Fizik 101: Ders 24 Gündem

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Fizik 101: Ders 24 Gündem"

Transkript

1 Terar Fizi 101: Ders 4 Günde Başlangıç oşullarını ullanara BHH denlelerinin çözüü. Genel fizisel saraç Burulalı saraç BHHte enerji Atoi titreşiler Proble: Düşey yay Proble: taşıa tuneli BHH terar

2 BHH & yaylar uvvet: d s dt s s çözü 0 s = A cos(t + ) 0 s

3 Hız ve İve Konu: x(t) = A cos(t + ) Hız: v(t) = -A sin(t + ) İve: a(t) = - A cos(t + ) Türevleri alara... x MAX = A v MAX = A a MAX = A v( t ) dx( t ) dt a( t ) dv( t ) dt 0 x

4 Ders 4, Soru 1 Basit Haroni Hareet Bir yay üzerindei bir ütle aşağı yuarı titreşi hareetler yapatadır. Kütlenin onuu zaanın bir fonsiyonu olara aşağıda veriliştir. Verilen notaardan hangisinde hız pozitif ve ive negatiftir? y(t) (a) (c) t (b)

5 Ders 4, Soru 1 Çözü y(t) nin eğii hızın işaretini belirler zira: y(t) ve a(t) nin işaretleri birbirinin tersidir a(t) = -w y(t) v dy dt a < 0 v < 0 (a) y(t) (b) a > 0 v > 0 a < 0 v > 0 (c) t cevap (c).

6 Örne = g ütleli bir cisi bir yayın ucunda genliği A=10 c olan titreşi hareetleri yapıyor. Başlangıçta t = 0 hızı asiu, ve v = + /s. Titreşiin freansı nedir? Yay sabiti nedir? v MAX s v MAX = A = A 10 c vede = 0 s = ( g) x (0 s -1 ) = 800 g/s = 800 N/ 1 x

7 Başlangıç Koşulları başlangıç oşullarını ullanara yi belirleyeli! Vasayı: x(0) = 0, ve x başlangıçta artıyor (v(0) = pozitif): x(t) = A cos(t + ) v(t) = -A sin(t + ) a(t) = - A cos(t + ) x(0) = 0 = A cos() v(0) > 0 = -A sin() < 0 = / yada -/ = -/ cos sin 0 x

8 Başlangıç Koşulları... bulgu = -/!! x(t) = A cos(t - / ) v(t) = -A sin(t - / ) a(t) = - A cos(t - / ) x(t) = A sin(t) v(t) = A cos(t) a(t) = - A sin(t) A x(t) -A t 0 x

9 Ders 4, Soru Başlangıç Koşulları Düşey bir yaya asılı bir ütle denge onuundan d adar yuarıya aldırılıp t=0 anında serbest bıraılıyor. Aşağıdailerden hangisi hız ve iveyi zaanın fonsiyonu olara verir? (a) v(t) = -v ax sin(wt) a(t) = -a ax cos(wt) (b) v(t) = v ax sin(wt) a(t) = a ax cos(wt) y (c) v(t) = v ax cos(wt) a(t) = -a ax cos(wt) t = 0 d 0 (v ax ve a ax her iiside pozitif)

10 Ders 4, Soru Çözü t=0 da üün olan en büyü yerdeğiştire ile başladığıızdan : y = d cos(wt) v dy d sin t v axsin t dt y a dv d cos t aaxcos t dt t = 0 d 0

11 Terar: Basit saraç = I ullanara ve sin üçü lar için gl L d dt z bulgu I L d dt burada BHH çözüü = 0 cos(t + ) g L d g

12 Terar: Çubu saraç = I ullanara ve sin üçü lar için bulgu d dt g L 1 3 burada L d dt 3 BHH çözüü = 0 cos(t + ) I g L z d g L/ x KM L

13 Genel Fizisel Saraç Eliizde M ütleli, şeli eyfi olan bir cisi sabit bir esene asılı bulunsun. Bunun yanında bu cisi için KM ve bu esen etrafında biliniyor eylesizli oent I olsun. Küçü açılar için döne eseni (z) etrafındai tor (sin ) = -Mgd -Mg d dt Mg = 0 cos(t + ) burada Mg I d dt I z-eseni x CM d Mg

14 Ders 4, Soru 3 Fizisel Saraç D çaplı bir hoola hoop un bir çiviye asılasıyla bir saraç yapılıyor. hoola hoopun üçü yerdeğiştireleri için açısal freans nedir? (I KM = hoop için) Esen (çivi) (a) g D (b) g D D (c) g D

15 Ders 4, Soru 3 Çözü Küçü yerdeğiştireler içi hoopun açısal freansı g I Paralel esen teoreini ullanara: I = I c + g g g D g D = + = x Esen (çivi)

16 Burulalı Saraç KM inden bir tel ile asılı bir cisi diate alalı. Tel döne esenini tanılar ve bu esene göre eylesizli oenti I biliniyor olsun. Tel burula yayı gibi davranır. Cisi döndürüldüğünde, tel burulur. Bu döneye arşı bir tor eydana getirir. I tel Yay duruundai gibi eydana gelen tor açısal yer değiştire ile orantılıdır: = -

17 Burulalı Saraç... = - ve = I yazarsa d dt d I dt burada I I tel Bu duru yay da ütle örneğine benzer bir farlılıla yerine I ullanılır.

18 BHHte Enerji Yay ve saraç için enerjinin orunuunu ullanara BHH çözüünü bulabiliriz. BHH yapan sistein topla enerjisi (K + U) her zaan sabit alacatır! Sistede orunulu uvvetler olduğundan bu belenetedir ve K+U eneji orunur. U K E U -A 0 A s

19 BHH ve uadrati (aresel) potansiyeller Kuadrati potansiyelin bulunduğu her yerde BHH olur. Bu genel bir duru değildir. Örneğin, H oleülündei H atoları arasındai potansiyel: U U x K E U -A 0 A x

20 BHH ve uadrati potansiyeller... Eğer potansiyelin iniu yaınlarında bir taylor serisine açarsa üçü yerdeğiştireler için uadrati potansiyel: U(x) = U(x 0 ) + U(x 0 ) (x- x 0 ) 1 + U (x 0 ) (x- x 0 ) +... U(x 0 ) = 0 (x 0 potansiyel iniuu olduğundan.) U U x 0 x tanı x = x - x 0 ve U(x 0 ) = 0 1 U(x) = U (x 0 ) x x

21 BHH ve uadrati potansiyeller... 1 U(x) = U (x 0 ) x = U (x 0 ) olsun. U U Böylece: 1 U(x) = x BHH potansiyel!!! x 0 x x

22 Proble: Düşey Yay = 10 g olan bir ütle yatay bir yaya asılır. Denge pozisyonu y = 0 dır. Kütle denge onuundan d=10 c aşağı çeilir ve t=0 anında serbest bıraılır. Titreşi periyodu T = 0.8 s olara ölçülür. Yay sabiti nedir? Kütle için onu, hız ve iveyi zaanın birer fonsiyonu olara yazınız. Masiu hız nedir? Masiu ive nedir? t = 0 y 0 -d

23 Proble: Düşey Yay nedir? böylece: 7. 85s 1 T 7.85s g 6.9 N t = 0 y 0 -d

24 Proble: Düşey Yay... Hareet denleleri nelerdir? t = 0 da, y = -d = -y ax v = 0 y Böylece: y(t) = -d cos(t) v(t) = d sin(t) a(t) = d cos(t) t = 0 0 -d

25 Proble: Yatay Yay... y(t) = -d cos(t) v(t) = d sin(t) a(t) = d cos(t) 0 t x ax = d =.1 y v ax = d = (7.85 s -1 )(.1) = 0.78 /s 0 a ax = d = (7.85 s -1 ) (.1) = 6. /s t = 0 -d

26 İleti Tüneli Dünyanın erezinden geçen bir tünel delinip bir ühendisli öğrencisi deliten aşağı öğle arasında (saat 1de) bıraılsın. Öğrenci ne zaan geri döner?

