TEKNİK ELEMANLAR İÇİN DİJİTALİMSİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "TEKNİK ELEMANLAR İÇİN DİJİTALİMSİ"

Transkript

1 TEKNİK ELEMANLAR İÇİN DİJİTALİMSİ MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ Otomasyon Atölyesi Temel Dijital Elektronik Ders Notu 2006 MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 1

2 İÇİNDEKİLER Sayı Sistemleri Desimal Sistemi Binary Sayı Sistemi Oktal Sayı Sistemi Heksadesimal Sayı Sistemi Bilgisayar Kodları Boolen Matematiği Boolen Kuralları Doğruluk Tablosu Lojik İfadelerin Sadeleştirilmesi Boolen Cebri İle Sadeleştrime Lojik İfadelerin Venn Şeması İle Sadeleştrilmesi Lojik İfadelerin Karno Haritası İle Sadeleştrilmesi Lojik Kapılar Ve Kapısı ( And Gate ) Veya Kapısı ( Or Gate ) Değil Kapısı ( Not Gate ) Vedeğil Kapısı ( Not And Nand Gate ) Veyadeğil Kapısı ( Not Or Nor Gate ) Özel Veya Kapısı ( Exor Exclusive Or Gate ) Özel Veyadeğil Kapısı ( Exnor Exclusive Nor Gate ) Tampon Kapısı ( Buffer Gate ) Trasmisyon Kapısı ( Blateral Swich ) Lojik Kapıların Diğer Kapılarla Elde Edilmesi Ve Kapısının Elde Edilmesi Veya Kapısının elde Edilmesi Tampon Kapısının Elde Edilmesi Ve Değil Kapısının Elde Edilmesi Veya Değil Kapısının Elde Edilmesi Özel Veya Kapısının Elde Edilmesi Lojik Kapılar İle İlgili Örnekler Lojik Devre Tasarımı Entegre Devreler Entegre Devre Parametreleri TTL Entegreler Cmos Entegreler Kapılarda Schmitt Triger Özelliği Titreşim Önleme Devresi Dijital Kapıların Akım Değerleri Mulrivibratörler Astable Mv Monostable Mv Bistable Mv FilipFloplar RS FF JK FF D ( Data ) FF T ( Toogle ) FF FF ler İle İlgili Örnekler Sayıcılar ( Counters ) Asenkron Sayıcılar Asenkron Yukarı Sayıcı Asenkron Aşağı Sayıcı Senkron Sayıcılar Senkron Yukarı Sayıcı Senkron Aşağı Sayıcı Diğer Lojik Devreler Kod Çözücü Devreler ( Decoder ) 2 Girişli 4 Çıkışlı Kod Çözücü BCD Girişli 7 Çıkışlı Kod Çözücü Kodlayıcı Devreler ( Encoder ) 2 Bitlik Kodlayıcı Aritmetik İşlem Devreleri Toplayıcılar Yarım Toplayıcı Karşılaştırıcılar Lojik Kapılarla Kumanda Devrelerinin Oluşturulması Set Ve Reset Devreleri Yasaklama Devresi Kilitleme Devresi İleri Geri Motor Çalıştırma Devresi Zamanlayıcılar DİJİTAL DEVRE DENEYLERİ MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 2

3 DİJİTAL ELEKTRONİK Sinisoydal, kare, testeredişi, üçgen dalga.. bu gibi sinyaller zamana bağlı olarak şiddet ve / veya yönünü değiştiren ve minimum değeri ile maksimum değeri arasında sürekliliği olan gerilim formlarıdır. Bu gerilimlere analog sinyaller ve bu sinyalleri üreten veya kullanan devrelere ise analog devreler diyoruz. Bir analog sinyali saklayıp daha sonra aynı şekli ile kullanmak veya birden fazla analog sinyaller arasında matematiksel işlemler yapmak mümkün değildir. Peki Analog Sinyaller verilerin saklanması veya sayısal işlemlerin yapılması nasıl gerçekleştirilecek. İşte bu gibi işlemler dijital elektrik sinyalleri ile dijital elektronik devrelerde yapılmaktadır. Peki nedir dijityal sinyal veya gerilim? Kısaca belirli bir genliğe (Değere) sahip elektrik palsleridir ve sadece iki değeri vardır ya Düşük (Low) seviye yada Yüksek (High) seviye. Düşük seviye sayısal olarak 0, Yüksek seviye ise 1 e karşılık gelmektedir. Buradaki 0 ve 1 e ait gerilim değerleri kullanılan dijital devrenin çalışma gerilimlerine bağlıdır örnek olarak TTL entegrelerden oluşmuş bir devrede 0 değeri 0 V a karşılık gelirken 1 değeri 5 V a karşılık gelmektedir. Dijital sinyaller Gerektiğinde Analog / Dijital ( A/D ) veya Dijital / Analog ( D/A ) dönüştürücü devreler ile bu iki sinyal arasında dönüşüm yapmamız mümkündür. Örneğin proses sisteminde sıcaklık ölçtüğümüz termokupul çubukta sıcaklık değişimi bir gerilim seviyesine dönüşmekte ve bu gerilim seviyesindeki değişim A/D dönüştürücü ile sıcaklığı sayısal olarak görmemiz sağlanmaktadır. Evet elektrik sinyallerini 0 ve 1 lere dönüştürdükten sonra matematik işlemlerini yapabilir ve verileri saklayabiliriz. (61) SAYI SİSTEMLERİ Desimal sayı sistemi ( 10 tabanlı sayı sistemi ) Binariy sayı sistemi ( 2 tabanlı sayı sistemi ) Oktal sayı sistemi ( 8 tabanlı sayı sistemi ) Heksadesimal sayı sistemi ( 16 tabanlı sayı sistemi ) Not : Sayı sistemlerinde her bir sayı digit dijit olarak adlandırılır. (61)10 Desimal sistemi ( 10tabanlı sayı sistemi ) Mevcut matematiğimizde kullandığımız sayı sistemidir. 0, 1, 2,3, 3, 4, 5, 6, 7, 8, 9 dan oluşan 10 tabanlı sayı sistemidir. Örnek = = Tabanın Kuvvetleri = (61)10 Binary sayı sistemi ( 2 tabanlı sayı sistemi ) 0, 1 den oluşan 2 tabanlı sayı sistemidir. ( 1 enerji var, 0 enerji yok anlamına gelir. ) Binary sayının desimal sayıya çevrilmesi (101011) 2 = (?) 10 Örnek 12 ( ) 2 = = = Tabanın Kuvvetleri = (43) 10 MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 3

4 Desimal sayının binary sayıya çevrilmesi (33) 10 = (?) 2 (61) 10 = (?) 2 Örnek 13/ Sondan başa doğru sıralanır (33) 10 = (?) 2 1. yöntem (61) 10 = (?) 2 2. yöntem 61 = (33) 10 = (100001) = = = = = Aşağıdan yukarı doğru sıralanır (61) 10 = (111101) 2 Ondalıklı desimal sayıların binary sayılara çevrilmesi Tam kısım bölünür, ondalıklı kısm çarpılır. Örnek 15 ( 5,625 ) 10 = (?) 2 ( 5 ) 10 = (101 ) 2 ( 0,625 ) 10 = (101) 2 ( 5,625 ) 10 = (101,101) = = ,625 0,25 0,5 x 2 x 2 x 2 1,250 0,50 1, Ondalık kısım yok edilinceye kadar çarpma işlemine devam edilir 1 2 = Baştan sona gidilir Ondalıklı binary sayıların desimale çevrilmesi Örnek 16 ( 0, ) 2 = /2 1/2 2 1/2 3 1/4 1/8 0,5 0,25 0, , , ,125 = ( 0,75 ) 10 MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 4

5 Örnek Elde Desimal sayıların kendi aralarında toplanması Kalan 10 dur çünkü 10 da 1 tane 10 vardır yani elde 1 dir =0 olduğundan kalanda ise 0 dir Binary Desimal sayı dönüşüm tablosu Çarpan = = = = = = = = = = = = = = = = Elde Binary sayıların kendi aralarında toplanması Kalan = 2 binary sayı sistemi 2 lik tabana göre kurulduğundan 2 de 1 tane 2 vardır yani elde 1 dir 2 2 = 0 olduğundan kalanda ise 0 dır Elde Kalan 16 da 1 tane 10 vardır yani elde 1 dir = 6 olduğundan kalan ise 6 dır Elde Kalan = 3 3 de 1 tane 2 vardır yani elde 1 dir 3 2 = 1 olduğundan kalan ise 1 dir = 4 4 de 2 tane 2 vardır 2 nin binary karşılığı 10 olduğundan elde 10 dur 4 4 = 0 olduğundan ise kalan 0 dır. Kalan Elde Örnek 18 X Y Z 1 X işleminden gelen elde 1 Y işleminden gelen elde Z Y X Her basamaktaki işlemi tek tek yapalım Elde Kalan Elde Kalan Elde Kalan MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 5

6 1.3 Oktal sayı sistemi ( 8 tabanlı sayı sistemi ) 0, 1, 2, 3, 4, 5, 6, 7 den oluşan 8 tabanlı sayı sistemidir. Örnek 19/10 Oktal sayıların desimal sayılara çevrilmesi (165) 8=(?) 10 Desimal sayıların oktal sayılara çevrilmesi (61) 10=(?) 8 ( ) 8 = = Tabanın Kuvvetleri = (117) = = (61) 10 = (75) 8 Örnek = x 8 = 6 = x 8 = 3 = x 8 = 2 (28318) 10 = (?) 8 Büyük sayıların çevriminde hesap makinesi ile yandaki yöntemde kullanılabilir = x 8 = 7 (28318) 10 = (67236) = 6 6 = Heksadesimal sayı sistemi ( 16 tabanlı sayı sistemi ) 0, 1, 2, 3, 4, 5, 6,7, 8, 9, A, B, C, D, E, F den oluşan 16 tabanlı sayı sistemidir. ( A 10, B 11, C 12, D 13, E 14, F 15 ) Örnek 112/13 Desimal sayının hegsa desimal sayıya çevrilmesi (1451) 10=(?) B A 5 (1451) 10=(5AB) 16 Heksa desimal sayının desimal sayıya çevrilmesi (F5A) 16=(?) 10 ( F 5 A ) 16 = = = (3930) 10 Not : Binary sayının oktala, oktallın hegsadesimale çevrimi gibi ara çevrimler olsada bu noktada kolay olan yol sayıların desimale çevrimi varsa desimalde dört işlemin yapılması ve tekrar istenen sayı tabanına çevrimidir. Problemler : Aşağıda verilen sayıların çevrimlerini yapınız 11 ( 1011 ) 2 = (? ) 10 ( 11 ) ( 11 ) 2 = (? ) 10 ( 3 ) ( 101 ) 2 = (? ) 10 ( 5 ) ( 111 ) 2 = (? ) 10 ( 7 ) ( ) 2 = (? ) 10 ( 220 ) ( 7,8125 ) 10 = (?) 2 ( 111,1101 ) 2 18 ( 47 ) 8 = (?) 10 (39) ( 566 ) 8 = (?) 10 (374) ( 33 ) 10 = (?) 8 (41) ( 45 ) 16 = (69) ( 125 ) 10 = (?) 2 ( ) 2 MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 6

7 112 (63.25) dec = (? ) bin a) b) c) d) e) Hiçbiri 113 ( ) dec = (? ) bin a) b) c) d) e) Hiçbiri 114 ( ) bin = (? ) dec a) b) c) d) e) Hiçbiri 115 ( ) bin = (? ) dec a) b) c) d) e) Hiçbiri 116 ( ) bin = (? ) oct a) 62.4 b) 62.1 c) 31.1 d) 31.2 e) (25.6) oct = (? ) bin a) b) c) d) e) (35.1) oct = (? ) hex a) 17.4 b) 1D.1 c) D1.2 d) E8.1 e) Hiçbiri 119 (39.A) hex = (? ) oct a) 35.5 b) 70.5 c) 71.5 d) e) (485) dec = (? ) hex a) 1E5 b) 231 c) 5E1 d) 15E e) Hiçbiri Decimal Binary Octal Hexadecimal A B C D E F Bilgisayar Kodları Günlük hayatta kullandığımız onlu sistemdeki sayılar, özel karakter ve harfler lojik devrelerde ikili sayı sistemine çevrilmeden kullanılamazlar. Bilgilerimizi bilgisayarda saklamak ve üzerinde işlem yapmak için yapılan çeviri işlemine kodlama adı verilir. Bit : binary sayı kodunda kullandığımız rakamlara 0 ve 1 lere bit denir. Byte : 8 bitten oluşan ve bir karakterlik bilgiyi saklayabilen bellek birimidir. Word : 2 byte tan oluşan bellek birimidir byte byte word MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 7

