ELEKTROMANYETİK DALGALAR DERSİ YAZ DÖNEMİ

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ELEKTROMANYETİK DALGALAR DERSİ YAZ DÖNEMİ"

Transkript

1 DERS İÇERİĞİNE GENEL BAKIŞ ELEKTROMANYETİK DALGALAR DERSİ YAZ DÖNEMİ Yrd. Doç. Dr. Seyit Ahmet Sis MMF 7. kat, ODA No: 3, Dahili:

2 DERS İÇERİĞİNE GENEL BAKIŞ Ders İçeriği : Vektörel işlemlerin hatırlatmasıyla başlanıp, elektrostatik ve magnetostatikin temel teorem ve eşitlikerinden bahsedilecek, daha sonra dersin tamamına yakınında elektrodinamik konuları işlenecektir. Bu bağlamda işlenmesi planlanan konular: Maxwell denklemleri, düzlemsel dalgalar (plane waves), Dalgaların farklı ortamlara arasında yayılımında davranışları (örn. yansıma, kırımla...), Işıma ve antenler (sadece temelleri verilecek, spesifik antenlere girilmeyecek) Ders Kaynakları: 1) Fawwaz Ulaby,Eric Michielssen and Umberto Ravaioli Fundamentals of Applied Electromagnetics 5 th or 6 th edition. 2) Schaum s Elektromanyetik, 2. baskıdan çeviri 3) David Cheng, Fieild and Wave Electromagnetics (Türkçeside mevcuttur) 4) Davif J. Griffiths Introduction to Electrodnamics Vize % 40, Final % 60 2

3 DERS İÇERİĞİNE GENEL BAKIŞ 1. Ders 2. Ders 3. Ders 4. Ders 5. Ders Vektör analizi, elektrostatik temellerinin kabaca tekrarı 6. Ders 7. Ders 8. Ders 9. Ders 10. Ders 11. Ders 12. Ders 13. Ders 3

4 VEKTÖR ANALİZİ Elektrik ve Manyetik alanlar vektörel büyüklüklerdir Bu bağlamda lisans düzeyinde hâli hazırda verilmiş olan vektör analizi üzerinden kısaca geçmenin faydası vardır Vektörün Matematiksel İfadesi Birim Vektör (Unit Vector) 4

5 VEKTÖR ANALİZİ x,y ve z kordinatları, baz vektörü olarak isimlendirilen, birim vektörleriyle gösterilirler Ax, Ay ve Az A vektörünün izdüşümleridir! 5

6 VEKTÖR ANALİZİ VEKTÖRÜN BOYU: BİRİM VEKTÖR: A vektörünün yönünü gösteren boyu 1 birim olan vektör: Dolayısıyla, kartezyen kordinatlarda tanımlanan bu A vektörü kendi birim vektörüyle aşağıdaki gibi de gösterilir. 6

7 VEKTÖR ANALİZİ VEKTÖR TOPLAMA VE ÇIKARMA İŞLEMLERİ 7

8 VEKTÖR ANALİZİ VEKTORLERDE ÇARPMA İŞLEMLERİ BASİT ÇARPMA İŞLEMİ, SKALAR ÇARPMA İŞLEMİ, VEKTÖREL ÇARPMA İŞLEMİ Bir vektörün bir skalarla çarpımıdır: BASİT ÇARPMA İŞLEMİ A k pozitif ve 1 den büyük ka Vektörün boyu k kadar artar, yönü ise k pozitif ise A yönündedir. k negatif ise A yönündedir. 8

9 VEKTÖR ANALİZİ VECTORLERDE ÇARPMA İŞLEMLERİ SKALAR ÇARPMA İŞLEMİ (NOKTA ÇARPIMI) İki vektörün aynı bileşenlerinin genliklerinin çarpılıp toplanmasıdır. Çarpım sonucu bir vektör değil skalar bir büyüklüktür. Bu nedenle 2 tane vektör çarpımı olsada bu işleme skalar çarpım denmektedir Geometrik manada skalar çarpım: vektörlerden birinin genliği ile diğer vektörün bu vektör üzerine iz düşmü büyüklüğünün çarpımıdır. 9

10 VEKTÖR ANALİZİ DOLAYISIYLA VECTORLERDE ÇARPMA İŞLEMLERİ VEKTÖREL ÇARPMA İŞLEMİ (ÇAPRAZ ÇARPIM) Geometrik manada: Çarpımın sonucu, yönü iki çarpan vektörün olduğu düzleme dikolan ve genliğide, bu iki çarpan vektörün oluşturduğü paralel kenarın eşit olan bir vektördür. Yada : NOT: Çarpımın sonucu yine bir vektördür. Bu yüzden buna vektörel çarpım denir Sağ el kuralıyla yönü bulabiliriz! 10

11 ORTAGONAL KORDİNAT SİSTEMLERİ Elektromanyetikte fiziksel nitelikler (örn E, H) zamana ve konuma bağlı büyüklüklerdir. Değişim yönleride birim vektörler vasıtasıyla gösterilir. Uzayda bir konumun yerini, yada bir vektörel büyüklüğün (örn E ve H) yönünü 3 boyutlu kordinat sistemlerini kullanarak tanımlarız. KORDİNAT SİSTEMLERİ Ortagonal Kordinat Sistemleri Bütün kordinatlar birbirine dik EM problemlerin çözümünde sıklıkla kullanılır 3 tür ortagonal kordinat sistemi vardır: Kartezyen kordinat sistemi Silindirik kordinat sistemi Küresel kordinat sistemi Ortagonal Olmayan Kordinat Sistemleri Kordinatların kimisi birbirine dik olmayabilir Çok özel durumlarda kullanılır ve nadiren pratik problemlerin çözümüyle ilgilidir. 11

