Poisson Dağılımı Özellikleri ve Olasılıkların Hesaplanması

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Poisson Dağılımı Özellikleri ve Olasılıkların Hesaplanması"

Transkript

1 Özellikleri ve Olasılıkların Hesaplanması Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

2 Poisson dağılımı kesikli dağılımlar içinde Binom dağılımından sonra yaygın olarak kullanılan bir dağılımdır. Az gözlenen olaylarla ilgili bir dağılımdır.

3 Örnek 1: Tifo hastalığından belirlenen bir zaman aralığında, örneğin 1 yıllık bir zaman aralığı içinde olsun, hayatını kaybedenlerin sayısını düşünelim. Günümüzde tifodan hayatını kaybetmek az rastlanan bir durumdur. Yani az gözlenen bir olaydır.

4 Bu örnekte zaman aralığını bir gün olacak şekilde düşünürsek, bir günlük bir zaman aralığında tifodan yeni bir ölümün gerçekleşme olasılığı oldukça küçük olacaktır.

5 Bu durumda farklı iki zamanda meydana gelen tifodan ölüm olayları bağımsız olacağından, bir yıllık zaman aralığında rapor edilen tifodan ölümlerin sayısı Poisson dağılımı gösterir.

6 Örnek 1, belirlenen bir zaman aralığında meydana gelen ve az gözlenen bir olaya ait bir örnekti. Poisson dağılımda bazı durumlarda zaman aralığı yerine belli bir yüzeye ait alan da kullanılmaktadır.

7 Örnek 2: Bir AGAR PLATE te (Petri Kabı) gelişen bakteri kolonilerinin sayısını düşünelim. Agar su yosunlarından elde edilen bir tür jelatindir. Kelime olarak Malayca "jel" anlamına gelen "agar-agar" kelimesinden gelmektedir. Agar tıp alanında mikrobiyolojik testlerde kullanılmaktadır.

8

9 Örnek 2: Örneğin 100 cm 2 alana sahip bir agar plate üzerinde küçük bir alanda bakteri kolonisi gelişmesi başka bir alanda gelişen bakteri kolonisinden bağımsız olacaktır.

10 Alan küçüldükçe o alanda bakteri kolonisi gelişme olasılığı da azalacaktır. Sonuçta tüm alan üzerinde gelişen bakteri koloni sayısı Poisson dağılımı gösterir.

11 Örnek 1 de belirtilen durumu tekrar inceleyelim. Tanımlanan zaman dilimini t ile gösterelim (t= 1 yıl ya da t=20 yıl olabilir). Bu zaman diliminin daha küçük zaman aralıklarını t ile gösterelim. Bu durumda 3 varsayım karşımıza çıkmaktadır.

12 Varsayım 1. Ölüm gözlenme olasılığı zaman aralığının uzunluğu ile oransaldır. Başka bir anlatımla zaman aralığı arttıkça ölüm meydana gelme olasılığı artmaktadır.

13 P(Tifodan 1 ölüm meydana gelmesi) λ t Burada λ tanımlanan zaman aralığı t de beklenen olay sayısıdır.

14 Varsayım 2. t zaman diliminde 0 ölüm gözlenme olasılığı yaklaşık olarak 1-λ t ye eşittir. P(Tifodan 0 ölüm meydana gelmesi) 1-λ t

15 Varsayım 3. t zaman diliminde 1 ölümden daha fazla ölüm gözlenme olasılığı yaklaşık olarak 0 a eşittir. P(Tifodan 1 ölümden fazla ölüm meydana gelmesi) 0

16 Bu tanımlamalar ve varsayımlar altında Poisson dağılımı aşağıdaki eşitlikteki gibi elde edilir. P( x) e x x!

17 P( x) e x x! Bu eşitlikte; µ: İncelenen bir olayın belirlenen zaman aralığındaki beklenen gözlenme sayısıdır ve µ =λt, x=0, 1, 2, olmak üzere gözlenen olay sayısıdır, e= dir.

18 Poisson dağılımı tek bir parametreye bağlıdır µ=λt. Burada λ, tanımlanan t zaman diliminde beklenen olay sayısıdır. Ancak µ ise belirlenen bir zaman aralığındaki beklenen olay sayısıdır. Burada belirlenen zaman dilimi, tanımlanan t zaman diliminden küçük, eşit ya da büyük olabilir.

19 Tekrar Örnek 1 e dönelim. Tanımlanan zaman aralığı t=1 yıl olsun. Bir yıllık zaman aralığı için beklenen ölüm sayısı 4.6 olsun. Bu durumda λ=4.6 olmaktadır. 3 ve 6 aylık zaman aralıkları için Poisson dağlımı olasılık fonksiyonu nedir?

20 3 aylık zaman aralığı için t=0.25 yıl olarak belirlenir. Çünkü 3 aylık zaman aralığı tanımlanan t=1 yıl olan zaman aralığının dörtte biridir. Bu durumda belirlenen 3 aylık zaman dilimi için beklenen olay sayısı µ =λt eşitliğinden yararlanarak µ =(4.6)(0.25)=1.15 olarak elde edilir.

21 3 aylık zaman aralığı Poisson dağılımı olasılık fonksiyonu aşağıdaki gibi elde edilir. P( x) e 1.15 (1.15) x! x

22 6 aylık zaman aralığı için t=0.5 yıl olarak belirlenir. Çünkü 6 aylık zaman aralığı tanımlanan t=1 yıl olan zaman aralığının yarısıdır. Bu durumda belirlenen 6 aylık zaman dilimi için beklenen olay sayısı µ =λt eşitliğinden yararlanarak µ =(4.6)(0.5)=2.3 olarak elde edilir.