27 İleti Tüneli... E F GM G Burada yarıçapı içindei ütle M ile verilir. M F G F F M M G G E E E aa 3 M F F G G E E E E 3 3

28 İleti Tüneli... F F G G E E F G F G ( E ) g E M F G g E Ucunda ütle olan yay gibi g E

29 İleti Tüneli... Ucunda ütle olan yay gibi g E F G g E M E g = 9.81 /s ve E = 6.38 x 10 6 Yerine oyarsa =.0014 s -1 sonuç T = = 5067 s 84 d

30 İleti Tüneli daia sonra geri döner, yani 1:4 te dünya turu yapıp döner.

31 Tuhaf aa gerçe: Titreşi periyodu tünelin dünyanın erezinden geçesini geretirez. Herhangi bir doğru tünel sürtüne oladığı ve yoğunlu sabit olduğu sürece aynı sonucu verir. İleti Tüneli...

32 İleti Tüneli... Bir başa tuhaf aa gerçe: Dünyanın heen yüzeyinde dolaşan bir cisi geçiş tüneli ile aynı periyoda sahiptir. a = 9.81 = 6.38(10) 6 =.0014 s -1 T = = 5067 s 84 in

33 Kuvvet: Basit Haroni Hareet: d s dt s Özet s 0 0 s Çözü: s = A cos(t + ) g L s L

34 Çözü Terar Başlangıç oşullarını ullanara BHH denlelerinin çözüü. Genel fizisel saraç Burulalı saraç BHHte enerji Atoi titreşiler Proble: Düşey yay Proble: taşıa tuneli BHH terar

35 Quiz sınav soruları: Bölü 8 soru 81 Bölü 9 soru 100 Bölü 10 soru 44 Bölü 11 soru 59 Bölü 13 soru 68 Cevap ağıdının ounalı, teiz ve düzenli olası %5 ağırlılıdır. Tesli:

Fizik 101: Ders 23 Gündem

Fizik 101: Ders 23 Gündem Fizik 101: Ders 3 Gündem Basit Harmonik Hereket Yatay yay ve kütle Sinus ve cosinus lerin anlamı Düşey yay ve kütle Enerji yaklaşımı Basit sarkaç Çubuk sarkaç Basit Harmonik Hareket (BHH) Ucunda bir kütle

Detaylı

Fizik 101: Ders 12 Ajanda. Problemler İş & Enerji Potansiyel Enerji, Kuvvet, Denge Güç

Fizik 101: Ders 12 Ajanda. Problemler İş & Enerji Potansiyel Enerji, Kuvvet, Denge Güç Fizik 101: Ders 1 Ajanda Probleler İş & Enerji Potansiyel Enerji, Kuvvet, Denge Güç Proble: Yaylı Sapan Yay sabiti k olan iki yaydan bir sapan yapılıştır. Her iki yayın başlangıç uzunluğu x 0. Kütlesi

Detaylı

ITAP Fizik Olimpiyat Okulu

ITAP Fizik Olimpiyat Okulu Ei Aralı Seviyesinde Denee Sınavı. Uzunluğu R/ olan bir zincirin ucu yarıçapı R olan pürüzsüz bir ürenin tepe notasına bağlıdır (şeildei ibi). Bilinen bir anda bu uç serbest bıraılıyor. )Uç serbest bıraıldığı

Detaylı

Fizik 101: Ders 16. Konu: Katı cismin dönmesi

Fizik 101: Ders 16. Konu: Katı cismin dönmesi Fizik 0: Ders 6 Konu: Katı cisin dönesi Döne kineatiği Bir boyutlu kineatik ile benzeşi Dönen sistein kinetik enerjisi Eylesizlik oenti Ayrık parçacıklar Sürekli katı cisiler Paralel eksen teorei Rotasyon

Detaylı

Titreşim_1 ITAP FOO: 04 Mart 2014 Olimpiyat Konu Sınavı

Titreşim_1 ITAP FOO: 04 Mart 2014 Olimpiyat Konu Sınavı Titreşi_ ITAP FOO: art Oipiyat Konu Sınavı. Şeidei esne, hafif ütei tahtanın ucunda buunan sporcu ağırına tahtanın ucunun yerine aşağı doğru h.5 adar değiştiriyor. Tahtanın dene onuuna öre titreşi periyotunu

Detaylı

İŞ, GÜÇ, ENERJİ BÖLÜM 8

İŞ, GÜÇ, ENERJİ BÖLÜM 8 İŞ, GÜÇ, EERJİ BÖÜ 8 ODE SORU DE SORUARI ÇÖZÜER 5 Cise eti eden sür- tüne uvveti, IFI0 ür F α F T W (F ür ) (Fcosα (g Fsinα)) düzle Ya pı lan net iş de ğe ri α, ve ütleye bağ lı dır G düzle 00,5 G0 0 I

Detaylı

Titreşim nedir? x(t)=x(t+nt)

Titreşim nedir? x(t)=x(t+nt) MEKANİK TİTREŞİMLER Titreşi nedir? Bir sistein denge onuu civarında yapış olduğu salını hareetine titreşii denir. Eğer yapılan salını hareeti T saniyede endini terar ediyorsa böyle hareetlere peryodi hareet

Detaylı

2. (1 + y ) ln(x + y) = yy dif. denk. çözünüz. 3. xy dy y 2 dx = (x + y) 2 e ( y/x) dx dif. denk. çözünüz.

2. (1 + y ) ln(x + y) = yy dif. denk. çözünüz. 3. xy dy y 2 dx = (x + y) 2 e ( y/x) dx dif. denk. çözünüz. D DİFERANSİYEL DENKLEMLER ÇALIŞMA SORULARI Fakülte No:................................................... Adı ve Soyadı:................................................. Bölüm:...................................................................

Detaylı

Değerli Olimpiyat Severler.

Değerli Olimpiyat Severler. Değerli Olipiyat Severler. Çalışalarınıza arınca ararınca deste verebile aacıyla hazırlaış olduğuuz deneeleri sizlerle paylaşıyoruz. Deneelerle ilili örüş ve eleştirileriniz bizi için son derece önelidir.

