadeniz Teknik Üniversitesi Makine Mühendisliği Bölümü MATLAB a GİRİŞ Doç. Dr. Mehmet İTİK Karadeniz Teknik Üniversitesi Makine Mühendisliği Bölümü İçerik: MATLAB nedir? MATLAB arayüzü ve Bileşenleri (Toolbox) Değişkenler, Matris ve Vektörler Aritmetik işlemler

Detaylı

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Otomatik Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri H a z ı r l aya n : D r. N u r d a n B i l g i n Kapalı Çevrim Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Bir önceki

Detaylı

Zaman Domeninde Modelleme Transfer Fonksiyonu Durum Uzay Dönüşümü Durum Uzay Transfer Fonksiyonu DönüşümÜ

Zaman Domeninde Modelleme Transfer Fonksiyonu Durum Uzay Dönüşümü Durum Uzay Transfer Fonksiyonu DönüşümÜ DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ MM306 SİSTEM DİNAMİĞİ Zaman Domeninde Modelleme Transfer Fonksiyonu Durum Uzay Dönüşümü Durum Uzay Transfer Fonksiyonu DönüşümÜ 1 EEM304 MM306

Detaylı

Yrd. Doç. Dr. A. Burak İNNER

Yrd. Doç. Dr. A. Burak İNNER Yrd. Doç. Dr. A. Burak İNNER Kocaeli Üniversitesi Bilgisayar Mühendisliği Yapay Zeka ve Benzetim Sistemleri Ar-Ge Lab. http://yapbenzet.kocaeli.edu.tr Ders Adı : Bilgisayar Mühendisliğinde Matematik Uygulamaları

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents Rasyonel Fonksiyonlar 5 Bibliography 35 Inde 39 Rasyonel Fonksiyonlar Polinomlar Yetmez! Bölme

Detaylı

1- Temel MATLAB Fonksiyonları ve Programlama

1- Temel MATLAB Fonksiyonları ve Programlama 1- Temel MATLAB Fonksiyonları ve Programlama >> help elfun ile kategorilere ayrılmış biçimde temel MATLAB fonksiyonlarını görebilirsiniz. Bazı temel MATLAB fonksiyonları aşağıda verilmiştir. Trigonometrik

Detaylı

PENDİK ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI 10.SINIF MATEMATİK DERSİ YILLIK PLANI

PENDİK ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI 10.SINIF MATEMATİK DERSİ YILLIK PLANI PENDİK ANADOLU İMAM HATİP LİSESİ 0-0 EĞİTİM VE ÖĞRETİM YILI 0.SINIF MATEMATİK DERSİ YILLIK PLANI EYLÜL EKİM. Gerçek katsayılı ve tek değişkenli polinomu kavram olarak örneklerle açıklar, polinomun derecesini,

Detaylı

EĞİTİM ÖĞRETİM YILI. ANADOLU LİSESİ 10.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI 10.SINIF KAZANIM VE SÜRE TABLOSU

EĞİTİM ÖĞRETİM YILI. ANADOLU LİSESİ 10.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI 10.SINIF KAZANIM VE SÜRE TABLOSU 08 09 EĞİTİM ÖĞRETİM YILI. ANADOLU LİSESİ 0.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI 0.SINIF KAZANIM VE SÜRE TABLOSU No Konular Kazanım sayısı Ders Saati Ağırlık (%) VERİ, SAYMA VE OLASILIK

Detaylı

10. SINIF. No Konular Kazanım Sayısı VERİ, SAYMA VE OLASILIK SAYMA VE OLASILIK Sıralama ve Seçme

10. SINIF. No Konular Kazanım Sayısı VERİ, SAYMA VE OLASILIK SAYMA VE OLASILIK Sıralama ve Seçme 10. SINIF No Konular Kazanım Sayısı VERİ, SAYMA VE OLASILIK Ders Saati Ağırlık (%) 10.1. SAYMA VE OLASILIK 8 38 18 10.1.1. Sıralama ve Seçme 6 26 12 10.1.2. Basit Olayların Olasılıkları 2 12 6 SAYILAR

Detaylı

Bu soruda eğik şekilde belli bir hızda ve değişik açılarda atılan ve sonrasında yerden seken bir topun hareketini ifade eden kod yazılacaktır.