12 ORTAGONAL KORDİNAT SİSTEMLERİ KARTEZYEN KORDİNAT SİSTEMİ Birim kordinatlar x, y ve z ile gösterilirler. diferansiyel uzunluk diferansiyel alan Diferansiyel hacim 12

13 ORTAGONAL KORDİNAT SİSTEMLERİ SİLİNDİRK KORDİNAT SİSTEMİ Silindirk kordinatlarda bir vektör aşağıdaki gibi gösterilir: yönlerindeki bileşenlerdir Diferansiyel uzunluk, diferansiyel yüzey ve diferansiyel hacim: 13

14 ORTAGONAL KORDİNAT SİSTEMLERİ SİLİNDİRK KORDİNAT SİSTEMİ ÖRN: Aşağıdaki matematiksel ifadeyle belirlenen silindirik yüzeyin alanını bulunuz! CEVAP: Görüldüğü üzere bahsedilen alanı bulmak için aldığımız integral silindirik kordinatlarda alınmıştır. Aynı alanı kartezyen kordinatlarda integralini alarak bulmak oldukça zordur! Dolayısıyla, problemin türüne göre en uygun kordinat sisteminin seçilip işlem yapılması gerekmektedir. 14

15 ORTAGONAL KORDİNAT SİSTEMLERİ SİLİNDİRK KORDİNAT SİSTEMİ ÖRN: Aşağıdaki A vektörünün birim vektörünü bulunuz! 15

16 ORTAGONAL KORDİNAT SİSTEMLERİ KÜRESEL KORDİNAT SİSTEMİ Herhangibir nokta R, θ ve değişkenleriyle gösterilir. Birim vektörler, yada diğer bir deyişle baz vektörler φ ve Aşağıdaki kurala uyarlar: Bir vektör aşağıdaki şekilde ifade edilir: 16

17 ORTAGONAL KORDİNAT SİSTEMLERİ KÜRESEL KORDİNAT SİSTEMİ 17

18 ORTAGONAL KORDİNAT SİSTEMLERİ KÜRESEL KORDİNAT SİSTEMİ ÖRN: Yarıçapı 2 cm olan bir kürenin içindeki yük yoğunluğu dur. Bu kürenin içerisindeki toplam yükü bulunuz. CEVAP: 18

19 ORTAGONAL KORDİNAT SİSTEMLERİ ORTAGONAL KORDİNAT SİSTEMLERİ ÖZETİ 19

20 ORTAGONAL KORDİNAT SİSTEMLERİ DEL OPERATÖRÜ Del operatörü, yada kimi yerde Nabla operatörü olarak da bilinir, bir vektörel kısmi türev operatörüdür. Kendisi bir vektördür Diğer vektörel yada skalar büyüklüklere uygulanır. Sembolü ORTAGONAL KORDİNAT SİSTEMLERİNDE DEL OPERATÖRÜ AŞAĞIDAKİ GİBİDİR Kartezyen Silindirik Küresel 20

21 ORTAGONAL KORDİNAT SİSTEMLERİ GRADYAN (GRADIENT) Del operatörü bir skalar büyüklüğe (fonksiyona) basit çarpım şeklinde uygulanır ve sonucu bir vektörel büyüklüktür. Gradyan, yada DEL operatörü: Bir T (x,y,z) skalar fonksiyonuna uygulandığında: 21

22 ORTAGONAL KORDİNAT SİSTEMLERİ DİVERJANS (DIVERGENCE) Diverjans DEL operatörünün bir vektörle noktasal çarpımıdır. İki vektörün noktasal çarpımı skalar büuükül olduğu için, divejansın sonucu skalardır. ROTASYON (CURL) Rotasyon DEL operatörüyle bir vektörün çapraz çarpımıdır. Sonuç yine vektörel bir büyüklüktür. 22

23 ORTAGONAL KORDİNAT SİSTEMLERİ DEL OPERATÖRÜNÜN İŞLEMLERİ 23

24 ORTAGONAL KORDİNAT SİSTEMLERİ VEKTÖR ANALİZİ, OPERATÖRLER VE KORDİNAT SİSTEMLERİ İLE İLGİLİ BAZI ÖDEVLER 1) Yarı çapı 5 cm olan, ve z= -3 cm den z= 3 cm ye uzana silindirin alanını silindirik kordinatlarda integralini alarak bulunuz! NOT: Silindirin hacim formülünü kullanarak yapmayınız. Silindirik kordinatlarda integrali alarak yapınız! 2) Aşağıda kartezyen, silindirik ve küresel kordinatlarda birim vektörlerin birbirleri ile çapraz çarpımları verilmektedir. Bu çarpımların doğruluğunu önceki slaytlarda gördüğümüz (slayt 10) çapraz çarpımın sonucunun yönünü sağ el kuralıyla tayin edebileceğimizi görmüştük. Aşağıdaki birim vektör çarpımlarının doğruluğunu kağıt üzerine çizerek sağ el kuralını düşünerek gözleyiniz! kartezyen silindirik küresel 3) Aşağıdaki fonksiyonunun gradyenti, diverjansı yada rotasyonundan hangisi alınabilir. Yapılabilen işlemi yapınız! 24

25 ELEKTROSTATİK ELEKTROSTATİK (ZAMANLA DEĞİŞMEYEN ELEKTRİK ALAN) HATIRLATMA! 25

26 ELEKTROSTATİK COULOMB KUVVETİ Aralarında r mesafesi olan q1 ve q2 yüklerinin birbirlerine uyguladıkları kuvvet. Gerçek manada, yani mekaniksel olarak bu yükler birbirlerini iter yada çeker. Elektrostatikte sabit yükler üzerinden hesaplamalar yapılır. Bu yüzde Elektrostatik denmektedir. Haraketli yüklerinde itme çekme kuvveti vardır. Fakat bunların incelemesi elektrostatik içerisinde değil ilerleyen kısımlarda elektromanyetik de açıklanacaktır. (Newton) ELEKTRİK ALAN Bir q yükünün oluşturduğu elektrik alan (E) ise, o q yükünün 1 C luk birim yüke uyguladığı Coulomb kuvvetidir. Yani elektrik alan dediğimiz şey Coulomb kuvvetinin özel hali gibidir. X 1 Bir q yükünden dolayı 1 C luk bir yüke uygulana Coulomb kuvvetidir! 26