8 İkili kodlanmış onlu sistem ( BCD ) ( binary coded for decimal ) Bu sistemde bir karakter ve sayı dört basamaklı bir ikili sayı grubu ile gösterilir.yani her karakter 4 bitlik ikili sayı gurubu ile ayrı ayrı kodlanır. Özel karakterleri 6 bitlik ikili sayı grubu ile kodlayabiliriz nin BCD kodu Desimal sayılar 4 bitlik kodlama 6 bitlik kodlama Karakter Desimal karşılığı Binary karşılığı 6 14 E > 6E Gray Kodu Bu kodda bir bitten bir sonraki bite geçişteki değişime bakılır. Bir bitten sonraki kendisini takip eden bittede eğer aynı sayı varsa bunun gray kodu 0, eğer farklı bir sayı varsa bunun gray kodu ise 1 dir. 56 sayısının gray kodunu bulalım (56) dec = (? ) gray Örnek 114 (56) dec = ( ) bin V V V V V V (56) dec = ( ) gray 2. BOOLEN MATEMATİĞİ Mantık kurallarının matematiksel gösterimidir. Boolen cebri dijital devreleri oluşturmadan kağıt üzerinde simülasyonlarını yapmamıza olanak sağlar. Bu sayede istediğimiz çalışma şartlarına ait devreleri tasarlayabilir, doğruluğunu kontrol edebilir, ve devre üzerinde sadeleştirmelere gidebiliriz. Her nekadar Boolen cebrini elektrik, elektronik ve diğer dallardaki teknik adamlar kullansada Boolen cebri 18. yüzyılda yaşamış George Bole isimli matemetikci tarafından bulunmuştur. Boolen matematik ile elektriğin birleştiği bir dizi mantık işlemleridir. İki değer vardır 0 veya 1 Bir A sinyalini ele alalım + 5 V 0 V Durum L H L Binary Girişler Anahtarlama Elemanıdır Çıkışlar Enerjinin Olup Olmamasıdır Lojik 0 Lolik 1 Lojik 0 Lolik 1 Anahtar Açık Anahtar Kapalı Enerji Yok Enerji Var MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 8

9 Otomasyon Atölyesi Temel Dijital Elektronik Ders Notu Çarpma İşlemi : Seri anahtarlamadır ve mantığı Toplama İşlemi : Paralel anahtarlama veya mantığı A A B B Q = A.B Ve işlemleri 0. 0 = = = = 0 Boolen kuralları Veya işlemleri = = = = 1 Q = A+B 0.0= = = = = = = = 1 Yukarıda yaptığımız işlemlerin sayısal değerlerinin 0 mı yoksa 1 mi oldukları belliydi. Peki yapacağımız işlerlerdeki sayısal değerler belli değil yada değeri zaman içerisinde değişiyorsa işlemleri nasıl yapmamız gerekiyor? Bu durumda işlem yapacağımız sayısal değişkenler aynı matemetikte bilinmeyenlere verdiğimiz x,y. isimleri gibi isimler atayarak işlemlerimizi gerçekleştiriyoruz. Eğer herhangi bir zorunluluk yoksa A,B a,b X,Y... x,y İnputA,inputb I0.0,i0.1.. E gibi çok çeşitli degişkenleri atayabilmekteyiz. MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 9

10 2.1 Boolen teoremleri : 1 Yer değişme kanunu : A + B = B + A A.B = B.A 2 Birleşme kanunu : A + ( B + C ) = ( A + B ) + C A. ( B.C ) = ( A.B ). C MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 10

11 3 Dağılma kanunu A+B.C=(A+B).(A+C) A.(B+C) = A.B+A.C * Boolen cebrinde öncelik parantez içinde sıralı işlemlerde ise öncelik çarpma sonra toplamadadır. 4 Tamamlayıcı kanunu _ A. A = 0 _ A + A = 1 5 Çift tersleme kanunu : _ = = _ A = A A = A = = A A A A _ A bazı kaynaklarda A I olarak geçebilir. MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 11

12 7 Yutma kanunu Yutma kanunu / 1 Yutma kanunu / 2 A.(A+B) = A A+A.B = A Yutma kanunu / 3 Yutma kanunu / 4 A + Ā B = A + B A. ( Ā + B ) = AB A + Ā B = ( A + Ā ). ( A + B ) A. ( Ā + B ) = AĀ + AB ( A + Ā ) = 1 AĀ = 0 1. ( A + B ) = A + B 0 + AB = AB 8 Ve özdeşlikleri veya Ā + AB = Ā + B veya Ā. ( A + B ) = Ā B A.0=0 A.1=A A.A=A A.Ā=0 MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 12

13 9 Veya özdeşlikleri A+0=A A+1=1 A+A=A A+Ā=1 10 de morgon kanunu A + B = A. B A. B = A + B A + B + C N = A. B. C... N A. B. C... N = A + B + C N 2.2 Doğruluk tablosu İfadede veya devrede bulunan her bir değişkenin olabileceği bütün 1 ve 0 durumları için işlemlerin yapılarak sonuçların yine 1 ve 0 lar halinde yazılmasıdır. Buradaki 1 ve 0 olasıkları 2 değişken sayısı ile bulunur. Örnek 21 Q = A+A.B A, B olarak 2 değişken var olasılık 2 2 = 4 dür A B A.B Q = A+A.B Lojik ifadelerin sadeleştirilmesi Boolen cebri ile sadeleştrime Yöntemler : Ortak paranteze alınarak değişken sayısı azaltılmaya çalışılır, burada parantez içlerinde bir değişken ve o değişkenin değili bir araya getirilerek yok edilmeye çalışılır. Bir ifadede birden fazla ortak paranteze alınmışsa bu parantezler açılarak tekrar ortak parantezlerle alınarak yok edilmeye çalışılır. Örnekler : Aşağıdaki lojik ifadeleri sadeleştriniz Örnek 22 Q = A. ( A B + C ) =A A B + A. C =A B + A C =A. ( B + C ) A MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 13

14 . Otomasyon Atölyesi Temel Dijital Elektronik Ders Notu Örnek 23 Q = Ā B + A + A B yöntem 1 Q =( A + A B )+ Ā B =A + Ā B = A + B A A + B yöntem 2 Q =( A + Ā B )+ A B= A + B +A B = A + A. B + B = A + B A + B A Örnek 24 Y=A B + A B = B ( A + A ) = B 1 = B 1 Örnek 25 Z = A C + A D + B C + B D =A ( C + D ) + B ( C + D ) = AX + BX = X ( A + B ) = ( C + D ) ( A + B ) * * # # X X (C+D) Örnek 26 K = X Y Z + X Y Z + X Y Z + X Y Z = X Y Z + X Y Z + X Y Z + X Y Z * * # # K = X Y ( Z + Z ) + X Y Z + X Y Z = X Y + X Y Z + X Y Z = X Y + X Y Z + X Y Z 1 X Y K = Y ( X + X Z ) + X Y Z = Y ( X + Z ) + X Y Z Örnek 27 Y = ( A + B ) C = ( A + B ) + C = A B + C Örnek 2 8 Örnek 29 Örnek 210 Örnek 211 M = ( A + B C ) ( C + A l D ) = A ( C + A l D ) + B C ( C + A l D ) = A C + A A l D + B C C + B C A l D = A C + B C + A l B C D = C ( A + B + A l B D) E = X.Y.( X + Y + Z ) = X.Y.X + X.Y.Y + X.Y.Z = X.Y + X.Y + X.Y.Z = X.Y + X.Y.Z = X.Y.1 + X.Y.Z = X.Y.( 1 + Z ) = X.Y.1 = X.Y S = P.Q.R + P. Q l.r l + P.Q. R l + P.Q l.r = P.Q.(R + R l ) + P. Q l.( R l + R) = P.Q.1 + P. Q l.1 = P.Q + P. Q l = P.(Q + Q l ) = P.1 = P Q = A I.B.C I + A I.B.C = A I.B ( C I + C ) = A I.B Örnek 212 { [ ( A.B )' C ]' D }' = { [ ( A.B )'' + C' ]. D }' = (A.B + C')' + D' = [(A.B)'.C''] + D' = (A'+B' ).C + D' MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 14

15 Otomasyon Atölyesi Temel Dijital Elektronik Ders Notu Aşağıdaki lojik ifadeyi sadeleştirerek doğru olup olmadığını doğruluk tablosu ile ispatlayınız. Örnek 213 Y = ( ( A + B ) + ( A + C ) + ( A + D ) ) ( A B ) = ( A B ) ( A + B + C + D ) A + B + C + D Y = A B A + A B B + A B C +A B D = A B A B C + A B D =A B (1 + C + D ) = A B 1 = A B 0 * * * 1 A B A 0 0 A, B, C, D 4 adet değişken var. (2 üssü 4) 2 4 = 16 farklı olasılık olacaktır her bir işlem basamağı ve ara işlemler doğruluk tablosunda bütün olasılıklar için gerçekleştirilecek ve sonuç bulunacaktır aynı işlem sadeleştrilmiş işlemede uygulandıktan sonra iki sonuç sutunu karşılaştırılacaktır A B C D B A + B A + C A + D X A B F = Örnek 214 Örnek 215 X= ( B C + B C ) (B + AC ) İfadesini sadeleştiriniz ve elde ettiğiniz sonucu anahtarlama elemanları ile oluşturunuz.... Lojik ifadesi sadeleştirildiğinde sonuç CB bulunur anahtarlama elemanları ile oluşturulmuş şekli yanda verilmiştir. Q = ( X I + Y ). ( X + Y ) = X I.X + X I.Y + X.Y + Y.Y = X I.Y + X.Y + Y = Y. ( X I + X + 1 ) = Y Örnek 216 Örnek 217 Q = X. Y I.Z + Y.Z + X I.Y I.Z + Y I.Z I = Y I.Z ( X + X I ) + Y.Z + Y I.Z I = Y I.Z + Y.Z + Y I.Z I = Y I ( Z + Z I ) + Y.Z = Y I + YZ = Y I + Z Q = A I.B + ( A.B ) I + C = A I.B + A I + B I + C = A I. ( B + 1 ) + B I + C = A I + B I + C Örnek 218 Q = ( X.Y ) I. ( X I + Y I ) I = ( X I + Y I ). ( X II.Y II ) = ( X I + Y I ). X.Y = X I.X.Y + Y I.X.Y = 0.Y + 0.Y = 0 MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 15

16 Örnek 219 Örnek 220 Q = A I.B.C I + A I.B.C = A I.B.( C I + C ) = A I.B Q = B I.C I + A.B + A I.B I.C + A I.B.C = B I.C I + A.B + A I.C.( B I + B ) = B I.C I + A.B + A I.C Örnek 221 Q = ( A I + B I + C ) I = A II.B II.C I = A.B.C I Örnek 222 Örnek 223 Q = A I.B + B.C I + B I = B.( A I + C I ) + B I ( A + C ) ye X dersek Q=B I + B.X = B I + X = B I + A I + C I = A I + B I + C I Q = [ ( X I + X.Y ). ( Y I + X.Y ) ] I = ( X I + X.Y ) I + ( Y I + X.Y ) I = ( X II. ( X.Y ) I ) + ( Y II + ( X.Y ) I ) = ( X. ( X I + Y I ) ) + ( Y + ( X I + Y I ) = X.X I + X.Y I + Y.X I + Y.Y I = X.Y I + X I.Y Problemler : Aşağıda verilen lojik ifadeleri sadeleştiriniz 21 Q = A' B' C' + A B' C' + B C + A' B' C + A B' C =.. = C + B' 22 F = A C + A' C + C' =.. = 1 23 Q = ( A' B' C' ) ' =.. = A + B + C 24 D = A C + B ( A' C + A ) =.. = A C + A B + B C 25 S = B' C' A' + A' B C + A B' C' + B' C A =.. = B' C' + A B' + A' B C Aşağıda verilen lojik ifadeyi sadeleştirerek doğruluğunu doğruluk tablosunda karşılaştırınız 26 [ A' B' + ( A + B' )' ] ' =.. = A A B [ A' B' + ( A + B' )' ] ' Aşağıda verilen doğruluk tablolarını gerçekleyen lojik ifadeleri bulunuz 27 P Q X a) X = P'Q' + PQ' b) X = PQ + PQ' + P'Q' c) X = PQ + P'Q AND P'Q' d) X = PQ + P'Q + P'Q' 28 P Q X a) X = PQ' b) X = P'Q + PQ' c) X = PQ d) X = P'Q' MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 16

17 Otomasyon Atölyesi Temel Dijital Elektronik Ders Notu Lojik ifadelerin venn şeması ile sadeleştrilmesi Lojik ifadelerin küme kavramındaki bileşim, kesişim, fark şekli ile gösterimidir. Bu yöntem ilede lojik ifadelerin sadeleştrilmesi mümkündür. A A B B A+B A+B A.B A.B Örnek = A B A+B Örnek 225. = A B A.B MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 17

18 Lojik ifadelerin karno haritası ile sadeleştrilmesi Lojik ifadelerin çarpımların toplanması şeklinde sadeleştrilmesini sağlayan kutucuklardan oluşan bir yöntemdir. Değişken sayısına göre karno harirasının hazırlanmasında öncelikli olarak bulunması gereken şey kullanılacak kutu sayısıdır. Kutu sayısının 2 değişken şeklinde bulunur. 2 Değişkenli ( A B ) karno haritası. Kutu sayısı = 2 2 = 4 3 Değişkenli ( A B C ) karno haritası. Kutu sayısı = 2 3 = 8 4 Değişkenli ( A B C D ) karno haritası. Kutu sayısı = 2 4 = 16 5 Değişkenli ( A B C D E ) karno haritası. Kutu sayısı = 2 5 = 32 Lojik ifadelerin karno haritasına yerleştrilmesi. 6 Değişkenli ( A B C D E F ) karno haritası. Kutu sayısı = 2 6 = 64 Örnek 226 Y = A + A'B İşlem basamakları: A nın olduğusütundaki tüm kutulara 1 konur A' ve B nin kesiştiği kutuya 1 konur A A' A B 0 1 B' 0 1 B A'B _A_ A=1 olan sütun Kesişim noktası Örnek 227 Y = A + A' B C + B C' İşlem basamakları: A nın olduğu sütunlardaki tüm kutulara 1 konur (AB ve AB' sütunları ) B nin olduğu ve C' ile kesiştiği tüm kutulara 1 konur A' B C nin kesiştiği tüm kutuya 1 konur A.B A'B' A'B AB AB' C BC' A A C' BC' 1 A'BC A A C MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 18

