Kareköklü Sayılar. sayısını en yakın onda birliğe kadar tahmin edelim.

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Kareköklü Sayılar. sayısını en yakın onda birliğe kadar tahmin edelim."

Transkript

1 1

2 2

3 sayısını en yakın onda birliğe kadar tahmin edelim. 3

4 sayısını en yakın onda birliğe kadar tahmin edelim. 28 sayısına en yakın tam kare sayılar 25 ve 36 dır. 4

5 sayısını en yakın onda birliğe kadar tahmin edelim. 28 sayısına en yakın tam kare sayılar 25 ve 36 dır. Bu sayıları 25<28<36 şeklinde sıralayabiliriz. 5

6 sayısını en yakın onda birliğe kadar tahmin edelim. 28 sayısına en yakın tam kare sayılar 25 ve 36 dır. Bu sayıları 25<28<36 şeklinde sıralayabiliriz. Sıraladığımız sayıların kareköklerini alalım. 6

7 sayısını en yakın onda birliğe kadar tahmin edelim. 28 sayısına en yakın tam kare sayılar 25 ve 36 dır. Bu sayıları 25<28<36 şeklinde sıralayabiliriz. Sıraladığımız sayıların kareköklerini alalım. < < olur. 7

8 sayısını en yakın onda birliğe kadar tahmin edelim. 28 sayısına en yakın tam kare sayılar 25 ve 36 dır. Bu sayıları 25<28<36 şeklinde sıralayabiliriz. Sıraladığımız sayıların kareköklerini alalım. < < olur. 5 < < 6 yazabiliriz. 8

9 sayısını en yakın onda birliğe kadar tahmin edelim. 28 sayısına en yakın tam kare sayılar 25 ve 36 dır. Bu sayıları 25<28<36 şeklinde sıralayabiliriz. Sıraladığımız sayıların kareköklerini alalım. < < olur. 5 < < 6 yazabiliriz. in 5 ile 6 arasında bir sayı olduğunu söyleyebiliriz. 9

10 için i en yakın onda birliğe kadar tahmin edebilmek 28 in, 25 ve 36 sayılarına olan uzaklığına bakalım: 10

11 i en yakın onda birliğe kadar tahmin edebilmek için 28 in, 25 ve 36 sayılarına olan uzaklığına bakalım: 28-25= 3 8} 36-28= 28 sayısı, 25 e 36 dan daha yakın olduğundan i 5,2 veya 5,3 olarak tahmin edebiliriz. 11

12 i en yakın onda birliğe kadar tahmin edebilmek için 28 in, 25 ve 36 sayılarına olan uzaklığına bakalım: 28-25= 3 8} 36-28= 28 sayısı, 25 e 36 dan daha yakın olduğundan i 5,2 veya 5,3 olarak tahmin edebiliriz. (5,2) 2 = 27,04 (5,3) 2 = 28,09 } 5,3 olur. 12

13 i sayı doğrusunda gösterelim

14 Yaptığımız tahmini, hesap makinesi kullanarak kontrol edelim. Bunun için hesap makinesine 28 yazıp tuşuna 5, olarak buluruz. 14

15 sayısı hangi iki tam sayı arasındadır? 15

16 sayısı hangi iki tam sayı arasındadır? 75 sayısına en yakın tam kare sayılar 64 ve 81 dir. 16

17 sayısı hangi iki tam sayı arasındadır? 75 sayısına en yakın tam kare sayılar 64 ve 81 dir. Bu sayıları 64<75<81 şeklinde sıralayabiliriz. 17

18 sayısı hangi iki tam sayı arasındadır? 75 sayısına en yakın tam kare sayılar 64 ve 81 dir. Bu sayıları 64<75<81 şeklinde sıralayabiliriz. Sıraladığımız sayıların kareköklerini alalım. 18

19 sayısı hangi iki tam sayı arasındadır? 75 sayısına en yakın tam kare sayılar 64 ve 81 dir. Bu sayıları 64<75<81 şeklinde sıralayabiliriz. Sıraladığımız sayıların kareköklerini alalım. < < 19

20 sayısı hangi iki tam sayı arasındadır? 75 sayısına en yakın tam kare sayılar 64 ve 81 dir. Bu sayıları 64<75<81 şeklinde sıralayabiliriz. Sıraladığımız sayıların kareköklerini alalım. < < 8 < < 9 olur. 20

21 sayısı hangi iki tam sayı arasındadır? 21

22 sayısı hangi iki tam sayı arasındadır? 110 sayısına en yakın tam kare sayılar 100 ve 121 dir. 22

23 sayısı hangi iki tam sayı arasındadır? 110 sayısına en yakın tam kare sayılar 100 ve 121 dir. Bu sayıları 100<110<121 şeklinde sıralayabiliriz. 23

24 sayısı hangi iki tam sayı arasındadır? 110 sayısına en yakın tam kare sayılar 100 ve 121 dir. Bu sayıları 100<110<121 şeklinde sıralayabiliriz. Sıraladığımız sayıların kareköklerini alalım. 24

25 sayısı hangi iki tam sayı arasındadır? 110 sayısına en yakın tam kare sayılar 100 ve 121 dir. Bu sayıları 100<110<121 şeklinde sıralayabiliriz. Sıraladığımız sayıların kareköklerini alalım. < < 25

26 sayısı hangi iki tam sayı arasındadır? 110 sayısına en yakın tam kare sayılar 100 ve 121 dir. Bu sayıları 100<110<121 şeklinde sıralayabiliriz. Sıraladığımız sayıların kareköklerini alalım. < < 10 < < 11 olur. 26

27 Tam kare olmayan sayıya yakın iki tane tam kare sayı bulunur. Bu üç sayı küçükten büyüğe doğru sembol kullanarak yazılır. Aynı sıralama bu sayıların karekökleri için de yapılır. Yaptığımız sıralamadan yararlanarak tam kare olmayan sayının karekökünün hangi iki tam sayı arasında olduğu tahmin edilir. 27

28 sembolünden önce bir sayının karekökü için kök ve kenar sözcükleri kullanılmaktaydı. 28

29 sembolünden önce bir sayının karekökü için kök ve kenar sözcükleri kullanılmaktaydı. Siz, bu sembol ve karekök sözcüğü yerine ne kullanırdınız? 29