Detaylı

3.Seviye Deneme Sınavı ITAP_12_14_2011 Titreşim

3.Seviye Deneme Sınavı ITAP_12_14_2011 Titreşim 3.Seviye Deneme Sınavı TAP_1_14_011 Titreşim 1. Notasa bir cisim şeidei çemberin A notasından sıfır i hızı ie AB doğrutuda yer çeim aaında hareet etmetedir. Çemberin çapı BC= ye eşit oduğuna öre cisim

Detaylı

ile plakalarda biriken yük Q arasındaki ilişkiyi bulmak, bu ilişkiyi kullanarak boşluğun elektrik geçirgenlik sabiti ε

ile plakalarda biriken yük Q arasındaki ilişkiyi bulmak, bu ilişkiyi kullanarak boşluğun elektrik geçirgenlik sabiti ε Farlı Malzemelerin Dieletri Sabiti maç Bu deneyde, ondansatörün plaalarına uygulanan gerilim U ile plaalarda birien yü Q arasındai ilişiyi bulma, bu ilişiyi ullanara luğun eletri geçirgenli sabiti ı belirleme,

Detaylı

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ 7 BÖÜM İTME E MMENTUM MDE SRU - DEİ SRUARIN ÇÖZÜMERİ Cisi esnek çarpışa yaptığına göre, çarptığı hızla engelden eşit açıyla yansır II engeline dik geldiğinden üzerinden geri döner II I 45 45 45 3 Cis e

Detaylı

Doğrusal hareket yapan bir maddesel noktanın hız konum bağıntısı

Doğrusal hareket yapan bir maddesel noktanın hız konum bağıntısı DNK1 Dinai Dersi Soru anası Dia! şağıdai soru e çözüler, gözden geçirilediği için haalar içerebilir. Sapadığınız haaları bildireniz dileğiyle. noanın onu-zaan bağınısı sin ise en büyü ie aşağıdailerden

Detaylı

HIZ ve İVME AMAÇ: Yer-çekimi ivmesini ölçmek Sürtünmesiz eğik düzlemde hız-zaman ilişkisini incelemek BİLİNMESİ GEREKEN KAVRAMLAR:

HIZ ve İVME AMAÇ: Yer-çekimi ivmesini ölçmek Sürtünmesiz eğik düzlemde hız-zaman ilişkisini incelemek BİLİNMESİ GEREKEN KAVRAMLAR: HIZ ve İVME AMAÇ: Yer-çekii ivesini ölçek Sürtünesiz eğik düzlede hız-zaan ilişkisini inceleek BİLİNMESİ GEREKEN KAVRAMLAR: Konu vektörü Yer-değiştire vektörü Ortalaa hız ve anlık hız Ortalaa ive ve anlık

Detaylı

= + ise bu durumda sinüzoidal frekansı. genlikli ve. biçimindeki bir taşıyıcı sinyalin fazının modüle edildiği düşünülsün.

= + ise bu durumda sinüzoidal frekansı. genlikli ve. biçimindeki bir taşıyıcı sinyalin fazının modüle edildiği düşünülsün. 4.2. çı Modülasyonu Yüse reanslı bir işaret ile bilgi taşıa, işaretin genliğinin, reansının veya azının bir esaj işareti ile odüle edilesi ile gerçeleştirilebilir. Bu üç arlı odülasyon yöntei sırasıyla,

Detaylı

Fizik 101: Ders 10 Ajanda

Fizik 101: Ders 10 Ajanda Fizik 101: Ders 10 Ajanda İş Dünya yüzeyinde çeki kuvvetinden dolayı yapılan iş Örnekler: Sarkaç, eğik düzle, serbest düşe Değişken kuvvetçe yapılan iş Yay Yay ve sürtüneli probleler 3 boyutta değişken

Detaylı

RASGELE SÜREÇLER. Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk fonksiyonu aşağıdaki gibi olmalıdır.

RASGELE SÜREÇLER. Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk fonksiyonu aşağıdaki gibi olmalıdır. RASGELE SÜREÇLER Eğer bir büyülüğün her t anında alacağı değeri te bir şeilde belirleyen matematisel bir ifade verilebilirse bu büyülüğün deterministi bir büyülü olduğu söylenebilir. Haberleşmeden habere

Detaylı

V = g. t Y = ½ gt 2 V = 2gh. Serbest Düşme NOT:

V = g. t Y = ½ gt 2 V = 2gh. Serbest Düşme NOT: Havada serbest bırakılan cisimlerin aşağı doğru düşmesi etrafımızda her zaman gördüğümüz bir olaydır. Bu düşme hareketleri, cisimleri yerin merkezine doğru çeken bir kuvvetin varlığını gösterir. Daha önceki

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matemat Deneme Sınavı. ii basamalı doğal saıdır. 6 en büü saısı ile en üçü saısının toplamı açtır? 8 89 8 6. için, 9 ( ) ifadesinin sonucu aşağıdailerden hangisidir? 6. ile saıları arasındai çift saıların

Detaylı

A İSTATİSTİK KPSS-AB-PÖ/2007. 1. X rasgele değişkeninin olasılık fonksiyonu. 4. X sürekli raslantı değişkeninin birikimli dağılım fonksiyonu,

A İSTATİSTİK KPSS-AB-PÖ/2007. 1. X rasgele değişkeninin olasılık fonksiyonu. 4. X sürekli raslantı değişkeninin birikimli dağılım fonksiyonu, . X rasgele değişeninin olasılı fonsiyonu f( x) = c(x + 5), x =,, 0, diğer hâllerde olduğuna göre, c nin değeri açtır? A İSTATİSTİK KPSS-AB-PÖ/007. X süreli raslantı değişeninin biriimli dağılım fonsiyonu,

Detaylı

k olarak veriliyor. Her iki durum icin sistemin lineer olup olmadigini arastirin.

k olarak veriliyor. Her iki durum icin sistemin lineer olup olmadigini arastirin. LINEER SISTEMLER Muhendislite herhangibir sistem seil(ref: xqs402) dei gibi didortgen blo icinde gosterilir. Sisteme disaridan eti eden fatorler giris, sistemin bu girislere arsi gosterdigi tepi ciis olara

Detaylı

Rentech. Yaylar ve Makaralar Deney Seti. Yaylar ve Makaralar Deney Seti. (Yay Sabiti, Salınım Periyodu, Kuvvet ve Yol Ölçümleri) Öğrenci Deney Föyü

Rentech. Yaylar ve Makaralar Deney Seti. Yaylar ve Makaralar Deney Seti. (Yay Sabiti, Salınım Periyodu, Kuvvet ve Yol Ölçümleri) Öğrenci Deney Föyü (Yay Sabiti, Salınım Periyodu, Kuvvet ve Yol Ölçümleri) Öğrenci Deney Föyü 1 Anara-2015 Paetleme Listesi 1. Yaylar ve Maaralar Deney Düzeneği 1.1. Farlı Yay Sabitine Sahip Yaylar 1.2. Maaralar (Teli, İili

Detaylı

ELASTİK DALGA TEORİSİ

ELASTİK DALGA TEORİSİ ELASTİK DALGA TEORİSİ ( - 5. ders ) Doç.Dr. Eşref YALÇINKAYA Geçtiğiiz hafta; Dalga hareketi ve türleri Yaılan dalga Yaılan dalga enerjisi ve sönülene Bu derste; Süperpozison prensibi Fourier analizi Dalgaların

Detaylı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı FOURIER SERİLERİ Bu bölümde Fourier serilerinden bahsedeceğim. Önce harmoniklerle (katsıklıklarla) ilişkili sinüsoidin tanımından başlıyacağım ve serilerin trigonometrik açılımlarını kullanarak katsayıları