23 6 aylık zaman aralığı Poisson dağılımı olasılık fonksiyonu aşağıdaki gibi elde edilir. P( x) e 2.3 (2.3) x! x

24 1 yıllık zaman aralığı için µ=λ olacaktır. Bu durumda Poisson dağılımı olasılık fonksiyonu aşağıdaki gibi elde edilir. P( x) e 4.6 (4.6) x! x

25 Tekrar Örnek 1 e dönelim. Tanımlanan zaman aralığı t=1 yıl. Bir yıllık zaman aralığı için beklenen ölüm sayısı λ=4.6. Bu durumda 9 aylık bir zaman aralığında tifodan 3 ölüm meydana gelme olasılığı nedir?

26 Belirlenen zaman aralığı 9 ay olduğundan t=9/12=0.75 olarak elde edilir. Bu durumda belirlenen zaman aralığında beklenen ölüm sayısı ise µ=(4.6)(0.75)=3.45 olarak elde edilir.

27 Bu durumda 3 ölüm meydana gelme olasılığı %21.73 olarak hesaplanır. P(3) e 3.45 (3.45) 3! %21.73

28 Tekrar Örnek 1 e dönelim. Tanımlanan zaman aralığı t=1 yıl. Bir yıllık zaman aralığı için beklenen ölüm sayısı λ=4.6 Bu durumda 3 aylık bir zaman aralığında tifodan en az 4 ölüm meydana gelme olasılığı nedir?

29 Belirlenen zaman aralığı 3 ay olduğundan t=3/12=0.25 olarak elde edilir. Bu durumda belirlenen zaman aralığında beklenen ölüm sayısı ise µ=(4.6)(0.25)=1.15 olarak belirlenir.

30 Bu durumda en az 4 ölüm meydana gelme olasılığını hesaplamak için 0, 1, 2 ve 3 ölüm meydana gelme olasılıklarını hesaplayıp bu olasılıkların toplamını 1 den çıkarmak gerekecektir.

31 e (1.15) e (1.15) P(0) P(1) ! 1! e (1.15) e (1.15) P(2) P(3) ! 3! En az 4 ölüm meydana gelme olasılığı aşağıdaki gibi elde edilir. P( x 4) 1 ( ) 0.030

32 Örnek 2 e dönelim. 1 cm 2 alanda beklenen bakteri koloni sayısı 0.02 olsun. Bu örnekte zaman yerine alan tanımlanmıştır. Alanı yine t ile gösterecek olursak, tanımlanan alan t=1 cm 2. Bu durumda λ=0.02 olmaktadır. Bu durumda 100 cm 2 bir alanda 3 bakteri kolonisi gelişme olasılığı nedir?

33 100 cm 2 alan t=100 olarak belirlenir. Çünkü tanımlanan alanın 100 katıdır. Bu durumda belirlenen 100 cm 2 alan için beklenen koloni sayısı µ=λt eşitliğinden yararlanarak µ=(0.02)(100)=2 olarak elde edilir.

34 Bu durumda 100 cm 2 alanda 3 bakteri kolonisi oluşma olasılığı %18 olarak aşağıdaki şekilde hesaplanır. P(3) e 2 (2) 3! %18

35 Örnek 1 e ait 3 aylık zaman aralığı için Poisson dağılımı.

36 Örnek 1 e ait 6 aylık zaman aralığı için Poisson dağılımı.

37 Örnek 1 e ait 1 yıllık zaman aralığı için Poisson dağılımı.

38 Örnek 1 e ait 5 yıllık zaman aralığı için Poisson dağılımı.

39 Örnek 1 e ait 10 yıllık zaman aralığı için Poisson dağılımı.

40 Grafikler incelendiğinde belirlenen zaman aralığı arttıkça ve buna bağlı olarak beklenen olay sayısı arttıkça Poisson dağılımı beklene olay sayısı etrafında simetrik bir dağılım şeklini almaya başlıyor ve normal dağılıma yakınsıyor.

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun.

Detaylı

Olasılığa Giriş Koşullu Olasılık Bayes Kuralı

Olasılığa Giriş Koşullu Olasılık Bayes Kuralı Olasılığa Giriş Koşullu Olasılık Bayes Kuralı Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Olasılığa Giriş Bundan önceki bölümlerde veri setini özetleyen,

Detaylı

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir, 14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

Mann-Whitney U ve Wilcoxon T Testleri

Mann-Whitney U ve Wilcoxon T Testleri Mann-Whitney U ve Wilcoxon T Testleri Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Parametrik olmayan yöntem Mann-Whitney U testinin

Detaylı

SPSS de Tanımlayıcı İstatistikler

SPSS de Tanımlayıcı İstatistikler SPSS de Tanımlayıcı İstatistikler Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı SPSS programında belirtici istatistikler 4 farklı menüden yararlanılarak

Detaylı

Veri Ağlarında Gecikme Modeli

Veri Ağlarında Gecikme Modeli Veri Ağlarında Gecikme Modeli Giriş Veri ağlarındaki en önemli performans ölçütlerinden biri paketlerin ortalama gecikmesidir. Ağdaki iletişim gecikmeleri 4 farklı gecikmeden kaynaklanır: 1. İşleme Gecikmesi:

Detaylı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Student t Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek örnek t testi SPSS de tek örnek t testi uygulaması Bağımsız iki örnek