Bu soruda eğik şekilde belli bir hızda ve değişik açılarda atılan ve sonrasında yerden seken bir topun hareketini ifade eden kod yazılacaktır. ÖDEV 1 Aşağıdaki soruları çözerek en geç 23 Şubat 2014 Pazar günü saat 23:59'a kadar bana ve dersin asistanına ilgili dosyaları eposta ile gönderin. Aşağıda hem soruların açıklaması, hem de sizlere yol

Detaylı

Sistem Dinamiği. Bölüm 2- Dinamik Cevap ve Laplace Dönüşümü. Doç.Dr. Erhan AKDOĞAN

Sistem Dinamiği. Bölüm 2- Dinamik Cevap ve Laplace Dönüşümü. Doç.Dr. Erhan AKDOĞAN Sistem Dinamiği - Dinamik Cevap ve Laplace Dönüşümü Doç. Sunumlarda kullanılan semboller: El notlarına bkz. Yorum Soru MATLAB Bolum No.Alt Başlık No.Denklem Sıra No Denklem numarası Şekil No Şekil numarası

Detaylı

Analog Alçak Geçiren Filtre Karakteristikleri

Analog Alçak Geçiren Filtre Karakteristikleri Analog Alçak Geçiren Filtre Karakteristikleri Analog alçak geçiren bir filtrenin genlik yanıtı H a (jω) aşağıda gösterildiği gibi verilebilir. Ω p : Geçirme bandı kenar frekansı Ω s : Söndürme bandı kenar

Detaylı

MATLAB'dan doğrusal sistemlerin matematiksel modellemesi için transfer fonksiyonu, sıfırkutup-kazanç, durum uzayı vs. gösterimler kullanılabilir.

MATLAB'dan doğrusal sistemlerin matematiksel modellemesi için transfer fonksiyonu, sıfırkutup-kazanç, durum uzayı vs. gösterimler kullanılabilir. Contents MATLAB'da doğrusal sistem modelleri Transfer fonksiyonu gösterimi Transfer fonksiyonu ile ilgili bazı faydalı komutlar Transfer fonksiyonunun sıfırlar, kutuplar ve kazanç (zpk) olarak ifadesi

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 KÜMELER 11 1.1. Küme 12 1.2. Kümelerin Gösterimi 13 1.3. Boş Küme 13 1.4. Denk Küme 13 1.5. Eşit Kümeler 13 1.6. Alt Küme 13 1.7. Alt Küme Sayısı 14 1.8. Öz Alt Küme 16 1.9.

Detaylı

BİRİNCİ BÖLÜM SAYILAR

BİRİNCİ BÖLÜM SAYILAR İÇİNDEKİLER BİRİNCİ BÖLÜM SAYILAR 1.1 Tamsayılarda İşlemler... 2 1.1.1 Tek, Çift ve Ardışık Tamsayılar... 5 1.2 Rasyonel Sayılar... 6 1.2.1 Kesirlerin Birbirine Çevrilmesi... 7 1.2.2 Kesirlerin Genişletilmesi

Detaylı

Soyut Cebir. Prof. Dr. Dursun TAŞCI

Soyut Cebir. Prof. Dr. Dursun TAŞCI Soyut Cebir Prof. Dr. Dursun TAŞCI Ankara 2007 674 ÖNSÖZ Bu kitap; Selçuk Üniversitesi ve Gazi Üniversitesinde uzun yıllar okutmuş olduğum Soyut Cebir ve Cebire Giriş ders notlarının düzenlenmesi ve daha

Detaylı

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever Ders #2 Otomatik Kontrol Laplas Dönüşümü Prof.Dr.Galip Cansever Pierre-Simon Laplace, 1749-1827 Matematiçi ve Astronomdur. http://www-history.mcs.st-andrews.ac.uk/biographies/laplace.html LAPLAS DÖNÜŞÜMÜ

Detaylı

MAK669 LINEER ROBUST KONTROL

MAK669 LINEER ROBUST KONTROL MAK669 LINEER ROBUST KONTROL Prof.Dr. Selim SİVRİOĞLU s.selim@gyte.edu.tr 26.09.2014 1 Ders takvimi Toplam 12 hafta içinde 10 hafta ders 1 hafta laboratuar uygulaması ve 1 hafta sınav yapılacaktır. Derse

Detaylı

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir.