Detaylı

DENİZLİ ANADOLU LİSESİ 2006-2007 EĞİTİM ve ÖĞRETİM YILI FİZİK DERSİ YILLIK ÖDEVİ

DENİZLİ ANADOLU LİSESİ 2006-2007 EĞİTİM ve ÖĞRETİM YILI FİZİK DERSİ YILLIK ÖDEVİ DENİZLİ ANADOLU LİSESİ 2006-2007 EĞİTİM ve ÖĞRETİM YILI FİZİK DERSİ YILLIK ÖDEVİ Öğrencinin ; Adı : Özgür Soyadı : ATİK Numarası : 387 Sınıfı : 10F/J Ders Öğretmeninin ; Adı : Fahrettin Soyadı : KALE Ödevin

Detaylı

Öğr. Gör. Serkan AKSU

Öğr. Gör. Serkan AKSU Öğr. Gör. Serkan AKSU www.serkanaksu.net İki nokta arasındaki yerdeğiştirme, bir noktadan diğerine yönelen bir vektördür, ve bu vektörün büyüklüğü, bu iki nokta arasındaki doğrusal uzaklık olarak alınır.

Detaylı

Fizik 101: Ders 21 Gündem

Fizik 101: Ders 21 Gündem Fizik 101: Ders 21 Gündem Yer çekimi nedeninden dolayı tork Rotasyon (özet) Statik Bayırda bir araba Statik denge denklemleri Örnekler Asılı tahterevalli Asılı lamba Merdiven Ders 21, Soru 1 Rotasyon Kütleleri

Detaylı

TEST Sarkac n peri- BAS T HARMON K HAREKET. Cismin periyodu,

TEST Sarkac n peri- BAS T HARMON K HAREKET. Cismin periyodu, BAS HARMN HAREE ES - / s R / / s / / s / / s dan eçtiten 9 saniye snra N ntas nda s snra da M ntas nda ur / + Cisin periydu eş ( ) ur Sarac n peri- ydu s dir uzan () / / / / N M düfey ESEN YAYINARI 0 0

Detaylı

Kuvvet kavramı TEMAS KUVVETLERİ KUVVET KAVRAMI. Fiziksel temas sonucu ortaya çıkarlar BÖLÜM 5 HAREKET KANUNLARI

Kuvvet kavramı TEMAS KUVVETLERİ KUVVET KAVRAMI. Fiziksel temas sonucu ortaya çıkarlar BÖLÜM 5 HAREKET KANUNLARI BÖLÜM 5 HAREKET KANUNLARI 1. Kuvvet avramı. Newton un 1. yasası ve eylemsiz sistemler 3. Kütle 4. Newton un. yasası 5. Kütle-çeim uvveti ve ağırlı 6. Newton un 3. yasası 7. Newton yasalarının bazı uygulamaları

Detaylı

BASİT HARMONİK HAREKET

BASİT HARMONİK HAREKET BASİT HARMONİK HAREKET Bir doğru üzerinde bulunan iki nokta arasında periyodik olarak yer değiştirme ve ivmesi değişen hareketlere basit harmonik hareket denir. Sarmal yayın ucuna bağlanmış bir cismin

Detaylı

TEK FAZLI DOĞRULTUCULAR

TEK FAZLI DOĞRULTUCULAR ELEKTRĠK-ELEKTRONĠK ÜHENDĠSLĠĞĠ GÜÇ ELEKTRONĠĞĠ LABORATUAR TEK FAZL DOĞRULTUCULAR Teorik Bilgi Pek çok güç elektroniği uygulamasında, giriş gücü şebekeden alınan 50-60 Hz lik AC güç şeklindedir ve uygulamada

Detaylı

PI KONTROLÖR TASARIMI ÖDEVİ

PI KONTROLÖR TASARIMI ÖDEVİ PI ONTROLÖR TASARIMI ÖDEVİ ONTROLÖR İLE TASARIM ontrolör Taarım riterleri Taarım riterleri genellile itemine yapmaı geretiğini belirtme ve naıl yaptığını değerlendirme için ullanılır. Bu riterler her bir

Detaylı

FİZİK 4. Ders 10: Bir Boyutlu Schrödinger Denklemi

FİZİK 4. Ders 10: Bir Boyutlu Schrödinger Denklemi FİZİK 4 Ders 10: Bir Boyutlu Schrödinger Denklemi Bir Boyutlu Schrödinger Denklemi Beklenen Değer Kuyu İçindeki Parçacık Zamandan Bağımsız Schrödinger Denklemi Kare Kuyu Tünel Olayı Basit Harmonik Salınıcı

Detaylı

- 1 - 3 4v A) 450 B) 500 C) 550 D) 600 E) 650

- 1 - 3 4v A) 450 B) 500 C) 550 D) 600 E) 650 - -. Bi cisi uzunutai younu sabit hızı ie at eteye başıyo. Cisi youn yaısını at ettiğinde hızını yaıya düşüüp aan youn yaısını at ettiğinde yine hızını yaıya düşüetedi. Cisi aan youn yaısını gittiğinde

Detaylı

KATI CİSİMLERİN BAĞIL İVME ANALİZİ:

KATI CİSİMLERİN BAĞIL İVME ANALİZİ: KATI CİSİMLERİN BAĞIL İVME ANALİZİ: Genel düzlemsel hareket yapmakta olan katı cisim üzerinde bulunan iki noktanın ivmeleri aralarındaki ilişki, bağıl hız v A = v B + v B A ifadesinin zamana göre türevi

Detaylı

- 1 - EYLÜL KAMPI SINAVI-2003

- 1 - EYLÜL KAMPI SINAVI-2003 - - EYLÜL KAMPI SINAVI-. a) İki uçak birbirilerine doğru hızıyla yaklaşaktadırlar. Aralarındaki uzaklık iken birebirlilerini görebilektedirler. Ta o anda uçaklardan birisi hızı ile bir yarı çeber çizdikten

Detaylı

Fizik 103 Ders 9 Dönme, Tork Moment, Statik Denge

Fizik 103 Ders 9 Dönme, Tork Moment, Statik Denge Fizik 3 Ders 9 Döne, Tork Moent, Statik Denge Dr. Ali ÖVGÜN DAÜ Fizik Bölüü www.aovgun.co q θ Döne Kineatiği s ( π )r θ nın birii radyan (rad) dır. Bir radyan, yarçapla eşit uzunluktaki bir yay parasının

Detaylı

KONTROL SİSTEMLERİ YIL İÇİ UYGULAMA. Problem No

KONTROL SİSTEMLERİ YIL İÇİ UYGULAMA. Problem No KONTRO SİSTEMERİ YI İÇİ UYGUAMA Problem No AD SOYAD 10 haneli öğrenci NO Şeil 1 Şeil 1 dei sistem için transfer fonsiyonunu bulalım. Sistem ii serbestli derecesine sahiptir.her bir ütle diğerinin sabit

Detaylı

3 VEKTÖRLER. Pilot uçağın kokpit inden havaalanını nasıl bulur?

3 VEKTÖRLER. Pilot uçağın kokpit inden havaalanını nasıl bulur? 3.1 Koordinat sistemleri 3.2 Kartezyen koordinatlar 3.3 Vektörler 3.4 Vektörlerin bileşenleri 3.5 Vektörlerin toplanması 3.6 Vektörlerin çıkarılması 37Bii 3.7 Birim vektör 3 VEKTÖRLER Pilot uçağın kokpit