11. RASYONEL SAYILARIN SIRALANMASI

11. RASYONEL SAYILARIN SIRALANMASI 11. RASYONEL SAYILARIN SIRALANMASI SIRALAMA SEMBOLLERİ Sıralama sembolleri, sayıların sıralanma şeklini gösterirler. Yani, sıralama sembolleri sayıların küçükten büyüğe veya büyükten küçüğe doğru sıralanmasını

Detaylı

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür. ÖZDEĞER VE ÖZVEKTÖRLER A n n tipinde bir matris olsun. AX = λx (1.1) olmak üzere n 1 tipinde bileşenleri sıfırdan farklı bir X matrisi için λ sayıları için bu denklemi sağlayan bileşenleri sıfırdan farklı

Detaylı

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER HEDEFLER İÇİNDEKİLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER Özdeşlikler Birinci Dereceden Bir Bilinmeyenli Denklemler İkinci Dereceden Bir Bilinmeyenli Denklemler Yüksek Dereceden Denklemler Eşitsizlikler

Detaylı

Dolgu Rengi: Seçili hücre veya hücrelerin arka planını renklendirir.

Dolgu Rengi: Seçili hücre veya hücrelerin arka planını renklendirir. Microsoft Excel Nedir? Bir hesap tablosu programıdır. Excel, her türlü bilgiyi (özellikle sayısal bilgileri) tablolar ya da listeler halinde tutma ve bu bilgilerle ilgili ihtiyaç duyacağınız tüm hesaplamaları

Detaylı

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler DÖRDÜNCÜ BÖLÜM 4.1. Aritmetik işlemler Bu bölümde öğrencilerin lisede bildikleri aritmetik işlemleri hatırlatacağız. Bütün öğrencilerin en azından tamsayıların toplama, çıkarma, çarpma ve bölme işlemlerini

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

Donatılar-Hesap Makinesi

Donatılar-Hesap Makinesi Donatılar-Hesap Makinesi Hesap Makinesi Hesap Makinesi ni toplama, çıkarma, çarpma ve bölme işlemleri gibi basit hesaplamalar için kullanabilirsiniz. Hesap Makinesi ayrıca programlama, bilimsel ve istatistiksel

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

= =

= = a 0 için a 1 = 1 a dır. 1 2 2 1 4 + 1 1 m = = 1 4. 4 1+4m = 1 1+4m = 1 13 1 4 1+4m=13, 4m=12, m=3 = 1 4 + m 1 4 1 + 4m 4 0,2= 2 10, 0,4 = 4 10 a3 = a.a.a 2.(0,2) 3 + (0,4) 3 = 2.( 2 10 )3 + ( 4 10 )3 8

Detaylı

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c 0. Küme Cebri Bu bölümde verilen keyfikümeler üzerinde birleşim, kesişim, fark, tümleyen,...gibi özellikleri sağlayan eşitliklerle ilgilenceğiz. İlk olarak De Morgan kurallarıdiye bilinen bir Teoremi ifade

Detaylı

Belli tarihlerde yatırılan taksitlerle, belli bir süre sonunda meydana gelecek kapital, taksitlerin baliğleri toplamına eşit olur.

Belli tarihlerde yatırılan taksitlerle, belli bir süre sonunda meydana gelecek kapital, taksitlerin baliğleri toplamına eşit olur. 1 KAPİTAL OLUŞTURULMASI Kapital oluşturulması, bir kredi kurumuna belli tarihlerde, belli miktarlarda yatırılan paralarla, belli bir süre sonunda belli büyüklükte bir para meydana getirme işlemidir. Küçük

Detaylı

Sihirli Kareler (II) Ali Nesin

Sihirli Kareler (II) Ali Nesin Sihirli Kareler (II) Ali Nesin ir önceki yazıda n bir tek tamsayı olduğunda n n sihirli karelerin nasıl yapılacağını öğrenmiştik. Bu yazıda n nin çift olduğu n n boyutlu sihirli kareleri ele alacağız.

Detaylı

Üslü Nicelikler = 2 4 (iki üzeri dört) 4 tane. Sefa Tuncay. 8.8 = 8 2 (sekiz üzeri iki) veya (sekizin karesi) 2 tane

Üslü Nicelikler = 2 4 (iki üzeri dört) 4 tane. Sefa Tuncay. 8.8 = 8 2 (sekiz üzeri iki) veya (sekizin karesi) 2 tane Üslü Nicelikler Dogal sayıların kendisiyle tekrarlı çarpımını üslü nicelik olarak ifade eder ve üslü niceliklerin değerini belirler. Kim Milyoner Olmak İster? yarışmasına katıldığınızı ve büyük ödül 1

Detaylı

Demek ki ölçmeye çalıştığımız açı dar açıdır. üçgen. gönye. dar açı

Demek ki ölçmeye çalıştığımız açı dar açıdır. üçgen. gönye. dar açı Dar Açı Gönyemizin dik kısmını herhangi bir şeklin köşesine yerleştirdiğimizde, şeklin köşesindeki açı gönyeden küçük olursa o köşedeki açıya dar açı denir. gönye Demek ki ölçmeye çalıştığımız açı dar

Detaylı

ÇARPANLAR VE KATLAR ÖĞRENİYORUM

ÇARPANLAR VE KATLAR ÖĞRENİYORUM ÖĞRENİYORUM Bir pozitif tam sayıyı birden fazla pozitif tam sayının çarpımı şeklinde yazarken kullandığımız her bir sayıya o sayının çarpanı denir. Örnek: nin çarpanları,, 3, 4, 6 ve dir. UYGULUYORUM Verilmeyen

Detaylı

Güneş Sistemi (Gezi Öncesinde)

Güneş Sistemi (Gezi Öncesinde) Güneş Sistemi (Gezi Öncesinde) ODTÜ Toplum ve Bilim Uygulama ve Araştırma Merkezi Boston, The Museum of Science tan uyarlanmıştır. Gezegen Evi 'Evrendeki Vaha' Gösterimi İçin Öğrenci Etkinliği (6. ve daha