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir. Sunum ve Sistematik 1. BÖLÜM: POLİNOMLAR ALIŞTIRMALAR Bu başlık altında her bölüm kazanımlara ayrılmış, kazanımlar tek tek çözümlü temel alıştırmalar ve sorular ile taranmıştır. Özellikle bu kısmın sınıf

Detaylı

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN İç-Çarpım Uzayları Yazar Öğr. Grv. Dr. Nevin ORHUN ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; R n, P n (R), M nxn vektör uzaylarında iç çarpım kavramını tanıyacak ve özelliklerini görmüş olacaksınız.

Detaylı

EĞİTİM - ÖĞRETİM YILI 10. SINIF MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ

EĞİTİM - ÖĞRETİM YILI 10. SINIF MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ EKİM 07-08 EĞİTİM - ÖĞRETİM YILI 0. SINIF MATEMATİK DERSİ 0... Olayların gerçekleşme sayısını toplama ve çarpma prensiplerini kullanarak hesaplar. 0... Sınırsız sayıda tekrarlayan nesnelerin dizilişlerini

Detaylı

Tanım: Kök yer eğrisi sistem parametrelerinin değişimi ile sistemin kapalı döngü köklerinin s düzlemindeki yerini gösteren grafiktir.

Tanım: Kök yer eğrisi sistem parametrelerinin değişimi ile sistemin kapalı döngü köklerinin s düzlemindeki yerini gösteren grafiktir. Kök Yer Eğrileri Kök Yer Eğrileri Bir kontrol tasarımcısı sistemin kararlı olup olmadığını ve kararlılık derecesini bilmek, diferansiyel denklem çözmeden bir analiz ile sistem performansını tahmin etmek

Detaylı

EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE

EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE Ay 2016 2017 EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE Hafta ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIMLAR EYLÜL 3 4 Sayılar ve İşlemler Çarpanlar

Detaylı

DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EET305 OTOMATİK KONTROL I Dr. Uğur HASIRCI

DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EET305 OTOMATİK KONTROL I Dr. Uğur HASIRCI KARARLILIK Kontrol sistemlerinin tasarımında üç temel kriter göz önünde bulundurulur: Geçici Durum Cevabı Kararlılık Kalıcı Durum Hatası Bu üç temel spesifikasyon arasında en önemlisi kararlılıktır. Eğer

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Konu Anlatımı Açık Uçlu Sorular Çoktan Seçmeli Sorular Doğru Yanlış Soruları Boşluk Doldurmalı Sorular Çıkmış Sorular

Konu Anlatımı Açık Uçlu Sorular Çoktan Seçmeli Sorular Doğru Yanlış Soruları Boşluk Doldurmalı Sorular Çıkmış Sorular Maths@bi 8 3.BÖLÜM Kareköklü Sayılar Konu Anlatımı Açık Uçlu Sorular Çoktan Seçmeli Sorular Doğru Yanlış Soruları Boşluk Doldurmalı Sorular Çıkmış Sorular Kerime ASKER-Abdullah ASKER Matematik Öğretmeni

Detaylı

Özdeğer ve Özvektörler

Özdeğer ve Özvektörler Özdeğer ve Özvektörler Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 9 Amaçlar Bu üniteyi çalıştıktan sonra; bir lineer dönüşümün ve bir matrisin özdeğer ve özvektör kavramlarını anlayacak, bir dönüşüm matrisinin