27 ELEKTROSTATİK ELEKTRİK ALAN İKİ YÜK TEK YÜK q yükünün oluşturduğu elektrik alan vektörleri gösterilmektedir! 27

28 ELEKTROSTATİK ELEKTRİK ALAN Birden fazla yükün bir noktada oluşturduğu Elektrik Alan (E) En genel halde: 28

29 ELEKTROSTATİK ELEKTRİK ALAN Sürekli dağılımlı yüklerin bir noktada oluşturduğu Elektrik Alan (E) Sürekli dağılımlı en genel haldeki diferansiyel yük yoğunluğunun (dq) bir noktada oluşturduğu diferansiyel elektrik alan (de) Hacimsel yük yoğunluğu ile ilgileniyorsak: Verilen hacimdeki toplam yükün bahsedilen noktada oluşturduğu elektrik alan: 29

30 ELEKTROSTATİK ELEKTRİK ALAN Sürekli dağılımlı yüklerin bir noktada oluşturduğu Elektrik Alan (E) Yüzey yada çizgisel yük yoğunluğu olan yük kaynaklarından bahsediyorsak: Deplasman Vektörü (Displacement Vector, D) 30

31 ELEKTROSTATİK ELEKTRİK ALAN D = εe = ε 0 ε r E Malzemenin özelliği! Gauss Yasası İntegral Formu Kapalı bir hacimin içerisindeki toplam yük Hacimin yüzeyi Toplam Yük= Q C Yük yoğunluğu ise= ρ v C/m 3 (birim hacimdeki yük) Gauss Yasası Diferansiyel Formu 31

32 ELEKTROSTATİK ELEKTRİK ALAN 32

33 ELEKTROSTATİK ELEKTRİK ALAN 33

34 ELEKTROSTATİK Gauss Yasası Diferansiyel Formu Gauss Yasası İntegral Formu 34

TEMEL İŞLEMLER KAVRAMLAR

TEMEL İŞLEMLER KAVRAMLAR EM 420 Yüksek Gerilim Tekniği TEMEL İŞLEMLER VE KAVRAMLAR YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRONIK YÜK. MÜH. Not: Tüm slaytlar listelenen ders kaynaklarından alıntı yapılarak ve faydalanılarak

Detaylı

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok Gauss Yasası Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok daha kullanışlı bir şekilde nasıl hesaplanabileceği

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTROMANYETİK DALGA TEORİSİ VİZE SORULARI :.. OKUL NO ADI SOYADI

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTROMANYETİK DALGA TEORİSİ VİZE SORULARI :.. OKUL NO ADI SOYADI ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTROMANYETİK DALGA TEORİSİ VİZE SORULARI 18.04.2011 OKUL NO :.. ADI SOYADI :.. S-1 z-ekseni boyunca az yönünde 15A akı taşıya bir akı fila a ı mevcuttur. H yi Kartezyen

Detaylı

Elektromanyetik Alan Kaynakları (1)

Elektromanyetik Alan Kaynakları (1) (4) Elektrostatik Giriş Elektrostatik zamana bağlı olarak değişen elektrik alanlar için temel oluşturur. Pek çok elektronik cihazın çalışması elektrostatik üzerine kuruludur. Bunlara örnek olarak osiloskop,

Detaylı

Elektrostatik Elektrik Alan Elektrik Akı Kondansatör. Kaynak : Serway-Beichner Bölüm 23, 24, 26

Elektrostatik Elektrik Alan Elektrik Akı Kondansatör. Kaynak : Serway-Beichner Bölüm 23, 24, 26 Elektrostatik Elektrik Alan Elektrik Akı Kondansatör Kaynak : Serway-Beichner Bölüm 23, 24, 26 İndüksiyon Nötr Maddenin indüksiyon yoluyla yüklenmesi (Bir yük türünün diğer yük türüne göre daha fazla olması)

Detaylı

A A = A 2 x + A 2 y + A 2 z (1) A A. Üç-boyutlu uzayda, iki tane vektörü kartezyen koordinatlarda dikkate alalım: A = Axˆx + A y ŷ + A z ẑ,

A A = A 2 x + A 2 y + A 2 z (1) A A. Üç-boyutlu uzayda, iki tane vektörü kartezyen koordinatlarda dikkate alalım: A = Axˆx + A y ŷ + A z ẑ, Vektör Analizi(Özet) Bir vektörün büyüklüğü(boyu) Birim vektör A A = A 2 + A 2 y + A 2 z (1) A â A (2) İki vektörün skaler(nokta) çarpımı Üç-boyutlu uzayda, iki tane vektörü kartezyen koordinatlarda dikkate

Detaylı

Elektromanyetik Dalga Teorisi

Elektromanyetik Dalga Teorisi Elektromanyetik Dalga Teorisi Ders-2 Dalga Denkleminin Çözümü Düzlem Elektromanyetik Dalgalar Enine Elektromanyetik Dalgalar Kayıplı Ortamda Düzlem Dalgalar Düzlem Dalgaların Polarizasyonu Dalga Denkleminin

Detaylı

ELEKTROMANYETİK DALGALAR

ELEKTROMANYETİK DALGALAR ELEKTROMANYETİK DALGALAR Hareket eden bir yük manyetik alan oluşturur. Yük sabit hızla hareket ederse, sabit bir akım ve sabit bir manyetik alan oluşturur. Yük osilasyon hareketi yaparsa değişken bir manyetik

