Fizik 101: Ders 16. Konu: Katı cismin dönmesi

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Fizik 101: Ders 16. Konu: Katı cismin dönmesi"

Transkript

1 Fizik 0: Ders 6 Konu: Katı cisin dönesi Döne kineatiği Bir boyutlu kineatik ile benzeşi Dönen sistein kinetik enerjisi Eylesizlik oenti Ayrık parçacıklar Sürekli katı cisiler Paralel eksen teorei

2 Rotasyon Şidiye kadarki konularıızda cisilerin belirli bir eksen etrafında dönesini üzerine çok duradık. (ötelee hareketi ağırlıklıydı) Kayan cisileri inceledik. Makaraların kütlelerini yok saydık. Rotasyon oldukça önelidir, dolayısıyla rotasyonu anlaalıyız! Türeteceğiiz denklelerin pek çoğu lineer kineatik ve dinaikte çıkardığıız denklelerin benzerleridir.

3 Katı Cisin Dönesi v v a Şekildeki katı cisi z ekseni etrafında döndürüleye başlansın, bu katı silindir üzerinde P noktası alırsak bu noktanın yaptığı hareket dairesel harekettir. P noktası Dt zaanında A noktasından B noktasına gekirse: ort ani ani Ds Dt li Dt0 dv dt RD Rw Dt Ds ds R Dt dt ani ort d R R d t ortalaa d Rw dt dw dt hiz. ani R P B dθ θ ds A

4 Rotasyon Değişkenleri. Sabit eksen etrafındaki rotasyon: Merkezinden geçen eksen etrafında dönen bir diske bakalı: Öncelikle Düzgün Dairesel Hareket hakkında öğrendikleriizi hatırlayalı: d dt dx dt (lineer hıza benzer v )

5 Rotasyon Değişkenleri... Farz-ı uhal zaanın bir fonksiyonu olsun: Açısal ive tanıı: α dω dt d θ dt Açısal ive nin sabit olduğu duruu dikkate alalı. rad/s Bunu integre ederek ve yı zaanın bir fonksiyonu olarak buluruz: α sabit ω ω 0 αt 0 t 0 t

6 Rotasyon Değişkenleri... sabit 0 0 t t 0 t R v x Döne ekseninden R uzaklıktaki bir nokta için: x = R v = R Bunun türevini alarak: a = R

7 Özet (-D kineatikle karşılaştıra) açısal α sabit 0 t 0 0t t lineer a sabit v v 0 at x x0 v0t at Rotasyon ekseninden R uzaklığında bir nokta için: x = R v = R a = R

8 Örnek: Tekerlek ve Sici Yarıçapı R = 0.4 olan bir tekerlek sabit bir eksen etrafında serbestçe dönektedir. Tekerleğin etrafında sarılan bir ip var. t = 0 anında durgunken ip sabit bir ive a = 4 /s ile çekilir. 0 saniye sonra tekerlek kaç tur döner? (Bir tur = radyan) a R

9 Tekerlek ve Sici t t t t R a R at R tur : uerik tur denkleler i ile döne tur Yol tur denkleler le: Çizgisel a R

10 Tekerlek ve Sici... a R

11 Tekerlek ve Sici... a R

12 Rotasyon & Kinetik Enerji Aşağıda gösterilen basit dönen bir sistei dikkate alalı. (Noktasal kütleler kütlesiz bir çubuğa iliştirili) Sistein kinetik enerjisi her bir parçacığın kinetik enerjisinin toplaıdır: 4 r 4 r 3 r 3 r

13 Rotasyon & Kinetik Enerji... Yani: aa v i = r i K K i i v i i Başka bir şekilde yazı: K I i r i i r i i 4 r 4 r I i r i i Döne ekseni etrafında eylesizlik oenti I nın birii kg. 3 r 3 r

14 Rotasyon & Kinetik Enerji... Dönen bir sistein kinetik enerjisi nokta parçacığın kinetik enerjisine benziyor: Nokta parçacık Dönen siste K v K I v lineer hız kütle. açısal hız I döne ekseni etrafında eylesizlik oenti. I i r i i

15 Eylesizlik Moenti sonuç K I burada I i r i i Eylesizlik oenti I sistein kütle dağılıına bağlıdır. Kütlenin döne ekseninden uzaklaşası eylesizlik oentini artırır. Verilen bir cisi için eylesizlik oenti döne eksenini nerde seçtiğiize bağlıdır. (kütle erkezinden farklı). Lineer dinaikteki denklelerde kütlenin yerini döne dinaiğinde I eylesizlik oenti alır!

16 Eylesizlik Moenti Hesabı Sabit bir eksen etrafında dağılış N ayrık noktasal parçacık için eylesizlik oenti: I N r i i i burada r kütlenin döne eksenine olan uzaklığı. Örnek:Kenar uzunluğu L olan bir karenin köşelerinde 4 () kütlesi var ve kare erkezinden geçen bir eksen etrafında dönektedir. Kütle sisteinin eylesizlik oentini hesaplayınız: L

17 Eylesizlik Moenti Hesabı... I 4 ir i i L 4 I L L / L r

18 Eylesizlik Moenti Hesabı... I yı şidide erkezden kenara paralel olan bir döne ekseni için hesaplayalı: r L

19 Eylesizlik Moenti Hesabı... Son olarak aynı sistein eylesizlik oentini bir kenarından geçen bir eksen için hesaplarsak: r L

20 Eylesizlik Moenti Hesabı... Aynı cisi için I döne eksenine açıkça bağlıdır!! I = L I = L I = L L

21 Ders 6, Soru Eylesizlik Moenti Üçgen şeklindeki cisi 3 özdeş kütle ve katı kütlesiz çubuktan oluşaktadır. a, b, ve c eksenlerine göre eylesizlik oenti I a, I b, ve I c dir. Aşağıdakilerden hangisi doğrudur: (a) (b) (c) I a > I b > I c I a > I c > I b I b > I a > I c a b c

22 Ders 6, Soru Eylesizlik Moenti Kütleler ve uzaklıları işaretleyeli: Eylesizlik oentini hesaplayalı: I a L L 8L I b L L L 3L I c L 4L (b) doğru: I a > I c > I b L L a b c

23 Eylesizlik Moenti Hesabı... Ayrık nokta kütleleri için eylesizlik oenti: I N r i i i Sürekli kütle dağılıı gösteren bir cisi için her bir sonsuz küçük d kütle eleentinden gelen r katkısını verilen bir eksen için toplaalıyız. Yani eylesizlik oenti I integralden elde edilir: d I I r r d ρ(r)dv r ρ(r)d 3 r 3 boyutlu r

24 Eylesizlik Moenti... Katı cisi için eylesizlik oentine bazı örnekler: I MR R M kütleli ve R yarıçaplı bir çeber için erkezinden geçen ve silindir düzleine dik eksene göre eylesizlik oenti R I MR M kütleli ve R yarıçaplı bir çeber için, çaptan geçen eksene göre eylesizlik oenti

25 Eylesizlik Moenti... Katı cisi için eylesizlik oentine bazı örnekler: I 5 MR R M kütleli ve R yarıçaplı katı küre için Merkezinden geçen eksene göre eylesizlik oenti. I MR R M kütleli ve R yarıçaplı katı disk yada silindir için erkezden geçen dik eksene göre eylesizlik oenti.