19 Otomasyon Atölyesi Temel Dijital Elektronik Ders Notu Lojik ifadelerin karno haritası ile sadeleştrilmesi. İşlem basamakları: İçinde 1 olan kutucuklar birli, ikili yada daha fazla grup oluşturabilir Grup oluşturmanın amacı en sade devreyi elde etmektir o nedenle bir kutu birden çok gruba dahil edilebilir. Grup ancak birbirine komşu kutular arasında yapılabilir. Çapraz bileşke oluşturulamaz X Örnek 228 Y = A'B' + A'B + AB = A' + B A A' A B 0 1 B' 0 1 B B satırı A' sütunu Örnek 229 Örnek 130 Y = A' B' C' + A' B C' + A B C + A B' C Y = A' C' + A C A.B A'B' A'B AB AB' C C' A' C' Satırı C A C Satırı Y = A' B' C' D + A' B' C D + A' B' C D' + A' B C' D' + A' B C' D + A B C' D + A B' C' D + A B' C D + A B' C D' Y = C' D + A' B C' + B' C Örnek 131 Yanda verilen karno haritasından elde ettiğiniz sadeleştirilmiş ifadeyi yazınız. F = B I + A C I Örnek 132 Aşağıda verilen karno haritalarından elde ettiğiniz sadeleştirilmiş ifadeyi yazınız. F = A I C + A B C I + A I B D F = A I C + A B C I + B C I D MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 19

20 Örnek 133 Aşağıda verilen karno haritalarından elde ettiğiniz sadeleştirilmiş ifadeyi yazınız. F = A I B I C I + A I C I D + A C I D I + A C D I F = A I B I C I + A I C I D + A C I D I + A D I 3. LOJİK KAPILAR Lojik kapılar dijital sinyaller arasındaki sayısal ( mantıksal ) işlemleri yapmamızı sağlayan elektronik elemanlardır. Her nekadar lojik kapıları semboller ile göstersekte gerçekte bu kapılar transistör, direnç, diyot, küçük değerli kondansatör gibi elektronik devre elemanlarından oluşurlar ve entegre devre (ICintegratedcircuit)olarak imal edilirler Lojik cebirde 3 temel işlem vardır: 1 Ve Kapısı ( And Gate ) 2 Veya Kapısı ( Or Gate ) 3 Değil Kapısı ( Not Gate ) bu temel üç işlem birleştirilerek 6 yeni işlem daha elde edilir: 4 Vedeğil Kapısı ( Not and Nand Gate ) 5 Veyadeğil Kapısı ( Not or Nor Gate ) 6 Özel Veya Kapısı ( Exor Exclusive or Gate ) 7 Özel Veya eğil Kapısı ( Exnor Exclusive nor Gate ) 8 Tampon Kapısı ( Buffer Gate ) 9 Trasmisyon Kapısı ( Blateral Swich ) Kapı sembollerinin gösteriminde 2 farklı norm kullanılmaktadır. Ansi Normu : Amerikan standartları ve Din Normu : Alman standartları 3.1. Ve Kapısı ( And Gate ) En az 2 girişe sahip olan bu kapı girişine uygulanan sinyallerin çarpımını alarak çıkış sinyali verir. & 2 Girişli Ve Kapısı ( Ansi Normu ) Q = A. B 3 Girişli Ve Kapısı ( Ansi Normu ) Q = A. B. C 2 Girişli Ve Kapısı ( Din Normu ) Q = A. B A B C Q A B Q Ve Kapısı Doğruluk Tablosu 2 Girişli Ve Kapısı Doğruluk Tablosu 3 Girişli Anahtarlama Elemanları İle Gösterimi MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 20

21 Aşağıdaki lojik kapıların çıkışlarındaki lojik ifadeleri bularak, sonuçları karşılaştırınız MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 21

22 3.2. Veya Kapısı ( Or Gate ) En az 2 girişe sahip olan bu kapı girişine uygulanan sinyallerin toplamını alarak çıkış sinyali verir. > 1 = 2 Girişli Veya Kapısı ( Ansi Normu ) Q = A + B A B Q Ve Kapısı Doğruluk Tablosu 2 Girişli 3 Girişli Ve Kapısı ( Ansi Normu ) Q = A + B + C A B C Q Ve Kapısı Doğruluk Tablosu 3 Girişli 2 Girişli Ve Kapısı ( Din Normu ) Q = A + B Anahtarlama Elemanları İle Gösterimi MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 22

23 Otomasyon Atölyesi Temel Dijital Elektronik Ders Notu Aşağıdaki lojik kapıların çıkışlarındaki lojik ifadeleri bularak, sonuçları karşılaştırınız 3.3. Değil Kapısı ( Not Gate ) Yalnızca 1 girişe sahip olan bu kapı girişine uygulanan sinyalin tersini ( değilini ) alarak çıkış sinyali verir. 1 Değil Kapısı ( Ansi Normu ) A = Ā Değil Kapısı ( Ansi Normu ) A = Ā Değil Kapısı ( Din Normu ) A = Ā A Ā Değil Kapısı Doğruluk Tablosu Anahtarlama Elemanları İle Gösterimi Lolik kapıların transistör, direnç, diyot gibi elektronik devre elemanlarından oluştuklarını söylemiştik aşağıda ise Değil Kapısının karşılığı elektronik devre olarak verilmiş ve doğruluk tablosu incelenmiştir. MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 23

24 3.4. Vedeğil Kapısı ( Not and Nand Gate ) En az 2 girişe sahip olan bu kapı girişine uygulanan sinyallerin çarpımını alarak değilledikten sonra çıkış sinyali olarak verir. & Ve Değil Kapısı ( Ansi Normu ) Q = A. B A B Q Ve Değil Kapısı Doğruluk Tablosu 2 Girişli Ve Değil Kapısı ( Ansi Normu ) Q = A. B. C A B C Q Ve Değil Kapısı Doğruluk Tablosu 3 Girişli Ve Değil Kapısı (Din Normu) Anahtarlama Elemanları İle Gösterimi Aşağıdaki lojik kapıların çıkışlarındaki lojik ifadeleri bularak, sonuçları karşılaştırınız MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 24

25 3.5. Veyadeğil Kapısı ( Not or Nor Gate ) En az 2 girişe sahip olan bu kapı girişine uygulanan sinyallerin toplamını alarak değilledikten sonra çıkış sinyali olarak verir. > 1 = Veyadeğil Kapısı ( Ansi Normu ) Q = A + B A B Q Veya Değil Kapısı Doğruluk Tablosu 2 Girişli Veyadeğil Kapısı ( Ansi Normu ) Q = A + B A B C Q Veya Değil Kapısı Doğruluk Tablosu 3 Girişli Veyadeğil Kapısı ( Din Normu ) Q = A + B Anahtarlama Elemanları İle Gösterimi Aşağıdaki lojik kapıların çıkışlarındaki lojik ifadeleri bularak, sonuçları karşılaştırınız MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 25

26 3.6. Özel Veya Kapısı ( Exor Exclusive or Gate ) 2 girişe sahip olan bu kapı girişine uygulanan sinyallere AB + ĀB işlemini yaparak çıkış sinyali verir. A B Q Özel Veya Kapısı ( Ansi Normu ) Q = A+B = A.B+A.B =1 Özel Veya Kapısı ( Din Normu ) Anahtarlama Elemanları İle Gösterimi Q = A+B = A.B+A.B! Farklı sinyallerde 1 aynı sinyallerde 0 çıkış Özel Veya Kapısı Doğruluk Tablosu 2 Girişli 3.7. Özel Veyadeğil Kapısı ( Exnor Exclusive nor Gate ) 2 girişe sahip olan bu kapı girişine uygulanan sinyallere A B + ĀB işlemini yaparak çıkış sinyali olarak verir.! Farklı sinyallerde 0 aynı sinyallerde 1 çıkış Özel Veyadeğil Kapısı ( Ansi Normu ) Q = A+B = A.B+A.B Özel Veyadeğil Kapısı ( Ansi Normu ) Q = A+B = A.B+A.B = Özel Veyadeğil Kapısı ( Din Normu ) Q = A+B = A.B+A.B Anahtarlama Elemanları İle Gösterimi A B Q Özel Veya Değil Kapısı Doğruluk Tablosu 2 Girişli 3.8. Tampon Kapısı ( Buffer Gate ) Tampon kapısının çıkışı giriş lojik ifadesi ile aynıdır. Lojik devrelerde sadece katlar arasında akım yükseltmek amacı ile kullanılırlar. Tampon Kapısı ( Ansi Normu ) 1 Tampon Kapısı ( Din Normu ) A Q Tampon Kapısı Doğruluk Tablosu M Yandaki devrelerde tampon kapısı farklı empedans seviyeleri arasında empedans uygunluğu oluşturmak için kullanılmışlardır. MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 26

27 3.9. Trasmisyon Kapısı ( Blateral Swich ) Yetki girişi verildiğinde girişini çıkışına aktaran, yetki girişi olmadığı taktirde girişi ile çıkışı arasını yalıtan kapılardır. Birden fazla kapı çıkışının aynı noktaya bağlanması gerektiği durumlarda şayet kapı çıkışlarında farklı lojik seviyeler olursa bu devre üzerinde hatalara neden olur. Butür farklı sinyal çakışmalarını önlemek için Transmisyon kapıları kullanılır. Transmisyon kapıları ençok bilgisayar sistemlerinde sayısal bilgilerin tek hattan transferini sağlamak amacı ile kullanılırlar. Transmisyon kapısının anahtarlama elemanı olarak karşılığı Hatalı Devre Düzeltilmiş Devre Giriş Yetki Çıkış 0 0 Çıkış girişden 1 0 yalıtılmış Giriş Yetki Çıkış Çıkış girişden 1 1 yalıtılmış Giriş Yetki Çıkış 0 0 Çıkış girişden 1 0 yalıtılmış Giriş Yetki Çıkış Çıkış girişden 1 1 yalıtılmış Lojik kapıların diğer kapılarla elde edilmesi Aşağıdaki lojik kapıların girişine uygulanacak A sinyalinin 0 ve 1 olması durumunda kapı çıkışındaki lojik ifade yi bulunuz A Q 0 1 A Q 0 1 A Q 0 1 A Q 0 1 A Q 0 1 A Q 0 1 A Q 0 1 A Q 0 1 A Q 0 1 A Q 0 1 A Q 0 1 A Q 0 1 MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 27

28 Ve Kapısının Elde Edilmesi. A B Q A B Q A B Q A B Q A B Q Veya Kapısının Elde Edilmesi. A B Q A B Q A B Q A B Q A B Q Tampon Kapısının Elde Edilmesi. A B Q A B Q MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 28

29 Ve Değil Kapısının Elde Edilmesi. A B Q A B Q A B Q A B Q A B Q Veya Değil Kapısının Elde Edilmesi. A B Q A B Q A B Q A B Q A B Q Özel Veya Kapısının Elde Edilmesi. A B Q A B Q Örnekler Aşağıda verilen lojik devrelerin çıkışlarından elde edilecek lojik ifadeyi bulunuz ve varsa bulduğunuz bu lojik ifadeleri sadeleştiriniz. Elde ettiğiniz sadeleştirilmiş ifadeyi tekrar lojik kapılarla oluşturunuz. Bu sorularda elde ettiğiniz lojik ifadeyi tekrar lojik kapılarla oluşturup verilen devre ile sizin çizdiğiniz devreyi karşılaştırarak sağlamasını yapabilirsiniz. MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 29

30 Örnekler Örnek 37 Örnek 36 Örnek 35 Örnek 34 Örnek 33 Örnek 32 Örnek 31 MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 30

31 Örnek 315 Örnek 314 Örnek 313 Örnek 312 Örnek 311 Örnek 310 Örnek 39 Örnek 38 MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 31

32 Örnek 325 Örnek 324 Örnek 323 Örnek 322 Örnek 321 Örnek 320 Örnek 319 Örnek 318 Örnek 317 Örnek 316 MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 32

33 Örnek 334 Örnek 333 Örnek 332 Örnek 331 Örnek 330 Örnek 329 Örnek 328 Örnek 327 Örnek 326 MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 33

34 Örnek 343 Örnek 342 Örnek 341 Örnek 340 Örnek 339 Örnek 338 Örnek 337 Örnek 336 Örnek 335 MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 34

35 Örnek 351 Örnek 350 Örnek 349 Örnek 348 Örnek 347 Örnek 346 Örnek 345 Örnek 344 MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 35

36 Örnek 358 Örnek 357 Örnek 356 Örnek 355 Örnek 354 Örnek 353 Örnek 352 MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 36

37 Örnek 364 Örnek 363 Örnek 362 Örnek 361 Örnek 360 Örnek 359 MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 37

38 Örnek 371 Örnek 370 Örnek 369 Örnek 368 Örnek 367 Örnek 366 Örnek 365 MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 38

39 Örnek 378 Örnek 377 Örnek 376 Örnek 375 Örnek 374 Örnek 373 Örnek 372 MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 39

40 Örnek 384 Örnek 383 Örnek 382 Örnek 381 Örnek 380 Örnek 379 MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 40

41 Örnek 388 Örnek 387 Örnek 386 Örnek 385 MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 41

42 Örnek 391 Örnek 390 Örnek 389 MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 42

43 Örnek 395 Örnek 394 Örnek 393 Örnek 392 MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 43

44 Örnek 3103 Örnek 3102 Örnek 3101 Örnek 3100 Örnek 399 Örnek 398 Örnek 397 Örnek 396 MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 44

45 Örnek 3110 Örnek 3109 Örnek 3108 Örnek 3107 Örnek 3106 Örnek 3105 Örnek 3104 MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 45

46 Örnek 3115 Örnek 3114 Örnek 3113 Örnek 3112 Örnek 3111 MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 46

47 Örnek 3119 Örnek 3118 Örnek 3117 Örnek 3116 MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 47