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

CEVAP ANAHTARI 1-A 2-C 3-A 4-D 5-D 6-E 7-A 8-E 9-D 10-D 11-C 12-B 13-E 14-E 15-E 16-A 17-D 18-B

CEVAP ANAHTARI 1-A 2-C 3-A 4-D 5-D 6-E 7-A 8-E 9-D 10-D 11-C 12-B 13-E 14-E 15-E 16-A 17-D 18-B 1. BÖLÜM: TEMEL KAVRAMLAR - 3 1-A 2-C 3-A 4-D 5-D 6-E 7-A 8-E 9-D 10-D 11-C 12-B 13-E 14-E 15-E 16-A 17-D 18-B 1-D 2-B 3-B 4-E 5-C 6-D 7-C 8-E 9-B 10-A 11-C 12-E 13-C 14-D 15-E 16-D 1-A 2-B 3-A 4-E 5-A

Detaylı

Kontrol Sistemleri Tasarımı

Kontrol Sistemleri Tasarımı Kontrol Sistemleri Tasarımı Giriş ve Temel Kavramlar Prof. Dr. Bülent E. Platin Giriş Çalıştay İçeriği: Giriş ve Temel Kavramlar Açık Çevrim Kontrol Kapalı Çevrim Kontrol Kök Yer Eğrileri ve Yöntemleri

Detaylı

13. Karakteristik kökler ve özvektörler

13. Karakteristik kökler ve özvektörler 13. Karakteristik kökler ve özvektörler 13.1 Karakteristik kökler 1.Tanım: A nxn tipinde matris olmak üzere parametrisinin n.dereceden bir polinomu olan şeklinde gösterilen polinomuna A matrisin karakteristik

Detaylı

Ayrık-zamanlı sistemlerin analizi z-dönüşümünün kullanılmasıyla basitleşir. Gerçekten de fark-denklemleriyle gösterilen sistem modeli

Ayrık-zamanlı sistemlerin analizi z-dönüşümünün kullanılmasıyla basitleşir. Gerçekten de fark-denklemleriyle gösterilen sistem modeli Bölüm 3 z-dönüşümü 6 Bölüm 3. z-dönüşümü 3.1 GİRİŞ Ayrık-zamanlı sistemlerin analizi z-dönüşümünün kullanılmasıyla basitleşir. Gerçekten de fark-denklemleriyle gösterilen sistem modeli z-dönüşümü ile üzerindeü-ze-rin-de

Detaylı

Bölüm 9 KÖK-YER EĞRİLERİ YÖNTEMİ

Bölüm 9 KÖK-YER EĞRİLERİ YÖNTEMİ Bölüm 9 KÖK-YER EĞRİLERİ YÖNTEMİ Kapalı-döngü denetim sisteminin geçici-durum davranışının temel özellikleri kapalı-döngü kutuplarından belirlenir. Dolayısıyla problemlerin çözümlenmesinde, kapalı-döngü

Detaylı

TEKİRDAĞ SOSYAL BİLİMLER LİSESİ 10. SINIF MATEMATİK DERSİ YILLIK PLANI

TEKİRDAĞ SOSYAL BİLİMLER LİSESİ 10. SINIF MATEMATİK DERSİ YILLIK PLANI 9 Eylül- Eylül 0-07 TEKİRDAĞ SOSYAL BİLİMLER LİSESİ 0. SINIF MATEMATİK DERSİ YILLIK PLANI Veri, Sayma ve Sayma. Olayların gerçekleşme sayısını toplama ve çarpma prensiplerini kullanarak hesaplar. Sıralama

Detaylı

PROJE ADI: ÖZDEŞ NESNELERİN FARKLI KUTULARA DAĞILIMINDA POLİNOM KULLANIMI

PROJE ADI: ÖZDEŞ NESNELERİN FARKLI KUTULARA DAĞILIMINDA POLİNOM KULLANIMI PROJE ADI: ÖZDEŞ NESNELERİN FARKLI KUTULARA DAĞILIMINDA POLİNOM KULLANIMI PROJENİN AMACI: Polinom fonksiyon yardımıyla özdeş nesnelerin farklı kutulara istenilen koşullardaki dağılım sayısının hesaplanması

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

Zaman Domeninde Modelleme Transfer Fonksiyonu Durum Uzay Dönüşümü Durum Uzay Transfer Fonksiyonu Dönüşümü Durum Uzayında Doğrusallaştırma