Detaylı

8.SINIF CEBirsel ifadeler

8.SINIF CEBirsel ifadeler KAZANIM : 8.2.1.1. Basit cebirsel ifadeleri anlar ve farklı biçimlerde yazar. Hatırlatma 2 + 4y - 5 ifadesi bir cebirsel ifadedir ve değişkenler ve y dir. Cebirsel İfade: İçinde bir veya birden fazla bilinmeyen

Detaylı

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER MATEMATİK Taşkın, Çetin, Abdullayeva BÖLÜM. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER. ÖZDEŞLİKLER İki cebirsel ifade içerdikleri değişkenlerin (veya bilinmeyenlerin) her değeri içinbirbirine eşit oluyorsa,

Detaylı

TAM SAYILARI TANIYALIM

TAM SAYILARI TANIYALIM O.S 6.SINIF MATEMATİK 6 TAM SAYILARI TANIYALIM Kazanım: Tam sayıları yorumlar ve sayı doğrusunda gösterir ÇALIŞMA KAĞIDI Günlük yaşantımızda karşılaştığımız olayları ifade etmek için, doğal sayılar yetersiz

Detaylı

Onur NURTAN. Danışman Öğretmen: Mustafa YAZAGAN. Özel Atacan Anadolu Lisesi

Onur NURTAN. Danışman Öğretmen: Mustafa YAZAGAN. Özel Atacan Anadolu Lisesi KAĞIT KATLAMA YOLUYLA KESİRLERİN BELİRLENMESİ Onur NURTAN Danışman Öğretmen: Mustafa YAZAGAN Özel Atacan Anadolu Lisesi Özet: Kare biçimindeki kağıdı tam iki eş parçaya ayıran kırışığına kağıdımızı katlayarak

Detaylı

public static int Toplam int x, int y

public static int Toplam int x, int y static Kavramı 1 İçinde bulunduğu sınıftan nesne oluşturulmadan veya hiç bir nesneye referans olmadan kullanılabilen üyeler static olarak nitelendirilir. Metotlar ve alanlar static olarak tanımlanabilir.

Detaylı

MIT 8.02, Bahar 2002 Ödev # 6 Çözümler

MIT 8.02, Bahar 2002 Ödev # 6 Çözümler Adam S. Bolton bolton@mit.edu MIT 8.02, Bahar 2002 Ödev # 6 Çözümler 5 Nisan 2002 Problem 6.1 Dönen Bobin.(Giancoli 29-62) Bobin, yüzü manyetik alana dik olarak başlar (daha bilimsel konuşmak gerekirse,

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

KESİRLER BİRİM KESİRLERİ SIRALAMA. Birim kesirlerde paydası büyük olan kesir daha küçüktür.

KESİRLER BİRİM KESİRLERİ SIRALAMA. Birim kesirlerde paydası büyük olan kesir daha küçüktür. BİRİM KESİRLERİ SIRALAMA Bir bütünün eş parçalarından her birine kesir denir. Payı olan kesirlere birim kesir denir. Birim kesirlerde paydası büyük olan kesir daha küçüktür.,, 8 kesirlerini sıralayınız.

Detaylı

13. Karakteristik kökler ve özvektörler

13. Karakteristik kökler ve özvektörler 13. Karakteristik kökler ve özvektörler 13.1 Karakteristik kökler 1.Tanım: A nxn tipinde matris olmak üzere parametrisinin n.dereceden bir polinomu olan şeklinde gösterilen polinomuna A matrisin karakteristik

Detaylı

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30 İçindekiler 1. ÜNİTE Bölüm 1 : Üslü Sayılar... 8 Bölüm 2 : Doğal Sayılar... 18 Bölüm 3 : Doğal Sayı Problemleri... 30 Bölüm 4 :- Çarpanlar ve Katlar, Bölünebilme... 40 Bölüm 5 : Asal Sayılar, Ortak Bölenler,

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Fibonacci Sayıları 4. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Fibonacci nin Tavşanları Fibonacci Sayıları Fibonacci

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

1. ÇÖZÜM YOLU: (15) 8 = = 13 13:2 = :2 = :2 = 1.2+1

1. ÇÖZÜM YOLU: (15) 8 = = 13 13:2 = :2 = :2 = 1.2+1 . ÇÖZÜM YOLU: (5) 8 =.8+5 = 3 3:2 = 6.2+ 6:2 = 3.2+0 3:2 =.2+ En son bölümden başlayarak kalanları sıralarız. (5) 8 = (0) 2 2. ÇÖZÜM YOLU: 8 sayı tabanında verilen sayının her basamağını, 2 sayı tabanında

Detaylı

Örnek...3 : β θ. Örnek...1 : Örnek...2 : KARMAŞIK SAYILAR 4. w i. = n z { i=0,1,2,...,(n 1) } Adım 1. Adım 2. Adım 3

Örnek...3 : β θ. Örnek...1 : Örnek...2 : KARMAŞIK SAYILAR 4. w i. = n z { i=0,1,2,...,(n 1) } Adım 1. Adım 2. Adım 3 KARMAŞIK SAYININ ORJİN ETRAFINDA DÖNDÜRÜLMESİ z = a + bi karmaşık sayısını, uzunluğunu değiştirmeden orijin etrafında pozitif yönde β kadar döndürülmesiyle elde edilen yeni karm aşık sa yı w olsun. İm

Detaylı

Bir bütünün eş parçalarının bütüne olan oranı kesir olarak adlandırılır. b Payda

Bir bütünün eş parçalarının bütüne olan oranı kesir olarak adlandırılır. b Payda Matematik6 Bir Bakışta Matematik Kazanım Defteri Özet bilgi alanları... Kesirlerle İşlemler KESİR ve KESİRLERDE SIRALAMA Bir bütünün eş parçalarının bütüne olan oranı kesir olarak adlandırılır. Bir kesirde

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Projenin Amacı: Çok kullanılan trigonometrik oranların farklı ve pratik yöntemlerle bulunması

Projenin Amacı: Çok kullanılan trigonometrik oranların farklı ve pratik yöntemlerle bulunması Projenin Adı: Trigonometrik Oranlar için Pratik Yöntemler Projenin Amacı: Çok kullanılan trigonometrik oranların farklı ve pratik yöntemlerle bulunması GİRİŞ: Matematiksel işlemlerde, lazım olduğunda,