48 Otomasyon Atölyesi Temel Dijital Elektronik Ders Notu Örnek 3121 Örnek 3120? Cevap?= Yukarıda verilen lojik devrenin çıkışının A. B + ( C. D ) I olabilmesi için? olan devre parçası ne olmalıdır Örnek 3122? Cevap?= Yukarıda verilen lojik devrenin çıkışının ( A + B ) I. ( C I + D ) I olabilmesi için? olan devre parçası ne olmalıdır MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 48

49 Otomasyon Atölyesi Temel Dijital Elektronik Ders Notu Örnek 3123? Cevap?= Örnek 3124 Yukarıda verilen lojik devrenin çıkışının [ ( C I + D ). B I + ( A. B ) I ] I olmalıdır Yukarıda verilen lojik devrenin A, B, C girişlerine aşağıda grafiği verilen lojik sinyaller uygulandığında elde edilecek cıkış sinyalini çiziniz. A 1 B 0 C 1 olabilmesi için? olan devre parçası ne A B C C I A.B (A.B) I (A.B) I.C I [(A.B) I +C I ] I Q Örnek 3125 Yukarıda Ansi normunda verilmiş lojik devreyi Din normuna çeviriniz & > =1 Örnek 3126 = > = > 1 1 & Yukarıda Din normunda verilmiş lojik devreyi Ansi normuna çeviriniz MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 49

50 Otomasyon Atölyesi Temel Dijital Elektronik Ders Notu Örnek 3127 & = > 1 & Yukarıda Din normunda verilen lojik devrenin çıkışından alınacak lojik ifadeyi bulunuz. Örnek & = > 1 > =1 Yukarıda Din normunda verilen lojik devrenin çıkışından alınacak lojik ifadeyi bulunuz. Örnek 3129 & & = > 1 Yukarıda Din normunda verilen lojik devrenin çıkışından alınacak lojik ifadeyi bulunuz. Örnek 3130 =1 > & & Örnek 3131 Yukarıda Din normunda verilen lojik devrenin çıkışından alınacak lojik ifadeyi bulunuz. Q = A + C + A.B + C.D Lojik ifadesini Vedeğil kapıları ile oluşturunuz Q = A + C + A.B + C.D Q = A. C. ( A. B ). ( C. D ) MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 50

51 Otomasyon Atölyesi Temel Dijital Elektronik Ders Notu Lojik devre tasarımı İstenilen çalışma şartlarını sağlayacak lojik devrelerin tasarımını yaparken öncelikli olarak değişken ( şart ) sayısı belirlenmeli ve olasılıklara göre doğruluk tablosu çıkartılmalıdır. İstenen çıkışları sağlayacak olasılıkların doğruluk tablosunda sonucu 1 olarak değerlendirilir. Çıkışı 1 yapan her bir satırdaki değerler çıkışın 1 olması için gerekli şart olan değerlerdir bu nedenle satır içleri ve mantığı ile değerlendirilir. Çıkışı sağlayan birden fazla satır varsa bu satırların herhangi birinin varlığı çıkışı 1 yapmaya yetecektir bu nedenle satırlar arasında ise veya mantığı uygulanır. ( Çarpımların Toplamları ) Örnek 3132 Birer uçları +v (1) potansiyeline bağlı 3 adet ( x, y, z ) anahtarları vardır.anahtarlardan sadece bir tanesi kapatıldığında çıkış verecek lojik devreyi ve kontak elemanlarını çiziniz X Y Z Q x l. y l. z x l. y. z l x. y l. z l Q = x l. y l. z + x l. y. z l + x. y l. z l Örnek 3133 Birer uçları +v (1) potansiyeline bağlı 4 adet ( A, B, C, D ) anahtarları vardır.anahtarların hepsi açık iken veya hepsi kapalı iken çıkıştaki lambayı çalıştıracak lojik devreyi ve kontak elemanlarını çiziniz. A B C D Q A l. B l. C l. D l A. B. C. D Q = A l. B l. C l. D l + A. B. C. D MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 51

52 Otomasyon Atölyesi Temel Dijital Elektronik Ders Notu Örnek 3134 Birer uçları +v (1) potansiyeline bağlı 4 adet ( A, B, C, D ) anahtarları vardır.anahtarlardan A kapalı B açık iken C ve D anahtarlarından sadece 1 tanesi kapatıldığında çıkış verecek lojik devreyi çiziniz? Örnek 3135 Örnek 3136 A B C D Q A. B l. C l. D A. B l. C. D l Q = A. B l. C l. D + A. B l. C. D l F = A l. B l. C l + A l. B. C + A. B l. C l + A. B l. C Lojik ifadesini sadeleştiriniz ve A,B,C girişlerine aşağıdaki sinyaller uygulandığında F çıkışı sinyalinin şekli ne olacaktır, çiziniz? F = A l. B l. C l + A. B l. C l. + A l. B. C + A. B l. C F = B l. C l. ( A + A l ) + A l. B. C + A. B l. C = B. C + A. B l. C + A l. B. C F = B l. ( C l + A. C ) + A l. B. C = B l ( C l + A ) + A l. B. C F = B l. C l + B l. A + A l. B. C A,B,C 3 değişken olasılık 2 3 = 8 A B C A l B l C l B l. C l B l.a A l.b.c Q A B C Q Bir lojik devrenin A, B, C girişlerine aşağıdaki sinyaller uygulandığında devrenin çıkışından Q ile gösterilen sinyal grafiği elde edilmektedir bu devrenin lojik ifadesini bulunuz. A B C Q Q = AB I C+ABC I Lojik devre tasarımında kullandığımız kapılardan alabileceğimiz akım değeri birkaç mili amper mertebesindedir bu nedenle tasarladığımız devre ile başka devreleri çalıştırmak istediğimizde lojik devremiz ile sürülecek devre arasında bir ara yüz ( interface ) elemanı kullanmamız gerekmektedir. En çok ara yüz elemanı olarak ise optokuplörler kullanılmaktadır. MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 52

53 Otomasyon Atölyesi Temel Dijital Elektronik Ders Notu Zehirli atık maddeleri yakarak yok eden sistemin parçaları aşağıdaki gibidir. Zehirli madde püskürtme ağzı ( Toxic waste inlet ) Benzin püskürtme ağazı ( Fuel inlet ) Egzoz çıkışı ( Exhaust ) Zehirli madde açmakapama valfi ( Waste shutoff valve ) Valfi kontrol eden lojik sistem ( Logic sytem ) Ateşi algılayan sensörler ( SensörA, SensörB, SensörC ) Örnek 3137 Sensörlerin her üçüde ateşi algıladığında Zehirli madde valfini açan devreyi tasarlayınız. Doğruluk tablosundan A.B.C şartı gerçekleştiğinde vananın açılarak zehirli maddenin püskürtüleceği görülür. A.B.C Carpma işlemi seri anahtarlama işlemi ile aynıdır. MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 53

54 Örnek 3138 Sensörlerin enaz iki tanesi ateşi algıladığında Zehirli madde valfini açan devreyi tasarlayınız Doğruluk tablosundan A l.b.c + A.B l.c + A.B.C l + A.B.C şartı gerçekleştiğinde vananın açılarak zehirli maddenin püskürtüleceği görülür. Lojik ifade sedeleştirilecek olursa MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 54

55 Örnek adet tanka A,B,C pompaları su basmaktadır her kazan boşaldıkça kendisine ait pompa ile dolmaktadır. A pompası : 3kw, B pompası : 6kw, C pompası : 9kw güçlerindedir ve her biri birbirinden bağımsız olarak çalışmaktadır. Sistemde tüm pompalarda duruyorken sarı lamba, pompalardan bir veya birkaçı çalışıyorken yeşil lamba, sistemde devreye giren pompaların gücü 10kw ı aştığında ise kırmızı lamba yanacak şekilde 3 ayrı lojik devreyi ve kontak elemanlarını çiziniz. Cevap: Motorlardan birinin çalışması yeşil lambanın yanması için gerekli şart ise: veya Yeşil = A + B + C Sarı lamba A B C Q A l. B l. C l Sarı = A l. B l. C l Kırmızı lamba A 3 B 6 C 9 Q A. B. C A l. B. C A. B l. C Kırmızı = A. B. C + A l. B. C + A. B l. C C. ( A. B + A l. B + A. B l ) = C. ( A + B ) MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 55

56 4. ENTEGRE DEVRELER Lojik kapılar dijital sinyaller arasındaki sayısal ( mantıksal ) işlemleri yapmamızı sağlayan elektronik elemanlardır. Her nekadar lojik kapıları semboller ile göstersekte gerçekte bu kapılar transistör, direnç, diyot, küçük değerli kondansatör gibi elektronik devre elemanlarından oluşurlar ve entegre devre (ICintegratedcircuit)olarak imal edilirler Entegre devrelerin yapılarında kullanılan devre elemanlarına göre sınıflandırılması 1. RDL ( Resistor Diode Logic ) Direnç Diod Lojik 2. RTL ( Resistor Transistor Logic ) Direnç Transistör Lojik 3. DTL ( Diyote Transistor Logic ) Diod Transistör Lojik 4. HTL ( High Threshold Logic ) Yüksek Eşik Lojik 5. TTL ( Transistor Transistor Logic ) Transistör Transistör Lojik 6. ECL ( Emiter Coupled Logic ) Emitör Kuplajlı Lojik 7. MOS ( Metal Oxide Semiconductor ) Metal Oksit Lojik 8. CMOS ( Complementary MOS ) 9. I 2 L ( İntegrated Injection Logic ) Entegreli İnjeksiyon Lojik RDL(Resistor Diode Logic) RTL(Resistor Transistor Logic) TTL(Transistor Transistor Logic) CMOS(Complementary MOS) 4.1. Entegre devre parametreleri 1 Yayılım gecikmesi ( Propagation delay ) : Bir lojik kapının girişindeki değişme ile çıkışındaki değişme arasındaki süredir. Nanosaniye ( nsn ) olarak ifade edilir. Bu süre çok kısa bir zaman dilimini ifade etsede lojik devrelerde kapıların birbirlerini sürdükleri düşünüldüğünde her kapı kendisinden önceki kapı veya kapıları bekleyeceğinden bu süre toplamda artmaktadır. İyi bir entegrede bu sürenin olabildiğince kısa olması istenir. 2 Güç harcaması ( Power dissipation ) : Bir lojik kapının harcadığı güç miktarıdır ve mili wat ( mw ) olarak ifade edilir. Bir lojik devrenin beslenmesinde kullanılan kapı sayısı ve buna karşılık gelen toplam güç miktarı göz önüne alınmalıdır. 3 Çıkış kapasitesi ( Fan out ) : Bir lojik kapısının çıkışına bağlanabilecek aynı türden maksimum kapı sayısıdır. Örneğin TTL bir kapının fan outu 10 ise o kapının çıkışına aynı TTL serisi kapıdan enfazla 10 tane bağlanabilir daha fazla kapı bağlantısı için tampon kapıları kullanılmalıdır. 4 Gürültü bağışıklığı ( Noise magrin ) : Devrenin çalışmasına etki etmeyecek şekilde izin verilen gerilim dalgalanmasıdır ve mili volt ( mv ) olarak ifade edilir. Endüktif yüklerden gelen elektrik parazit gerilimleri kapıların doğru çalışmasını bozabilir. 5 Giriş kapasitesi ( Fan in ) : Bir lojik kapının girişine bağlanabilecek aynı türden kapı sayısı. 6 Besleme voltajı ( Power suppyl voltage ): Kapıların çalışabilmesi için kapı girişlerine ve kapıların bulunduğu entegrelerelere verilmesi gereken gerilimdir. Volt ( V ) olarak ifade edilir 7 Pals firekansı ( Clock frequency ) : Kapı girişine uygulanabilecek en yüksek tetikleme palsi. MHz olarak ifade edilir. Günümüzde en çok kullanılan entegreler TTL ve CMOS serisi entegreler oldukları için bu entegreler hakkında daha fazle detay verilecektir. Schottky ( okunuşu = Şotki ) Jonksiyon noktası metal yarı iletkenle oluşturulmuştur bu sayede iletkenlikten yalıtkanlığa geçiş süresi çok kısadır jonksiyonun eşik gerilimi yaklaşık 0.4 V dur MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 56

57 4.2. TTL ( Transistor Transistor Logic ) Transistör Transistör Lojik Entegreler 74XX ve 54XX serisi entegrelerdir. 54XX serisi 55 o C ile 125 o C arası çalışma sıcaklığına sahip iken 74XX serisi 0 o C ile 70 o C arası çalışma sıcaklığına sahipdir. 74XX 54XX : Standart TTL 74LXX 54LXX : Düşük güçlü TTL 74HXX 54HXX : Yüksek güçlü TTL 74SXX 54SXX : Schottky TTL 74LSXX 54LSXX : Düşük güçlü schottky TTL 74ASXX 54ASXX : Geliştirilmiş schottky TTL 74ALSXX 54ALSXX : Düşük güçlü geliştirilmiş schottky TTL TTL ailesi serisinde bulunsada CMOS altyapısı taşıyan entegreler 74CXX 54CXX 74ACXX 54ACXX 74ACTXX 54ACTXX 74HCXX 54HCXX MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 57