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME

RİSK ANALİZİ VE AKTÜERYAL MODELLEME SORU 1: Bir hasar sıklığı dağılımının rassal değişken olan ortalaması (0,8) aralığında tekdüze dağılmaktadır. Hasar sıklığı dağılımının Poisson karma dağılıma uyduğu bilindiğine göre 1 ya da daha fazla

Detaylı

Simülasyonda İstatiksel Modeller

Simülasyonda İstatiksel Modeller Simülasyonda İstatiksel Modeller Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri iyi tanımlayabilir. İlgilenilen olayın örneklenmesi ile uygun

Detaylı

altında ilerde ele alınacaktır.

altında ilerde ele alınacaktır. YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 1 NOKTA TAHMİN YÖNTEMLERİ Şimdiye kadar verilmiş tahmin edicilerin sonlu örneklem ve asimptotik özelliklerini inceledik. Acaba bilinmeyen anakütle parametrelerini

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 13 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015

RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015 RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015 SORU 2: Motosiklet sigortası pazarlamak isteyen bir şirket, motosiklet kaza istatistiklerine bakarak, poliçe başına yılda ortalama 0,095 kaza olacağını tahmin

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Varyans Analizi (ANOVA) Kruskal-Wallis H Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek Yönlü Varyans Analizi SPSS de Tek

Detaylı

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma 2 13.1 Normal Dağılımın Standartlaştırılması Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma değerleriyle normal

Detaylı

Biyoistatistiğin Tanımı Biyoistatistikte Kullanılan Terimler Değişken Tipleri Parametre ve İstatistik Tanımlayıcı İstatistikler

Biyoistatistiğin Tanımı Biyoistatistikte Kullanılan Terimler Değişken Tipleri Parametre ve İstatistik Tanımlayıcı İstatistikler Biyoistatistiğin Tanımı Biyoistatistikte Kullanılan Terimler Değişken Tipleri Parametre ve İstatistik Tanımlayıcı İstatistikler Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik

Detaylı

Envirocheck Contact plates; Yüzey Testi için 09.01

Envirocheck Contact plates; Yüzey Testi için 09.01 Envirocheck Contact plates; Yüzey Testi için 09.01 Mikrobiyel açıdan temiz olması gereken tüm yüzeylerde mikrobiyel kontaminasyonun belirlenmesinde kullanılan basit ve etkili bir araçtır. Plastik Petri

Detaylı

ENM 316 BENZETİM ÖDEV SETİ

ENM 316 BENZETİM ÖDEV SETİ ENM 16 BENZETİM ÖDEV SETİ Ödev 1. Bir depo ve N adet müşteriden oluşan bir taşımacılık sisteminde araç depodan başlayıp bütün müşterileri teker teker ziyaret ederek depoya geri dönmektedir. Sistemdeki

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

Rastlantı Değişkenleri

Rastlantı Değişkenleri Rastlantı Değişkenleri Olasılık Kütle Fonk. Example: A shipment of 8 similar microcomputers to a retail outlet contains 3 that are defective. If a school makes a random purchase of 2 of these computers,

Detaylı

LOJİSTİK REGRESYON ANALİZİ

LOJİSTİK REGRESYON ANALİZİ LOJİSTİK REGRESYON ANALİZİ Lojistik Regresyon Analizini daha kolay izleyebilmek için bazı terimleri tanımlayalım: 1. Değişken (incelenen özellik): Bireyden bireye farklı değerler alabilen özellik, fenomen

Detaylı

BÖLÜM 11 Z DAĞILIMI. Şekil 1. Z Dağılımı

BÖLÜM 11 Z DAĞILIMI. Şekil 1. Z Dağılımı 1 BÖLÜM 11 Z DAĞILIMI Z dağılımı; ortalaması µ=0 ve standart sapması σ=1 olan Z puanlarının evren dağılımı olarak tanımlanabilmektedir. Z dağılımı olasılıklı bir normal dağılımdır. Yani Z dağılımının genel

Detaylı

İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ. Biyoistatistik (Ders 5: Bağımlı Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ

İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ. Biyoistatistik (Ders 5: Bağımlı Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ İKİ ÖRNEKLEM TESTLERİ BAĞIMLI GRUPLARDA İKİ ÖRNEKLEM TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı uerkorkmaz@sakarya.edu.tr İKİ ÖRNEKLEM TESTLERİ

Detaylı

Girdi Analizi. 0 Veri toplama 0 Girdi sürecini temsil eden olasılık dağılımı belirleme. 0 Histogram 0 Q-Q grafikleri

Girdi Analizi. 0 Veri toplama 0 Girdi sürecini temsil eden olasılık dağılımı belirleme. 0 Histogram 0 Q-Q grafikleri Girdi Analizi 0 Gerçek hayattaki benzetim modeli uygulamalarında, girdi verisinin hangi dağılımdan geldiğini belirlemek oldukça zor ve zaman harcayıcıdır. 0 Yanlış girdi analizi, elde edilen sonuçların

Detaylı

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi İlhan AYDIN KESİKLİ-OLAY BENZETİMİ Kesikli olay benzetimi, durum değişkenlerinin zaman içinde belirli noktalarda değiştiği sistemlerin modellenmesi

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 7 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

Exponential Distribution. diger. Probability Distributions. Sürekli Şans Değişkenleri. 0 diger. SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI

Exponential Distribution. diger. Probability Distributions. Sürekli Şans Değişkenleri. 0 diger. SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Probability Distributions Probability Distributions SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Dr. Mehmet AKSARAYLI Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Ekonometri Bölümü

