IV.1. YÜKSEK MERTEBE DENKLEMLER VE DİFERANSİYEL DENKLEM SİSTEMLERİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "IV.1. YÜKSEK MERTEBE DENKLEMLER VE DİFERANSİYEL DENKLEM SİSTEMLERİ"

Transkript

1 IV.. YÜKSEK MERTEBE DENKLEMLER VE DİFERANSİYEL DENKLEM SİSTEMLERİ B ısı bşlngıç oşllrı lındi üse erebeden difernsiel denlelerin nüeri çözülerine bir giriş olşrdır. Trışıln eniler bir üse erebeden denlei birinci erebe bir sisee dönüşüren enilerle sınırlıdır. Dönüşü prosedürünü rışdn önce birinci erebeden difernsiel denleler içeren siselerle ilgili bzı orlr gerelidir. Birinci erebe bşlngıç değer problelerinin bir inci erebe sisei b için bşlngıç oşllrı ile d f... d d d f... d d f... fornd ifde edilebilir. Aç difernsiel denleler sisei nısır bşlngıç oşllrını d sğln... die de fonsion blır. Denle siselerinin çözülerinin vrlı ve eliğini rış için Lipschiz oşlnn nıını ço değişenli fonsionlrı d içerece şeilde genişleeliiz.

2 Tnı: Her bir i... için D... b üesi üzerinde nılı f... fonsion D dei ü... ve z... z ler için L die bir sbi evc ve i f... f z... z L z özelliği sğlnıor ise D üzerinde... değişenleri cinsinden Lipshiz oşl sğlnır denilir. Orl değer eorei llnılr göserilebiliniri f ve f nün il ısi ürevleri D de süreli ise ve eğer herbir i... için ve D dei ü... için f... i L ilişisi sğlnıor ise f D de Lipschiz oşln L Lipshiz sbii için sğlr. Aşğıd vrlı ve eli ile ilgili bir n eore verileedir. ve her bir Teore: Her bir i... için D... b i... için f... D de süreli olsn ve ord Lipschiz oşln sğlsın. Birinci erebeden difernsiel denleler siseinin i bşlngıç oşllrı lınd b için... die e çözüü vrdır. Birinci erebe difernsiel denle siselerini çözen eodlr dh önce b bölüde nlıln ve e bir birinci erebe denle için oln eodlrın bsiçe genelleşirilesidir. Örneğin

3 f b birinci erebe bşlngıç değer probleini çözee llnıln dördüncü erebe lsi Rnge K eod hf i i h i hf i hf h i 3 i 4 hf i i 3 ve her bir i... N için i i şğıdi gibi genelleşirilebilir. Bir sı oln N seçilsin ve h b / N denilsin. b rlığını N de l rlığ bölen ve düğü nolrı her bir... N için h olsn. Her bir... N ve i... için e pıln i lşıı göseree i noson llnılsın ni i sisein i inci çözüü i nin inci düğü nosı dei lşı değerini gösersin. Bşlngıç oşllrı için ş şeilde zılsın.... Eğer... değerlerinin hesplnış oldgn vrsrs... ler şğıdi şeilde zılbilir.

4 Her bir Her bir Her bir Her bir i... için hf.... i... i... için h. i hf i i... için h 3. i hf i * i... için hf h i i Ve dh sonr d Her bir için i... i. i.. i i 4. i olr. Di çeelii belirleneden önce... lerin hepsi belirlenelidir. Genellerse ifdelerinden hrehngi biri belirleneden l. l.... l. lreden hrebiri hesplnış l i ollıdır. Difernsiel Denle Siseleri İçin Rnge K Algorisı ve f b... birinci erebe bşlngıç değer probleinin inci erebe siseinin b rlığındi eşi elılı n de sıd lşı çözüünün blnsı için b N ve... leri girdi de h b / N için şğıdini p 5 YAZ... 6 i... N için şğıdileri p i... için şğıdini pın. hf...

5 ii... için şğıdini pın h hf iii... için şğıdini pın h hf iv... için şğıdini pın hf h v... için şğıdini pın 3 4 / 6 7 DUR vi ih vii YAZ... Örne: Kirchhoff Knn bir plı devrenin erfındi ü ensnne vol değişiinin oplının sıfır oldğn söler. B nn R oh l bir resisns C frdlı psins L henrli bir endüns ve E voll bir vol elğını içeren bir plı devredei I ıının L I RI I d E C denleini sğldığını ifde eder.