Detaylı

TEK SERBESTLİK DERECELİ TİTREŞİM SİSTEMİNİN LAGUERRE POLİNOMLARI İLE MATRİS ÇÖZÜMÜ

TEK SERBESTLİK DERECELİ TİTREŞİM SİSTEMİNİN LAGUERRE POLİNOMLARI İLE MATRİS ÇÖZÜMÜ EK SERBESLİK DERECELİ İREŞİM SİSEMİNİN LAGUERRE POLİNOMLARI İLE MARİS ÇÖZÜMÜ Mehmet ÇEVİK a, Nurcan BAYKUŞ b a Celal Bayar Üniversitesi Maine Mühendisliği Bölümü, Muradiye 454, Manisa. b Douz Eylül Üniversitesi,

Detaylı

REAKTİF GÜÇ KOMPANZASYONU ve REZONANS HESAPLARI

REAKTİF GÜÇ KOMPANZASYONU ve REZONANS HESAPLARI REAKTİF GÜÇ KOMPANZASYONU ve REZONANS HESAPLARI Alper Terciyanlı TÜBİTAK-BİLTEN alper.terciyanli@emo.org.tr EMO Ankara Şube Reaktif Güç Kompanzasyonu Eğitimi 16.07.2005 1 Kapsam Genel Kavramlar Reaktif

Detaylı

Malzeme Bağıyla Konstrüksiyon

Malzeme Bağıyla Konstrüksiyon Shigley s Mechanical Engineering Design Richard G. Budynas and J. Keith Nisbett Malzeme Bağıyla Konstrüsiyon Hazırlayan Prof. Dr. Mehmet Fırat Maine Mühendisliği Bölümü Saarya Üniversitesi Çözülemeyen

Detaylı

ÇÖZÜMLER. 3. I. Ortam sürtünmesiz ise, a) Di na mi ğin te mel pren si bi sis te me uy gu lan dığın 30 T 1 T 1. II. Ortamın sürtünme katsayısı 0,1 ise,

ÇÖZÜMLER. 3. I. Ortam sürtünmesiz ise, a) Di na mi ğin te mel pren si bi sis te me uy gu lan dığın 30 T 1 T 1. II. Ortamın sürtünme katsayısı 0,1 ise, BÖÜM DİNAMİ AIŞIRMAAR ÇÖZÜMER DİNAMİ 1 4kg 0N yty M düzle rsınd : rsınd cisin ivesi /s olduğundn cise uygulnn kuvvet, 1 4 0 N olur M rsınd : M rsınd cisin ivesi /s olduğundn cise etki eden sürtüne kuvveti,

Detaylı

2. TRANSFORMATÖRLER. 2.1 Temel Bilgiler

2. TRANSFORMATÖRLER. 2.1 Temel Bilgiler . TRANSFORMATÖRLER. Temel Bilgiler Transformatörlerde hareet olmadığından dolayı sürtünme ve rüzgar ayıpları mevcut değildir. Dolayısıyla transformatörler, verimi en yüse (%99 - %99.5) olan eletri maineleridir.

Detaylı

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır.

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır. Bölüm 5: Hareket Yasaları(Özet) Önceki bölümde hareketin temel kavramları olan yerdeğiştirme, hız ve ivme tanımlanmıştır. Bu bölümde ise hareketli cisimlerin farklı hareketlerine sebep olan etkilerin hareketi

Detaylı

Fizik 101: Ders 14 Ajanda

Fizik 101: Ders 14 Ajanda Fizik 0: Ders 4 Ajanda Boyutta inelastik çarpışa Patlaalar Boyutta elastik çarpışa Kütle erkezi referans gözle çerçeesi Çarpışan arabalar Elastik çarpışanın özellikleri Moentuun Korunuu dp F DIŞ 0 dt dp

Detaylı

Kİ KARE TESTLERİ. Biyoistatistik (Ders 2: Ki Kare Testleri) Kİ-KARE TESTLERİ. Sağlıktan Yakınma Sigara Var Yok Toplam. İçen. İçmeyen.

Kİ KARE TESTLERİ. Biyoistatistik (Ders 2: Ki Kare Testleri) Kİ-KARE TESTLERİ. Sağlıktan Yakınma Sigara Var Yok Toplam. İçen. İçmeyen. Biyoistatisti (Ders : Ki Kare Testleri) Kİ KARE TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Saarya Üniversitesi Tıp Faültesi Biyoistatisti Anabilim Dalı uerormaz@saarya.edu.tr Kİ-KARE TESTLERİ 1. Ki-are testleri

Detaylı

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ 6 BÖÜ RJİ D SRU - Dİ SRUARI ÇÖZÜRİ F 0 F 00 7 F 8 düzle F uvvetinin bileşeni iş yapar uvvetin cisi üzerine yaptığı iş, nerjinin orunuundan, F f sür f sür F düzle CA D W F F cos7 00 0,8 8 640 J CA C F fieil-ι

Detaylı

1. GİRİŞ Örnek: Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre), zamanın t (saniye) bir fonksiyonu olarak

1. GİRİŞ Örnek: Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre), zamanın t (saniye) bir fonksiyonu olarak DERS: MATEMATİK I MAT0(09) ÜNİTE: TÜREV ve UYGULAMALARI KONU: A. TÜREV. GİRİŞ Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre) zamanın t (saniye) bir fonksiyonu olarak

Detaylı

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET TİTREŞİM VE DALGALAR Periyodik Hareketler: Belirli aralıklarla tekrarlanan harekete periyodik hareket denir. Sabit bir nokta etrafında periyodik hareket yapan cismin hareketine titreşim hareketi denir.

Detaylı

TEST 14-1 KONU İTME MOMENTUM. Çözümlerİ ÇÖZÜMLERİ 6. F F

TEST 14-1 KONU İTME MOMENTUM. Çözümlerİ ÇÖZÜMLERİ 6. F F KOU 4 TM MOMTUM Çözüler TST 4- ÇÖÜMLR. F t grafi inin alt ndaki alan iteyi verir. Cisin ilk h z bilineden ya da. aral kta h zland n bulaay z. ve. alanlar eşit olduğundan = ise oentu değişileri ayndr..