Detaylı

ENERJĐ ELDESĐNDE ORTALAMA RÜZGAR HIZI ÖLÇÜM ARALIĞI ve HELLMANN KATSAYISININ ÖNEMĐ: SÖKE ÖRNEĞĐ

ENERJĐ ELDESĐNDE ORTALAMA RÜZGAR HIZI ÖLÇÜM ARALIĞI ve HELLMANN KATSAYISININ ÖNEMĐ: SÖKE ÖRNEĞĐ ENERJĐ ELDESĐNDE ORTALAMA RÜZGAR HIZI ÖLÇÜM ARALIĞI ve HELLMANN KATSAYISININ ÖNEMĐ: SÖKE ÖRNEĞĐ Mete ÇUBUKÇU1 mecubuk@hotmail.com Doç. Dr. Aydoğan ÖZDAMAR2 aozdamar@bornova.ege.edu.tr ÖZET 1 Ege Üniversitesi

Detaylı

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır?

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır? 26.2.23 Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HĐPOTEZ TESTLERĐ denir. Sonuçların raslantıya bağlı olup

Detaylı

GÜVEN ARALIĞI KESTİRİM

GÜVEN ARALIĞI KESTİRİM GÜVEN ARALIĞI KESTİRİM GÜVEN ARALIĞI Herhangi bir parametre için güven aralığı iki istatistikle verilir: U ve L. Öyle ki, eğer parametrenin doğru değeri θ ise, o zaman P(L θ U) = 1 - α Burada θ parametrenin

Detaylı

ĐST 474 Bayesci Đstatistik

ĐST 474 Bayesci Đstatistik ĐST 474 Bayesci Đstatistik Ders Sorumlusu: Dr. Haydar Demirhan haydarde@hacettepe.edu.tr Đnternet Sitesi: http://yunus.hacettepe.edu.tr/~haydarde Đçerik: Olasılık kuramının temel kavramları Bazı özel olasılık

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri

Detaylı

KARŞILAŞTIRMALI TABLOLAR ANALİZİ 5. HAFTA

KARŞILAŞTIRMALI TABLOLAR ANALİZİ 5. HAFTA KARŞILAŞTIRMALI TABLOLAR ANALİZİ 5. HAFTA Karşılaştırmalı Tablolar Analizi (Yatay Analiz) p Karşılaştırmalı tablolar analizi, bir işletmenin birbirini izleyen en az iki veya daha fazla faaliyet dönemine

Detaylı

Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir.

Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir. Bağımlı Örneklerde Ki-Kare testi -- Mc Nemar Testi Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir. Örnek: Sigara içmeyle ilgili bir çalışmada, kişilere sigarayı

Detaylı

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir.

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir. PİRAMİTLER Bir düzlemde kapalı bir bölge ile bu düzlemin dışında bir T noktası alalım. Kapalı bölgenin tüm noktalarının T noktası ile birleştirilmesi sonucunda oluşan cisme piramit denir. T noktası piramidin

Detaylı

f = 1 0.013809 = 0.986191

f = 1 0.013809 = 0.986191 MAKİNA MÜHNDİSLİĞİ BÖLÜMÜ-00-008 BAHAR DÖNMİ MK ISI TRANSFRİ II (+) DRSİ YIL İÇİ SINAVI SORULARI ÇÖZÜMLRİ Soruların çözümlerinde Yunus A. Çengel, Heat and Mass Transfer: A Practical Approach, SI, /, 00,

Detaylı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı FOURIER SERİLERİ Bu bölümde Fourier serilerinden bahsedeceğim. Önce harmoniklerle (katsıklıklarla) ilişkili sinüsoidin tanımından başlıyacağım ve serilerin trigonometrik açılımlarını kullanarak katsayıları

Detaylı

çözümlemesi; beklenen değer ile gözlenen değer arasındaki farkın araştırılması için kullanılır.(aralarındaki fark anlamlı mı?)

çözümlemesi; beklenen değer ile gözlenen değer arasındaki farkın araştırılması için kullanılır.(aralarındaki fark anlamlı mı?) BÖLÜM 5. (Kİ-KARE) ÇÖZÜMLEMESİ çözümlemesi; beklenen değer ile gözlenen değer arasındaki farkın araştırılması için kullanılır.(aralarındaki fark anlamlı mı?) Örneğin; Bir para atma deneyinde olasılıkla

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

Olasılık Kuramı ve Bazı Olasılık Dağılımları

Olasılık Kuramı ve Bazı Olasılık Dağılımları KAVRAMLAR Olasılık Kuramı ve Bazı Olasılık Dağılımları Deney: belirli koşullar altında tekrarlanabilen ve her tekrarda farklı sonuçlar elde edilebilen işlemdir. Örneklem uzayı: bir denemenin tüm olası

Detaylı

DAVRANIŞ KAYDI TEKNİKLERİ Kesin Kayıt Teknikleri Olay Kaydı

DAVRANIŞ KAYDI TEKNİKLERİ Kesin Kayıt Teknikleri Olay Kaydı DAVRANIŞ KAYDI TEKNİKLERİ Kesin Kayıt Teknikleri Olay Kaydı En pratik ve en kullanışlı kayıt etme süreçlerinden biri sıklık sayma ya da olay kaydıdır. Bu kayıt türünde gözlemci belirlenen gözlem zamanı