Detaylı

TEKİRDAĞ SOSYAL BİLİMLER LİSESİ 10. SINIF MATEMATİK DERSİ YILLIK PLANI

TEKİRDAĞ SOSYAL BİLİMLER LİSESİ 10. SINIF MATEMATİK DERSİ YILLIK PLANI 9 Eylül- Eylül 0-07 TEKİRDAĞ SOSYAL BİLİMLER LİSESİ 0. SINIF MATEMATİK DERSİ YILLIK PLANI Veri, Sayma ve Sayma. Olayların gerçekleşme sayısını toplama ve çarpma prensiplerini kullanarak hesaplar. Sıralama

Detaylı

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 2 3 4 5 Paralel plakalı bir kondansatörün plakaları arasındaki elektrik alan, merkeze yakın yerlerde düzgün, fakat plakaların kenarlarına yakın

Detaylı

4. SINIF MATEMATİK 1. KİTAP

4. SINIF MATEMATİK 1. KİTAP 4. SINIF MTEMTİK 1. KİTP u kitabın bütün hakları Hacer KÜÇÜKYDIN a aittir. Yazarın yazılı izni olmaksızın kısmen veya tamamen alıntı yapılamaz ve çoğaltılamaz. Copyright 2015 YZR hmet KÜÇÜKYDIN KPK TSRIMI

Detaylı

Şimdi Okullu Olduk İlkokul 1. Sınıf

Şimdi Okullu Olduk İlkokul 1. Sınıf Yrd. Doç. Dr. Özgül Polat Şimdi Okullu Olduk İlkokul 1. Sınıf 11 Adım ve Soyadım Eşleştirme yapalım. A Cümlelerin ilk harflerinin her zaman büyük olması gerektiğini biliyor muydunuz? e T t E l e E L L

Detaylı

EĞİTİM - ÖĞRETİM YILI 10. SINIF MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ

EĞİTİM - ÖĞRETİM YILI 10. SINIF MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ EKİM 07-08 EĞİTİM - ÖĞRETİM YILI 0. SINIF MATEMATİK DERSİ 0... Olayların gerçekleşme sayısını toplama ve çarpma prensiplerini kullanarak hesaplar. 0... Sınırsız sayıda tekrarlayan nesnelerin dizilişlerini

Detaylı

Erciyes Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü İNŞ-201 Nümerik Analiz Dersi Final Sınavı

Erciyes Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü İNŞ-201 Nümerik Analiz Dersi Final Sınavı Erciyes Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü İNŞ-201 Nümerik Analiz Dersi Final Sınavı (30)1.a) İki reel sayının mantissa ları (gövde kısımları) eşit ve mantissa1 = mantissa2

Detaylı

SAYILAR DOĞAL VE TAM SAYILAR

SAYILAR DOĞAL VE TAM SAYILAR 1 SAYILAR DOĞAL VE TAM SAYILAR RAKAM: Sayıları ifade etmek için kullandığımız 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembollerinden her birine rakam denir. Soru: a ve b farklı rakamlar olmak üzere a + b nin alabileceği

Detaylı

Doğrusal Fonksiyonlar, Karesel Fonksiyonlar, Polinomlar ve Rasyonel Fonksiyonlar, Fonksiyon Çizimleri

Doğrusal Fonksiyonlar, Karesel Fonksiyonlar, Polinomlar ve Rasyonel Fonksiyonlar, Fonksiyon Çizimleri Doğrusal Fonksionlar, Karesel Fonksionlar, Polinomlar ve Rasonel Fonksionlar, Fonksion Çizimleri Bir Fonksionun Koordinat Kesişimleri(Intercepts). Bir fonksionun grafiğinin koordinat eksenlerini kestiği

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Çizgeler 7. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Çift ve Tek Dereceler Çizgeler Çift ve Tek Dereceler Soru 51 kişinin

Detaylı

ALTERNATİF AKIMIN DENKLEMİ

ALTERNATİF AKIMIN DENKLEMİ 1 ALTERNATİF AKIMIN DENKLEMİ Ani ve Maksimum Değerler Alternatif akımın elde edilişi incelendiğinde iletkenin 90 ve 270 lik dönme hareketinin sonunda maksimum emk nın indüklendiği görülür. Alternatif akımın

Detaylı

Dikkat: Bir eleman, her iki kümede de olsa bile sadece bir kez yazılır.

Dikkat: Bir eleman, her iki kümede de olsa bile sadece bir kez yazılır. KÜMELER Kümelerin birleşimi (A B ): Kümelerin bütün elemanlarından oluşur. Kümelerin kesişimi (A B): Kümelerin ortak elemanlarından oluşur. Kümelerin Farkı (A \ B ) veya (A - B ): Birinci kümede olup ikinci

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal I / 9 Mayıs Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal I / 9 Mayıs Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Đlkbahar / Sayısal I / 9 Mayıs 010 Matematik Soruları ve Çözümleri 1. 0,3 1 + 0,5 işleminin sonucu kaçtır? A) 0,1 B) 0,9 C) 1 D) 1,1 E) 10,1

Detaylı

Köklü Sayılar ,1+ 0,1+ 1, 6= m 10 ise m kaçtır? ( 8 5 ) 2x 3. + a =? (4)

Köklü Sayılar ,1+ 0,1+ 1, 6= m 10 ise m kaçtır? ( 8 5 ) 2x 3. + a =? (4) Köklü Sayılar.,+ 0,+, 6= m 0 ise m kaçtır ( 8 5 ). a= ise a + a (). : :... = 8 0 0... eşitliğini sağlayan değeri nedir (). 99.0+.6+ (75) 5. + : + 8 7 8 () 6. > 0 ve = olduğuna göre ( ) + a+ b 7. a, b R

Detaylı

TEOG SINAV SORUSU OKYANUS KOLEJLERİ SINAV SORUSU MATEMATİK MATEMATİK MATEMATİK. 1. (0,5) 4 ifadesi aşağıdakilerden hangisine eşittir? 1.