26 Ders 6, Soru Eylesizlik Moenti Kütleleri ve yarıçapları aynı iki küreden biri katı alüinyudan diğeri içi boş altın kabuğundandır. Merkezden geçen eksene göre hangisinin eylesizlik oenti daha büyüktür? (a) Katı alüinyu (b) oyuk altın (c) aynı katı oyuk M & R aynı

27 Ders 6, Soru Eylesizlik Moenti Eylesizlik oenti kütleye (her iki ciside de aynı) ve döne ekseninden olan uzaklığın karesine bağlıdır. Oyuk kürede esafe daha büyüktür, çünkü kütlesi daha dışarıdadır. Küresel kabuk (altın) daha büyük eylesizlik oentine sahiptir. I KATI < I KABUK katı oyuk M & R aynı

28 Eylesizlik Moenti... Katı cisiler için I ya bazı örnekler : L I ML M kütleli ve L uzunluklu bir çubuk için erkezinden geçen dik eksene göre eylesizlik oenti. I 3 ML L M kütleli ve L uzunluklu bir çubuk için bir köşesinden geçen eksene göre eylesizlik oenti.

29 Paralel Eksen Teorei M kütleli bir katı cisin kütle erkezinden geçen eksene göre eylesizlik oentini I KM, bildiğiizi farz edeli. KM inden geçen eksene paralel ve ona D uzaklığında başka bir eksene göre eylesizlik oenti: I PARALEL = I KM + MD Eğer I KM biliyorsak KMzinden geçen eksene paralel eksene göre eylesizlik oentini hesaplaak kolaydır.

30 Paralel Eksen Teorei:Örnek Kütlesi M ve uzunluğu D olan düzgün bir çubuk dikkate alalı. Çubuğun en ucuna göre eylesizlik oentini bulun. I PARALEL = I KM + MD D=L/ x CM M L I UÇ I KM

31 Enerji Korunuuna Dair Sistein topla kinetik enerjisi lab gözle çerçevesine göre: ELAB v v aa v v V V KM KM V * V * yani v * * v v VKM V VKM V (v için aynısı söz konusu E LAB v * v * * * V V v v KM KM = K REL = K KM = P NET,KM = 0

32 KM hareketi ile bağlantı Önceki slaytte parçacıklar sistei için bulduğuuz kinetik enerji terii : K NET u i i MVKM K REL K KM KM etrafında dönen katı cisi için birinci teri: K REL iu i Yerine koyarak ui ri K REL ir i iri I KM K TOP I KM ω MV KM

33 KM hareketi ile bağlantı... Kütle erkezi etrafında dönen katı bir cisi için KM hareket halinde ise: K NET I KM ω MV KM V KM Önüüzdeki derste daha sı var...

34 Özet Döne kineatiği Bir boyutlu kineatik ile benzeşi Dönen sistein kinetik enerjisi Eylesizlik oenti Ayrık parçacıklar Sürekli katı cisiler Paralel eksen teorei

Fizik 101: Ders 12 Ajanda. Problemler İş & Enerji Potansiyel Enerji, Kuvvet, Denge Güç

Fizik 101: Ders 12 Ajanda. Problemler İş & Enerji Potansiyel Enerji, Kuvvet, Denge Güç Fizik 101: Ders 1 Ajanda Probleler İş & Enerji Potansiyel Enerji, Kuvvet, Denge Güç Proble: Yaylı Sapan Yay sabiti k olan iki yaydan bir sapan yapılıştır. Her iki yayın başlangıç uzunluğu x 0. Kütlesi

Detaylı

Fizik 101: Ders 14 Ajanda

Fizik 101: Ders 14 Ajanda Fizik 0: Ders 4 Ajanda Boyutta inelastik çarpışa Patlaalar Boyutta elastik çarpışa Kütle erkezi referans gözle çerçeesi Çarpışan arabalar Elastik çarpışanın özellikleri Moentuun Korunuu dp F DIŞ 0 dt dp

Detaylı

Fizik 101-Fizik I 2013-2014. Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi

Fizik 101-Fizik I 2013-2014. Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi -Fizik I 2013-2014 Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi Nurdan Demirci Sankır Ofis: 325, Tel: 2924332 İçerik Açısal Yerdeğiştirme, Hız ve İvme Dönme Kinematiği Açısal ve Doğrusal Nicelikler

Detaylı

Fizik 101: Ders 10 Ajanda

Fizik 101: Ders 10 Ajanda Fizik 101: Ders 10 Ajanda İş Dünya yüzeyinde çeki kuvvetinden dolayı yapılan iş Örnekler: Sarkaç, eğik düzle, serbest düşe Değişken kuvvetçe yapılan iş Yay Yay ve sürtüneli probleler 3 boyutta değişken

Detaylı

Fizik 101: Ders 17 Ajanda

Fizik 101: Ders 17 Ajanda izik 101: Ders 17 Ajanda Dönme hareketi Yön ve sağ el kuralı Rotasyon dinamiği ve tork Örneklerle iş ve enerji Dönme ve Lineer Kinematik Karşılaştırma açısal α sabit 0 t 1 0 0t t lineer a sabit v v at

Detaylı

AĞIRLIK MERKEZİ. G G G G Kare levha dairesel levha çubuk silindir

AĞIRLIK MERKEZİ. G G G G Kare levha dairesel levha çubuk silindir AĞIRLIK MERKEZİ Bir cise etki eden yerçekii kuvvetine Ağırlık denir. Ağırlık vektörel bir büyüklüktür. Yere dik bir kuvvet olup uzantısı yerin erkezinden geçer. Cisin coğrafi konuuna ve yerden yüksekliğine