Detaylı

ELEKTROMANYETİK ALAN TEORİSİ

ELEKTROMANYETİK ALAN TEORİSİ ELEKTROMANYETİK ALAN TEORİSİ Hafta Konu 1 Vektör Analizi 2 Koordinat Sistemleri ve Dönüşümler 3 Elektrik Yükleri ve Alanlar 4 Elektriksel Akı ve Gauss Yasası 5 Diverjansın Fiziksel Anlamı ve Uygulamaları

Detaylı

TEMEL MEKANİK 4. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

TEMEL MEKANİK 4. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü TEMEL MEKANİK 4 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü Ders Kitapları: Mühendisler İçin Vektör Mekaniği, Statik, Yazarlar:

Detaylı

ELEKTROMANYETİK ALAN TEORİSİ

ELEKTROMANYETİK ALAN TEORİSİ ELEKTROMANYETİK ALAN TEORİSİ Hafta Konu 1 Vektör Analizi 2 Koordinat Sistemleri ve Dönüşümler 3 Elektrik Yükleri ve Alanlar 4 Elektriksel Akı ve Gauss Yasası 5 Diverjansın Fiziksel Anlamı ve Uygulamaları

Detaylı

EMAT ÇALIŞMA SORULARI

EMAT ÇALIŞMA SORULARI EMAT ÇALIŞMA SORULARI 1) A = 4. ı x 2. ı y ı z ve B = ı x + 4. ı y 4. ı z vektörlerinin dik olduğunu gösteriniz. İki vektörün skaler çarpımlarının sıfır olması gerekir. A. B = 4.1 + ( 2). 4 + ( 1). ( 4)

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 2 Kuvvet Vektörleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö.Soyuçok. 2 Kuvvet Vektörleri Bu bölümde,

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

Üç Boyutlu Uzayda Koordinat sistemi

Üç Boyutlu Uzayda Koordinat sistemi Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası) ve bu noktadan geçen ve birbirine dik olan üç yönlü doğruyu seçerek sabitlememiz gerekir.

Detaylı

9.14 Burada u ile u r arasındaki açı ve v ile u θ arasındaki acının θ olduğu dikkate alınarak trigonometrik eşitliklerden; İfadeleri elde edilir.

9.14 Burada u ile u r arasındaki açı ve v ile u θ arasındaki acının θ olduğu dikkate alınarak trigonometrik eşitliklerden; İfadeleri elde edilir. 9.14 Burada u ile u r arasındaki açı ve v ile u θ arasındaki acının θ olduğu dikkate alınarak trigonometrik eşitliklerden; İfadeleri elde edilir. 9.15 Bu bölümde verilen koordinat dönüşümü uygulanırsa;

Detaylı

ELEKTRİKSEL POTANSİYEL

ELEKTRİKSEL POTANSİYEL ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile

Detaylı

3-1 Koordinat Sistemleri Bir cismin konumunu tanımlamak için bir yönteme gereksinim duyarız. Bu konum tanımlaması koordinat kullanımı ile sağlanır.

3-1 Koordinat Sistemleri Bir cismin konumunu tanımlamak için bir yönteme gereksinim duyarız. Bu konum tanımlaması koordinat kullanımı ile sağlanır. Bölüm 3 VEKTÖRLER Bölüm 3: Vektörler Konu İçeriği Sunuş 3-1 Koordinat Sistemleri 3-2 Vektör ve Skaler nicelikler 3-3 Vektörlerin Bazı Özellikleri 3-4 Bir Vektörün Bileşenleri ve Birim Vektörler Sunuş Fizikte

Detaylı

2 Ders Kodu: FZK Ders Türü: Zorunlu 4 Ders Seviyesi Lisans

2 Ders Kodu: FZK Ders Türü: Zorunlu 4 Ders Seviyesi Lisans FİZİKSEL MATEMATİK II 1 Ders Adi: FİZİKSEL MATEMATİK II 2 Ders Kodu: FZK2004 3 Ders Türü: Zorunlu 4 Ders Seviyesi Lisans 5 Dersin Verildiği Yıl: 2 6 Dersin Verildiği Yarıyıl 4 7 Dersin AKTS Kredisi: 8.00

Detaylı

Elektromanyetik Dalga Teorisi

Elektromanyetik Dalga Teorisi Elektromanyetik Dalga Teorisi Ders-1 Diferansiyel Formda Maxwell Denklemleri İntegral Formda Maxwell Denklemleri Fazörlerin Kullanımı Zamanda Harmonik Alanlar Malzeme Ortamı Dalga Denklemleri Michael Faraday,

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

YÜKSEK GERİLİM TEKNİĞİNİN UYGULAMA ALANLARI

YÜKSEK GERİLİM TEKNİĞİNİN UYGULAMA ALANLARI YÜKSEK GERİLİM TEKNİĞİNİN UYGULAMA ALANLARI Yüksek gerilim tekniğinin gelişiminde olanak sağlayan en önemli etken, bu sayede büyük miktarda enerjinin bir noktadan diğerine ekonomik bir biçimde taşınabilmesidir.