58 TTL entegreler için besleme gerilimi 5 V +/ %25 Özel durumlar 74CXX 54CXX = 315 V 74HCXX 54HCXX = 26 V TTL entegreler için giriş gerilimi Lojik 0 için 0.8 V dan küçük Lojik 1 için 2 V dan büyük TTL entegreler için çıkış gerilimi Lojik 0 için en fazla 0.4 V Lojik 1 için en az 2.7 V 4.3. CMOS ( Complementary MOS ) Entegreler 40XX serisi entegrelerdir CMOS ( Complementary MOS ) Entegreler 40XX serisi entegrelerdir. CMOS entegreler için besleme gerilimi 318 V arası Genel besleme gerilimi 12 V CMOS entegreler için giriş gerilimi Lojik 0 için 1.5 V dan küçük Lojik 1 için 3.5 V dan büyük CMOS entegreler için çıkış gerilimi Lojik 0 için en fazla 0.05 V Lojik 1 için en az 5 V CMOS entegrelerin TTL entegreye göre avanytajları : Güç harcaması küçüktür, besleme gerilimi geniş bir banda sahiptir, gürültü emniyet payı yüksektir. CMOS entegrelerin TTL entegreye göre dezavanytajları : Gecikmesi fazladır,yüksek frekanslarda çalışması iyi değildir. Eğer bir kapıda kullanılmayan bir giriş varsa bu boş girişi lojik kapı 0 veya 1 olarak algılayabilir, bu ise istenmeyen çalışmalara neden olabilir bu durumu engellemek için diğer kullanılan girişleri bozmayacak şekilde boş bacak 0 veya 1 seviyesine bağlanmalıdır. Ayrıca besleme yokken entegre girişlerine sinyal uygulanmamalıdır. CMOS entegreler fet ve mosfet altyapılı olduklarından giriş empedansları yüksektir, elle dokunmalarda olabilecek statik elektrik boşalmalarına dikkat edilmelidir. MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 58

59 4.4. Kapılarda schmitt triger özelliği Schmitt triger kapısı garbe düzenleyici olarak kullanılır. Girişine uygulanan palsdeki gürültü sinyallerini düzenleyerek kare dalgaya dönüştürür. Normal kapılar girişindeki gerilim Lojik 0 veya Lojik 1 gerilim seviyesine gelir gelmez çıkış versede schmitt triger kapı girişine uygulanan sinyalde oluşabilecek gürültüler için belirli bir diferansiyel gerilim aralığında kararlılığını korur. Schmitt trigerin diferansiyel çalıçma aralığı Normal kapılar, kapı girişlerindeki gerilim seviyelerine göre 0 veya 1 olarak algılar. MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 59

60 4.5. Titreşim önleme devresi Giriş sinyallerinin devreye uygulanması sırasında anahtar, röle kontağı gibi mekanik temas noktalarında oluşacak titreşim gürültü gerilimleri devrenin normal çalışımını bozucu etkiler yaparak kararsızlığa götürebilir. Bu nedenle anahtarlama elemanlarını devreye bağlanmadan önce Flip floplardan veya Schmitt triger kapılardan oluşmuş balans önleme devreleri kullanılır Dijital kapıların akım değerleri Aşağıdaki verilen sayısal değerler katalog değerleri olup takribi değerlerdir. I IH : Lojik kapının giriş uçlarından birine lojik 1 geldiğinde o girişin çekeceği maksimum akım. ( Input High ) I IL : Lojik kapının giriş uçlarından birine lojik 0 geldiğinde o girişin çekeceği maksimum akım. ( Input Low ) I OH : Lojik kapının çıkış ucu lojik 1 seviyesindeyken o çıkıştan çekilebilecek maksimum akım. ( Output High ) I OL : Lojik kapının çıkış ucu lojik 0 seviyesindeyken o çıkıştan çekilebilecek maksimum akım. ( Output Low ) Standart TTL I IH : 40 μa I IL : 1,6 ma I OH : 400 μa I OL : 16 ma CMOS I IH : 1 μa I IL : 1 μa I OH : 400 μa I OL : 400 μa Yukarıdaki sayısal değerlerden görüleceği üzere lojik kapı çıkışlarından alınabilecek akım oldukça küçük değerlerdedir. Lojik kapıların çıkışından alınan akımın değerini arttırmak için açık kolektör ( open collektor ) dediğimiz özelliğe sahip entegre serileri üretilmektedir. Aşağıda prensip devre üzerinde açık kolektör ( open collektor ) anlatılmıştır. Yandaki prensip şekilde normal bir kapı çıkışı görülmektedir. İn girişinden 1 ( +V ) uygulandığında transistör kesime gidecek ve out çıkışı +V potansiyelini R direnci üzerinden alarak 1 seviyesine yükselecektir. Fakat out çıkışından çekilebilecek akım değeri R direnci tarafından sınırlandığı için küçük değerlerde olacaktır. MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ 60

TEKNİK ELEMANLAR İÇİN DİJİTALİMSİ

TEKNİK ELEMANLAR İÇİN DİJİTALİMSİ TEKNİK ELEMANLAR İÇİN DİJİTALİMSİ MEHMET TOSUNER KOCAELİ ANADOLU TEKNİK TEKNİK VE ENDÜSTRİ MESLEK LİSESİ ELEKTRİK BÖLÜMÜ Otomasyon Atölyesi Temel Dijital Elektronik Ders Notu 2006 MEHMET TOSUNER KOCAELİ

Detaylı

SAYISAL UYGULAMALARI DEVRE. Prof. Dr. Hüseyin EKİZ Doç. Dr. Özdemir ÇETİN Arş. Gör. Ziya EKŞİ

SAYISAL UYGULAMALARI DEVRE. Prof. Dr. Hüseyin EKİZ Doç. Dr. Özdemir ÇETİN Arş. Gör. Ziya EKŞİ SAYISAL DEVRE UYGULAMALARI Prof. Dr. Hüseyin EKİZ Doç. Dr. Özdemir ÇETİN Arş. Gör. Ziya EKŞİ İÇİNDEKİLER ŞEKİLLER TABLOSU... vi MALZEME LİSTESİ... viii ENTEGRELER... ix 1. Direnç ve Diyotlarla Yapılan

Detaylı

T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ

T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ Yrd. Doç. Dr. Mustafa H.B. UÇAR 1 2. HAFTA Yrd. Doç. Dr. Mustafa Hikmet Bilgehan UÇAR Entegre Yapıları Lojik Kapılar Lojik

Detaylı

25. Aşağıdaki çıkarma işlemlerini doğrudan çıkarma yöntemi ile yapınız.

25. Aşağıdaki çıkarma işlemlerini doğrudan çıkarma yöntemi ile yapınız. BÖLÜM. Büyüklüklerin genel özellikleri nelerdir? 2. Analog büyüklük, analog işaret, analog sistem ve analog gösterge terimlerini açıklayınız. 3. Analog sisteme etrafınızdaki veya günlük hayatta kullandığınız

Detaylı

1 ELEKTRONİK KAVRAMLAR

1 ELEKTRONİK KAVRAMLAR İÇİNDEKİLER VII İÇİNDEKİLER 1 ELEKTRONİK KAVRAMLAR 1 Giriş 1 Atomun Yapısı, İletkenler ve Yarı İletkenler 2 Atomun Yapısı 2 İletkenler 3 Yarı İletkenler 5 Sayısal Değerler (I/O) 8 Dalga Şekilleri 9 Kare

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 TEMEL LOJİK ELEMANLAR VE UYGULAMALARI DENEY SORUMLUSU Arş. Gör. Erdem ARSLAN Arş. Gör.

Detaylı

BM217 SAYISAL TASARIM DERSİ LABORATUVAR DENEYLERİ

BM217 SAYISAL TASARIM DERSİ LABORATUVAR DENEYLERİ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BM217 SAYISAL TASARIM DERSİ LABORATUVAR DENEYLERİ Yrd. Doç. Dr. Emre DANDIL İÇİNDEKİLER ŞEKİLLER TABLOSU... vi MALZEME LİSTESİ... viii ENTEGRELER...

Detaylı

..:: LOJİK KAPI ENTEGRELERİ ::..

..:: LOJİK KAPI ENTEGRELERİ ::.. ..:: LOJİK KAPI ENTEGRELERİ ::.. ENTEGRE TÜRLERİ a.lineer Entegreler Sürekli sinyallerle çalışan bu lojik kapı entegreleri, yükselteç, opamp gibi elektronik fonksiyonların gerçekleştirilmesinde kullanılır.

Detaylı

DENEYLER. Deney No : 1 Deney No : 2 Deney No : 3 Deney No : 4 Deney No : 5 Deney No : 6 Deney No : 7 Deney No : 8

DENEYLER. Deney No : 1 Deney No : 2 Deney No : 3 Deney No : 4 Deney No : 5 Deney No : 6 Deney No : 7 Deney No : 8 OTOMASYON ATÖLYESİ DERS NOTLAR DENEYLER Deney No : Deney No : 2 Deney No : 3 Deney No : 4 Deney No : 5 Deney No : 6 Deney No : 7 Deney No : 8 VE KAPS UYGULAMALAR 7408 VEYA KAPS UYGULAMALAR 7432 DEĞİL KAPS

Detaylı

BÖLÜM 2 SAYI SİSTEMLERİ

BÖLÜM 2 SAYI SİSTEMLERİ İÇİNDEKİLER BÖLÜM 1 GİRİŞ 1.1. Lojik devre içeriği... (1) 1.1.1. Kodlama, Kod tabloları... (2) 1.1.2. Kombinezonsal Devre / Ardışıl Devre... (4) 1.1.3. Kanonik Model / Algiritmik Model... (4) 1.1.4. Tasarım

Detaylı

Boole Cebri. Muhammet Baykara

Boole Cebri. Muhammet Baykara Boole Cebri Boolean Cebri, Mantıksal Bağlaçlar, Lojik Kapılar ve Çalışma Mantıkları, Doğruluk Tabloları, Boole Cebri Teoremleri, Lojik İfadelerin Sadeleştirilmeleri Muhammet Baykara mbaykara@firat.edu.tr

Detaylı

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS NOTLARI Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS-6 28.03.2016 Lojik Kapılar (Gates) Lojik devrelerin en temel elemanı, lojik kapılardır. Kapılar, lojik değişkenlerin değerlerini

Detaylı

Mantık fonksiyonlarından devre çizimi 6 Çizilmiş bir devrenin mantık fonksiyonunun bulunması

Mantık fonksiyonlarından devre çizimi 6 Çizilmiş bir devrenin mantık fonksiyonunun bulunması DERSİN ADI BÖLÜM PROGRAM DÖNEMİ DERSİN DİLİ DERS KATEGORİSİ ÖN ŞARTLAR SÜRE VE DAĞILIMI KREDİ DERSİN AMACI ÖĞRENME ÇIKTILARI VE YETERLİKLER DERSİN İÇERİĞİ VE DAĞILIMI (MODÜLLER VE HAFTALARA GÖRE DAĞILIMI)

Detaylı

Teorik Bilgi DENEY 7: ASENKRON VE SENKRON SAYICILAR

Teorik Bilgi DENEY 7: ASENKRON VE SENKRON SAYICILAR DENEY 7: ASENKRON VE SENKRON SAYICILAR Deneyin Amaçları Asenkron ve senkron sayıcı devre yapılarının öğrenilmesi ve deneysel olarak yapılması Deney Malzemeleri 74LS08 Ve Kapı Entegresi (1 Adet) 74LS76

Detaylı

İÇİNDEKİLER. 1-1 Lojik ve Anahtara Giriş Lojik Kapı Devreleri... 9

İÇİNDEKİLER. 1-1 Lojik ve Anahtara Giriş Lojik Kapı Devreleri... 9 İÇİNDEKİLER BÖLÜM 1 TEMEL LOJİK KAPI DENEYLERİ 1-1 Lojik ve Anahtara Giriş 1 1-2 Lojik Kapı Devreleri... 9 a. Diyot Lojiği (DL) devresi b. Direnç-Transistor Lojiği (RTL) devresi c. Diyot-Transistor Lojiği

Detaylı

T.C. İstanbul Medeniyet Üniversitesi Mühendislik ve Doğa Bilimleri Fakültesi Elektrik-Elektronik Mühendisliği Bölümü

T.C. İstanbul Medeniyet Üniversitesi Mühendislik ve Doğa Bilimleri Fakültesi Elektrik-Elektronik Mühendisliği Bölümü T.C. İstanbul Medeniyet Üniversitesi Mühendislik ve Doğa Bilimleri Fakültesi Elektrik-Elektronik Mühendisliği Bölümü MANTIK DEVRELERİ TASARIMI LABORATUVARI DENEY FÖYLERİ 2018 Deney 1: MANTIK KAPILARI VE

Detaylı

NECMETTİN ERBAKAN ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ SAYISAL DEVRE TASARIMI LABORATUVARI DENEY FÖYÜ

NECMETTİN ERBAKAN ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ SAYISAL DEVRE TASARIMI LABORATUVARI DENEY FÖYÜ NECMETTİN ERBAKAN ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ SAYISAL DEVRE TASARIMI LABORATUVARI DENEY FÖYÜ DENEY 1 Elektronik devrelerde sık sık karşımıza çıkan

Detaylı

T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ

T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ Yrd. Doç. Dr. Mustafa Hikmet Bilgehan UÇAR 1 MANTIK DEVRELERİ Yrd. Doç. Dr. Mustafa Hikmet Bilgehan UÇAR Digital Electronics

Detaylı

Yarı İletkenler ve Temel Mantıksal (Lojik) Yapılar. Bilgisayar Mühendisliğine Giriş 1

Yarı İletkenler ve Temel Mantıksal (Lojik) Yapılar. Bilgisayar Mühendisliğine Giriş 1 Yarı İletkenler ve Temel Mantıksal (Lojik) Yapılar Bilgisayar Mühendisliğine Giriş 1 Yarı İletkenler Bilgisayar Mühendisliğine Giriş 2 Elektrik iletkenliği bakımından, iletken ile yalıtkan arasında kalan

Detaylı

SAYI SİSTEMLERİ ve BOOLE CEBİRİ 1+1=1 ÖĞR.GÖR. GÜNAY TEMÜR - TEKNOLOJİ F. / BİLGİSAYAR MÜH.