Detaylı

Fizik 103 Ders 9 Dönme, Tork Moment, Statik Denge

Fizik 103 Ders 9 Dönme, Tork Moment, Statik Denge Fizik 3 Ders 9 Döne, Tork Moent, Statik Denge Dr. Ali ÖVGÜN DAÜ Fizik Bölüü www.aovgun.co q θ Döne Kineatiği s ( π )r θ nın birii radyan (rad) dır. Bir radyan, yarçapla eşit uzunluktaki bir yay parasının

Detaylı

Fizik 101: Ders 21 Gündem

Fizik 101: Ders 21 Gündem Fizik 101: Ders 21 Gündem Yer çekimi nedeninden dolayı tork Rotasyon (özet) Statik Bayırda bir araba Statik denge denklemleri Örnekler Asılı tahterevalli Asılı lamba Merdiven Ders 21, Soru 1 Rotasyon Kütleleri

Detaylı

Fizik 101: Ders 18 Ajanda

Fizik 101: Ders 18 Ajanda Fizik 101: Ders 18 Ajanda Özet Çoklu parçacıkların dinamiği Makara örneği Yuvarlanma ve kayma örneği Verilen bir eksen etrafında dönme: hokey topu Eğik düzlemde aşağı yuvarlanma Bowling topu: kayan ve

Detaylı

4.1 denklemine yakından bakalım. Tanımdan α = dω/dt olduğu bilinmektedir (ω açısal hız). O hâlde eğer cisme etki eden tork sıfır ise;

4.1 denklemine yakından bakalım. Tanımdan α = dω/dt olduğu bilinmektedir (ω açısal hız). O hâlde eğer cisme etki eden tork sıfır ise; Deney No : M3 Deneyin Adı : EYLEMSİZLİK MOMENTİ VE AÇISAL İVMELENME Deneyin Amacı : Dönme hareketinde eylemsizlik momentinin ne demek olduğunu ve nelere bağlı olduğunu deneysel olarak gözlemlemek. Teorik

Detaylı

fonksiyonunun [-1,1] arasındaki grafiği hesaba katılırsa bulunan sonucun

fonksiyonunun [-1,1] arasındaki grafiği hesaba katılırsa bulunan sonucun . UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II FİNAL SORULARI ÇÖZÜMLERİ d belirli integralinin aşağıdaki çözümünün doğru olup olmadığını belirtiniz. Eğer çözüm yanlış ise sebebini açıklayınız.

Detaylı

ITAP Fizik Olimpiyat Okulu 2011 Seçme Sınavı

ITAP Fizik Olimpiyat Okulu 2011 Seçme Sınavı ITAP Fizik Olipiyat Okulu Seçe Sınavı. Akış hızı u=.5/s olan bir nehrin kıyısının O noktasından kıyıya dik yönde nehre bir taş atılıyor. Sudaki yüzey gerili dalgalarının yayıla hızı c=/s olduğuna göre

Detaylı

Fizik 101: Ders 24 Gündem

Fizik 101: Ders 24 Gündem Terar Fizi 101: Ders 4 Günde Başlangıç oşullarını ullanara BHH denlelerinin çözüü. Genel fizisel saraç Burulalı saraç BHHte enerji Atoi titreşiler Proble: Düşey yay Proble: taşıa tuneli BHH terar BHH &

Detaylı

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği -Fizik I 2013-2014 Dönme Hareketinin Dinamiği Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 İçerik Vektörel Çarpım ve Tork Katı Cismin Yuvarlanma Hareketi Bir Parçacığın Açısal Momentumu Dönen Katı Cismin

Detaylı

ATALET MOMENTİ. Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması.

ATALET MOMENTİ. Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması. ATALET MOMENTİ Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması. UYGULAMALAR Şekilde gösterilen çark büyük bir kesiciye bağlıdır. Çarkın kütlesi, kesici bıçağa

Detaylı

MIT 8.02, Bahar 2002 Ödev # 1 Çözümler

MIT 8.02, Bahar 2002 Ödev # 1 Çözümler Adam S. Bolton bolton@mit.edu MIT 8.02, Bahar 2002 Ödev # 1 Çözümler 15 Şubat 2002 Problem 1.1 Kütleçekim ve Elektrostatik kuvvetlerin bağıl şiddetleri. Toz parçacıkları 50 µm çapında ve böylece yarıçapları

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 7 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 7 Kasım 1999 Saat: 21.50 Problem 7.1 (Ohanian, sayfa 271, problem 55) Bu problem boyunca roket

Detaylı

KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ

KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ Amaçlar 1. Kuvvet ve kuvvet çiftlerinin yaptığı işlerin tanımlanması, 2. Rijit cisme iş ve enerji prensiplerinin uygulanması. UYGULAMALAR Beton mikserinin iki motoru

Detaylı

HARRAN ÜNİVERSİTESİ 2016 YILI ZİRAAT FAKÜLTESİ FİNAL SINAVI SORU ÖRNEKLERİ

HARRAN ÜNİVERSİTESİ 2016 YILI ZİRAAT FAKÜLTESİ FİNAL SINAVI SORU ÖRNEKLERİ HARRAN ÜNİVERSİTESİ 016 YILI ZİRAAT FAKÜLTESİ FİNAL SINAVI SORU ÖRNEKLERİ Soru 1 - Bir tekerlek, 3.5 rad/ s ' lik sabit bir açısal ivmeyle dönüyor. t=0'da tekerleğin açısal hızı rad/s ise, (a) saniyede

Detaylı

Boşlukta Dalga Fonksiyonlarının Normalleştirilmesi

Boşlukta Dalga Fonksiyonlarının Normalleştirilmesi Boşlukta Dalga Fonksiyonlarının Noralleştirilesi Konu tesilinde oentu özduruları, u p (x) ile belirlenir ve ile verilir. Ancak, boşlukta noralleştirilecek bir olasılık yoğunluğu gibi yorulanaaz zira (

Detaylı

KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji)

KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji) KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji) Partikülün kinetiği bahsinde, hız ve yer değiştirme içeren problemlerin iş ve enerji prensibini kullanarak kolayca çözülebildiği söylenmişti. Ayrıca, kuvvet

Detaylı

İŞ-GÜÇ-ENERJİ 1.İŞ 2.GÜÇ 3.ENERJİ. www.unkapani.com.tr. = (ortalama güç) P = F.V (Anlık Güç)

İŞ-GÜÇ-ENERJİ 1.İŞ 2.GÜÇ 3.ENERJİ. www.unkapani.com.tr. = (ortalama güç) P = F.V (Anlık Güç) İŞ-GÜÇ-ENERJİ Herangi bir cise kuvvet uyguladığıızda cisi kuvvet doğrultusunda yol alıyorsa kuvvet iş yapıştır denir. Yapılan işin değeri kuvvet ile kuvvet doğrultusunda alınan yolun çarpıına eşittir.