Zaman Domeninde Modelleme Transfer Fonksiyonu Durum Uzay Dönüşümü Durum Uzay Transfer Fonksiyonu Dönüşümü Durum Uzayında Doğrusallaştırma Zaman Domeninde Modelleme Transfer Fonksiyonu Durum Uzay Dönüşümü Durum Uzay Transfer Fonksiyonu Dönüşümü Durum Uzayında Doğrusallaştırma 1 Daha önce bir sistemi kontrol etmek için, önce o sistemin matematiksel

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

ş ç ö ç ç ş ş ö ş ş ç ö ö ş ç ç ş ö ö ö ş ş ş ş ş ş ş ö ö ç ç ç ş ş ö ş ö ö ş ö ö ö ş ö ş Ö Ü Ç ö ö Ğ ş ş ö Ö ö ç Ğ ş ş ö Ö ş ş şş ö ş ç ç ö ö ç ş ç ç ç Ö ç ç Ö ç ç ş ş Ö ç ö ş Ö ş ç ç ö ş ö ö ş ö ç ç

Detaylı

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM EŞİTSİZLİKLER A. TANIM f(x)>0, f(x) - eşitsizliğinin

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI. Deney No:2 Birinci-İkinci Dereceden Denklemler Açık-Kapalı Çevrim Sistemler

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI. Deney No:2 Birinci-İkinci Dereceden Denklemler Açık-Kapalı Çevrim Sistemler TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI DENEY RAPORU Deney No:2 Birinci-İkinci Dereceden Denklemler Açık-Kapalı Çevrim Sistemler Öğr. Gör. Cenk GEZEGİN Arş.

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

EĞİTİM ÖĞRETİM YILI. FEN LİSESİ 10.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI 10.SINIF KAZANIM VE SÜRE TABLOSU

EĞİTİM ÖĞRETİM YILI. FEN LİSESİ 10.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI 10.SINIF KAZANIM VE SÜRE TABLOSU 08 09 EĞİTİM ÖĞRETİM YILI. FEN LİSESİ 0.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI 0.SINIF KAZANIM VE SÜRE TABLOSU No Konular Kazanım sayısı Ders Saati Ağırlık (%) VERİ, SAYMA VE OLASILIK 0. SAYMA

Detaylı

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER MATEMATİK Taşkın, Çetin, Abdullayeva BÖLÜM. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER. ÖZDEŞLİKLER İki cebirsel ifade içerdikleri değişkenlerin (veya bilinmeyenlerin) her değeri içinbirbirine eşit oluyorsa,

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

10 SINIF MATEMATİK. Polinomlar Çarpanlara Ayırma İkinci Dereceden Bir Bilinmeyenli Denklemler

10 SINIF MATEMATİK. Polinomlar Çarpanlara Ayırma İkinci Dereceden Bir Bilinmeyenli Denklemler 10 SINIF MATEMATİK Polinomlar Çarpanlara Ayırma İkinci Dereceden Bir Bilinmeyenli Denklemler YAYIN KOORDİNATÖRÜ Oğuz GÜMÜŞ EDİTÖR Hazal ÖZNAR - Uğurcan AYDIN DİZGİ Muhammed KARATAŞ SAYFA TASARIM - KAPAK

Detaylı

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 8. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 8. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN E Y L Ü L ÜNİTE SİDRE 000 ORTAOKULU 06-07 EĞİTİM-ÖĞRETİM YILI 8. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN 9.09.06/.09.06 6.09.06/0.09.06 Çarpanlar ve Katlar Çarpanlar ve Katlar 8... Verilen

Detaylı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı Ertuğrul US 01.09.2014 MATEMATİK PROGRAMIM Program 6 aylık (24 haftalık) bir programdır. Konuların veriliş sırasına uyularak çalışılması

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

MM 409 MatLAB-Simulink e GİRİŞ

MM 409 MatLAB-Simulink e GİRİŞ MM 409 MatLAB-Simulink e GİRİŞ 2016-2017 Güz Dönemi 28 Ekim 2016 Arş.Gör. B. Mahmut KOCAGİL Ajanda-İçerik Simulink Nedir? Nerelerde Kullanılır? Avantaj / Dezavantajları Nelerdir? Simulink Arayüzü Örnek