Detaylı

İnce Antenler. Hertz Dipolü

İnce Antenler. Hertz Dipolü İnce Antenler Çapları boylarına göre küçük olan antenlere ince antenler denir. Alanların hesabında antenlerin sonsuz ince kabul edilmesi kolaylık sağlar. Ancak anten empedansı bulunmak istendiğinde kalınlığın

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

Faraday Yasası. 31. Bölüm

Faraday Yasası. 31. Bölüm Faraday Yasası 31. Bölüm 1. Faraday İndüksiyon Yasası Faraday ve Henri: Değişen manyetik alanlar da emk (dolayısıyla akım) oluşturur. Şekilde görüldüğü gibi akım ile değişen manyetik alan arasında bir

Detaylı

Fizik II Elektrik ve Manyetizma Akım, Direnç ve Elektromotor Kuvvet

Fizik II Elektrik ve Manyetizma Akım, Direnç ve Elektromotor Kuvvet Ders Hakkında Fizik-II Elektrik ve Manyetizma Dersinin Amacı Bu dersin amacı, fen ve mühendislik öğrencilerine elektrik ve manyetizmanın temel kanunlarını lisans düzeyinde öğretmektir. Dersin İçeriği Hafta

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO: 203

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO: 203 DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO: 203 ÖNSÖZ Fakültemizin ikinci yarıyılında okutulan Matematik II dersi için hazırlanan bu kitap, Analitik Geometri kitabının devamı niteliğinde

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur.

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Üç Boyutlu Geometri Nokta (Point,Vertex) Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Kartezyen Koordinat Sistemi Uzayda bir noktayı tanımlamak

Detaylı

BİLGİ TAMAMLAMA VEKTÖRLER

BİLGİ TAMAMLAMA VEKTÖRLER DİNAMİK BİLGİ TAMAMLAMA VEKTÖRLER Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü VEKTÖRLER Kapsam Büyüklük yanında ayrıca yön

Detaylı

Fizik 102-Fizik II /II

Fizik 102-Fizik II /II 1 -Fizik II 2010-2011/II Gauss Yasası Nurdan Demirci Sankır Ofis: 325, Tel: 2924331 Kaynaklar: Giancoli, Physics, Principles With Applications, Prentice Hall Serway, Beichner, Fen ve Mühendislik için Fizik

Detaylı

Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik II Dersi Birinci Ara Sınavı

Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik II Dersi Birinci Ara Sınavı Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik II Dersi Birinci Ara Sınavı 27 Mart 2010 Hazırlayan: Yamaç Pehlivan Başlama saati: 11:00 Bitiş Saati: 12:20 Toplam Süre: 80 Dakika Lütfen adınızı

Detaylı

MIT 8.02, Bahar 2002 Ödev # 1 Çözümler

MIT 8.02, Bahar 2002 Ödev # 1 Çözümler Adam S. Bolton bolton@mit.edu MIT 8.02, Bahar 2002 Ödev # 1 Çözümler 15 Şubat 2002 Problem 1.1 Kütleçekim ve Elektrostatik kuvvetlerin bağıl şiddetleri. Toz parçacıkları 50 µm çapında ve böylece yarıçapları

Detaylı

SIĞA VE DİELEKTRİKLER

SIĞA VE DİELEKTRİKLER SIĞA VE DİELEKTRİKLER Birbirlerinden bir boşluk veya bir yalıtkanla ayrılmış iki eşit büyüklükte fakat zıt işaretli yük taşıyan iletkenlerin oluşturduğu yapıya kondansatör adı verilirken her bir iletken

Detaylı

Jeodezi

Jeodezi 1 Jeodezi 5 2 Jeodezik Eğri Elipsoid Üstünde Düşey Kesitler Elipsoid yüzünde P 1 noktasındaki normalle P 2 noktasından geçen düşey düzlem, P 2 deki yüzey normalini içermez ve aynı şekilde P 2 de yüzey

Detaylı

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır.

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır. Manyetik Alanlar Manyetik Alanlar Duran ya da hareket eden yüklü parçacığın etrafını bir elektrik alanın sardığı biliyoruz. Hatta elektrik alan konusunda şu sonuç oraya konulmuştur. Durgun bir deneme yükü

Detaylı

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 4. Ağırlık Merkezi Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 3 Parçacık Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 3 Parçacık Dengesi Bu bölümde,

Detaylı

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10 Diferenisyel Geometri 2 Yazokulu 2010 AdıSoyadı: No : 1. ϕ (u, v) = ( u + 2v, v + 2u, u 2 v ) parametrizasyonu ile verilen M kümesinin bir regüler yüzey olduğunu gösteriniz. (15 puan) 3. V, R 3 ün açık

Detaylı

Doç.Dr. Cesim ATAŞ MEKANİK ŞEKİL DEĞİŞTİREN CİSİMLER MEKANİĞİ DİNAMİK

Doç.Dr. Cesim ATAŞ MEKANİK ŞEKİL DEĞİŞTİREN CİSİMLER MEKANİĞİ DİNAMİK STATİK (Ders Notları) Kaynak: Engineering Mechanics: Statics, SI Version, 6th Edition, J. L. Meriam, L. G. Kraige, Wiley Yardımcı Kaynak: Mühendislik Mekaniği: Statik, R.C Hibbeler & S.C. Fan, Literatür

Detaylı

Üç Boyutlu Uzayda Koordinat sistemi

Üç Boyutlu Uzayda Koordinat sistemi Üç Boyutlu Uzayda Koordinat sistemi Öğr. Gör. Volkan ÖĞER MAT 1010 Matematik II 1/ 172 Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası)

Detaylı

Fizik Dr. Murat Aydemir

Fizik Dr. Murat Aydemir Fizik-1 2017-2018 Dr. Murat Aydemir Ankara University, Physics Engineering, Bsc Durham University, Physics, PhD University of Oxford, Researcher, Post-Doc Ofis No: 35 Merkezi Derslikler Binasi murat.aydemir@erzurum.edu.tr

Detaylı

FİZ 216 ELEKTRİK ve MANYETİZMA GRADİYENT DİVERJANS ROTASYONEL (KÖRL) HELMHOLTZ TEOREMİ KOORDİNAT SİSTEMLERİ

FİZ 216 ELEKTRİK ve MANYETİZMA GRADİYENT DİVERJANS ROTASYONEL (KÖRL) HELMHOLTZ TEOREMİ KOORDİNAT SİSTEMLERİ FİZ 216 ELEKTRİK ve MANYETİZMA GRADİYENT DİVERJANS ROTASYONEL (KÖRL) HELMHOLTZ TEOREMİ KOORDİNAT SİSTEMLERİ (del) operatörü, Bir f skaler alanına etkirse: f GRADİYENT Bir A vektör alanı ile skaler çarpılırsa:

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

Üç Boyutlu Uzayda Koordinat sistemi

Üç Boyutlu Uzayda Koordinat sistemi Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası) ve bu noktadan geçen ve birbirine dik olan üç yönlü doğruyu seçerek sabitlememiz gerekir.