Detaylı

ELEKTRİKSEL POTANSİYEL

ELEKTRİKSEL POTANSİYEL ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile

Detaylı

- 1 - EYLÜL KAMPI SINAVI-2003

- 1 - EYLÜL KAMPI SINAVI-2003 - - EYLÜL KAMPI SINAVI-. a) İki uçak birbirilerine doğru hızıyla yaklaşaktadırlar. Aralarındaki uzaklık iken birebirlilerini görebilektedirler. Ta o anda uçaklardan birisi hızı ile bir yarı çeber çizdikten

Detaylı

DENEY 5 DÖNME HAREKETİ

DENEY 5 DÖNME HAREKETİ DENEY 5 DÖNME HAREKETİ AMAÇ Deneyin amacı merkezinden geçen eksen etrafında dönen bir diskin dinamiğini araştırmak, açısal ivme, açısal hız ve eylemsizlik momentini hesaplamak ve mekanik enerjinin korunumu

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

ADI: SOYADI: No: Sınıfı: A) Grubu. Tarih.../.../... ALDIĞI NOT:...

ADI: SOYADI: No: Sınıfı: A) Grubu. Tarih.../.../... ALDIĞI NOT:... ADI: SOYADI: No: Sınıfı: A) Grubu Tarih.../.../... ADIĞI NOT:.... Boşluk doldura a) uetin büyüklüğünü ölçek için... kullanılır. b) Uyduların gezegen etrafında dolanasını sağlayan kuet... c) Cisilerin hareket

Detaylı

Fizik 101: Ders 20. Ajanda

Fizik 101: Ders 20. Ajanda Fzk 101: Ders 20 = I konusunda yorumlar Ajanda Br sstemn açısal momentumu çn genel fade Kayan krş örneğ Açısal momentum vektörü Bsklet teker ve döner skemle Jroskobk hareket Hareketl dönme hakkında yorum

Detaylı

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi Fizik-1 UYGULAMA-7 Katı bir cismin sabit bir eksen etrafında dönmesi 1) Bir tekerlek üzerinde bir noktanın açısal konumu olarak verilmektedir. a) t=0 ve t=3s için bu noktanın açısal konumunu, açısal hızını

Detaylı

DENEY 6 BASİT SARKAÇ

DENEY 6 BASİT SARKAÇ DENEY 6 BASİT SARKAÇ AMAÇ: Bir basit sarkacın temel fiziksel özelliklerinin incelenmesi. TEORİ: Basit sarkaç şekilde görüldüğü gibi kütlesiz bir ip ve ucuna asılı noktasal bir kütleden ibarettir. Şekil

Detaylı

Fizik 101: Ders 4 Ajanda

Fizik 101: Ders 4 Ajanda Fizik 101: Ders 4 Ajanda Tekrar ve devam: Düzgün Dairesel Hareket Newton un hareket yasaları Cisimler neden ve nasıl hareket ederler? Düzgün Dairesel Hareket Ne demektir? Nasıl tanımlarız? Düzgün Dairesel

Detaylı

AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ

AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ 1 Bir otomobil lastiğinin basıncı, lastik içerisindeki havanın sıcaklığına bağlıdır Hava sıcaklığı 25 C iken etkin basınç 210 kpa dır Eğer lastiğin hacmi 0025

Detaylı

Düzgün olmayan dairesel hareket

Düzgün olmayan dairesel hareket Düzgün olmayan dairesel hareket Dairesel harekette cisim üzerine etki eden net kuvvet merkeze doğru yönelmişse cismin hızı sabit kalır. Eğer net kuvvet merkeze doğru yönelmemişse, kuvvet teğetsel ve radyal

Detaylı

Fizik 101: Ders 23 Gündem

Fizik 101: Ders 23 Gündem Fizik 101: Ders 3 Gündem Basit Harmonik Hereket Yatay yay ve kütle Sinus ve cosinus lerin anlamı Düşey yay ve kütle Enerji yaklaşımı Basit sarkaç Çubuk sarkaç Basit Harmonik Hareket (BHH) Ucunda bir kütle

Detaylı

Fizik 101: Ders 7 Ajanda

Fizik 101: Ders 7 Ajanda Fizik 101: Ders 7 Ajanda Sürtünme edir? asıl nitelendirebiliriz? Sürtünme modeli Statik & Kinetik sürtünme Sürtünmeli problemler Sürtünme ne yapar? Yeni Konu: Sürtünme Rölatif harekete karşıdır. Öğrendiklerimiz

Detaylı

1.Seviye ITAP 17 Aralık_2012 Sınavı Dinamik VIII-Dönme_Sorular

1.Seviye ITAP 17 Aralık_2012 Sınavı Dinamik VIII-Dönme_Sorular 1.Seviye ITAP 17 Aralık_01 Sınavı Dinamik VIII-Dönme_Sorular 3.1.Dünyanın kendi dönme eksenine göre eylemsiz momentini ve açısal momentumunu bulunuz. 37 33 A) I = 9.7 10 kg m ; L = 7 10 kg m / s 35 31

Detaylı

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT ÜÇGNLR ÜNİT. ÜNİT. ÜNİT. ÜNİT. ÜNİT ÜÇGNLRİN ŞLİĞİ Üçgende çılar 1. Kazanım : ir üçgenin iç açılarının ölçüleri toplamının 180, dış açılarının ölçüleri toplamının 0 olduğunu gösterir. İki Üçgenin şliği.