SAYI SİSTEMLERİ ve BOOLE CEBİRİ 1+1=1 ÖĞR.GÖR. GÜNAY TEMÜR - TEKNOLOJİ F. / BİLGİSAYAR MÜH. SAYI SİSTEMLERİ ve BOOLE CEBİRİ 1+1=1 Ders Konusu 1854 yılında George Boole tarafından özellikle lojik devrelerde kullanılmak üzere ortaya konulmuş bir matematiksel sistemdir. İkilik Sayı Sistemi Çoğu

Detaylı

BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi

BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi Temel Tanımlar Kapalılık (closure) Birleşme özelliği (associative law) Yer değiştirme

Detaylı

Fatih University- Faculty of Engineering- Electric and Electronic Dept.

Fatih University- Faculty of Engineering- Electric and Electronic Dept. Dijital Devre Tasarımı EEE122 A Ref. Morris MANO & Michael D. CILETTI DIGITAL DESIGN 4 th edition Fatih University- Faculty of Engineering- Electric and Electronic Dept. Chapter 3 Boole Fonksiyon Sadeleştirmesi

Detaylı

DOĞRULUK TABLOLARI (TRUTH TABLE)

DOĞRULUK TABLOLARI (TRUTH TABLE) LOJİK KAPILAR DOĞRULUK TABLOLARI (TRUTH TABLE) Doğruluk tabloları sayısal devrelerin tasarımında ve analizinde kullanılan en basit ve faydalı yöntemdir. Doğruluk tablosu giriş değişkenlerini alabileceği

Detaylı

Mantık Devreleri Laboratuarı

Mantık Devreleri Laboratuarı 2013 2014 Mantık Devreleri Laboratuarı Ders Sorumlusu: Prof. Dr. Mehmet AKBABA Laboratuar Sorumlusu: Emrullah SONUÇ İÇİNDEKİLER Deney 1: 'DEĞİL', 'VE', 'VEYA', 'VE DEĞİL', 'VEYA DEĞİL' KAPILARI... 3 1.0.

Detaylı

BİLGİSAYAR MİMARİSİ. İkili Kodlama ve Mantık Devreleri. Özer Çelik Matematik-Bilgisayar Bölümü

BİLGİSAYAR MİMARİSİ. İkili Kodlama ve Mantık Devreleri. Özer Çelik Matematik-Bilgisayar Bölümü BİLGİSAYAR MİMARİSİ İkili Kodlama ve Mantık Devreleri Özer Çelik Matematik-Bilgisayar Bölümü Kodlama Kodlama, iki küme elemanları arasında karşılıklığı kesin olarak belirtilen kurallar bütünüdür diye tanımlanabilir.

Detaylı

DENEY FÖYÜ8: Lojik Kapıların Elektriksel Gerçeklenmesi

DENEY FÖYÜ8: Lojik Kapıların Elektriksel Gerçeklenmesi DENEY FÖYÜ8: Lojik Kapıların Elektriksel Gerçeklenmesi Deneyin Amacı: Temel kapı devrelerinin incelenmesi, deneysel olarak kapıların gerçeklenmesi ve doğruluk tablolarının elde edilmesidir. Deney Malzemeleri:

Detaylı

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS NOTLARI Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS-3 29.02.2016 Boolean Algebra George Boole (1815-1864) 1854 yılında George Boole tarafından özellikle lojik devrelerde kullanılmak

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Sayısal Elektronik

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Sayısal Elektronik Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Sayısal Elektronik Günümüz Elektroniği Analog ve Sayısal olmak üzere iki temel türde incelenebilir. Analog büyüklükler sonsuz sayıda değeri içermesine

Detaylı

5. LOJİK KAPILAR (LOGIC GATES)

5. LOJİK KAPILAR (LOGIC GATES) 5. LOJİK KPILR (LOGIC GTES) Dijital (Sayısal) devrelerin tasarımında kullanılan temel devre elemanlarına Lojik kapılar adı verilmektedir. Her lojik kapının bir çıkışı, bir veya birden fazla girişi vardır.

Detaylı

DENEY #1 LOJİK KAPILAR. Lojik kapılarının doğruluk tablosunu oluşturmak

DENEY #1 LOJİK KAPILAR. Lojik kapılarının doğruluk tablosunu oluşturmak DENEY #1 LOJİK KAPILAR Deneyin Amacı : Lojik kapılarının doğruluk tablosunu oluşturmak Kullanılan Alet ve Malzemeler: 1) DC Güç Kaynağı 2) Switch ve LED 3) Çeşitli Değerlerde Dirençler ve bağlantı kabloları

Detaylı

VE DEVRELER LOJİK KAPILAR

VE DEVRELER LOJİK KAPILAR ÖLÜM 3 VE DEVELEI LOJIK KPIL VE DEVELE LOJİK KPIL Sayısal devrelerin tasarımında kullanılan temel devre elemanlarına Lojik kapılar adı verilir. ir lojik kapı bir çıkış, bir veya birden fazla giriş hattına

Detaylı

Deney 3: Asenkron Sayıcılar

Deney 3: Asenkron Sayıcılar Deney 3: Asenkron Sayıcılar Sayıcılar hakkında genel bilgi sahibi olunması, asenkron sayıcıların kurulması ve incelenmesi Kullanılan Elemanlar 1xLM555 Entegresi, 1x10 kohm direnç, 1x100 kohm direnç, 1x10

Detaylı

2. SAYI SİSTEMLERİ VE KODLAR

2. SAYI SİSTEMLERİ VE KODLAR 2. SAYI SİSTEMLERİ VE KODLAR 2.1. Sabit Noktalı Sayı Sistemleri 2.1.1. Ondalık Sayı Sistemi Günlük yaşantımızda kullandığımız sayı sistemi ondalık (decimal) sayı sistemidir. Ayrıca 10 tabanlı sistem olarak

Detaylı

Sayı sistemleri iki ana gruba ayrılır. 1. Sabit Noktalı Sayı Sistemleri. 2. Kayan Noktalı Sayı Sistemleri

Sayı sistemleri iki ana gruba ayrılır. 1. Sabit Noktalı Sayı Sistemleri. 2. Kayan Noktalı Sayı Sistemleri 2. SAYI SİSTEMLERİ VE KODLAR Sayı sistemleri iki ana gruba ayrılır. 1. Sabit Noktalı Sayı Sistemleri 2. Kayan Noktalı Sayı Sistemleri 2.1. Sabit Noktalı Sayı Sistemleri 2.1.1. Ondalık Sayı Sistemi Günlük

Detaylı

SAYICILAR. Tetikleme işaretlerinin Sayma yönüne göre Sayma kodlanmasına göre uygulanışına göre. Şekil 52. Sayıcıların Sınıflandırılması

SAYICILAR. Tetikleme işaretlerinin Sayma yönüne göre Sayma kodlanmasına göre uygulanışına göre. Şekil 52. Sayıcıların Sınıflandırılması 25. Sayıcı Devreleri Giriş darbelerine bağlı olarak belirli bir durum dizisini tekrarlayan lojik devreler, sayıcı olarak adlandırılır. Çok değişik alanlarda kullanılan sayıcı devreleri, FF lerin uygun

Detaylı

T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ

T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ 1 7. HAFTA Flip-Floplar RS Flip Flop, Tetiklemeli RS Flip Flop, JK Flip Flop, D Tipi Flip Flop, T Tipi Flip Flop Tetikleme

Detaylı

T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ

T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ Yrd. Doç. Dr. Mustafa Hikmet Bilgehan UÇAR 1 3. HAFTA Yrd. Doç. Dr. Mustafa Hikmet Bilgehan UÇAR Karnaugh Haritaları Karnaugh

Detaylı

BSM 101 Bilgisayar Mühendisliğine Giriş

BSM 101 Bilgisayar Mühendisliğine Giriş BSM 101 Bilgisayar Mühendisliğine Giriş Bool Cebri Hazırlayan: Ben kimim? www.sakarya.edu.tr/~fdikbiyik Lisans: İstanbul Üniversitesi Yüksek Lisans ve Doktora: University of California, Davis, ABD Öğretim:

Detaylı

NEAR EAST UNIVERSITY LOJİK DEVRELER BMT 110 DERS NOTLARI

NEAR EAST UNIVERSITY LOJİK DEVRELER BMT 110 DERS NOTLARI NEAR EAST UNIVERSITY LOJİK DEVRELER DERS NOTLARI BMT 110 2016 İÇİNDEKİLER 1. SAYI SİSTEMLERİ 2. SAYI SİSTEMLERİ ARASINDAKİ DÖNÜŞÜMLER 3. SAYILARIN TÜMLENMESİ 4. SAYILARIN KODLANMASI 5. LOJİK KAPILAR, LOJİK

Detaylı

SAYISAL ELEKTRONİK DERS NOTLARI:

SAYISAL ELEKTRONİK DERS NOTLARI: SAYISAL ELEKTRONİK DERS NOTLARI: SAYISAL (DİJİTAL) ELEKTRONİK Günümüz Elektroniği Analog ve Sayısal olmak üzere iki temel türde incelenebilir. Analog büyüklükler sonsuz sayıda değeri içermesine rağmen

Detaylı

1. DENEY-1: DİYOT UYGULAMALARI

1. DENEY-1: DİYOT UYGULAMALARI . DENEY-: DİYOT UYGULAMALARI Deneyin Amacı: Diyotun devrede kullanımı.. DC ileri/geri Öngerilim Diyot Devreleri: Şekil. deki devreyi kurunuz. Devreye E = +5V DC gerilim uygulayınız. Devrenin çıkış gerilimini

Detaylı

BOOLEAN İŞLEMLERİ Boolean matematiği sayısal sistemlerin analizinde ve anlaşılmasında kullanılan temel sistemdir.

BOOLEAN İŞLEMLERİ Boolean matematiği sayısal sistemlerin analizinde ve anlaşılmasında kullanılan temel sistemdir. BOOLEAN MATEMATİĞİ İngiliz matematikçi George Bole tarafından 1854 yılında geliştirilen BOOLEAN matematiği sayısal devrelerin tasarımında ve analizinde kullanılması 1938 yılında Claude Shanon tarafından

Detaylı

MANTIK DEVRELERİ HALL, 2002) (SAYISAL TASARIM, ÇEVİRİ, LITERATUR YAYINCILIK) DIGITAL DESIGN PRICIPLES & PRACTICES (3. EDITION, PRENTICE HALL, 2001)

MANTIK DEVRELERİ HALL, 2002) (SAYISAL TASARIM, ÇEVİRİ, LITERATUR YAYINCILIK) DIGITAL DESIGN PRICIPLES & PRACTICES (3. EDITION, PRENTICE HALL, 2001) MANTIK DEVRELERİ DERSİN AMACI: SAYISAL LOJİK DEVRELERE İLİŞKİN KAPSAMLI BİLGİ SUNMAK. DERSİ ALAN ÖĞRENCİLER KOMBİNASYONEL DEVRE, ARDIŞIL DEVRE VE ALGORİTMİK DURUM MAKİNALARI TASARLAYACAK VE ÇÖZÜMLEMESİNİ

Detaylı

LOJİK İFADENİN VE-DEĞİL VEYA VEYA-DEĞİL LOJİK DİYAGRAMLARINA DÖNÜŞTÜRÜLMESİ

LOJİK İFADENİN VE-DEĞİL VEYA VEYA-DEĞİL LOJİK DİYAGRAMLARINA DÖNÜŞTÜRÜLMESİ LOJİK İFADENİN VE-DEĞİL VEYA VEYA-DEĞİL LOJİK DİYAGRAMLARINA DÖNÜŞTÜRÜLMESİ Sayısal tasarımcılar tasarladıkları devrelerde çoğu zaman VE-Değil yada VEYA-Değil kapılarını, VE yada VEYA kapılarından daha

Detaylı

BÖLÜM 9 (COUNTERS) SAYICILAR SAYISAL ELEKTRONİK. Bu bölümde aşağıdaki konular anlatılacaktır

BÖLÜM 9 (COUNTERS) SAYICILAR SAYISAL ELEKTRONİK. Bu bölümde aşağıdaki konular anlatılacaktır SYISL ELETRONİ ÖLÜM 9 (OUNTERS) SYIILR u bölümde aşağıdaki konular anlatılacaktır Sayıcılarda Mod kavramı senkron sayıcılar senkron yukarı sayıcı (Up counter) senkron aşağı sayıcı (Down counter) senkron

Detaylı

(VEYA-DEĞİL kapısı) (Exlusive OR kapısı) (Exlusive NOR kapısı)

(VEYA-DEĞİL kapısı) (Exlusive OR kapısı) (Exlusive NOR kapısı) 1.1 Ön Çalışma Deney çalışmasında yapılacak uygulamaların benzetimlerini yaparak, sonuçlarını ön çalışma raporu olarak hazırlayınız. 1.2 Deneyin Amacı Temel kapı işlemlerinin ve gerçekleştirilmesi. bu

Detaylı

Fatih University- Faculty of Engineering- Electric and Electronic Dept.

Fatih University- Faculty of Engineering- Electric and Electronic Dept. Dijital Devre Tasarımı EEE122 A Ref. Morris MANO & Michael D. CILETTI DIGITAL DESIGN 4 th edition Fatih University- Faculty of Engineering- Electric and Electronic Dept. 2. BÖLÜM Boole Cebri ve Mantık

Detaylı

Fatih University- Faculty of Engineering- Electric and Electronic Dept.