Detaylı

Bireysel Müşteri Hakem Heyeti Yıllık Faaliyet Raporu. Ocak Aralık 2014

Bireysel Müşteri Hakem Heyeti Yıllık Faaliyet Raporu. Ocak Aralık 2014 Bireysel Müşteri Hakem Heyeti Yıllık Faaliyet Raporu Ocak Aralık 2014 Nisan 2015 İçindekiler 1. Genel Değerlendirme 2. Hakem Heyetleri Bazında Başvuru ve Sayılar Tablo 1: Gündeme Alınan Başvuruların Müşteri

Detaylı

LÜLEBURGAZDAKİ BİNA DIŞ DUVARLARI İÇİN OPTİMUM YALITIM KALINLIĞININ BELİRLENMESİ VE MALİYET ANALİZİ

LÜLEBURGAZDAKİ BİNA DIŞ DUVARLARI İÇİN OPTİMUM YALITIM KALINLIĞININ BELİRLENMESİ VE MALİYET ANALİZİ LÜLEBURGAZDAKİ BİNA DIŞ DUVARLARI İÇİN OPTİMUM YALITIM KALINLIĞININ BELİRLENMESİ VE MALİYET ANALİZİ Mak. Yük. Müh. Emre DERELİ Makina Mühendisleri Odası Edirne Şube Teknik Görevlisi 1. GİRİŞ Ülkelerin

Detaylı

FİNANSAL MODELLER. Yrd. Doç. Dr. Fazıl GÖKGÖZ. Tel: 595 13 37 fgokgoz@politics.ankara.edu.tr. Y. Doç. Dr. Fazıl GÖKGÖZ. Risk ve Getiri: Temel Konular

FİNANSAL MODELLER. Yrd. Doç. Dr. Fazıl GÖKGÖZ. Tel: 595 13 37 fgokgoz@politics.ankara.edu.tr. Y. Doç. Dr. Fazıl GÖKGÖZ. Risk ve Getiri: Temel Konular FİNANSAL MODELLER Yrd. Doç. Dr. Fazıl GÖKGÖZ Tel: 595 13 37 fgokgoz@politics.ankara.edu.tr Risk ve Getiri: Temel Konular Temel getiri konsepti Temel risk konsepti Bireysel risk Portföy (piyasa) riski Risk

Detaylı

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01 Ortak Varyans ve İstatistiksel Bağımsızlık Bir rassal değişken çifti istatistiksel olarak bağımsız ise aralarındaki ortak varyansın değeri 0 dır. Ancak ortak varyans değerinin 0 olması, iki rassal değişkenin

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30)

Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30) ENM 316 BENZETİM ÖDEV SETİ Ödev 1. Bir projede A, B, C, D, E ve F olmak üzere 6 faaliyet vardır. Projenin tamamlanması için bu faaliyetlerin sırası ile yapılması gerekmektedir. Her faaliyetin tamamlanması

Detaylı

EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME

EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME GİRİŞ Bu bölümde benzetim için excel örnekleri önerilmektedir. Örnekler excel ile yapılabileceği gibi el ile de yapılabilir. Benzetim örnekleri

Detaylı

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz...

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... 1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... CABİR VURAL BAHAR 2006 Açıklamalar

Detaylı

Doğrusal Olmayan Sistemlere Doğru. Uzay Çetin. Python ve R ile Bilimsel Hesaplama Kursu Mustafa Gökçe Baydoğan, Uzay Çetin, Berk Orbay

Doğrusal Olmayan Sistemlere Doğru. Uzay Çetin. Python ve R ile Bilimsel Hesaplama Kursu Mustafa Gökçe Baydoğan, Uzay Çetin, Berk Orbay Doğrusal Olmayan Sistemlere Doğru 1 / 27 Doğrusal Olmayan Sistemlere Doğru Uzay Çetin Boğaziçi - Işık Üniversitesi Python ve R ile Bilimsel Hesaplama Kursu Mustafa Gökçe Baydoğan, Uzay Çetin, Berk Orbay

Detaylı

Kuyruk Sistemlerinin Simülasyonu

Kuyruk Sistemlerinin Simülasyonu Kuyruk Sistemlerinin Simülasyonu Kuyruk sistemlerinin simülasyonu sonraki adımda ne olacağını belirlemek üzere bir olay listesinin tutulmasını ve bakımını gerektirir. Simülasyonda olaylar genellikle gerçek

Detaylı

İŞARETLİ SIRA İSTATİSTİĞİNİ KULLANAN PARAMETRİK OLMAYAN KONTROL DİYAGRAMIYLA SÜRECİN İZLENMESİ

İŞARETLİ SIRA İSTATİSTİĞİNİ KULLANAN PARAMETRİK OLMAYAN KONTROL DİYAGRAMIYLA SÜRECİN İZLENMESİ V. Ulusal Üretim Araştırmaları Sempozyumu, İstanbul Ticaret Üniversitesi, 25-27 Kasım 2005 İŞARETLİ SIRA İSTATİSTİĞİNİ KULLANAN PARAMETRİK OLMAYAN KONTROL DİYAGRAMIYLA SÜRECİN İZLENMESİ Metin ÖNER Celal

Detaylı

DÖNEM II ÜROGENİTAL SİSTEM VE HASTALIKLARIN BİYOLOJİK TEMELLERİ DERS KURULU. Yrd.Doç.Dr.İsmail YILDIZ BİYOİSTATİSTİK AD DERS NOTLARI