Detaylı

Vücut Kütle Merkezi Konumu Hesabı

Vücut Kütle Merkezi Konumu Hesabı Kütle Çeki Kuvveti Kütle Merkezi Konuu Hesabı Kütle Ağırlık Moent SBA 06 Spor Biyoekaniği Mart 00 Arif Mithat Aca Denge Ağırlık Merkezi (Center of Gravity - CG) Kütle Merkezi (Center of Mass - CM) İnsanda

Detaylı

İş, Enerji ve Güç Test Çözümleri. Test 1 Çözümleri 4. F = 20 N

İş, Enerji ve Güç Test Çözümleri. Test 1 Çözümleri 4. F = 20 N 3 İş, nerji e Güç Test Çözüleri Test Çözüleri. = 30 N s = 5 4. = 0 N = kg 37 = 5 /s kuetinin yaptığı iş, cisi üzerinde kinetik enerji olarak depolanır. ani kuetinin yaptığı iş, cisin kinetik enerjisine

Detaylı

GEOMETRİ TESTİ LYS 1 / GEOMETRİ. ABC bir eşkenar üçgen. G, ABC üçgeninin ağırlık AB = 3 CD

GEOMETRİ TESTİ LYS 1 / GEOMETRİ. ABC bir eşkenar üçgen. G, ABC üçgeninin ağırlık AB = 3 CD LYS 1 / OMTRİ OMTRİ TSTİ 1. u testte 0 soru vardır. 2. u testin cevaplanması için tavsiye olunan süre 60 dakikadır. 1.. bir eşkenar üçgen 1 4 2 5, üçgeninin ağırlık merkezi = x irim karelere bölünmüş düzlemde

Detaylı

TÜM DERSLERDE VİZE SINAVI İÇİN VERİLEN ÇALIŞMA SORULARI DA FİNALE DAHİLDİR

TÜM DERSLERDE VİZE SINAVI İÇİN VERİLEN ÇALIŞMA SORULARI DA FİNALE DAHİLDİR TÜM DERSLERDE VİZE SINAVI İÇİN VERİLEN ÇALIŞMA SORULARI DA FİNALE DAHİLDİR 5 ORTALAMA HIZ (u) 53 HACİMSEL AKIŞ DEBİSİ ( v ) Hacisel debi, herhangi bir sınırdaki sıvı hacinin sınıra dik yönde biri zaandaki

Detaylı

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK SORU 1: Aşağıdaki grafik, bir okuldaki spor yarışmasına katılan öğrencilerin yaşa göre dağılışını göstermektedir. Öğrenci sayısı 5 3 9 10 1 14 Yaş 1.1: Yukarıdaki

Detaylı

Diferansiyel denklemler uygulama soruları

Diferansiyel denklemler uygulama soruları . Aşağıdaki diferansiyel denklemleri sınıflandırınız. a) d y d d + y = 0 b) 5 d dt + 4d + 9 = cos 3t dt Diferansiyel denklemler uygulama soruları 0.0.3 c) u + u [ ) ] d) y + = c d. y + 3 = 0 denkleminin,

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık

Detaylı

T.C. SAKARYA ÜNİVERSİTESİ FİZİK-1 LABORATUVARI DENEY RAPORU

T.C. SAKARYA ÜNİVERSİTESİ FİZİK-1 LABORATUVARI DENEY RAPORU Adı-Soyadı : ÖĞRENCİNİN Numarası : İmza :. Bölümü : Deney No Deney Adı Bir Boyutta Hareket: Konum, Hız ve İvme Deneyin Amacı Deneyin Teorisi (Kendi cümleleriniz ile yazınız) (0 P) T.C. SAKARYA ÜNİVERSİTESİ

Detaylı

Fizik Dr. Murat Aydemir

Fizik Dr. Murat Aydemir Fizik-1 2017-2018 Dr. Murat Aydemir Ankara University, Physics Engineering, Bsc Durham University, Physics, PhD University of Oxford, Researcher, Post-Doc Ofis No: 35 Merkezi Derslikler Binasi murat.aydemir@erzurum.edu.tr

Detaylı

İtme Momentum Açısal Momentum. Futbol da Şut (LAB 7) V = 8 m/s. m = 75 kg. P = 75x8 = 600 kg.m/s. Çarpışma öncesindeki toplam momentum

İtme Momentum Açısal Momentum. Futbol da Şut (LAB 7) V = 8 m/s. m = 75 kg. P = 75x8 = 600 kg.m/s. Çarpışma öncesindeki toplam momentum İtme Momentum Momentum Futbol da Şut (LAB 7) Doğrusal Momentum Doğru boyunca hareket eden bir cismin hareket miktarının (taşıdığı hareketin) ölçüsüdür Momentum bir cismin çarpma gücüdür Momentum un miktarı

Detaylı

DENEY 2 SABİT İVME İLE DÜZGÜN DOĞRUSAL HAREKET VE DÜZLEMDE HAREKET

DENEY 2 SABİT İVME İLE DÜZGÜN DOĞRUSAL HAREKET VE DÜZLEMDE HAREKET DENEY 2 SABİT İVME İLE DÜZGÜN DOĞRUSAL HAREKET VE DÜZLEMDE HAREKET AMAÇ: Sabit ivme ile düzgün doğrusal hareket çalışılıp analiz edilecek ve eğik durumda bulunan hava masasındaki diskin hareketi incelenecek

Detaylı

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ Bu bölümde, düzlemsel kinematik, veya bir rijit cismin düzlemsel hareketinin geometrisi incelenecektir. Bu inceleme, dişli, kam ve makinelerin yaptığı birçok işlemde

Detaylı

Kareköklü Sayılar. sayısını en yakın onda birliğe kadar tahmin edelim.

Kareköklü Sayılar. sayısını en yakın onda birliğe kadar tahmin edelim. 1 2 sayısını en yakın onda birliğe kadar tahmin edelim. 3 sayısını en yakın onda birliğe kadar tahmin edelim. 28 sayısına en yakın tam kare sayılar 25 ve 36 dır. 4 sayısını en yakın onda birliğe kadar

Detaylı

HIZ ve İVME AMAÇ: Yer-çekimi ivmesini ölçmek Sürtünmesiz eğik düzlemde hız-zaman ilişkisini incelemek BİLİNMESİ GEREKEN KAVRAMLAR:

HIZ ve İVME AMAÇ: Yer-çekimi ivmesini ölçmek Sürtünmesiz eğik düzlemde hız-zaman ilişkisini incelemek BİLİNMESİ GEREKEN KAVRAMLAR: HIZ ve İVME AMAÇ: Yer-çekii ivesini ölçek Sürtünesiz eğik düzlede hız-zaan ilişkisini inceleek BİLİNMESİ GEREKEN KAVRAMLAR: Konu vektörü Yer-değiştire vektörü Ortalaa hız ve anlık hız Ortalaa ive ve anlık