Fatih University- Faculty of Engineering- Electric and Electronic Dept. SAYISAL DEVRE TASARIMI EEM Ref. Morris MANO & Michael D. CILETTI SAYISAL TASARIM 5. Baskı Fatih University- Faculty of Engineering- Electric and Electronic Dept. Birleşik Mantık Tanımı X{x, x, x, x n,}}

Detaylı

BSE 207 Mantık Devreleri Lojik Kapılar ve Lojik Devreler (Logic Gates And Logic Circuits)

BSE 207 Mantık Devreleri Lojik Kapılar ve Lojik Devreler (Logic Gates And Logic Circuits) SE 207 Mantık Devreleri Lojik Kapılar ve Lojik Devreler (Logic Gates nd Logic Circuits) Sakarya Üniversitesi Lojik Kapılar - maçlar Lojik kapıları ve lojik devreleri tanıtmak Temel işlemler olarak VE,

Detaylı

ENTEGRELER (Integrated Circuits, IC) Entegre nedir, nerelerde kullanılır?...

ENTEGRELER (Integrated Circuits, IC) Entegre nedir, nerelerde kullanılır?... ENTEGRELER (Integrated Circuits, IC) Entegre nedir, nerelerde kullanılır?... İçerik Düzeni Entegre Tanımı Entegre Seviyeleri Lojik Aileler Datasheet Okuma ENTEGRE TANIMI Entegreler(IC) chip adı da verilen,

Detaylı

Elektronik sistemlerde dört farklı sayı sistemi kullanılır. Bunlar;

Elektronik sistemlerde dört farklı sayı sistemi kullanılır. Bunlar; I. SAYI SİSTEMLERİ Elektronik sistemlerde dört farklı sayı sistemi kullanılır. Bunlar; i) İkili(Binary) Sayı Sistemi ii) Onlu(Decimal) Sayı Sistemi iii) Onaltılı(Heksadecimal) Sayı Sistemi iv) Sekizli(Oktal)

Detaylı

BLM 221 MANTIK DEVRELERİ

BLM 221 MANTIK DEVRELERİ 8. HAFTA BLM 221 MANTIK DEVRELERİ Prof Dr Mehmet AKBABA mehmetakbaba@karabuk.edu.tr Temel Kavramlar MULTIPLEXERS (VERİ SEÇİCİLER), ÜÇ DURUMLU BUFFERS, DECODERS (KOD ÇÖZÜCÜLER) BELLEK ELEMANLARI 2 8.2.

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ SAYISAL TASARIM LABORATUVARI DENEY RAPORU. Deney No: 3 TTL Entegre Karakteristiği

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ SAYISAL TASARIM LABORATUVARI DENEY RAPORU. Deney No: 3 TTL Entegre Karakteristiği TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ SAYISAL TASARIM LABORATUVARI DENEY RAPORU Deney No: 3 TTL Entegre Karakteristiği Yrd.Doç. Dr. Ünal KURT Arş. Gör. Ayşe AYDIN YURDUSEV Öğrenci: Adı Soyadı

Detaylı

1. Direnç değeri okunurken mavi renginin sayısal değeri nedir? a) 4 b) 5 c) 1 d) 6 2. Direnç değeri okunurken altın renginin tolerans değeri kaçtır?

1. Direnç değeri okunurken mavi renginin sayısal değeri nedir? a) 4 b) 5 c) 1 d) 6 2. Direnç değeri okunurken altın renginin tolerans değeri kaçtır? 1. Direnç değeri okunurken mavi renginin sayısal değeri nedir? a) 4 b) 5 c) 1 d) 6 2. Direnç değeri okunurken altın renginin tolerans değeri kaçtır? a) Yüzde 10 b) Yüzde 5 c) Yüzde 1 d) Yüzde 20 3. Direnç

Detaylı

İnönü Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü

İnönü Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü İnönü Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü 00223 - Mantık Devreleri Tasarımı Laboratuar Föyleri Numara: Ad Soyad: Arş. Grv. Bilal ŞENOL Devre Kurma Alanı Arş. Grv. Bilal ŞENOL

Detaylı

T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ

T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ 1 8. HAFTA ARDIŞIL DEVRE TASARIMLARI SAYICILAR ASENKRON SAYICILAR SENKRON SAYICILAR 2 ARDIŞIL DEVRELER Bileşik devrelere geri

Detaylı

T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ

T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ Yrd. Doç. Dr. Mustafa Hikmet Bilgehan UÇAR 6. HAFTA BİLEŞİK MANTIK DEVRELERİ (COMBINATIONAL LOGIC) Aritmetik İşlem Devreleri

Detaylı

8.HAFTA MANTIKSAL KAPI DEVRELERİ

8.HAFTA MANTIKSAL KAPI DEVRELERİ 8.HAFTA MANTIKSAL KAPI DEVRELERİ Sayısal elektroniğin temelini lojik(mantık) kapılar oluģturmaktadır. Sayısal devreler lojik kapılar kullanılarak elde edilir. Lojik kapıların iyi bilinmesi fonksiyonlarının

Detaylı

DENEY 1a- Kod Çözücü Devreler

DENEY 1a- Kod Çözücü Devreler DENEY 1a- Kod Çözücü Devreler DENEYİN AMACI 1. Kod çözücü devrelerin çalışma prensibini anlamak. GENEL BİLGİLER Kod çözücü, belirli bir ikili sayı yada kelimenin varlığını belirlemek için kullanılan lojik

Detaylı

ELK-208 MANTIK DEVRELERİ Kaynaklar: Doç. Dr. Hüseyin EKİZ, Mantık Devreleri, Değişim Yayınları, 3. Baskı, 2003

ELK-208 MANTIK DEVRELERİ Kaynaklar: Doç. Dr. Hüseyin EKİZ, Mantık Devreleri, Değişim Yayınları, 3. Baskı, 2003 BÖLÜM : ANALOG VE SAYISAL KAVRAMLAR ELK-28 MANTIK DEVRELERİ Kaynaklar: Doç. Dr. Hüseyin EKİZ, Mantık Devreleri, Değişim Yayınları, 3. Baskı, 23 Öğretim Üyesi: Yrd. Doç. Dr. Şevki DEMİRBAŞ e@posta : demirbas@gazi.edu.tr

Detaylı

ArĢ. Gör. Mehmet Zeki KONYAR ArĢ. Gör. Sümeyya ĠLKĠN

ArĢ. Gör. Mehmet Zeki KONYAR ArĢ. Gör. Sümeyya ĠLKĠN Dersin Öğretim Üyesi Laboratuvar Sorumluları : Yrd. Doç. Dr. Adnan SONDAġ : ArĢ. Gör. Bahadır SALMANKURT ArĢ. Gör. Mehmet Zeki KONYAR ArĢ. Gör. Sümeyya ĠLKĠN Ġçindekiler DENEY 1: MANTIK DEVRELERİNE GİRİŞ...

Detaylı

6. DİJİTAL / ANALOG VE ANALOG /DİJİTAL ÇEVİRİCİLER 1

6. DİJİTAL / ANALOG VE ANALOG /DİJİTAL ÇEVİRİCİLER 1 6. DİJİTAL / ANALOG VE ANALOG /DİJİTAL ÇEVİRİCİLER 1 Günümüzde kullanılan elektronik kontrol üniteleri analog ve dijital elektronik düzenlerinin birleşimi ile gerçekleşir. Gerilim, akım, direnç, frekans,

Detaylı

BİL 264 Mantıksal Devre Tasarımı ELE 263 Sayısal Sistem Tasarımı 2014 2015 Öğretim Yılı Yaz Dönemi 2. Ara Sınav Adı Soyadı Öğrenci Numarası Bölümü

BİL 264 Mantıksal Devre Tasarımı ELE 263 Sayısal Sistem Tasarımı 2014 2015 Öğretim Yılı Yaz Dönemi 2. Ara Sınav Adı Soyadı Öğrenci Numarası Bölümü TOBB Ekonomi ve Teknoloji Üniversitesi Bilgisayar Mühendisliği Bölümü Elektrik Elektronik Mühendisliği Bölümü BİL 264 Mantıksal Devre Tasarımı ELE 263 Sayısal Sistem Tasarımı 2014 2015 Öğretim Yılı Yaz

Detaylı

EEM122SAYISAL MANTIK SAYICILAR. Elektrik Elektronik Mühendisliği Yrd. Doç. Dr. Hüseyin Sağkol

EEM122SAYISAL MANTIK SAYICILAR. Elektrik Elektronik Mühendisliği Yrd. Doç. Dr. Hüseyin Sağkol EEM122SAYISAL MANTIK BÖLÜM 6: KAYDEDİCİLER VE SAYICILAR Elektrik Elektronik Mühendisliği Yrd. Doç. Dr. Hüseyin Sağkol KAYDEDİCİLER VE SAYICILAR Flip-flopkullanan devreler fonksiyonlarına göre iki guruba

Detaylı

Bölüm 3. Sayısal Elektronik. Universal (Genel) Geçitler 10/11/2011 TEMEL MANTIK GEÇİTLERİ. Temel Mantık Geçitleri. Temel Mantık Geçitleri

Bölüm 3. Sayısal Elektronik. Universal (Genel) Geçitler 10/11/2011 TEMEL MANTIK GEÇİTLERİ. Temel Mantık Geçitleri. Temel Mantık Geçitleri // Sayısal Elektronik Elektronik Teknolojisi programı rd. Doç. Dr. Mustafa Engin - ölüm 3 TEMEL MNTIK GEÇİTLERİ Temel Mantık Geçitleri VE (ND) Geçidi VE (OR) Geçidi DEĞİL (NOT) Geçidi Temel Mantık Geçitleri

Detaylı

Sayı sistemleri iki ana gruba ayrılır. 1. Sabit Noktalı Sayı Sistemleri. 2. Kayan Noktalı Sayı Sistemleri 2. SAYI SĐSTEMLERĐ VE KODLAR

Sayı sistemleri iki ana gruba ayrılır. 1. Sabit Noktalı Sayı Sistemleri. 2. Kayan Noktalı Sayı Sistemleri 2. SAYI SĐSTEMLERĐ VE KODLAR .1. Sabit Noktalı Sayı Sistemleri. SAYI SĐSTEMLERĐ VE KODLAR Sayı sistemleri iki ana gruba ayrılır. 1. Sabit Noktalı Sayı Sistemleri. Kayan Noktalı Sayı Sistemleri.1.1. Sayı Sistemi Günlük yaşantımızda

Detaylı

Yrd.Doç.Dr. Celal Murat KANDEMİR. Kodlama (Coding) : Bir nesneler kümesinin bir dizgi (bit dizisi) kümesi ile temsil edilmesidir.

Yrd.Doç.Dr. Celal Murat KANDEMİR. Kodlama (Coding) : Bir nesneler kümesinin bir dizgi (bit dizisi) kümesi ile temsil edilmesidir. Bilgisayar Mimarisi İkilik Kodlama ve Mantık Devreleri Yrd.Doç.Dr. Celal Murat KANDEMİR ESOGÜ Eğitim Fakültesi - BÖTE twitter.com/cmkandemir Kodlama Kodlama (Coding) : Bir nesneler kümesinin bir dizgi

Detaylı

OP-AMP UYGULAMA ÖRNEKLERİ

OP-AMP UYGULAMA ÖRNEKLERİ OP-AMP UYGULAMA ÖRNEKLERİ TOPLAR OP-AMP ÖRNEĞİ GERİLİM İZLEYİCİ Eşdeğer devresinden görüldüğü gibi Vo = Vi 'dir. Emiter izleyici devreye çok benzer. Bu devrenin giriş empedansı yüksek, çıkış empedansı

Detaylı

Deney 2: Flip-Floplar

Deney 2: Flip-Floplar Deney 2: Flip-Floplar Bu deneyde, çeşitli flip-flop devreleri kurulacak ve incelenecektir. Kullanılan Elemanlar 1 x 74HC00 (NAND kapısı) 1 x 74HC73 (JK flip-flop) 1 x 74HC74 (D flip-flop) 4 x 4,7 kohm

Detaylı

Bu deney çalışmasında kombinasyonel lojik devrelerden decoder incelenecektir.