DÖNEM II ÜROGENİTAL SİSTEM VE HASTALIKLARIN BİYOLOJİK TEMELLERİ DERS KURULU. Yrd.Doç.Dr.İsmail YILDIZ BİYOİSTATİSTİK AD DERS NOTLARI DÖNEM II ÜROGENİTAL SİSTEM VE HASTALIKLARIN BİYOLOJİK TEMELLERİ DERS KURULU Yrd.Doç.Dr.İsmail YILDIZ BİYOİSTATİSTİK AD DERS NOTLARI 05.05.2014 Pazartesi, Saat:11.30-12.20;Korelasyon ve Regresyon Uygulaması

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

9 Ekim 2009. Đlgili Versiyon/lar : ETA:SQL, ETA:V.8-SQL. Đlgili Modül/ler : Cari II

9 Ekim 2009. Đlgili Versiyon/lar : ETA:SQL, ETA:V.8-SQL. Đlgili Modül/ler : Cari II 9 Ekim 2009 Đlgili Versiyon/lar : ETA:SQL, ETA:V.8-SQL Đlgili Modül/ler : Cari II CARĐ BAZLI FĐYAT TANIMLAMA YÖNTEMLERĐ Cari bazlı fiyat takibi sayesinde programımız, her cari için ayrı ayrı fiyat tanımlamaya

Detaylı

CRYSTAL BALL Eğitimi

CRYSTAL BALL Eğitimi CRYSTAL BALL Eğitimi İki günlük bu kursun ilk yarısında, Crystal Ball Fusion Edition kullanılarak Excel tablolarına dayalı risk analizi öğretilecektir. Monte Carlo simülasyonu, tornado analizi ve Crystal

Detaylı

İSTATİSTİK BÖLÜMÜ DERS İÇERİKLERİ (2009 2010)

İSTATİSTİK BÖLÜMÜ DERS İÇERİKLERİ (2009 2010) İSTATİSTİK BÖLÜMÜ DERS İÇERİKLERİ (2009 2010) BİRİNCİ YIL Güz Dönemi (1. Yarıyıl) STAT 101 Temel İstatistik I (3 2 4) İstatistik bilimi. Verilerin görsel sunumu. Frekans tablosu oluşturma. Gövde yaprak

Detaylı

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7. Adi Diferansiyel Denklemlerin Sayısal Çözümü

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7. Adi Diferansiyel Denklemlerin Sayısal Çözümü Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7 Adi Diferansiyel Denklemlerin Sayısal Çözümü Copyright The McGraw-Hill Companies, Inc. Permission required

Detaylı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı ARAŞTIRMA MODELLİLERİNDE KULLANILACAK İSTATİSTİKLERİ BELİRLEME ÖLÇÜTLERİ Parametrik mi Parametrik Olmayan mı? Kullanılacak İstatistikleri Belirleme Ölçütleri Değişken Sayısı Tek değişkenli (X) İki değişkenli

Detaylı

OLASILIK. P(A) = şeklinde ifade edilir.

OLASILIK. P(A) = şeklinde ifade edilir. OLASILIK Olasılık belirli bir olayın olabilirliğinin sayısal ölçüsüdür. Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. 17 yy. da şans oyunlarıyla birlikte kullanılmaya

Detaylı

SİSTEM ANALİZİ ve TASARIMI. ÖN İNCELEME ve FİZİBİLİTE

SİSTEM ANALİZİ ve TASARIMI. ÖN İNCELEME ve FİZİBİLİTE SİSTEM ANALİZİ ve TASARIMI ÖN İNCELEME ve FİZİBİLİTE Sistem Tasarım ve Analiz Aşamaları Ön İnceleme Fizibilite Sistem Analizi Sistem Tasarımı Sistem Gerçekleştirme Sistem Operasyon ve Destek ÖN İNCELEME

Detaylı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı DENEY 0 Bölüm 1 - Ölçme ve Hata Hesabı Amaç: Ölçüm metodu ve cihazına bağlı hata ve belirsizlikleri anlamak, fiziksel bir niceliği ölçüp hata ve belirsizlikleri tespit etmek, nedenlerini açıklamak. Genel

Detaylı

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır?

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? TEMEL MATEMATİK TESTİ 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. 1. 3. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? A)

Detaylı

EK 2 EMEKLİLİĞE YÖNELİK TAAHHÜTTE BULUNAN KURULUŞLAR İÇİN AKTÜERYA RAPORU REHBERİ

EK 2 EMEKLİLİĞE YÖNELİK TAAHHÜTTE BULUNAN KURULUŞLAR İÇİN AKTÜERYA RAPORU REHBERİ EK 2 EMEKLİLİĞE YÖNELİK TAAHHÜTTE BULUNAN KURULUŞLAR İÇİN AKTÜERYA RAPORU REHBERİ 1. AMAÇ ve KAPSAM Bu rehber, üyelerine veya çalışanlarına emekliliğe yönelik taahhütte bulunan dernek, vakıf, sandık, tüzel

Detaylı

Muhasebe Entegrasyon Tanımlarının Yapılması. Stok Programından Yapılan Muhasebe Entegrasyon Tanımları

Muhasebe Entegrasyon Tanımlarının Yapılması. Stok Programından Yapılan Muhasebe Entegrasyon Tanımları Muhasebe Entegrasyon Tanımlarının Yapılması Cari, fatura, çek/senet, kasa ve banka gibi modülerden hareket girişleri yapıldığında bu hareketler anlık olarak muhasebe programına entegre edilerek muhasebe

Detaylı

Ki-Kare Bağımsızlık Analizi

Ki-Kare Bağımsızlık Analizi Ki-Kare Bağımsızlık Analizi Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Ki-Kare Bağımsızlık Analizi Kikare bağımsızlık analizi, isimsel ya da sıralı ölçekli