Detaylı

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS MTEMTĐK ĐM YILLR 00 003 00 005 006 007 008 009 00 0 ÖSS-YGS - - - HREKET PROLEMLERĐ Hız msaa verildiğinden süre de saa olmalıdır lınan yol : x Hız: Zaman : ir araç x yolunu hızıyla sürede alır Yol Hız

Detaylı

BİR FONKSİYONUN FOURİER SERİSİNE AÇILIMI:

BİR FONKSİYONUN FOURİER SERİSİNE AÇILIMI: FOURIER SERİERİ GİRİŞ Elastisite probleminin çözümünde en büyü zorlu sınır şartlarının sağlatılmasındadır. Bu zorluğu gidermenin yollarından biride sınır yülerini Fourier serilerine açmatır. Fourier serilerinin

Detaylı

BASINÇ BİRİMLERİ. 1 Atm = 760 mmhg = 760 Torr

BASINÇ BİRİMLERİ. 1 Atm = 760 mmhg = 760 Torr BASINÇ BİRİMLERİ - Sıı Sütunu Cinsinden anılanan Biriler:.- orr: C 'de yüseliğindei cıa sütununun tabanına yaış olduğu basınç bir torr'dur..- SS: + C 'de yüseliğindei su sütununun tabanına yaış olduğu

Detaylı

Deneysel Metotlara Giriş Temel Kavramlar, Analiz Yöntemleri

Deneysel Metotlara Giriş Temel Kavramlar, Analiz Yöntemleri Gebze Teni Üniversitesi Fizi Bölümü Deneysel Metotlara Giriş Temel Kavramlar, Analiz Yöntemleri Doğan Erbahar 2015, Gebze Bu itapçı son biraç yıldır Gebze Teni Üniversitesi Fizi Bölümü nde lisans laboratuarları

Detaylı

KirişlerdeİçKuvvetler Normal Kuvvet, KesmeKuvveti vemoment Diyagramları

KirişlerdeİçKuvvetler Normal Kuvvet, KesmeKuvveti vemoment Diyagramları KirişlerdeİçKuvvetler Normal Kuvvet, KesmeKuvveti vemoment Diyagramları Kesme ve Moment Diyagramlarının Oluşturulması için Grafiksel Yöntem (Alan Yöntemi) Kiriş için işaret kabulleri (hatırlatma): Pozitif

Detaylı

Fizik 101: Ders 18 Ajanda

Fizik 101: Ders 18 Ajanda Fizik 101: Ders 18 Ajanda Özet Çoklu parçacıkların dinamiği Makara örneği Yuvarlanma ve kayma örneği Verilen bir eksen etrafında dönme: hokey topu Eğik düzlemde aşağı yuvarlanma Bowling topu: kayan ve

Detaylı

İTME VE MOMENTUM. 1. P i

İTME VE MOMENTUM. 1. P i 7 BÖÜM İTME E MOMENTUM AIŞTIRMAAR ÇÖZÜMER İTME E MOMENTUM P i 0/s kg P s 0/s kg x +x düzle a Du va rın cis e u gu la dı ğı it e, o en tu de ği şi i ne eşit tir P i i 0 0 kg/s P s s ( 0 0 kg/s it e P P

Detaylı

Fizik 101: Ders 4 Ajanda

Fizik 101: Ders 4 Ajanda Fizik 101: Ders 4 Ajanda Tekrar ve devam: Düzgün Dairesel Hareket Newton un hareket yasaları Cisimler neden ve nasıl hareket ederler? Düzgün Dairesel Hareket Ne demektir? Nasıl tanımlarız? Düzgün Dairesel

Detaylı

DENEY 3 ATWOOD MAKİNASI

DENEY 3 ATWOOD MAKİNASI DENEY 3 ATWOOD MAKİNASI AMAÇ Bu deney bir cisin hareketi ve hareketi doğuran sebepleri arasındaki ilişkiyi inceler. Bu deneyde, eğik hava asası üzerine kuruluş Atwood akinesini kullanarak, Newton un ikinci

Detaylı

İŞ-GÜÇ-ENERJİ 1.İŞ 2.GÜÇ 3.ENERJİ. www.unkapani.com.tr. = (ortalama güç) P = F.V (Anlık Güç)

İŞ-GÜÇ-ENERJİ 1.İŞ 2.GÜÇ 3.ENERJİ. www.unkapani.com.tr. = (ortalama güç) P = F.V (Anlık Güç) İŞ-GÜÇ-ENERJİ Herangi bir cise kuvvet uyguladığıızda cisi kuvvet doğrultusunda yol alıyorsa kuvvet iş yapıştır denir. Yapılan işin değeri kuvvet ile kuvvet doğrultusunda alınan yolun çarpıına eşittir.

Detaylı

Sinüsoidal Gerilim ve Akım ALIŞTIRMALAR

Sinüsoidal Gerilim ve Akım ALIŞTIRMALAR Sinüsoidal Gerilim ve Akım 65 2.7. ALŞTRMALAR Soru 2.1 : 4 kutuplu bir generatörde rotor (hareketli kısım) 3000 devir/dk ile döndüğüne göre, üretilen gerilimin frekansını bulunuz. (Cevap : f=100hz) Soru

Detaylı

Boşlukta Dalga Fonksiyonlarının Normalleştirilmesi

Boşlukta Dalga Fonksiyonlarının Normalleştirilmesi Boşlukta Dalga Fonksiyonlarının Noralleştirilesi Konu tesilinde oentu özduruları, u p (x) ile belirlenir ve ile verilir. Ancak, boşlukta noralleştirilecek bir olasılık yoğunluğu gibi yorulanaaz zira (

Detaylı

Kollektif Risk Modellemesinde Panjér Yöntemi

Kollektif Risk Modellemesinde Panjér Yöntemi Douz Eylül Üniversitesi İtisadi ve İdari Bilimler Faültesi Dergisi, Cilt:6, Sayı:, Yıl:, ss.39-49. olletif Ris Modellemesinde anér Yöntemi ervin BAYAN İRVEN Güçan YAAR Özet Hayat dışı sigortalarda, olletif

Detaylı

5.11.2015 JFM 301 SİSMOLOJİ. 1. Oluş Zamanı 2. Episantr Koordinatları 3. Odak Derinliği 4. Magnitüd

5.11.2015 JFM 301 SİSMOLOJİ. 1. Oluş Zamanı 2. Episantr Koordinatları 3. Odak Derinliği 4. Magnitüd JFM 301 SİSMOLOJİ 1. Oluş Zamanı 2. Eisantr Koordinatları 3. Odak Derinliği 4. Magnitüd Prof. Dr. GÜNDÜZ HORASAN 1. OLUŞ ZAMANI: t o Gün ay, ve yıl yazıldıktan sonra oluş zamanı saat, dakika ve saniye

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir.

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir. 1 İNTEGRAL BİR FONKSİYONUN DİFERANSİYELİ Tanım: f: [a,b] R, x f(x) fonksiyonu (a,b) aralığında türevli olmak üzere, x değişkeninin değişme miktarı x ise f '(x). x ifadesine f(x) fonksiyonunun diferansiyeli

Detaylı

AĞIRLIK MERKEZİ. G G G G Kare levha dairesel levha çubuk silindir

AĞIRLIK MERKEZİ. G G G G Kare levha dairesel levha çubuk silindir AĞIRLIK MERKEZİ Bir cise etki eden yerçekii kuvvetine Ağırlık denir. Ağırlık vektörel bir büyüklüktür. Yere dik bir kuvvet olup uzantısı yerin erkezinden geçer. Cisin coğrafi konuuna ve yerden yüksekliğine

Detaylı

Türev Uygulamaları. 4.1 Bağımlı Hız

Türev Uygulamaları. 4.1 Bağımlı Hız Bölüm 4 Türev Uygulamaları 4.1 Bağımlı Hız Eğer bir balonun içine hava pompalarsak, balonun hem yarıçapı hem de hacmi artar ve artış hızları birbirine bağımlıdır. Fakat, hacmin artış hızını doğrudan ölçmek

Detaylı

Bir boyutta sabit ivmeli hareket..