Detaylı

MIT 8.02, Bahar 2002 Ödev # 2 Çözümler

MIT 8.02, Bahar 2002 Ödev # 2 Çözümler Adam S. Bolton bolton@mit.edu MIT 8.02, Bahar 2002 Ödev # 2 Çözümler 22 Şubat 2002 Problem 2.1 İçi boş bir metalik küre içerisindeki bir noktasal yükün elektrik alanı - Gauss Yasası İş Başında Bu problemi

Detaylı

Fizik II Elektrik ve Manyetizma Manyetik Alan Kaynakları-1

Fizik II Elektrik ve Manyetizma Manyetik Alan Kaynakları-1 Ders Hakkında Fizik-II Elektrik ve Manyetizma Dersinin Amacı Bu dersin amacı, fen ve mühendislik öğrencilerine elektrik ve manyetizmanın temel kanunlarını lisans düzeyinde öğretmektir. Dersin İçeriği Hafta

Detaylı

: MAXWELL TEKERLEĞİ. Deneyin Adı Deneyin Amacı

: MAXWELL TEKERLEĞİ. Deneyin Adı Deneyin Amacı Deney No Deneyin Adı Deneyin Amacı : M4 : MAXWELL TEKERLEĞİ : İzole sistemlerde enerjinin korunumu ilkesini ve potansiyel ile kinetik enerji arası dönüşümlerini gözlemlemek/türetmek Teorik Bilgi : Maxwell

Detaylı

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok Gauss Yasası Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok daha kullanışlı bir şekilde nasıl hesaplanabileceği

Detaylı

2. Örnek Ders Planı 1) Konu: Geometrik cisimler 2) Seviye: İlköğretim 7. sınıf 3) Süre:28 saat

2. Örnek Ders Planı 1) Konu: Geometrik cisimler 2) Seviye: İlköğretim 7. sınıf 3) Süre:28 saat EĞİTİCİLER İÇİN 1. Konunun Müfredattaki Yeri İlköğretim matematik yedinci sınıflara yönelik olan geometrik cisimler, öğrencilere dairesel silindirin ve küpün yakından tanımasına imkan sağlamaktadır. Bu

Detaylı

MIT 8.02, Bahar 2002 Ödev # 6 Çözümler

MIT 8.02, Bahar 2002 Ödev # 6 Çözümler Adam S. Bolton bolton@mit.edu MIT 8.02, Bahar 2002 Ödev # 6 Çözümler 5 Nisan 2002 Problem 6.1 Dönen Bobin.(Giancoli 29-62) Bobin, yüzü manyetik alana dik olarak başlar (daha bilimsel konuşmak gerekirse,

Detaylı

ÖLÜM 3 DENGE, İR KUVVETİN MOMENTİ 3.1 ir Kuvvetin Momenti elirli bir doğrultu ve şiddete sahip bir kuvvetin, bir cisim üzerine etkisi, kuvvetin etki çizgisine bağlıdır. Şekil.3.1 de F 1 kuvveti cismi sağa

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 16 Rijit Cismin Düzlemsel Kinematiği Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 16 Rijit

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

2.DENEY. ... sabit. Araç kalem, silgi, hesap. makinası. olduğundan, cisim. e 1. ivme her zaman sabittir (1) (2)

2.DENEY. ... sabit. Araç kalem, silgi, hesap. makinası. olduğundan, cisim. e 1. ivme her zaman sabittir (1) (2) NEWTON HAREKET YASALARI.DENEY. Aaç: Haa rayı düzeneği ile Newon hareke yasalarının leşirilesi. Araç e Gereçler: Haa rayı, haa üfleyici, elekronik süre ölçer, opik kapılar, farklı küleli lar, kefe, 0g lık

Detaylı

ALTERNATİF AKIMIN DENKLEMİ

ALTERNATİF AKIMIN DENKLEMİ 1 ALTERNATİF AKIMIN DENKLEMİ ALTERNATİF AKIM Lineer ve Açısal Hız Lineer ve Açısal Hız Lineer hız v, lineer(doğrusal) yer değişiminin(s) bu sürede geçen zamana oranı olarak tanımlanır. Lineer hızın birimi

Detaylı

ÇÖZÜMLER. 3. I. Ortam sürtünmesiz ise, a) Di na mi ğin te mel pren si bi sis te me uy gu lan dığın 30 T 1 T 1. II. Ortamın sürtünme katsayısı 0,1 ise,

ÇÖZÜMLER. 3. I. Ortam sürtünmesiz ise, a) Di na mi ğin te mel pren si bi sis te me uy gu lan dığın 30 T 1 T 1. II. Ortamın sürtünme katsayısı 0,1 ise, BÖÜM DİNAMİ AIŞIRMAAR ÇÖZÜMER DİNAMİ 1 4kg 0N yty M düzle rsınd : rsınd cisin ivesi /s olduğundn cise uygulnn kuvvet, 1 4 0 N olur M rsınd : M rsınd cisin ivesi /s olduğundn cise etki eden sürtüne kuvveti,

Detaylı

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ 7 BÖÜM İTME E MMENTUM MDE SRU - DEİ SRUARIN ÇÖZÜMERİ Cisi esnek çarpışa yaptığına göre, çarptığı hızla engelden eşit açıyla yansır II engeline dik geldiğinden üzerinden geri döner II I 45 45 45 3 Cis e

Detaylı

Simdi Çok Kolay YAYINLARIMIZ

Simdi Çok Kolay YAYINLARIMIZ Sidi Çok Kolay YAYINLARIMIZ Öz alar İlkokul, ortaokul ve lise sınıfları için hazırladığıız özel seri öğreten yayınlarıız ile tü sınıfların ve öğrencilerin dersleriyle ilgili teel bilgileri en kolay biçide

Detaylı

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ Bu konular denge problemelerinden tamamen bağımsızdır. Alanların ağırlık merkezi ve atalet momenti ismi verilen geometrik

Detaylı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı FOURIER SERİLERİ Bu bölümde Fourier serilerinden bahsedeceğim. Önce harmoniklerle (katsıklıklarla) ilişkili sinüsoidin tanımından başlıyacağım ve serilerin trigonometrik açılımlarını kullanarak katsayıları

Detaylı

TEST 14-1 KONU İTME MOMENTUM. Çözümlerİ ÇÖZÜMLERİ 6. F F

TEST 14-1 KONU İTME MOMENTUM. Çözümlerİ ÇÖZÜMLERİ 6. F F KOU 4 TM MOMTUM Çözüler TST 4- ÇÖÜMLR. F t grafi inin alt ndaki alan iteyi verir. Cisin ilk h z bilineden ya da. aral kta h zland n bulaay z. ve. alanlar eşit olduğundan = ise oentu değişileri ayndr..