TEOG SINAV SORUSU OKYANUS KOLEJLERİ SINAV SORUSU MATEMATİK MATEMATİK MATEMATİK. 1. (0,5) 4 ifadesi aşağıdakilerden hangisine eşittir? 1. 1. (0,5) 4 ifadesi aşağıdakilerden hangisine eşittir? A) & 1 ½ B) > 1 & C) 16 A) 625 1. ù 1$ú 2 ifadesinin değeri aşağıdakilerden hangisine eşittir? A) 16 B) > 1 & C) > 1 & D) 16 2. 15 ile 75 arasında

Detaylı

: Yetmiş yedi milyon altı yüz doksan beş bin dokuz yüz dört

: Yetmiş yedi milyon altı yüz doksan beş bin dokuz yüz dört Matematik Bir Bakışta Matematik Kazanım Defteri Özet bilgi alanları... Doğal Sayılar DOĞAL SAYILARI OKUMA ve YAZMA Türkiye İstatistik Kurumu (TÜİK), adrese dayalı nüfus kayıt sistemi sonuçlarına göre Türkiye

Detaylı

DERS 2. Fonksiyonlar

DERS 2. Fonksiyonlar DERS Fonksionlar.1. Fonksion Kavramı. Her bilim dalının önemli bir işlevi, çeşitli nesneler vea büüklükler arasında eşlemeler kurmaktır. Böle bir eşleme kurulması tahmin ürütme olanağı verir. Örneğin,

Detaylı

Fizik 101: Ders 16. Konu: Katı cismin dönmesi

Fizik 101: Ders 16. Konu: Katı cismin dönmesi Fizik 0: Ders 6 Konu: Katı cisin dönesi Döne kineatiği Bir boyutlu kineatik ile benzeşi Dönen sistein kinetik enerjisi Eylesizlik oenti Ayrık parçacıklar Sürekli katı cisiler Paralel eksen teorei Rotasyon

Detaylı

10. DİREKT ÇARPIMLAR

10. DİREKT ÇARPIMLAR 10. DİREKT ÇARPIMLAR Teorem 10.1. H 1,H 2,, H n bir G grubunun alt gruplarının bir ailesi ve H = H 1 H 2 H n olsun. Aşağıdaki ifadeler denktir. a ) dönüşümü altında dır. b) ve olmak üzere her yi tek türlü

Detaylı

ÖZEL DARÜŞŞAFAKA LİSESİ SALİH ZEKİ V. MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI GEOMETRİDE ÖZEL DURUMDAN YARARLANARAK PROBLEM ÇÖZME METODU

ÖZEL DARÜŞŞAFAKA LİSESİ SALİH ZEKİ V. MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI GEOMETRİDE ÖZEL DURUMDAN YARARLANARAK PROBLEM ÇÖZME METODU ÖZEL DARÜŞŞAFAKA LİSESİ SALİH ZEKİ V. MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI GEOMETRİDE ÖZEL DURUMDAN YARARLANARAK PROBLEM ÇÖZME METODU ENES KOCABEY HALİL İBRAHİM GÜLLÜK 2014 DANIŞMAN ÖĞRETMEN : YÜKSEL

Detaylı

a = b ifadesine kareköklü ifade denir.

a = b ifadesine kareköklü ifade denir. KAREKÖKLÜ SAYILAR Rasyonel sayılar kümesi sayı ekseninde sık olmasına rağmen sayı eksenini tam dolduramamaktadır;çünkü sayı doğrusu üzerinde görüntüsü olduğu halde rasyonel olmayan sayılar da vardır. Karesi

Detaylı

Her noktas ya maviye ya k rm z ya boyanm fl bir düzlem

Her noktas ya maviye ya k rm z ya boyanm fl bir düzlem Renkli Noktalar Her noktas ya maviye ya k rm z ya boyanm fl bir düzlem önündeyiz. Baz noktalar maviye, baz noktalar k rm z - ya boyanm fl bir düzlem... Düzlemin sonsuz tane noktas n kim boyam flsa boyam

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta Kompleks Sayıların Cebirsel ve Geometrik Özellikleri

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta Kompleks Sayıların Cebirsel ve Geometrik Özellikleri 1. KOMPLEKS SAYILAR 1.1. Kompleks Sayıların Cebirsel ve Geometrik Özellikleri Tanım 1. x, y R olmak üzere (x, y) sıralı ikililerine kompleks sayı denir. Burada x, z nin reel kısmı, ve y, z nin imajiner

Detaylı

11. SINIF KONU ANLATIMLI. 1. ÜNİTE: KUVVET VE HAREKET 8. Konu TORK VE DENGE ETKİNLİK VE TEST ÇÖZÜMLERİ

11. SINIF KONU ANLATIMLI. 1. ÜNİTE: KUVVET VE HAREKET 8. Konu TORK VE DENGE ETKİNLİK VE TEST ÇÖZÜMLERİ 11. SINI NU ANAIMI 1. ÜNİE: UVVE VE HAREE 8. onu R VE DENGE EİNİ VE ES ÇÖZÜMERİ 8 ork ve Denge 1. Ünite 8. onu (ork ve Denge) A nın Çözümleri 1. Çubuk dengede olduğuna göre noktasına göre toplam tork sıfırdır.

Detaylı

Yrd. Doç. Dr. Nuray Çalışkan Dedeoğlu İlköğretim Matematik Eğitimi ndedeoglu@sakarya.edu.tr. MATEMATİK TARİHİ Aritmetik işlemler

Yrd. Doç. Dr. Nuray Çalışkan Dedeoğlu İlköğretim Matematik Eğitimi ndedeoglu@sakarya.edu.tr. MATEMATİK TARİHİ Aritmetik işlemler İlköğretim Matematik Eğitimi ndedeoglu@sakarya.edu.tr MATEMATİK TARİHİ Aritmetik işlemler Mısır sayı sisteminde toplama/çıkarma işlemi Toplama çıkarma işlemleri elde ve onluk bozma işlemlerimize benzer

Detaylı

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere,

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere, Bölüm 33 Denklemler 33.1 İkinci Dereceden Denklemler İkinci dereceden Bir Bilinmeyenli Denklemler a,b,c IR ve a 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli

Detaylı

X. Ulusal İlköğretim Matematik Olimpiyatı

X. Ulusal İlköğretim Matematik Olimpiyatı X. Ulusal İlköğretim Matematik Olimpiyatı B 1. Bir kentten diğerine giden bir otobüs, yolun ilk yarısını 40 km/saat, ikinci yarısını ise 60 km/saat hızla gittiyse, otobüsün ortalama hızı kaç km/saat olmuştur?