Detaylı

Bölüm-4. İki Boyutta Hareket

Bölüm-4. İki Boyutta Hareket Bölüm-4 İki Boyutta Hareket Bölüm 4: İki Boyutta Hareket Konu İçeriği 4-1 Yer değiştirme, Hız ve İvme Vektörleri 4-2 Sabit İvmeli İki Boyutlu Hareket 4-3 Eğik Atış Hareketi 4-4 Bağıl Hız ve Bağıl İvme

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

Statik Manyetik Alan

Statik Manyetik Alan Statik Manyetik Alan Amper Kanunu Manyetik Vektör Potansiyeli Maxwell in diverjans eşitliği Endüktans 1 Amper Kanununun İntegral Formu 2 Amper Kanununun İntegral Formu z- ekseni boyunca uzanan çok uzun

Detaylı

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK STATİK Ders Notları Kaynaklar: 1.Engineering Mechanics: Statics, 9e, Hibbeler, Prentice Hall 2.Engineering Mechanics: Statics, SI Version, 6th Edition, J. L. Meriam, L. G. Kraige 1. STATİĞE GİRİŞ 1.1 TANIMLAR

Detaylı

MEKANİZMA TEKNİĞİ (3. Hafta)

MEKANİZMA TEKNİĞİ (3. Hafta) MEKANİZMALARIN KİNEMATİK ANALİZİ Temel Kavramlar MEKANİZMA TEKNİĞİ (3. Hafta) Bir mekanizmanın Kinematik Analizinden bahsettiğimizde, onun üzerindeki tüm uzuvların yada istenilen herhangi bir noktanın

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu Akım ve Direnç Elektriksel olaylarla ilgili buraya kadar yaptığımız tartışmalar durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik yüklerinin hareket halinde olduğu durumları inceleyeceğiz.

Detaylı

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. Çankırı Karatekin Üniversitesi Matematik Bölümü 2015 Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. (Adi ) Bir ya da daha fazla bağımsız değişkenden oluşan bağımlı değişken ve türevlerini

Detaylı

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN AKDENİZ ÜNİVERSİTESİ Anten Parametrelerinin Temelleri Samet YALÇIN Anten Parametrelerinin Temelleri GİRİŞ: Bir antenin parametrelerini tanımlayabilmek için anten parametreleri gereklidir. Anten performansından

Detaylı

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 2 3 4 5 6 7 8 Örnek: Bir disk boyunca elektrik akısı r = 0.10 m A 30 E 3 210 N/C A (0.10 m) E 54 N m 2 2 0.0314 m EA cos (2.010 / C Örnek: Bir

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLE 1. GİİŞ - Skalerler ve ektörler - Newton Kanunları 2. KUET SİSTEMLEİ - İki Boyutlu

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Math 322 Diferensiyel Denklemler Ders Notları 2012

Math 322 Diferensiyel Denklemler Ders Notları 2012 1 Genel Tanımlar Bir veya birden fazla fonksiyonun türevlerini içeren denklemlere diferensiyel denklem denmektedir. Diferensiyel denklemler Adi (Sıradan) diferensiyel denklemler ve Kısmi diferensiyel denklemler

Detaylı

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak.

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ: 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. 2. Bu eş potansiyel çizgileri kullanarak elektrik alan çizgilerinin

Detaylı

Matematiksel Analiz III (MATH 235) Ders Detayları

Matematiksel Analiz III (MATH 235) Ders Detayları Matematiksel Analiz III (MATH 235) Ders Detayları Ders Adı Matematiksel Analiz III Ders Kodu MATH 235 Dönemi Ders Uygulama Saati Saati Laboratuar Kredi AKTS Saati Güz 4 2 0 5 8 Ön Koşul Ders(ler)i Math

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 13 Parçacık Kinetiği: Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 13 Parçacık

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU MATEMATİK II. Dersin Kodu: MAT 1010

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU MATEMATİK II. Dersin Kodu: MAT 1010 Dersi Veren Birim: Mühendislik Fakültesi Dersin Adı: MATEMATİK II Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: MAT 1010 Dersin Öğretim Dili: Türkçe Formun Düzenleme / Yenilenme

Detaylı

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi İzdüşüm merkezi(o):

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 1010

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 1010 Dersi Veren Birim: Mühendislik Fakültesi Dersin Türkçe Adı: MATEMATİK II Dersin Orjinal Adı: MATEMATİK II Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: MAT 1010 Dersin Öğretim

Detaylı

FİZ 216 ELEKTRİK ve MANYETİZMA GRADİYENT DİVERJANS ROTASYONEL (KÖRL) KOORDİNAT SİSTEMLERİ HELMHOLTZ TEOREMİ

FİZ 216 ELEKTRİK ve MANYETİZMA GRADİYENT DİVERJANS ROTASYONEL (KÖRL) KOORDİNAT SİSTEMLERİ HELMHOLTZ TEOREMİ FİZ 216 ELEKTRİK ve MANYETİZMA GRADİYENT DİVERJANS ROTASYONEL (KÖRL) KOORDİNAT SİSTEMLERİ HELMHOLTZ TEOREMİ GRADİYENT: f(,y,z) her noktada sürekli ve türevlenebilir bir skaler alan olsun. Herhangi bir