Bu deney çalışmasında kombinasyonel lojik devrelerden decoder incelenecektir. 4.1 Ön Çalışması Deney çalışmasında yapılacak uygulamaların benzetimlerini yaparak, sonuçlarını ön çalışma raporu olarak hazırlayınız. 4.2 Deneyin Amacı MSI lojik elemanları yardımıyla kombinasyonel lojik

Detaylı

HARRAN ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

HARRAN ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ HARRAN ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ SAYISAL MANTIK TEMELLERİ LABORATUARI DENEY FÖYLERİ KİTAPÇIĞI Sayfa 0 İçindekiler Laboratuarda Uyulması Gereken Kurallar... 2 Deneylerde Kullanılacak Ekipmanların

Detaylı

Boole Cebri. (Boolean Algebra)

Boole Cebri. (Boolean Algebra) Boole Cebri (Boolean Algebra) 3 temel işlem bulunmaktadır: Boole Cebri İşlemleri İşlem: VE (AND) VEYA (OR) TÜMLEME (NOT) İfadesi: xy, x y x + y x Doğruluk tablosu: x y xy 0 0 0 x y x+y 0 0 0 x x 0 1 0

Detaylı

18. FLİP FLOP LAR (FLIP FLOPS)

18. FLİP FLOP LAR (FLIP FLOPS) 18. FLİP FLOP LAR (FLIP FLOPS) Flip Flop lar iki kararlı elektriksel duruma sahip olan elektronik devrelerdir. Devrenin girişlerine uygulanan işarete göre çıkış bir kararlı durumdan diğer (ikinci) kararlı

Detaylı

TEKNOLOJİ FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ EET-205 SAYISAL ELEKTRONİK - I LABORATUVARI

TEKNOLOJİ FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ EET-205 SAYISAL ELEKTRONİK - I LABORATUVARI TEKNOLOJİ FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ EET-205 SAYISAL ELEKTRONİK - I LABORATUVARI DENEY FÖYÜ 1 İÇİNDEKİLER Deney 1 SAYI SİSTEMLERİ... 2 Deney 2 LOJİK KAPILAR (VE/VEYA/DEĞİL)..... 7 Deney

Detaylı

3.3. İki Tabanlı Sayı Sisteminde Dört İşlem

3.3. İki Tabanlı Sayı Sisteminde Dört İşlem 3.3. İki Tabanlı Sayı Sisteminde Dört İşlem A + B = 2 0 2 1 (Elde) A * B = Sonuç A B = 2 0 2 1 (Borç) A / B = Sonuç 0 + 0 = 0 0 0 * 0 = 0 0 0 = 0 0 0 / 0 = 0 0 + 1 = 1 0 0 * 1 = 0 0 1 = 1 1 0 / 1 = 0 1

Detaylı

T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ

T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ Yrd. Doç. Dr. Mustafa Hikmet Bilgehan UÇAR 1 5. HAFTA BİLEŞİK MANTIK DEVRELERİ (COMBINATIONAL LOGIC) Veri Seçiciler (Multiplexer)

Detaylı

Bölüm 1 Temel Lojik Kapılar

Bölüm 1 Temel Lojik Kapılar Bölüm 1 Temel Lojik Kapılar DENEY 1-1 Lojik Kapı Devreleri DENEYİN AMACI 1. Çeşitli lojik kapıların çalışma prensiplerini ve karakteristiklerini anlamak. 2. TTL ve CMOS kapıların girişi ve çıkış gerilimlerini

Detaylı

ELK2016 SAYISAL TASARIM DERSİ LABORATUVARI DENEY NO: 2

ELK2016 SAYISAL TASARIM DERSİ LABORATUVARI DENEY NO: 2 ELK2016 SAYISAL TASARIM DERSİ LABORATUVARI DENEY NO: 2 DENEYİN ADI: LOJİK FONKSİYONLARIN SADECE TEK TİP KAPILARLA (SADECE NAND (VEDEĞİL), SADECE NOR (VEYADEĞİL)) GERÇEKLENMESİ VE ARİTMETİK İŞLEM DEVRELERİ

Detaylı

ELK2016 SAYISAL TASARIM DERSİ LABORATUVARI DENEY NO: 4 DENEYİN ADI: JK, RS, T VE D TİPİ FLİP-FLOPLARIN İNCELENMESİ

ELK2016 SAYISAL TASARIM DERSİ LABORATUVARI DENEY NO: 4 DENEYİN ADI: JK, RS, T VE D TİPİ FLİP-FLOPLARIN İNCELENMESİ ELK2016 SAYISAL TASARIM DERSİ LABORATUVARI DENEY NO: 4 DENEYİN ADI: JK, RS, T VE D TİPİ FLİP-FLOPLARIN İNCELENMESİ Açıklamalar: Bu deneyde JK, RS, T ve D tipi flip-flop (FF) lar incelenecektir. Deney içerisinde

Detaylı

Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi

Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi Bu derste... BİL 201 Birleşimsel Mantık (Combinational Logic) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi Birleşimsel Devreler - Çözümlenmesi - Tasarımı Birleşimsel Devre Örnekleri - Yarım Toplayıcı

Detaylı

DENEY 8- Flip Flop ve Uygulamaları. Amaç: - Flip Flop çalışma mantığını kavramak

DENEY 8- Flip Flop ve Uygulamaları. Amaç: - Flip Flop çalışma mantığını kavramak DENEY 8- Flip Flop ve Uygulamaları Amaç: - Flip Flop çalışma mantığını kavramak Deneyin Yapılışı: - Deney bağlantı şemasında verilen devreleri uygun elemanlarla kurunuz. Entegrenin besleme ve GND bağlantılarını

Detaylı

DENEY 2- Sayıcılar. 1. Sayıcıların prensiplerinin ve sayıcıların JK flip-flopları ile nasıl gerçeklendiklerinin incelenmesi.

DENEY 2- Sayıcılar. 1. Sayıcıların prensiplerinin ve sayıcıların JK flip-flopları ile nasıl gerçeklendiklerinin incelenmesi. DENEY 2- Sayıcılar DENEY 2- JK Flip-Flop Devreleri DENEYİN AMACI 1. Sayıcıların prensiplerinin ve sayıcıların JK flip-flopları ile nasıl gerçeklendiklerinin incelenmesi. GENEL BİLGİLER Sayıcılar flip-floplar

Detaylı

KMU MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ SAYISAL DEVRELER II LABORATUVARI DENEY 1 TOPLAYICILAR - ÇIKARICILAR

KMU MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ SAYISAL DEVRELER II LABORATUVARI DENEY 1 TOPLAYICILAR - ÇIKARICILAR KMU MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ SAYISAL DEVRELER II LABORATUVARI DENEY 1 TOPLAYICILAR - ÇIKARICILAR DENEY 1: TOPLAYICILAR- ÇIKARICILAR Deneyin Amaçları Kombinasyonel lojik devrelerden

Detaylı

TURGUT ÖZAL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ MANTIK DEVRELERİ LABORATUARI. Deney 5 Flip Flop Devreleri

TURGUT ÖZAL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ MANTIK DEVRELERİ LABORATUARI. Deney 5 Flip Flop Devreleri TURGUT ÖZAL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ MANTIK DEVRELERİ LABORATUARI Deney 5 Flip Flop Devreleri Öğrenci Adı & Soyadı: Numarası: 1. Flip Flop Devresi ve VEYADEĞİL

Detaylı

T.C. BOZOK ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ LOJĐK DEVRELER LABORATUARI DENEY FÖYÜ

T.C. BOZOK ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ LOJĐK DEVRELER LABORATUARI DENEY FÖYÜ T.C. BOZOK ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ LOJĐK DEVRELER LABORATUARI DENEY FÖYÜ Haziran 2009 ĐÇĐNDEKĐLER Deney-1 Temel Kapı Devreleri. 1 1.1 Ön Çalışma. 1 1.2 Deneyin Amacı 1 1.3

Detaylı

BİL 201 Birleşimsel Mantık (Combinational Logic) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi

BİL 201 Birleşimsel Mantık (Combinational Logic) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi BİL 201 Birleşimsel Mantık (Combinational Logic) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi Birleşimsel Devreler - Çözümlenmesi - Tasarımı Bu derste... Birleşimsel Devre Örnekleri - Yarım Toplayıcı

Detaylı

ENDÜSTRİYEL OTOMASYON TEKNOLOJİLERI

ENDÜSTRİYEL OTOMASYON TEKNOLOJİLERI T.C. MİLLÎ EĞİTİM BAKANLIĞI ENDÜSTRİYEL OTOMASYON TEKNOLOJİLERI LOJİK DEVRELER 522EE63 ANKARA 2 Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer alan yeterlikleri

Detaylı

BÖLÜM 8 MANDAL(LATCH) VE FLİP-FLOPLAR SAYISAL ELEKTRONİK. Bu bölümde aşağıdaki konular anlatılacaktır

BÖLÜM 8 MANDAL(LATCH) VE FLİP-FLOPLAR SAYISAL ELEKTRONİK. Bu bölümde aşağıdaki konular anlatılacaktır AYIAL ELETONİ BÖLÜM 8 MANAL(LATCH) VE FLİP-FLOPLA Bu bölümde aşağıdaki konular anlatılacaktır Mandallar(Latches),- Mandalı, Mandalı ontak sıçramasının mandallar yardımı ile engellenmesi Flip-Floplar,-

Detaylı

DENEY 6: FLİP-FLOP (BELLEK) DEVRESİ UYGULAMALARI

DENEY 6: FLİP-FLOP (BELLEK) DEVRESİ UYGULAMALARI DENEY 6: FLİP-FLOP (BELLEK) DEVRESİ UYGULAMALARI Deneyin Amaçları Flip-floplara aģina olmak. DeğiĢik tipte Flip-Flop devrelerin gerçekleģtirilmesi ve tetikleme biçimlerini kavramak. ArdıĢık mantık devrelerinin

Detaylı

Elektrik Elektronik Mühendisliği Bölümü Lojik Devre Laboratuarı DENEY-2 TEMEL KAPI DEVRELERİ KULLANILARAK LOJİK FONKSİYONLARIN GERÇEKLEŞTİRİLMESİ

Elektrik Elektronik Mühendisliği Bölümü Lojik Devre Laboratuarı DENEY-2 TEMEL KAPI DEVRELERİ KULLANILARAK LOJİK FONKSİYONLARIN GERÇEKLEŞTİRİLMESİ 2.1 Ön Çalışma Deney çalışmasında yapılacak uygulamaların benzetimlerini yaparak, sonuçlarını ön çalışma raporu olarak hazırlayınız. 2.2 Deneyin Amacı Tümleşik devre olarak üretilmiş kapı devreleri kullanarak;

Detaylı

DENEY-6 LOJİK KAPILAR VE İKİLİ DEVRELER

DENEY-6 LOJİK KAPILAR VE İKİLİ DEVRELER DENEY-6 LOJİK KAPILAR VE İKİLİ DEVRELER DENEYİN AMACI: Bu deneyde temel lojik kapılar incelenecek; çift kararlı ve tek kararlı ikili devrelerin çalışma prensipleri gözlemlenecektir. ÖN HAZIRLIK Temel lojik

Detaylı

SAYISAL ELEKTRONİK. Ege Üniversitesi Ege MYO Mekatronik Programı

SAYISAL ELEKTRONİK. Ege Üniversitesi Ege MYO Mekatronik Programı SAYISAL ELEKTRONİK Ege Üniversitesi Ege MYO Mekatronik Programı BÖLÜM 6 Tutucular, Flip-Floplar ve Zamanlayıcılar Tutucular (Latches) Tutucu iki kararlı (bistable state) durumu olan en temel sayısal depolama

Detaylı

Boolean Kuralları ve Lojik İfadelerin Sadeleştirilmesi (Boolean Algebra and Logic Simplification)

Boolean Kuralları ve Lojik İfadelerin Sadeleştirilmesi (Boolean Algebra and Logic Simplification) BSE 207 Mantık Devreleri Boolean Kuralları ve Lojik İfadelerin Sadeleştirilmesi (Boolean Algebra and Logic Simplification) Sakarya Üniversitesi Amaçlar Lojik sistemlerin temeli olarak Booleron Matematiğini

Detaylı

ELEKTRİK-ELEKTRONİK TEKNOLOJİSİ

ELEKTRİK-ELEKTRONİK TEKNOLOJİSİ T.C. MİLLÎ EĞİTİM BAKANLIĞI ELEKTRİK-ELEKTRONİK TEKNOLOJİSİ TEMEL MANTIK DEVRELERİ 522EE0245 Ankara, 2012 Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer

Detaylı

SAYI VE KODLAMA SİSTEMLERİ. Teknoloji Fakültesi/Bilgisayar Mühendisliği

SAYI VE KODLAMA SİSTEMLERİ. Teknoloji Fakültesi/Bilgisayar Mühendisliği SAYI VE KODLAMA SİSTEMLERİ Teknoloji Fakültesi/Bilgisayar Mühendisliği Neler Var? Sayısal Kodlar BCD Kodu (Binary Coded Decimal Code) - 8421 Kodu Gray Kodu Artı 3 (Excess 3) Kodu 5 de 2 Kodu Eşitlik (Parity)

Detaylı

LOJİK DEVRELER-I III. HAFTA DENEY FÖYÜ

LOJİK DEVRELER-I III. HAFTA DENEY FÖYÜ LOJİK DEVRELER-I III. HAFTA DENEY FÖYÜ 3 Bitlik Bir Sayının mod(5)'ini Bulan Ve Sonucu Segment Display'de Gösteren Devrenin Tasarlanması Deneyin Amacı: 3 bitlik bir sayının mod(5)'e göre sonucunu bulan

Detaylı

DENEY 1. 7408 in lojik iç şeması: Sekil 2

DENEY 1. 7408 in lojik iç şeması: Sekil 2 DENEY 1 AMAÇ: VE Kapılarının (AND Gates) çalısma prensibinin kavranması. Çıkıs olarak led kullanılacaktır. Kullanılacak devre elemanları: Anahtarlar (switches), 100 ohm ve 1k lık dirençler, 7408 entegre

Detaylı

TEKNOLOJİ FAKÜLTESİ YMT-215 LOGIC CIRCUITS

TEKNOLOJİ FAKÜLTESİ YMT-215 LOGIC CIRCUITS TEKNOLOJİ FAKÜLTESİ YMT-215 LOGIC CIRCUITS 1 İÇİNDEKİLER Deney 1 SAYI SİSTEMLERİ... 2 Deney 2 LOJİK KAPILAR (VE/VEYA/DEĞİL)...... 7 Deney 3 LOJİK KAPILAR (VE DEĞİL / VEYA DEĞİL / ÖZEL VEYA / ÖZEL VEYA

Detaylı

Bölüm 7 Ardışıl Lojik Devreler

Bölüm 7 Ardışıl Lojik Devreler Bölüm 7 Ardışıl Lojik Devreler DENEY 7- Flip-Floplar DENEYİN AMACI. Kombinasyonel ve ardışıl lojik devreler arasındaki farkları ve çeşitli bellek birimi uygulamalarını anlamak. 2. Çeşitli flip-flop türlerinin

Detaylı

2. Sayı Sistemleri. En küçük bellek birimi sadece 0 ve 1 değerlerini alabilen ikili sayı sisteminde bir basamağa denk gelen Bit tir.

2. Sayı Sistemleri. En küçük bellek birimi sadece 0 ve 1 değerlerini alabilen ikili sayı sisteminde bir basamağa denk gelen Bit tir. 2. Sayı Sistemleri Bilgisayar elektronik bir cihaz olduğu için elektrik akımının geçirilmesi (1) yada geçirilmemesi (0) durumlarını işleyebilir. Bu nedenle ikili sayı sistemini temel alarak veri işler

Detaylı