Bir boyutta sabit ivmeli hareket.. Bir boyutta sabit ivmeli hareket.. İvme sabit olduğunda, ortalama ivme ani ivmeye eşit olur. Hız hareketin başından sonuna kadar aynı oranda artar veya azalır. a x = v xf v xi t ; t i = 0 ve t f = t alınmıştır

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişeni: Bir dağılışı olan ve bu dağılışın yaısına uygun freansta oluşum gösteren değişendir. Şans Değişenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesili Şans

Detaylı

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu) BÖLÜM I GİRİŞ 1.1 Sinyal Bir sistemin durum ve davranış bilgilerini taşıyan, bir veya daha fazla değişken ile tanımlanan bir fonksiyon olup veri işlemde dalga olarak adlandırılır. Bir dalga, genliği, dalga

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) MTEMTİK TESTİ (Mat )... u testte srasla, Matematik ( ) Geometri ( 0) ile ilgili 0 soru vardr.. evaplarnz, cevap kâğdnn Matematik Testi için arlan ksmna işaretleiniz. f, 0 ise =, = 0 ise fonksionu için,

Detaylı

11. SINIF KONU ANLATIMLI. 1. ÜNİTE: KUVVET VE HAREKET 6. Konu ENERJİ VE HAREKET ETKİNLİK VE TEST ÇÖZÜMLERİ

11. SINIF KONU ANLATIMLI. 1. ÜNİTE: KUVVET VE HAREKET 6. Konu ENERJİ VE HAREKET ETKİNLİK VE TEST ÇÖZÜMLERİ . SINIF KONU NLTIMLI. ÜNİTE: KUVVET VE HREKET 6. Konu ENERJİ VE HREKET ETKİNLİK VE TEST ÇÖZÜMLERİ 6. Enerji ve Hareket. Ünite 6. Konu (Enerji ve Hareket) K v 0 0 5 nın Çözüleri L M yatay Cisin K noktasında

Detaylı

ELEKTRİK GÜÇ SİSTEMLERİNDE SALINIM DİNAMİKLERİNİN KAOTİK OLAYLARININ İNCELENMESİ

ELEKTRİK GÜÇ SİSTEMLERİNDE SALINIM DİNAMİKLERİNİN KAOTİK OLAYLARININ İNCELENMESİ ELEKTRİK GÜÇ SİSTEMLERİNDE SALINIM DİNAMİKLERİNİN KAOTİK OLAYLARININ İNCELENMESİ Yılmaz Uyaroğlu M. Ali Yalçın Saarya Üniversitesi, Mühendisli Faültesi, Eletri Eletroni Mühendisliği Bölümü, Esentepe Kampüsü,

Detaylı

Bu deneyin amacı Ayrık Fourier Dönüşümü (DFT) ve Hızlu Fourier Dönüşümünün (FFT) tanıtılmasıdır.

Bu deneyin amacı Ayrık Fourier Dönüşümü (DFT) ve Hızlu Fourier Dönüşümünün (FFT) tanıtılmasıdır. Deney : Ayrı Fourier Dönüşümü (DFT) & Hızlı Fourier Dönüşümü (FFT) Amaç Bu deneyin amacı Ayrı Fourier Dönüşümü (DFT) ve Hızlu Fourier Dönüşümünün (FFT) tanıtılmasıdır. Giriş Bir öncei deneyde ayrı-zamanlı

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. A.. n saısının tamsaı bölenlerinin saısı olduğuna göre, n 0. R de tanımlı " " işlemi; ο ο işleminin sonucu 0. (6) 6 (6) ifadesinin eşiti aşağıdakilerden hangisidir? 6 6 (6)

Detaylı

FİZİK PROJE ÖDEVİ İŞ GÜÇ ENERJİ NUR PINAR ŞAHİN 11 C 741

FİZİK PROJE ÖDEVİ İŞ GÜÇ ENERJİ NUR PINAR ŞAHİN 11 C 741 FİZİK PROJE ÖDEVİ İŞ GÜÇ ENERJİ NUR PINAR ŞAHİN 11 C 741 İŞ İş kelimesi, günlük hayatta çok kullanılan ve çok geniş kapsamlı bir kelimedir. Fiziksel anlamda işin tanımı tektir. Yola paralel bir F kuvveti

Detaylı

28/5/2009 TARİHLİ VE 2108/30 SAYILI KURUL KARARI 11 HAZİRAN 2009 TARİHLİ VE 27255 SAYILI RESMİ GAZETEDE YAYIMLANMIŞTIR.

28/5/2009 TARİHLİ VE 2108/30 SAYILI KURUL KARARI 11 HAZİRAN 2009 TARİHLİ VE 27255 SAYILI RESMİ GAZETEDE YAYIMLANMIŞTIR. 28/5/2009 TARİHLİ VE 2108/30 SAYILI KURUL KARARI 11 HAZİRAN 2009 TARİHLİ VE 27255 SAYILI RESMİ GAZETEDE YAYIMLANMIŞTIR. Enerji Piyasası Düzenleme Kurumundan: ELEKTRĠK PĠYASASI DENGELEME VE UZLAġTIRMA YÖNETMELĠĞĠ

Detaylı

PERİYODİK CETVEL. Yanıt : D. www.kimyahocam.com. 3 Li : 1s2 2s 1 2. periyot 1A grubu. 16 S : 1s2 2s 2 2p 6 3s 2 3p 4 3.

PERİYODİK CETVEL. Yanıt : D. www.kimyahocam.com. 3 Li : 1s2 2s 1 2. periyot 1A grubu. 16 S : 1s2 2s 2 2p 6 3s 2 3p 4 3. PERİODİK CETVEL Periyodik cetvel, elementlerin atom numaraları temel alınarak düzenlenmiş bir sistemdir. Periyodik cetvelde, nötr atomlarının elektron içeren temel enerji düzeyi sayısı aynı olan elementler

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM309 Elektronik-2 Laboratuarı Deney Föyü Deney#6 İşlemsel Kuvvetlendiriciler (OP-AMP) - 2 Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA, 2015 DENEY

Detaylı

HOMOGEN OLMAYAN DENKLEMLER

HOMOGEN OLMAYAN DENKLEMLER n. mertebeden homogen olmayan lineer bir diferansiyel denklemin y (n) + p 1 (x)y (n 1) + + p n 1 (x)y + p n (x)y = f(x) (1) şeklinde olduğunu ve bununla ilgili olan n. mertebeden lineer homogen denlemin

Detaylı

HAREKET HAREKET KUVVET İLİŞKİSİ

HAREKET HAREKET KUVVET İLİŞKİSİ HAREKET HAREKET KUVVET İLİŞKİSİ Sabit kabul edilen bir noktaya göre bir cismin konumundaki değişikliğe hareket denir. Bu sabit noktaya referans noktası denir. Fizikte hareket üçe ayrılır Ötelenme Hareketi:

Detaylı

SİNYALLER ve SİSTEMLER

SİNYALLER ve SİSTEMLER SİNYALLER ve SİSTEMLER 1. Sinyallerin Sınıflandırılması 1.1 Sürekli Zamanlı ve Ayrık Zamanlı Sinyaller 1.2 Analog ve Sayısal Sinyaller Herhangi bir (a,b) reel sayı aralığında bir x(t) sinyali sonsuz değer

Detaylı

Öğrenci Seçme Sınavı (Öss) / 18 Haziran Matematik II Soruları ve Çözümleri. = 1 olur.