Detaylı

MIT 8.02, Bahar 2002 Ödev # 2 Çözümler

MIT 8.02, Bahar 2002 Ödev # 2 Çözümler Adam S. Bolton bolton@mit.edu MIT 8.02, Bahar 2002 Ödev # 2 Çözümler 22 Şubat 2002 Problem 2.1 İçi boş bir metalik küre içerisindeki bir noktasal yükün elektrik alanı - Gauss Yasası İş Başında Bu problemi

Detaylı

ELEKTRİK VE MANYETİZMA

ELEKTRİK VE MANYETİZMA ELEKTRİK VE MANYETİZMA Prof. Dr. İlker DİNÇER Fakültesi, Fizik Mühendisliği Bölümü 1 Ders Hakkında FizikII Elektrik ve Manyetizma Dersinin Amacı Bu dersin amacı, fen ve mühendislik öğrencilerine elektrik

Detaylı

EĞİTİM-ÖĞRETİM YILI 12. SINIF İLERİ DÜZEL MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ

EĞİTİM-ÖĞRETİM YILI 12. SINIF İLERİ DÜZEL MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ KASIM EKİM 2017-2018 EĞİTİM-ÖĞRETİM YILI 12. SINIF İLERİ DÜZEL MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ 1 4 TÜREV 12.1.1.1. Bir fonksiyonun bir noktadaki limiti, soldan limiti

Detaylı

Chapter 1 İçindekiler

Chapter 1 İçindekiler Chapter 1 İçindekiler Kendinizi Test Edin iii 10 Birinci Mertebeden Diferansiel Denklemler 565 10.1 Arılabilir Denklemler 566 10. Lineer Denklemler 571 10.3 Matematiksel Modeller 576 10.4 Çözümü Olmaan

Detaylı

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir.

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. STATIK VE MUKAVEMET 4. Ağırlık Merkezi AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük bir alana etki eden birbirlerine

Detaylı

Fizik II Elektrik ve Manyetizma Elektriksel Potansiyel

Fizik II Elektrik ve Manyetizma Elektriksel Potansiyel Ders Hakkında FizikII Elektrik ve Manyetizma Dersinin Amacı Bu dersin amacı, fen ve mühendislik öğrencilerine elektrik ve manyetizmanın temel kanunlarını lisans düzeyinde öğretmektir. Dersin İçeriği Hafta

Detaylı

Prof.Dr. Mehmet Zor DEU Muh.Fak. Makine Muh. Bölümü

Prof.Dr. Mehmet Zor DEU Muh.Fak. Makine Muh. Bölümü Prof.Dr. Mehmet Zor DEU Muh.Fak. Makine Muh. Bölümü Ders Kitabı : Engineering Mechanics: Statics, SI Version, 6th Edition, J. L. Meriam, L. G. Kraige, Wiley Yardımcı Kaynak: Mühendislik Mekaniği: Statik,

Detaylı

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ YAZ OKULU DERS İÇERİGİ. Bölümü Dersin Kodu ve Adı T P K AKTS

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ YAZ OKULU DERS İÇERİGİ. Bölümü Dersin Kodu ve Adı T P K AKTS Bir Dönemde Okutulan Ders Saati MAT101 Genel I (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri) 1 Kümeler, reel sayılar, bir denklem veya eşitsizliğin grafiği 2 Fonksiyonlar,

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık

Detaylı

Elektromanyetik Dalga Teorisi Ders-3

Elektromanyetik Dalga Teorisi Ders-3 Elektromanyetik Dalga Teorisi Ders-3 Faz ve Grup Hızı Güç ve Enerji Düzlem Dalgaların Düzlem Sınırlara Dik Gelişi Düzlem Dalgaların Düzlem Sınırlara Eğik Gelişi Dik Kutuplama Paralel Kutuplama Faz ve Grup

Detaylı

SİSTEMİ YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRONIK YÜK. MÜH.

SİSTEMİ YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRONIK YÜK. MÜH. EM 420 Yüksek Gerilim Tekniği DÜZLEMSEL ELEKTROT SİSTEMİ YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRONIK YÜK. MÜH. Not: Tüm slaytlar, listelenen ders kaynaklarından alıntı yapılarak ve faydalanılarak

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU MATEMATİK II. Dersin Kodu: MAT 1010

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU MATEMATİK II. Dersin Kodu: MAT 1010 Dersi Veren Birim: Mühendislik Fakültesi Dersin Adı: MATEMATİK II Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Dersin Kodu: MAT Dersin Öğretim Dili: Türkçe Formun Düzenleme / Yenilenme Tarihi:

Detaylı

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada, TAMSAYILAR Z = {.., -, -, -, 0,,,, } kümesinin her bir elemanına tamsayı denir. Burada, + Z = {,,,...} kümesine, pozitif tamsayılar kümesi denir. Z = {...,,,,} kümesine, negatif tamsayılar kümesi denir.

Detaylı

YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRO NIK Y Ü K. M Ü H.

YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRO NIK Y Ü K. M Ü H. EM 420 Yüksek Gerilim Tekniği EŞ MERKEZLİ KÜRESEL ELEKTROT SİSTEMİ YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRO NIK Y Ü K. M Ü H. Not: Tüm slaytlar, listelenen ders kaynaklarından alıntı yapılarak

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Bölüm 9: Doğrusal momentum ve çarpışmalar

Bölüm 9: Doğrusal momentum ve çarpışmalar Bölüm 9: Doğrusal momentum ve çarpışmalar v hızıyla hareket eden m kütleli bir parçacığın doğrusal momentumu kütle ve hızın çarpımına eşittir; p = mv Momentum vektörel bir niceliktir, yönü hız vektörü

Detaylı

Adi Diferensiyel Denklemler 1. BÖLÜM 1 Birinci-Mertebe Diferensiyel Denklemler 3. BÖLÜM 2 Lineer İkinci MertebeDenklemler 43