Detaylı

ÜRETİM VE MALİYETLER

ÜRETİM VE MALİYETLER ÜRETİM VE MALİYETLER FİRMALARIN TEMEL AMACI Mal ve hizmet üretimi firmalar tarafından gerçekleştirilir. Ekonomi teorisine göre, firmaların mal ve hizmet üretimindeki temel amacı kar maksimizasyonu (en

Detaylı

Analiz Süresi: 30-35 C'de 48 saat

Analiz Süresi: 30-35 C'de 48 saat 3M PETRİFİLM AEROBİK SAYIM PLAKALARI 3M Petrifilm Aerobic Sayım Plakaları toplam aerobic bakteri populasyonlarını belirlemek için düzenlenmiştir. Uygulanacak basit bir prosedürle aynı zamanda etlerde ve

Detaylı

DERS 3 ÖLÇÜ HATALARI Kaynak: İ.ASRİ

DERS 3 ÖLÇÜ HATALARI Kaynak: İ.ASRİ Ölçme Bilgisi DERS 3 ÖLÇÜ HATALARI Kaynak: İ.ASRİ Çizim Hassasiyeti Haritaların çiziminde veya haritadan bilgi almada ne kadar itina gösterilirse gösterilsin kaçınılmayacak bir hata vardır. Buna çizim

Detaylı

Fonksiyon Blokları Açıklamaları

Fonksiyon Blokları Açıklamaları Fonksiyon lokları Açıklamaları A İsim PWM Fonksiyonu Açıklama Sayısal girişi On/Off kontrole çevirir. Kullanım alanı aha çok PI kontrol sonrası çıkışın On/Off olarak yapıldığı proseslerde kullanılır. Kullanımı

Detaylı

1106104 SİSTEM SİMÜLASYONU

1106104 SİSTEM SİMÜLASYONU 6 SİSTEM SİMÜLASYONU Yrd Doç. Dr. Sırma Yavuz Çarşamba : - : (F-9) Ofis: B Blok - Kat Donanım Lab. Ofis Saatleri : Çarşamba 6: - 7: İçerik Simülasyon Modeli Yaklaşımları Kuyruk Sistemlerinin Simülasyonu

Detaylı

SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II MARKOV ZİNCİRLERİ DERS NOTLARI

SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II MARKOV ZİNCİRLERİ DERS NOTLARI SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II MARKOV ZİNCİRLERİ DERS NOTLARI STOKASTİK (RASSAL) SÜREÇLER Bazen rassal değişkenlerin zamanla nasıl değiştiğiyle ilgileniriz. Örneğin

Detaylı

ĠLETĠM HATTINA ĠLĠġKĠN KARAKTERĠSTĠK DEĞERLERĠN ELDE EDĠLMESĠ

ĠLETĠM HATTINA ĠLĠġKĠN KARAKTERĠSTĠK DEĞERLERĠN ELDE EDĠLMESĠ DENEY 1 ĠLETĠM HATTINA ĠLĠġKĠN KARAKTERĠSTĠK DEĞERLERĠN ELDE EDĠLMESĠ 1.1. Genel Bilgi MV 1424 Hat Modeli 40 kv lık nominal bir gerilim ve 350A lik nominal bir akım için tasarlanmış 40 km uzunluğundaki

Detaylı

FİNANSAL RİSK ANALİZİNDE KARMA DAĞILIM MODELİ YAKLAŞIMI * Mixture Distribution Approach in Financial Risk Analysis

FİNANSAL RİSK ANALİZİNDE KARMA DAĞILIM MODELİ YAKLAŞIMI * Mixture Distribution Approach in Financial Risk Analysis FİNANSAL RİSK ANALİZİNDE KARMA DAĞILIM MODELİ YAKLAŞIMI * Mixture Distribution Approach in Financial Risk Analysis Keziban KOÇAK İstatistik Anabilim Dalı Deniz ÜNAL İstatistik Anabilim Dalı ÖZET Son yıllarda

Detaylı

Finansal (Mali) Tablolar Analizi DİKEY ANALİZ

Finansal (Mali) Tablolar Analizi DİKEY ANALİZ Finansal (Mali) Tablolar Analizi DİKEY ANALİZ 1 Mali tablolarda yer alan hesap kalemlerinin, içinde bu lundukları toplamlara oranlarının hesaplanarak analiz edil mesine dikey analiz, diğer bir ifadeyle

Detaylı

FABRİKA ORGANİZASYONU Üretim Planlama ve Yönetimi 2. Uygulama: Sipariş ve Parti Büyüklüğü Hesaplama

FABRİKA ORGANİZASYONU Üretim Planlama ve Yönetimi 2. Uygulama: Sipariş ve Parti Büyüklüğü Hesaplama FABRİKA ORGANİZASYONU Üretim Planlama ve Yönetimi 2. Uygulama: Sipariş ve Parti Büyüklüğü Hesaplama Uygulamalar 1. İhtiyaç Hesaplama 2. Sipariş ve Parti Büyüklüğü Hesaplama 3. Dolaşım Akış Çizelgeleme/Terminleme

Detaylı

FOTOGRAMETRİ - II Uçuş Planı ve İlgili Problemler

FOTOGRAMETRİ - II Uçuş Planı ve İlgili Problemler FOTOGRAMETRİ - II Uçuş Planı ve İlgili Problemler Yrd. Doç. Dr. Aycan M. MARANGOZ FOTOGRAMETRİ ANABİLİM DALI SUNULARI http://geomatik.beun.edu.tr/marangoz/ Hava fotoğrafları ve fotoğraf ölçeği Fotoğraf

Detaylı

Şekilde, K3 kollektörlerini seçtiğimizde ve 300 l/saat lik bir debi deki basınç kaybı 50 mbar.