Detaylı

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir.

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir. 1 İNTEGRAL BİR FONKSİYONUN DİFERANSİYELİ Tanım: f: [a,b] R, x f(x) fonksiyonu (a,b) aralığında türevli olmak üzere, x değişkeninin değişme miktarı x ise f '(x). x ifadesine f(x) fonksiyonunun diferansiyeli

Detaylı

1. GİRİŞ Örnek: Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre), zamanın t (saniye) bir fonksiyonu olarak

1. GİRİŞ Örnek: Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre), zamanın t (saniye) bir fonksiyonu olarak DERS: MATEMATİK I MAT0(09) ÜNİTE: TÜREV ve UYGULAMALARI KONU: A. TÜREV. GİRİŞ Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre) zamanın t (saniye) bir fonksiyonu olarak

Detaylı

İTME VE MOMENTUM. 1. P i

İTME VE MOMENTUM. 1. P i 7 BÖÜM İTME E MOMENTUM AIŞTIRMAAR ÇÖZÜMER İTME E MOMENTUM P i 0/s kg P s 0/s kg x +x düzle a Du va rın cis e u gu la dı ğı it e, o en tu de ği şi i ne eşit tir P i i 0 0 kg/s P s s ( 0 0 kg/s it e P P

Detaylı

11. SINIF KONU ANLATIMLI. 1. ÜNİTE: KUVVET VE HAREKET 6. Konu ENERJİ VE HAREKET ETKİNLİK VE TEST ÇÖZÜMLERİ

11. SINIF KONU ANLATIMLI. 1. ÜNİTE: KUVVET VE HAREKET 6. Konu ENERJİ VE HAREKET ETKİNLİK VE TEST ÇÖZÜMLERİ . SINIF KONU NLTIMLI. ÜNİTE: KUVVET VE HREKET 6. Konu ENERJİ VE HREKET ETKİNLİK VE TEST ÇÖZÜMLERİ 6. Enerji ve Hareket. Ünite 6. Konu (Enerji ve Hareket) K v 0 0 5 nın Çözüleri L M yatay Cisin K noktasında

Detaylı

DENEY 3 ATWOOD MAKİNASI

DENEY 3 ATWOOD MAKİNASI DENEY 3 ATWOOD MAKİNASI AMAÇ Bu deney bir cisin hareketi ve hareketi doğuran sebepleri arasındaki ilişkiyi inceler. Bu deneyde, eğik hava asası üzerine kuruluş Atwood akinesini kullanarak, Newton un ikinci

Detaylı

MATEMATİK 1 TESTİ (Mat 1)

MATEMATİK 1 TESTİ (Mat 1) MTMTİK TSTİ (Mat ). u testte 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. a ve b sıfırdan farklı gerçel sayılar olmak üzere, a a b = = a b b olduğuna

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir.

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. STATIK VE MUKAVEMET 4. Ağırlık Merkezi AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük bir alana etki eden birbirlerine

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) ÖSS MT- / 008 MTEMTİK TESTİ (Mat ). u testte sırasıla, Matematik ( ) Geometri ( 0) ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz.. + = olduğuna

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

XIV. ULUSAL FİZİK OLİMPİYATI-2006 BİRİNCİ AŞAMA SINAVI

XIV. ULUSAL FİZİK OLİMPİYATI-2006 BİRİNCİ AŞAMA SINAVI XIV. ULUSAL FİZİK OLİMPİYATI 006 / BİRİNCİ AŞAMA SINAVI TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI XIV. ULUSAL FİZİK OLİMPİYATI-006 BİRİNCİ AŞAMA SINAVI 6

Detaylı

2. POTANSİYEL VE KİNETİK ENERJİ 2.1. CİSİMLERİN POTANSİYEL ENERJİSİ. Konumundan dolayı bir cismin sahip olduğu enerjiye Potansiyel Enerji denir.

2. POTANSİYEL VE KİNETİK ENERJİ 2.1. CİSİMLERİN POTANSİYEL ENERJİSİ. Konumundan dolayı bir cismin sahip olduğu enerjiye Potansiyel Enerji denir. BÖLÜM POTANSİYEL VE KİNETİK ENERJİ. POTANSİYEL VE KİNETİK ENERJİ.1. CİSİMLERİN POTANSİYEL ENERJİSİ Konumundan dolayı bir cismin sahip olduğu enerjiye Potansiyel Enerji denir. Mesela Şekil.1 de görülen

Detaylı

17 ÞUBAT 2016 5. kontrol

17 ÞUBAT 2016 5. kontrol 17 ÞUBAT 2016 5. kontrol 3 puanlýk sorular 1. Tuna ve Coþkun un yaþlarý toplamý 23, Coþkun ve Ali nin yaþlarý toplamý 24 ve Tuna ve Ali nin yaþlarý toplamý 25 tir. En büyük olanýn yaþý kaçtýr? A) 10 B)

Detaylı

DİNAMİK. Ders_10. Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü. Ders notları için: GÜZ

DİNAMİK. Ders_10. Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü. Ders notları için: GÜZ DİNAMİK Ders_10 Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü Ders notları için: http://kisi.deu.edu.tr/serkan.misir/ 2016-2017 GÜZ KÜTLE ATALET MOMENTİ Bugünün Hedefleri: 1. Rijit bir cismin

Detaylı

BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ

BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ Gerçek akışkanın davranışı viskoziteden dolayı meydana gelen ilave etkiler nedeniyle ideal akışkan akımlarına göre daha karmaşık yapıdadır. Gerçek akışkanlar hareket

Detaylı

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 4. Ağırlık Merkezi Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

İtme Momentum Açısal Momentum. Futbol da Şut

İtme Momentum Açısal Momentum. Futbol da Şut İtme Momentum Açısal Momentum Futbol da Şut SBA 206 Spor Biyomekaniği 22 Nisan 2010 Arif Mithat Amca 1 Kütle Çekim Kuvveti Kütle Ağırlık Moment Denge Ağırlık/Kütle Merkezi İnsanda Vücut Kütle/Ağırlık Merkezinin

Detaylı

Kinematik. Bir Boyutlu Hareket. İki ve Üç Boyutta Hareket. Fiz 1011 Ders 3. Yerdeğiştirme, Hız ve Sürat Serbest Düşen Cisimler