Detaylı

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n,

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n, DİZİLER Tamamen belirli bir kurala göre sıralanmış sayılar topluluğuna veya kümeye Dizi denir. Belirli bir kurala göre birbiri ardınca gelen bu sayıların her birine dizinin terimi ve hepsine birden dizinin

Detaylı

Beyin Cimnastikleri (I) Ali Nesin

Beyin Cimnastikleri (I) Ali Nesin Beyin Cimnastikleri (I) Ali Nesin S eks, yemek ve oyun doğal zevklerdendir. Her memeli hayvan hoşlanır bunlardan. İlk ikisi konumuz dışında. Üçüncüsünü konu edeceğiz. 1. İlk oyunumuz şöyle: Aşağıdaki dört

Detaylı

Singapur Matematik Olimpiyatı Soruları

Singapur Matematik Olimpiyatı Soruları Singapur Matematik Olimpiyatı Soruları 1.) 1, 1, 1,., 1 sayıları tahtaya yazılıyor. Burak x ve y gibi iki sayı seçip bunları siliyor ve 1 2 3 2010 x+y+xy sayısını yazıyor. Burak bu işleme tahtada tek sayı

Detaylı

MUTLAK DEĞER. Örnek...6 : 1 x > 1 y > 1 z. Örnek...7 : x=1 5, y= 5 2, ise x+y y x x =? Örnek...1 : =? Örnek...8 : Örnek...2 : =?

MUTLAK DEĞER. Örnek...6 : 1 x > 1 y > 1 z. Örnek...7 : x=1 5, y= 5 2, ise x+y y x x =? Örnek...1 : =? Örnek...8 : Örnek...2 : =? TANIM MUTLAK DEĞER Örnek...6 : 1 x > 1 y > 1 z ise x y x z z y =? Bir x reel sayısına karşılık gelen noktanın sayı doğrusunda 0 (sıf ır) a olan uzaklığına x sayısının mutlak değeri denir ve x şeklinde

Detaylı

üslü sayılar temel kurallar-1

üslü sayılar temel kurallar-1 üslü sayılar temel kurallar- Kazanım :Üslü ifadelerle ilgili temel kuralları anlar, birbirine denk ifadeler oluşturur. Üslü Sayılarda Çarpma İşlemi. 0. 0 işleminin sonucunun 00 olduğunu biliyoruz.bu. =....

Detaylı

Diferansiyel denklemler uygulama soruları

Diferansiyel denklemler uygulama soruları . Aşağıdaki diferansiyel denklemleri sınıflandırınız. a) d y d d + y = 0 b) 5 d dt + 4d + 9 = cos 3t dt Diferansiyel denklemler uygulama soruları 0.0.3 c) u + u [ ) ] d) y + = c d. y + 3 = 0 denkleminin,

Detaylı

Karmaşık Sayılar Karmaşık Sayı Yaratma

Karmaşık Sayılar Karmaşık Sayı Yaratma 10 Karmaşık Sayılar Matematik derslerinden bilindiği gibi a ile b iki gerçel (real) sayı ve i = 1 olmak üzere z= a +bi sayısı karmaşık (complex) bir sayıdır. (Bazı yerde i yerine j yazılır.) i sayısı sanal

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

AST404 GÖZLEMSEL ASTRONOMİ HAFTALIK UYGULAMA DÖKÜMANI

AST404 GÖZLEMSEL ASTRONOMİ HAFTALIK UYGULAMA DÖKÜMANI AST404 GÖZLEMSEL ASTRONOMİ HAFTALIK UYGULAMA DÖKÜMANI Öğrenci Numarası: I. / II. Öğretim: Adı Soyadı: İmza: HAFTA 03 1. KONU: TELESKOPLAR 2. İÇERİK Optik türlerine göre teleskoplar Düzenek türlerine göre

Detaylı

Boyut: Belirli bir doğrultuda ölçülmüş bir büyüklüğü ifade etmek için kullanılan geometrik bir terim.

Boyut: Belirli bir doğrultuda ölçülmüş bir büyüklüğü ifade etmek için kullanılan geometrik bir terim. FRAKTALLAR 1 2 * 3 Boyut: Belirli bir doğrultuda ölçülmüş bir büyüklüğü ifade etmek için kullanılan geometrik bir terim. Bir nokta «sıfır boyutlu» ludur. Doğrusal nokta toplulukları «bir boyutlu» bir doğru

Detaylı

Bahçe Sorusu Ali Nesin

Bahçe Sorusu Ali Nesin Bahçe Sorusu Ali Nesin 1. Giriş. Daire biçiminde bir bahçeye, merkezden başlayarak, birer metre aralıklarla yatay ve dikey sıralanmış fidan dikmeyi düşünüyoruz. İşte bahçemizi ve fidanları dikeceğimiz

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 13 Mayıs Matematik Sorularının Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 13 Mayıs Matematik Sorularının Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Đlkbahar / Sayısal II / 1 Mayıs 01 Matematik Sorularının Çözümleri 1. 9! 8! 7! 9! + 8! + 7! 7!.(9.8 8 1) 7!.(9.8+ 8+ 1) 6 81 9 7. 4, π, π π,14

Detaylı

GAZİ İLKOKULU EĞİTİM ÖĞRETİM YILI 2. SINIFLAR MATEMATİK DERSİ YILLIK DERS PLÂNI

GAZİ İLKOKULU EĞİTİM ÖĞRETİM YILI 2. SINIFLAR MATEMATİK DERSİ YILLIK DERS PLÂNI 4.HAFTA 3.HAFTA 2.HAFTA 1.HAFTA 2. SINIFLAR MATEMATİK İ YILLIK PLÂNI Konu: Onluk ve Birliklere Ayıralım 18-21 Eyl 1. Nesne sayısı 100 den az olan bir çokluğu, model kullanarak onluk ve birlik gruplara

Detaylı

EĞİTİM ÖĞRETİM YILI FATİH SULTAN MEHMET ORTAOKULU MATEMATİK UYGULAMALARI 8 YILLIK PLANI 1.DÖNEM AY HAFTA TARİH KAZANIM AÇIKLAMA