Şekilde, K3 kollektörlerini seçtiğimizde ve 300 l/saat lik bir debi deki basınç kaybı 50 mbar. Sistem kurulurken dikkat edilmesi gereken önemli konulardan birisi de, kurulacak sisteme uygun pompanın seçilmesidir. Küçük sistemlerde ( 30 m 2 ye kadar kollektör yüzeyine sahip sistemlerde), normal solar

Detaylı

10. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları

10. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları 10. Sınıf Matemat k Ders İşleme Defter OLASILIK Altın Kalem Yayınları KOŞULLU OLASILIK Bas t olayların olma olasılıklarını 9. sınıf matemat k konularında şlem şt k. Ş md yapacağımız se daha karmaşık olayların

Detaylı

SICAKLIK KAYNAKLARININ KARŞILAŞTIRILMASI

SICAKLIK KAYNAKLARININ KARŞILAŞTIRILMASI 473 SICAKLIK KAYNAKLARININ KARŞILAŞTIRILMASI Alev DERELİOĞLU Narcisa ARİFOVİÇ ÖZET Bu çalışmada; sıcaklık kaynağı olarak kullanılan kuru fırın ve sıvı banyo arasındaki farklılıklar ele alındı. Kullanılan

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Olasılık ve Rastgele Değişkenler EEE214 4 3 3 4

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Olasılık ve Rastgele Değişkenler EEE214 4 3 3 4 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Olasılık ve Rastgele Değişkenler EEE214 4 3 3 4 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Zorunlu /

Detaylı

Temel Biyoistatistik Kursu-I

Temel Biyoistatistik Kursu-I Düzenleyen: Çanakkale Onsekiz Mart Üniversitesi Tıp Fakültesi Biyoistatistik ve Tıp Bilişimi AD, Sürekli Eğitim Merkezi Temel Biyoistatistik Kursu-I ÇANAKKALE, 17-20 Şubat 2011 Bilgi ve Kayıt : sem.comu.edu.tr

Detaylı

TAM REKABET PİYASASI

TAM REKABET PİYASASI TAM REKABET PİYASASI 2 Bu bölümde, tam rekabet piyasasında çalışan firmaların fiyatlarını nasıl oluşturduklarını, ne kadar üreteceklerine nasıl karar verdiklerini ve piyasadaki fiyat ile miktarın nasıl

Detaylı

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI aysecagli@beykent.edu.tr 1 Güven aralığı ve Hipotez testi Güven aralığı µ? µ? Veriler, bir değer aralığında hangi değeri gösteriyor? (Parametrenin gerçek

Detaylı

1. GİRİŞ Örnek: Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre), zamanın t (saniye) bir fonksiyonu olarak

1. GİRİŞ Örnek: Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre), zamanın t (saniye) bir fonksiyonu olarak DERS: MATEMATİK I MAT0(09) ÜNİTE: TÜREV ve UYGULAMALARI KONU: A. TÜREV. GİRİŞ Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre) zamanın t (saniye) bir fonksiyonu olarak

Detaylı

6. DİRENÇ ÖLÇME YÖNTEMLERİ VE WHEATSTONE KÖPRÜSÜ

6. DİRENÇ ÖLÇME YÖNTEMLERİ VE WHEATSTONE KÖPRÜSÜ AMAÇLAR 6. DİRENÇ ÖLÇME YÖNTEMLERİ VE WHEATSTONE KÖPRÜSÜ 1. Değeri bilinmeyen dirençleri voltmetreampermetre yöntemi ve Wheatstone Köprüsü yöntemi ile ölçmeyi öğrenmek 2. Hangi yöntemin hangi koşullar

Detaylı

1. Web Sitesine Giriş 1. Giriş Yapmak için tıklayın tıklanır.

1. Web Sitesine Giriş 1. Giriş Yapmak için tıklayın tıklanır. 1. Web Sitesine Giriş 1. Giriş Yapmak için tıklayın tıklanır. 2. Aşağıdaki ekranda e-mail adresi ve şifre ile giriş yapılır. Şifrenizi hatırlamıyorsanız Şifremi unuttum bağlantısı kullanılarak yeni şifrenin

Detaylı

DERNEK, VAKIF, SANDIK VE DİĞER KURULUŞLAR İÇİN HAZIRLANACAK AKTÜERYA RAPORUNA VE AKTÜERYAL HESAPLAMALARDA KULLANILACAK VARSAYIMLARA İLİŞKİN REHBER

DERNEK, VAKIF, SANDIK VE DİĞER KURULUŞLAR İÇİN HAZIRLANACAK AKTÜERYA RAPORUNA VE AKTÜERYAL HESAPLAMALARDA KULLANILACAK VARSAYIMLARA İLİŞKİN REHBER DERNEK, VAKIF, SANDIK VE DİĞER KURULUŞLAR İÇİN HAZIRLANACAK AKTÜERYA RAPORUNA VE AKTÜERYAL HESAPLAMALARDA KULLANILACAK VARSAYIMLARA İLİŞKİN REHBER 1. AMAÇ ve KAPSAM Bu rehberin amacı, üye, çalışan veya

Detaylı