Detaylı

Lineer Cebir II (MATH232) Ders Detayları

Lineer Cebir II (MATH232) Ders Detayları Lineer Cebir II (MATH232) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Lineer Cebir II MATH232 Bahar 4 0 0 4 7 Ön Koşul Ders(ler)i Math 231 Lineer Cebir

Detaylı

Adi Diferensiyel Denklemler 1. BÖLÜM 1 Birinci-Mertebe Diferensiyel Denklemler 3. BÖLÜM 2 Lineer İkinci MertebeDenklemler 43

Adi Diferensiyel Denklemler 1. BÖLÜM 1 Birinci-Mertebe Diferensiyel Denklemler 3. BÖLÜM 2 Lineer İkinci MertebeDenklemler 43 İçindekiler Ön Söz xiii 1 Adi Diferensiyel Denklemler 1 BÖLÜM 1 Birinci-Mertebe Diferensiyel Denklemler 3 1.1 Terminololoji ve Değişkenlerine Ayrıştırılabilir Denklemler 3 1.2. Lineer Denklemler 16 1.3

Detaylı

İNÖNÜ ÜNİVERSİTESİ MÜH. FAK. BİLGİSAYAR MÜH. BÖL. ALGORİTMA VE PROGRAMLAMA 1 DERSİ LAB. ÖDEVİ

İNÖNÜ ÜNİVERSİTESİ MÜH. FAK. BİLGİSAYAR MÜH. BÖL. ALGORİTMA VE PROGRAMLAMA 1 DERSİ LAB. ÖDEVİ İNÖNÜ ÜNİVERSİTESİ MÜH. FAK. BİLGİSAYAR MÜH. BÖL. ALGORİTMA VE PROGRAMLAMA 1 DERSİ LAB. ÖDEVİ AD SOYAD : TESLİM TARİHİ : OKUL NO : TESLİM SÜRESİ : 2 hafta Ödev No : 7 ****(ilk 3 soru çıktı üzerinde el

Detaylı

Karmaşık Fonksiyonlar ve Uygulamaları (MATH274) Ders Detayları

Karmaşık Fonksiyonlar ve Uygulamaları (MATH274) Ders Detayları Karmaşık Fonksiyonlar ve Uygulamaları (MATH274) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Kredi AKTS Saati Karmaşık Fonksiyonlar ve Uygulamaları MATH274 Bahar 3 0 0

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

1 Vektör Uzayları 2. Lineer Cebir. David Pierce. Matematik Bölümü, MSGSÜ mat.msgsu.edu.tr/~dpierce/

1 Vektör Uzayları 2. Lineer Cebir. David Pierce. Matematik Bölümü, MSGSÜ mat.msgsu.edu.tr/~dpierce/ Vektör Uzayları Lineer Cebir David Pierce 5 Mayıs 2017 Matematik Bölümü, MSGSÜ dpierce@msgsu.edu.tr mat.msgsu.edu.tr/~dpierce/ Bu notlarda, alıştırma olarak her teorem, sonuç, ve örnek kanıtlanabilir;

Detaylı

İl temsilcimiz sizinle irtibata geçecektir.

İl temsilcimiz sizinle irtibata geçecektir. Biz, Sizin İçin Farklı Düşünüyor Farklı Üretiyor Farklı Uyguluyoruz Biz, Sizin İçin Farklıyız Sizi de Farklı Görmek İstiyoruz Soru Bankası matematik konularını yeni öğrenen öğrenciler için TMOZ öğretmenlerince

Detaylı

Mustafa Sezer PEHLİVAN. Yüksek İhtisas Üniversitesi Beslenme ve Diyetetik Bölümü

Mustafa Sezer PEHLİVAN. Yüksek İhtisas Üniversitesi Beslenme ve Diyetetik Bölümü * Yüksek İhtisas Üniversitesi Beslenme ve Diyetetik Bölümü SAYILAR Doğal Sayılar, Tam Sayılar, Rasyonel Sayılar, N={0,1,2,3,,n, } Z={,-3,-2,-1,0,1,2,3, } Q={p/q: p,q Z ve q 0} İrrasyonel Sayılar, I= {p/q