EĞİTİM ÖĞRETİM YILI FATİH SULTAN MEHMET ORTAOKULU MATEMATİK UYGULAMALARI 8 YILLIK PLANI 1.DÖNEM AY HAFTA TARİH KAZANIM AÇIKLAMA 06-07 EĞİTİM ÖĞRETİM YILI FATİH SULTAN MEHMET ORTAOKULU MATEMATİK UYGULAMALARI 8 YILLIK PLANI.DÖNEM EYLÜL EKİM.Hafta 9-.Hafta 6-0 K)Doğal sayılar, kesirler, ondalık sayılar ve yüzdelerle hesaplamaları

Detaylı

RONDO VARİO. HEDEF-1 Rondo Vario oyun içeriğini kavrar. KAZANIMLAR:

RONDO VARİO. HEDEF-1 Rondo Vario oyun içeriğini kavrar. KAZANIMLAR: RONDO VARİO HEDEF-1 Rondo Vario oyun içeriğini kavrar. 1-1 Oyunun adının Rondo Vario olduğunu söyler. 1-2 Oyunun bir grup uygulaması olduğunu belirtir. 1-3 Oyuna ait parçaları tanır/gruplarına ayırır.

Detaylı

Doğal sayılar sayma sayıları olarak da bilinir ve kısaca saymak için kullanılan

Doğal sayılar sayma sayıları olarak da bilinir ve kısaca saymak için kullanılan DOĞAL SAYILAR -Tanım Doğal sayılar sayma sayıları olarak da bilinir ve kısaca saymak için kullanılan sayılara verilen isimdir. Sayma sayılarına verilen örnek, bir sepet içindeki elmaların sayısıdır. Doğal

Detaylı

Fizik 101: Ders 21 Gündem

Fizik 101: Ders 21 Gündem Fizik 101: Ders 21 Gündem Yer çekimi nedeninden dolayı tork Rotasyon (özet) Statik Bayırda bir araba Statik denge denklemleri Örnekler Asılı tahterevalli Asılı lamba Merdiven Ders 21, Soru 1 Rotasyon Kütleleri

Detaylı

KLASİK FRAKTALLAR FRAKTAL ÖZELLİKLERİ VE BOYUT

KLASİK FRAKTALLAR FRAKTAL ÖZELLİKLERİ VE BOYUT KLASİK FRAKTALLAR FRAKTAL ÖZELLİKLERİ VE BOYUT.. KENDİNE BENZERLİK VE AFİNİTE Fraktal özelliklerinden bir diğeri de kendine benzerlikdir. Geometrik açıdan, aynı şekle sahip olan geometrik şekiller birbirine

Detaylı

TAM DEĞER ARDIŞIK TOPLAMLAR

TAM DEĞER ARDIŞIK TOPLAMLAR ÖZEL EGE LİSESİ TAM DEĞER VE ARDIŞIK TOPLAMLAR HAZIRLAYAN ÖĞRENCİ: Tilbe GÖKÇEL DANIŞMAN ÖĞRETMEN: Gizem GÜNEL İZMİR 01 İÇİNDEKİLER 1. PROJENİN AMACI.... GİRİŞ..YÖNTEM. ÖN BİLGİLER.. 5.ARDIŞIK TOPLAMLARIN

Detaylı

Bir önceki yaz da, n bir tek tamsay oldu unda n n sihirli

Bir önceki yaz da, n bir tek tamsay oldu unda n n sihirli Sihirli Kareler (II) Bir önceki yaz da, n bir tek tamsay oldu unda n n sihirli karelerin nas l yap laca n ö renmifltik. Bu yaz da n nin çift oldu u n n boyutlu sihirli kareleri ele alaca z. Her zaman yapt

Detaylı

12-A. Sayılar - 1 TEST

12-A. Sayılar - 1 TEST -A TEST Sayılar -. Birbirinden farklı beş pozitif tam sayının toplamı 0 dur. Bu sayılardan sadece ikisi den büyüktür. Bu sayılardan üç tanesi çift sayıdır. Buna göre bu sayılardan en büyüğü en çok kaç

Detaylı

Şimdi Okullu Olduk İlkokul 1. Sınıf

Şimdi Okullu Olduk İlkokul 1. Sınıf Yrd. Doç. Dr. Özgül Polat Şimdi Okullu Olduk İlkokul 1. Sınıf 10 Adım ve Soyadım İnceleyelim. Tabloyu yorumlayalım. Çizelim. Bu detay Matrakçı Nasuh un bir minyatüründen alınma. Minyatür sanatı nedir biliyor

Detaylı

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir?

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir? 8. SINIF. Üslü Sayılar - = T olduğuna göre T kaçtır? A) - B) - C) D) 7 TEST.. 0 - işleminin sonucu kaç basamaklı bir sayıdır? A) B) C) 6 D) 7. n =- 7 için n ifadesinin değeri kaçtır? A) - 8 B) - C) 8 D)

Detaylı

2017 YGS MATEMATİK. 4. a sayısı iki farklı asal sayının çarpımıdır. OBEB (a,15) + OBEB(a,22)=2

2017 YGS MATEMATİK. 4. a sayısı iki farklı asal sayının çarpımıdır. OBEB (a,15) + OBEB(a,22)=2 SORULARI 1. 4. a sayısı iki farklı asal sayının çarpımıdır. OBEB (a,15) + OBEB(a,22)=2 işleminin sonucu kaçtır? A) 2 B) 1 C) 1 D) 2 E) 3 olduğuna göre, a nın en küçük değerinin rakamları çarpımı? A)6 B)7

Detaylı

2 şeklindeki bütün sayılar. 2 irrasyonel sayısı. 2 irrasyonel sayısından elde etmekteyiz. Benzer şekilde 3 irrasyonel sayısı

2 şeklindeki bütün sayılar. 2 irrasyonel sayısı. 2 irrasyonel sayısından elde etmekteyiz. Benzer şekilde 3 irrasyonel sayısı 1.8.Reel Sayılar Kümesinin Tamlık Özelliği Rasyonel sayılar kümesi ile rasyonel olmayan sayıların kümesi olan irrasyonel sayılar kümesinin birleşimine reel sayılar kümesi denir ve IR ile gösterilir. Buna

Detaylı

YGS MATEMATİK SORULARI !+7! 6! 5! işleminin sonucu kaçtır? A) 24 B)32 C)42 D)48 E)56. ifadesinin eşiti hangisidir?