Öğrenci Seçme Sınavı (Öss) / 18 Haziran Matematik II Soruları ve Çözümleri. = 1 olur. Öğrenci Seçme Sınavı (Öss) / 8 Haziran 6 Matematik II Soruları ve Çözümleri x, x. f(x) x ise fonksiyonu için,, x olduğuna göre, a b kaçtır? lim + x f ( x) a ve lim x f ( x) b A) B) C) D) E) Çözüm x x için

Detaylı

Bölüm 4. İki boyutta hareket

Bölüm 4. İki boyutta hareket Bölüm 4 İki boyutta hareket İki boyutta Hareket Burada konum, hız ve ivmenin vektör karakteri daha öne çıkacaktır. İlk olarak sabit ivmeli hareketler göz önünde bulundurulacak. Düzgün dairesel hareket

Detaylı

TEMEL KAVRAMLAR Test -1

TEMEL KAVRAMLAR Test -1 TEMEL KAVRAMLAR Test -1 1. 6 ( ) 4 A) B) 3 C) 4 D) 5 E) 6 5. 4 [1 ( 3). ( 8)] A) 4 B) C) 0 D) E) 4. 48: 8 5 A) 1 B) 6 C) 8 D) 1 E) 16 6. 4 7 36:9 18 : 3 A) 1 B) 8 C) D) 4 E) 8 3. (4: 3 + 1):4 A) 3 B) 5

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) MTEMTİK TESTİ (Mat ). u testte srasla, Matematik ( ) Geometri ( 0) ile ilgili 0 soru vardr.. evaplarnz, cevap kâğdnn Matematik Testi için arlan ksmna işaretleiniz.. f, 0 ise =, = 0 ise fonksionu için,

Detaylı

Bağıl hız ve bağıl ivme..

Bağıl hız ve bağıl ivme.. Bağıl hız ve bağıl ivme.. Bağıl hareket, farklı referans sistemlerindeki farklı gözlemciler tarafından hareketlerin nasıl gözlemlendiğini ifade eder. Aynı hızla giden iki otomobilden birisinde bulunan

Detaylı

TG 12 ÖABT İLKÖĞRETİM MATEMATİK

TG 12 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT İLKÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 5 Sayı: 1 sh. 89-101 Ocak 2003

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 5 Sayı: 1 sh. 89-101 Ocak 2003 DEÜ MÜENDİSLİK FAKÜLTESİ FEN ve MÜENDİSLİK DERGİSİ Cilt: 5 Sayı: 1 sh. 89-101 Oca 00 PERDE ÇERÇEVELİ YAPILARDA a m PERDE KATKI KATSAYISININ DİFERANSİYEL DENKLEM YÖNTEMİ İLE BULUNMASI VE GELİŞTİRİLEN BİLGİSAYAR

Detaylı

UYGULAMALI MATEMATİK ÇÖZÜMLÜ SORU BANKASI

UYGULAMALI MATEMATİK ÇÖZÜMLÜ SORU BANKASI ÖABT UYGULAMALI MATEMATİK ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT UYGULAMALI MATEMATİK ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı ya da bir kısmı, yazarın izni olmaksızın, elektronik, mekanik,

Detaylı

I= V R /R = Vs/R =10/4=2.5A, P R =V R I=10 2.5=25W Vs kaynagi icin. P S = Vs I S = Vs (-I) =10 (-2.5)=-25W

I= V R /R = Vs/R =10/4=2.5A, P R =V R I=10 2.5=25W Vs kaynagi icin. P S = Vs I S = Vs (-I) =10 (-2.5)=-25W GU Devrelerde geriimin + ucundan akim girecek sekilde yon tanimi yapilmalidir. Yon bu sekilde tanimlanirsa = olur. Yon bu sekilde tanimlanirsa = - olur. Bunun gibi kapasite taniminda de d = seklindedir.

Detaylı

* - - * 100 2014-119. 2014100-119. - -- a - 101 2014-119. 2014100-119. - - - 2 2 ÖMER sebebiyle 102 2014-119. 2014100-119. - 3 Bu bölümden sonra. 4 tümce 103 2014-119. 2014100-119. 104 2014-119. 2014100-119.

Detaylı

1.Seviye ITAP 09 Aralık_2011 Sınavı Dinamik III

1.Seviye ITAP 09 Aralık_2011 Sınavı Dinamik III .Seviye ITAP 9 Aralık_ Sınavı Dinamik III.Kütlesi m=.kg olan bir taş, yüksekliği h=5m olan bir kaleden yatay yönde v =5m/s hızı ile atılıyor. Cismin kinetik ve potansiyel enerjisini zamanın fonksiyonu

Detaylı

Fizik 101: Ders 6 Ajanda. Tekrar Problem problem problem!! ivme ölçer Eğik düzlem Dairesel hareket

Fizik 101: Ders 6 Ajanda. Tekrar Problem problem problem!! ivme ölçer Eğik düzlem Dairesel hareket Fizik 101: Ders 6 Ajanda Tekrar Problem problem problem!! ivme ölçer Eğik düzlem Dairesel hareket Özet Dinamik. Newton un 3. yasası Serbest cisim diyagramları Problem çözmek için sahip olduğumuz gereçler:

Detaylı

ŞARTNAME DİJİTAL PENS AMPERMETRE GARANTİ GÜVENLİK BİLGİLERİ. Uyarı ELEKTRİK SEMBOLLERİ

ŞARTNAME DİJİTAL PENS AMPERMETRE GARANTİ GÜVENLİK BİLGİLERİ. Uyarı ELEKTRİK SEMBOLLERİ DİJİTAL PENS AMPERMETRE Pil apağını açmadan veya AC aımı ölçmeden önce sayaçtan test uçlarını ve test edilen iletenden germe GARANTİ Bu cihazın bir yıl süreyle malzeme ve işçili hatası bulunmadığı garanti

Detaylı

Bir Kütle-Yay Sisteminde Belirli Bir Doğal Frekansı Değiştirmeksizin Ters Yapısal Değişiklik Yapılması

Bir Kütle-Yay Sisteminde Belirli Bir Doğal Frekansı Değiştirmeksizin Ters Yapısal Değişiklik Yapılması Uluslararası Katılılı 7. Maina eorisi Sepozyuu, İzir, 4-7 Haziran 05 Bir Kütle-Yay Sisteinde Belirli Bir Doğal Freansı Değiştiresizin ers Yapısal Değişili Yapılası M. Hüseyinoğlu * O. Çaar Fırat University

Detaylı

Fizik 101: Ders 17 Ajanda

Fizik 101: Ders 17 Ajanda izik 101: Ders 17 Ajanda Dönme hareketi Yön ve sağ el kuralı Rotasyon dinamiği ve tork Örneklerle iş ve enerji Dönme ve Lineer Kinematik Karşılaştırma açısal α sabit 0 t 1 0 0t t lineer a sabit v v at

Detaylı

Fizik 101: Ders 3 Ajanda

Fizik 101: Ders 3 Ajanda Anlamlı Saılar Fizik 101: Ders 3 Ajanda Tekrar: Vektörler, 2 ve 3D düzgün doğrusal hareket Rölatif hareket ve gözlem çerçeveleri Düzgün dairesel hareket Vektörler (tekrar) Vektör (Türkçe) ; Vektör (Almanca)

Detaylı