Detaylı

Tek Değişkenli Optimizasyon OPTİMİZASYON. Gradient Tabanlı Yöntemler. Bisection (İkiye Bölme) Yöntemi

Tek Değişkenli Optimizasyon OPTİMİZASYON. Gradient Tabanlı Yöntemler. Bisection (İkiye Bölme) Yöntemi OPTİMİZASYON Gerçek hayatta, çok değişkenli optimizasyon problemleri karmaşıktır ve nadir olarak problem tek değişkenli olur. Bununla birlikte, tek değişkenli optimizasyon algoritmaları çok değişkenli

Detaylı

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi

Detaylı

T.C. KOCAELİ ÜNİVERSİTESİ MEKATRONİK MÜHENDİSLİĞİ OTOMATİK KONTROL SİSTEMLERİ DERSİ MATLAB UYGULAMA NOTLARI-1

T.C. KOCAELİ ÜNİVERSİTESİ MEKATRONİK MÜHENDİSLİĞİ OTOMATİK KONTROL SİSTEMLERİ DERSİ MATLAB UYGULAMA NOTLARI-1 T.C. KOCAELİ ÜNİVERSİTESİ MEKATRONİK MÜHENDİSLİĞİ OTOMATİK KONTROL SİSTEMLERİ DERSİ MATLAB UYGULAMA NOTLARI-1 Bu uygulama notunda öğrencilerin MATLAB kullanarak; TEMEL MATEMATİK İŞLEMLERİNİ TEMEL MATRİS

Detaylı

LĐMĐT ÖSS ÖYS YILLAR SAĞDAN VE SOLDAN LĐMĐT. ÇÖZÜM: x=2 f(x) de yerine yazılır cevap:7

LĐMĐT ÖSS ÖYS YILLAR SAĞDAN VE SOLDAN LĐMĐT. ÇÖZÜM: x=2 f(x) de yerine yazılır cevap:7 YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS ÖYS LĐMĐT Tanım : Bir x0 A = [ a,b ] alalım, f: A R ye veya f: A - { x 0 } R ye bir fonksiyon olsun. Terimleri A - { x 0 } kümesine ait ve x

Detaylı

BM202 SAYISAL ÇÖZÜMLEME

BM202 SAYISAL ÇÖZÜMLEME BM202 SAYISAL ÇÖZÜMLEME DOÇ.DR. CİHAN KARAKUZU DERS-2 1 Ders2-Sayısal Hesaplamalarda Gerek Duyulabilecek Matlab İşlemleri MATLAB, çok paradigmalı (bir şeyin nasıl üretileceği konusunda örnek, model) sayısal

Detaylı

T.C FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ

T.C FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ T.C FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ EET-343 KONTROL SİSTEMLERİ LABORATUVARI DENEY FÖYÜ Prof. Dr. Muammer GÖKBULUT Arş. Gör. Ahmet TOP DENEYLER Deney_: MATLAB PROGRAMLAMA-I

Detaylı

2. Matematiksel kavramları organize bir şekilde sunarak, bu kavramları içselleştirmenizi sağlayacak pedagojik bir alt yapı ile yazılmıştır.

2. Matematiksel kavramları organize bir şekilde sunarak, bu kavramları içselleştirmenizi sağlayacak pedagojik bir alt yapı ile yazılmıştır. Sevgili Öğrenciler, Matematik ilköğretimden üniversiteye kadar çoğu öğrencinin korkulu rüyası olmuştur. Buna karşılık, istediğiniz üniversitede okuyabilmeniz büyük ölçüde YGS ve LYS'de matematik testinde

Detaylı

Math 103 Lineer Cebir Dersi Ara Sınavı

Math 103 Lineer Cebir Dersi Ara Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Ara Sınavı 6 Kasım 27 Hazırlayan: Yamaç Pehlivan Başlama saati: 3: Bitiş Saati: 4: Toplam Süre: 6 Dakika Lütfen adınızı ve soyadınızı