YGS MATEMATİK SORULARI !+7! 6! 5! işleminin sonucu kaçtır? A) 24 B)32 C)42 D)48 E)56. ifadesinin eşiti hangisidir? 2017 YGS MATEMATİK SORULARI 1. 4. 4.7!+7! 6! 5! işleminin sonucu kaçtır? ifadesinin eşiti hangisidir? A) 24 B)32 C)42 D)48 E)56 A)1/2 B)1/4 C)1/6 D)1/8 E)1/12 2. 2 9 5.2 4 12 3 işleminin sonucu kaçtır?

Detaylı

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN İç-Çarpım Uzayları Yazar Öğr. Grv. Dr. Nevin ORHUN ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; R n, P n (R), M nxn vektör uzaylarında iç çarpım kavramını tanıyacak ve özelliklerini görmüş olacaksınız.

Detaylı

Negatif tam sayılar, sıfır (0) ve pozitif tam sayıların birleşimine tam sayılar denir.

Negatif tam sayılar, sıfır (0) ve pozitif tam sayıların birleşimine tam sayılar denir. Sıfırın altındaki hava sıcaklıklarını belirten, giriş katın altındaki bir katın altındaki düğmesini asansörde gösterirken, deniz seviyesinin altındaki bir yeri ifade ederken, kar-zarar durumlarında doğal

Detaylı

HADİ BAKALIM KOLAY GELSİN DİJİTAL İŞLEM NE UYGULANDI? SİNEMA - TİYATRO - KONSER

HADİ BAKALIM KOLAY GELSİN DİJİTAL İŞLEM NE UYGULANDI? SİNEMA - TİYATRO - KONSER DİJİTAL İŞLEM HADİ BAKALIM KOLAY GELSİN Hesap makinelerini hepimiz kullanmışızdır. O makenilerdeki sayıların yazılışlarını biliyorsunuz. O rakamlarla yapılmış iki işlem bulacaksınız yanda. Ama işlemlerin

Detaylı

ÇARPANLAR VE KATLAR. Başarı Başaracağım Diye Başlayanındır. 1

ÇARPANLAR VE KATLAR. Başarı Başaracağım Diye Başlayanındır. 1 ÇARPANLAR VE KATLAR Başarı Başaracağım Diye Başlayanındır. 1 ÖRNEK 1 48 sayısının çarpanlarını bulalım. 1.Gökkuşağı yöntemi 48 sayısının çarpanlarını küçükten büyüğe sıralayarak eşleştiriniz. 48 çarpanlarını

Detaylı

Özdeğer ve Özvektörler

Özdeğer ve Özvektörler Özdeğer ve Özvektörler Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 9 Amaçlar Bu üniteyi çalıştıktan sonra; bir lineer dönüşümün ve bir matrisin özdeğer ve özvektör kavramlarını anlayacak, bir dönüşüm matrisinin

Detaylı

Trigonometrik Fonksiyonlar

Trigonometrik Fonksiyonlar Trigonometrik Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 6 Amaçlar Bu üniteyi çalıştıktan sonra; açı kavramını hatırlayacak, açıların derece ölçümünü radyan ölçümüne ve tersine çevirebilecek, trigonometrik

Detaylı

EM-554 İleri Bilgisayar Programlama Teknikleri Algoritma ve Akış Diyagramları

EM-554 İleri Bilgisayar Programlama Teknikleri Algoritma ve Akış Diyagramları EM-554 İleri Bilgisayar Programlama Teknikleri Algoritma ve Akış Diyagramları Öğr. Gör. Dr. İrfan MACİT Endüstri Mühendisliği Anabilim Dalı Adana, 2011 Algoritmalar Nedir? Algoritma,herhangi bir sorun

Detaylı

B: Bu şekildeki her bir nokta dikdörtgenin noktalarını temsil eder.

B: Bu şekildeki her bir nokta dikdörtgenin noktalarını temsil eder. 2. ÇOK KATLI İNTEGRALLER, DİFERENSİYEL DENKLEMLERE GİRİŞ 2.1. Çok Katlı İntegraller 2.1.1. İki Katlı İntegraller Fonksiyonu bir B bölgesinde sınırlı yani için olsun. B bölgesi alt bölgelere ayrılırsa;

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 16 Kasım Matematik Soruları ve Çözümleri 24 E) <

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 16 Kasım Matematik Soruları ve Çözümleri 24 E) < Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Sonbahar / Sayısal I / 6 Kasım 2008 Matematik Soruları ve Çözümleri. Aşağıdaki kesirlerin en büyüğü hangisidir? 0 A) B) 2 2 C) 3 2 D) 22 24 E)

Detaylı

Permütasyon Kombinasyon Binom Olasılık

Permütasyon Kombinasyon Binom Olasılık Permütasyon Kombinasyon Binom Olasılık Saymanın Temel İlkesi: A1, A2,..., A n kümeleri için s( A1 ) = a1, s( A2 ) = a2,.., s( An ) A xa x xa Kartezyen çarpımının eleman sayısı; s( A xa x... xa ) = s( A

Detaylı

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir.

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir. PİRAMİTLER Bir düzlemde kapalı bir bölge ile bu düzlemin dışında bir T noktası alalım. Kapalı bölgenin tüm noktalarının T noktası ile birleştirilmesi sonucunda oluşan cisme piramit denir. T noktası piramidin

Detaylı

ÜNİTE. MATEMATİK-1 Doç.Dr.Murat SUBAŞI İÇİNDEKİLER HEDEFLER TÜREV UYGULAMALARI-II

ÜNİTE. MATEMATİK-1 Doç.Dr.Murat SUBAŞI İÇİNDEKİLER HEDEFLER TÜREV UYGULAMALARI-II HEDEFLER İÇİNDEKİLER TÜREV UYGULAMALARI-II Fonksiyonların Bükeyliği Maksimum - Minimum Problemleri Belirsiz Haller MATEMATİK-1 Doç.Dr.Murat SUBAŞI Bu üniteyi çalıştıktan sonra; Fonksiyonların grafiklerinin

Detaylı