Adi Diferensiyel Denklemler 1. BÖLÜM 1 Birinci-Mertebe Diferensiyel Denklemler 3. BÖLÜM 2 Lineer İkinci MertebeDenklemler 43 İçindekiler Ön Söz xiii 1 Adi Diferensiyel Denklemler 1 BÖLÜM 1 Birinci-Mertebe Diferensiyel Denklemler 3 1.1 Terminololoji ve Değişkenlerine Ayrıştırılabilir Denklemler 3 1.2. Lineer Denklemler 16 1.3

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 kışkan Statiğine Giriş kışkan statiği (hidrostatik, aerostatik), durgun haldeki akışkanlarla

Detaylı

Kısa İçindekiler. Fizik: İlkeler ve Pratik Cilt 1: 1-21 Bölümleri, Cilt 2: Bölümleri kapsar

Kısa İçindekiler. Fizik: İlkeler ve Pratik Cilt 1: 1-21 Bölümleri, Cilt 2: Bölümleri kapsar Kısa İçindekiler Fizik: İlkeler ve Pratik Cilt 1: 1-21 Bölümleri, Cilt 2: 22-34 Bölümleri kapsar Bölüm 1 Temeller 1 Bölüm 2 Bir Boyutta Hareket 28 Bölüm 3 İvme 53 Bölüm 4 Momentum 75 Bölüm 5 Enerji 101

Detaylı

ELEKTRİK/ELEKTRONİK MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

ELEKTRİK/ELEKTRONİK MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ ELEKTRİK/ELEKTRONİK MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS ELEKTROMANYETİK MÜHENDİSLİĞİ EE-326 3/2 3+1+0 2+2+0 6 Dersin Dili : TÜRKÇE

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

Vektörler Bölüm Soruları 1. İki vektör eşit olmayan büyüklüklere sahiptir. Toplamları sıfır olabilir mi? Açıklayınız.

Vektörler Bölüm Soruları 1. İki vektör eşit olmayan büyüklüklere sahiptir. Toplamları sıfır olabilir mi? Açıklayınız. Vektörler Bölüm Soruları 1. İki vektör eşit olmayan büyüklüklere sahiptir. Toplamları sıfır olabilir mi? Açıklayınız. 2. Bir parçacığın yerdeğiştirmesinin büyüklüğü, alınan yolun uzunluğundan daha büyük

Detaylı

STATİK AĞIRLIK MERKEZİ. 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler. 3.4 Integrasyon ile ağırlık merkezi hesabı

STATİK AĞIRLIK MERKEZİ. 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler. 3.4 Integrasyon ile ağırlık merkezi hesabı 1 STATİK AĞIRLIK MERKEZİ 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler 3.4 Integrasyon ile ağırlık merkezi hesabı 3.5 Pappus-Guldinus Teoremi 3.6 Yayılı Yüke Eşdeğer Tekil Yük 3.7 Sıvı

Detaylı

İÇİNDEKİLER xiii İÇİNDEKİLER LİSTESİ BÖLÜM 1 ELEKTRİK YÜKÜ 1.1. ELEKTRİK YÜKÜ VE ÖZELLİKLERİ YALITKANLAR VE İLETKENLER...

İÇİNDEKİLER xiii İÇİNDEKİLER LİSTESİ BÖLÜM 1 ELEKTRİK YÜKÜ 1.1. ELEKTRİK YÜKÜ VE ÖZELLİKLERİ YALITKANLAR VE İLETKENLER... İÇİNDEKİLER xiii İÇİNDEKİLER LİSTESİ BÖLÜM 1 ELEKTRİK YÜKÜ 1.1. ELEKTRİK YÜKÜ VE ÖZELLİKLERİ... 2 1.2. YALITKANLAR VE İLETKENLER... 4 1.2.1. İletkenler, Yalıtkanlar ve Yarıiletkenler... 4 1.2.2. Topraklanma...

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO:89 MATEMATİK I (12. BASKI) Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr.

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO:89 MATEMATİK I (12. BASKI) Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr. MATEMATİK I (12. BASKI) Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr. Ali Tekin TİN MATEMATİK I DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO:89 Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr. Ali Tekin

Detaylı

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET TİTREŞİM VE DALGALAR Periyodik Hareketler: Belirli aralıklarla tekrarlanan harekete periyodik hareket denir. Sabit bir nokta etrafında periyodik hareket yapan cismin hareketine titreşim hareketi denir.

Detaylı

2. KUVVET SİSTEMLERİ 2.1 Giriş

2. KUVVET SİSTEMLERİ 2.1 Giriş 2. KUVVET SİSTEMLERİ 2.1 Giriş Kuvvet: Şiddet (P), doğrultu (θ) ve uygulama noktası (A) ile karakterize edilen ve bir cismin diğerine uyguladığı itme veya çekme olarak tanımlanabilir. Bu parametrelerden

Detaylı

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü DİNAMİK - 7 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü 7. HAFTA Kapsam: Parçacık Kinetiği, Kuvvet İvme Yöntemi Newton hareket

Detaylı

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN İç-Çarpım Uzayları Yazar Öğr. Grv. Dr. Nevin ORHUN ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; R n, P n (R), M nxn vektör uzaylarında iç çarpım kavramını tanıyacak ve özelliklerini görmüş olacaksınız.

Detaylı

KUTUPLANMA (Polarizasyon) Düzlem elektromanyetik dalgaların kutuplanması

KUTUPLANMA (Polarizasyon) Düzlem elektromanyetik dalgaların kutuplanması KUTUPLANMA (Polarizasyon) Kutuplanma enine dalgaların bir özelliğidir. Ancak burada mekanik dalgaların kutuplanmasını ele almayacağız. Elektromanyetik dalgaların kutuplanmasını inceleyeceğiz. Elektromanyetik

Detaylı