Kinematik. Bir Boyutlu Hareket. İki ve Üç Boyutta Hareket. Fiz 1011 Ders 3. Yerdeğiştirme, Hız ve Sürat Serbest Düşen Cisimler Fiz 1011 Ders 3 Kinematik Bir Boyutlu Hareket Yerdeğiştirme, Hız e Sürat Serbest Düşen Cisimler İki e Üç Boyutta Hareket Yerdeğiştirme, Hız e İme Vektörleri Teğetsel e Radyal İme Eğik Atış Hareketi Düzgün

Detaylı

Şekil 6.1 Basit sarkaç

Şekil 6.1 Basit sarkaç Deney No : M5 Deney Adı : BASİT SARKAÇ Deneyin Amacı yer çekimi ivmesinin belirlenmesi Teorik Bilgi : Sabit bir noktadan iple sarkıtılan bir cisim basit sarkaç olarak isimlendirilir. : Basit sarkaçta uzunluk

Detaylı

EMAT ÇALIŞMA SORULARI

EMAT ÇALIŞMA SORULARI EMAT ÇALIŞMA SORULARI 1) A = 4. ı x 2. ı y ı z ve B = ı x + 4. ı y 4. ı z vektörlerinin dik olduğunu gösteriniz. İki vektörün skaler çarpımlarının sıfır olması gerekir. A. B = 4.1 + ( 2). 4 + ( 1). ( 4)

Detaylı

Fizik 101: Ders 22. Gündem

Fizik 101: Ders 22. Gündem Fizik 101: Ders 22 Tekrar Gündem Kalas & Teller Ya tel koparsa? Merdiven Asılı Krişler Denge Kamyonda Buzdolabı Statik (tekrar) Herhangi bir statik problemini çözmek için genelde 2 denklem F 0 0 kullanırız.

Detaylı

O )molekül ağırlığı 18 g/mol ve 1g suyun kapladığı hacimde

O )molekül ağırlığı 18 g/mol ve 1g suyun kapladığı hacimde 1) Suyun ( H 2 O )molekül ağırlığı 18 g/mol ve 1g suyun kapladığı hacimde 10 6 m 3 olduğuna göre, birbirine komşu su moleküllerinin arasındaki uzaklığı Avagadro sayısını kullanarak hesap ediniz. Moleküllerin

Detaylı

Fizik II Elektrik ve Manyetizma Elektriksel Potansiyel

Fizik II Elektrik ve Manyetizma Elektriksel Potansiyel Ders Hakkında FizikII Elektrik ve Manyetizma Dersinin Amacı Bu dersin amacı, fen ve mühendislik öğrencilerine elektrik ve manyetizmanın temel kanunlarını lisans düzeyinde öğretmektir. Dersin İçeriği Hafta

Detaylı

DAİRESEL HAREKET A)2 B)3 C)4 D) 2 2 E)40

DAİRESEL HAREKET A)2 B)3 C)4 D) 2 2 E)40 DAİRESE HAREET. Bir çaycı, 0,4 yarıçaplı dairesel yörünge izleyen elindeki tepsiyi düşey düzlede döndürürken içinde bulunan çayın döküleesi için tepsiyi en az kaç /s hızla döndürelidir? (g=0 /s ) A) B)3

Detaylı

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25 İÇİNDEKİLER Ön Söz...2 Noktanın Analitik İncelenmesi...3 Doğrunun Analitiği...11 Analitik Düzlemde Simetri...25 Analitik Sistemde Eşitsizlikler...34 Çemberin Analitik İncelenmesi...40 Elips...58 Hiperbol...70

Detaylı

MATEMATÝK GEOMETRÝ DENEMELERÝ

MATEMATÝK GEOMETRÝ DENEMELERÝ NM MTMTÝK GOMTRÝ NMLRÝ. 0,4 : 0, 0, 5 5 işleminin sonucu kaçtır? 4. = 4+ 3 5+ 4 6 +... + 3 toplamında her bir terimde birinci çarpan artırılıp ikinci çarpan azaltılırsa kaç artar? ) ) ) ) ) 3 5 ) 4 ) )

Detaylı

Bir boyutta sabit ivmeli hareket..

Bir boyutta sabit ivmeli hareket.. Bir boyutta sabit ivmeli hareket.. İvme sabit olduğunda, ortalama ivme ani ivmeye eşit olur. Hız hareketin başından sonuna kadar aynı oranda artar veya azalır. a x = v xf v xi t ; t i = 0 ve t f = t alınmıştır

Detaylı

9. SINIF FİZİK YAZ TATİLİ ÖDEV KİTAPÇIĞI. MEV Koleji Özel Ankara Okulları

9. SINIF FİZİK YAZ TATİLİ ÖDEV KİTAPÇIĞI. MEV Koleji Özel Ankara Okulları 9. SINIF FİZİK YAZ TATİLİ ÖDEV KİTAPÇIĞI MEV Koleji Özel Ankara Okulları Sevgili öğrenciler; yorucu bir çalışma döneminden sonra hepiniz tatili hak ettiniz. Fakat öğrendiklerimizi kalıcı hale getirmek

Detaylı

Dinamik. Fatih ALİBEYOĞLU -10-

Dinamik. Fatih ALİBEYOĞLU -10- 1 Dinamik Fatih ALİBEYOĞLU -10- Giriş & Hareketler 2 Rijit cismi oluşturan çeşitli parçacıkların zaman, konum, hız ve ivmeleri arasında olan ilişkiler incelenecektir. Rijit Cisimlerin hareketleri Ötelenme(Doğrusal,

Detaylı

FİZ 216 ELEKTRİK ve MANYETİZMA GRADİYENT DİVERJANS ROTASYONEL (KÖRL) HELMHOLTZ TEOREMİ KOORDİNAT SİSTEMLERİ

FİZ 216 ELEKTRİK ve MANYETİZMA GRADİYENT DİVERJANS ROTASYONEL (KÖRL) HELMHOLTZ TEOREMİ KOORDİNAT SİSTEMLERİ FİZ 216 ELEKTRİK ve MANYETİZMA GRADİYENT DİVERJANS ROTASYONEL (KÖRL) HELMHOLTZ TEOREMİ KOORDİNAT SİSTEMLERİ (del) operatörü, Bir f skaler alanına etkirse: f GRADİYENT Bir A vektör alanı ile skaler çarpılırsa:

Detaylı

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi İçerik Tanımlar

Detaylı