Detaylı

Devre Analizi II (EE 210) Ders Detayları

Devre Analizi II (EE 210) Ders Detayları Devre Analizi II (EE 210) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Devre Analizi II EE 210 Bahar 3 0 0 3 8 Ön Koşul Ders(ler)i EE 209 Dersin Dili Dersin

Detaylı

Ders İçerik Bilgisi. Sistem Davranışlarının Analizi. Dr. Hakan TERZİOĞLU. 1. Geçici durum analizi. 2. Kalıcı durum analizi. MATLAB da örnek çözümü

Ders İçerik Bilgisi. Sistem Davranışlarının Analizi. Dr. Hakan TERZİOĞLU. 1. Geçici durum analizi. 2. Kalıcı durum analizi. MATLAB da örnek çözümü Dr. Hakan TERZİOĞLU Ders İçerik Bilgisi Sistem Davranışlarının Analizi 1. Geçici durum analizi 2. Kalıcı durum analizi MATLAB da örnek çözümü 2 Dr. Hakan TERZİOĞLU 1 3 Geçici ve Kalıcı Durum Davranışları

Detaylı

6 Devirli Kodlar. 6.1 Temel Tan mlar

6 Devirli Kodlar. 6.1 Temel Tan mlar 6 Devirli Kodlar 6.1 Temel Tan mlar Tan m S F n q için e¼ger (a 0 ; a 1 ; : : : ; a n 1 ) 2 S iken (a n 1 ; a 1 ; : : : ; a n 2 ) 2 S oluyorsa S kümesine devirli denir. E¼ger bir C do¼grusal kodu devirli

Detaylı

DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati (T+U+L) Kredi AKTS DİFERANSİYEL DENKLEMLER FEB-211 2/ 1.YY 3+0+0 3 3 Dersin Dili Dersin Seviyesi

Detaylı

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ OTOMATİK KONTROL SİSTEMLERİ DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ 1) İdeal Sönümleme Elemanı : a) Öteleme Sönümleyici : Mekanik Elemanların Matematiksel Modeli Basit mekanik elemanlar, öteleme hareketinde;

Detaylı

12.Konu Rasyonel sayılar

12.Konu Rasyonel sayılar 12.Konu Rasyonel sayılar 1. Rasyonel sayılar 2. Rasyonel sayılar kümesinde toplama ve çarpma 3. Rasyonel sayılar kümesinde çıkarma ve bölme 4. Tam rayonel sayılar 5. Rasyonel sayılar kümesinde sıralama

Detaylı

Ç NDEK LER II. C LT KONULAR Sayfa Öz De er Öz Vektör.. 2. Lineer Cebir ve Sistem Analizi...

Ç NDEK LER II. C LT KONULAR Sayfa Öz De er Öz Vektör.. 2. Lineer Cebir ve Sistem Analizi... ÇNDEKLER II. CLT KONULAR 1. Öz Deer Öz Vektör.. 1 Kare Matrisin Öz Deeri ve Öz Vektörleri... 21 Matrisin Karakteristik Denklemi : Cayley Hamilton Teoremi.. 26 Öz Deer - Öz Vektör ve Lineer Transformasyon

Detaylı

Ders 9: Bézout teoremi

Ders 9: Bézout teoremi Ders 9: Bézout teoremi Konikler doğrularla en fazla iki noktada kesişir. Şimdi iki koniğin kaç noktada kesiştiğini saptayalım. Bunu, çok kolay gözlemlerle başlayıp temel ve ünlü Bézout teoremini kanıtlayarak

Detaylı

ELE401/ /17 GÜZ ÖDEV 2 - ÇÖZÜMLER

ELE401/ /17 GÜZ ÖDEV 2 - ÇÖZÜMLER ELE40/50 06/7 GÜZ ÖDEV - ÇÖZÜMLER -) Lyapunov kararlılığı için = 0, V( ) = 0 0, V( ) > 0 biçiminde bir Lyapunov fonksiyonu 0, V( ) 0 eşitsizliğini sağlanmalıdır. Asimptotik kararlılık için 0, V( ) < 0

Detaylı