6 Şeilde göserilen devrenin sırsı ile sğ ve sol çevrilerindei I ve I ılrı ş denle siseinin çözüleridir. I I I I 6.5 I d 4I 6 I I Eğer nınd devredei düğenin pılığını vrsrs ve sonr iinci denlein ürevini lır ve neice denlei birinci denlede erine onlrs şğıdi sise elde edilir. I f I I 4I 3I 6 I I f I I.6I.I.4I.6I 3.6 I b sisein esin çözüünün.4 I 3.375e.875e.5 I.5e. 5e.4 oldğ göserilebilir. h. lr b sisee dördüncü erebe Rnge K eodn glcğız.. I ve. I oldğndn hf. f hf f hf h f

7 gerie ln değerlerin benzer şeilde üreilesi şğıdi değerleri üreir.. f f f f neice olr d I ve I elde edilir. Tblodi diğer girdilerde benzer şeilde olşrlrlr. I I x.54 x.97 x.98 x.93 x x.9596 x.6 x.3 x.4 x

8 b f.... forndi bir inci erebe difernsiel denlei b ısın bşınd verilen for so için ve... bşlngıç şrlrını d ine b ısın bşındi for so için... ve nıını plı. B noson llnr d d d d 3 d d d d d d d d ve f f d d d d birinci erebe sisei elde edilir. Bşlngıç oşllrı ise... olr elde edilir. Örne: 6..4 sin e iinci erebe bşlngıç değer problei ele lınsın. ve lınr proble sin e

9 siseine değişirilir ve bşlngıç oşllrı d.4.6 şelinde olr. B problein çözüüne lşı bl için h. lınr dördüncü erebe Rnge K eod llnılcır. Bşlngıç oşllrı.4 ve. 6 verir. Algoridn öncei denleler * için şğıdileri verir. hf.. h. hf h...6 e. 4 sin h hf..... h. 6 h hf..... h e sin h 3 3 h e sin h h e sin. 3 3

10 dolıs ile ve elde edilir. blr.. değeri...e sin. cos. i lşı olr. ise benzer şeilde...e 4sin. 3cos. olr blr.... için ve i lşı değerleri blod verilee ve ve sin cos.e.e 4sin 3cos nin gerçe değerleri ile ese edileedir. i x 8.3 x.39 x x. x 8.34 x x.7 x 3.4 x 4.5 x 4.56 x 4.76 x 4.5 x x 5.96 x 7.75 x.3 x 5.3 x 9.54 x.34 x

11 Diğer e dı eodlrı benzer şeilde siseler için genişleilir. Eğer Rnge K Fehlberg eod gibi eodlr h onrolü ile genişleilirse... çözüünün her bir bileşeni drlılı için sorşrllıdır. Eğer bileşenlerden herhngi biri eerince drlı ol onsnd bşrısızlıl rşılşırs... nüeri çözüünün üü birden bşn hesplnlıdır. Ço dı eodlrı ve hinlee düzele enileri de olc siseler için genişleilir. Eğer b drlrd dh onrolü llnılırs herbir bileşende drlılı ollıdır. Esrpolson eniğinin de siseler genişleilesi pılbilir noson oldç rşıır. Siseler için ıns eoreleri ve h hinleeleri önüüzdei ısıd e denlelerle ilgili pılnlr sınırlr veör norlrı cinsinden verilesi frı ile benzerdir

T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ SİNGÜLER ADİ DİFERANSİYEL DENKLEMLER İÇİN SINIR DEĞER PROBLEMLERİ

T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ SİNGÜLER ADİ DİFERANSİYEL DENKLEMLER İÇİN SINIR DEĞER PROBLEMLERİ .C. SÜLEYMAN DEMİREL ÜNİVERSİESİ FEN BİLİMLERİ ENSİÜSÜ SİNGÜLER ADİ DİFERANSİYEL DENKLEMLER İÇİN SINIR DEĞER PROBLEMLERİ Pie Nevl ZEYNELGİL Dnışn: Prof. Dr. Bilender PAŞAOĞLU YÜKSEK LİSANS EZİ MAEMAİK

Detaylı

Bölüm 7.2: Matrisler. Transpoz. Konjuge. Adjoint

Bölüm 7.2: Matrisler. Transpoz. Konjuge. Adjoint ölü.: Mrsler ugüü derszde rs eors err edeeğz. Mrs ouud ddörge elelrd oluş r eledır sır ve süu zı öre rsler şğıddır: j C Trspoz j ı rspozu T j dır. Öre T T T Kojuge j ı Kojuges j dır. Öre djo ı djo T dır

Detaylı

DERS 3. Matrislerde İşlemler, Ters Matris

DERS 3. Matrislerde İşlemler, Ters Matris DES Mrislerde İşleler, Ters Mris Mrisler Mrislerle ilgili eel ılrııı ıslı e sır ve e süu oluşurk içide diiliş e sıı oluşurduğu lo ir ris deir ir ris geellikle şğıdki gii göserilir ve [ ij ], i ; j risii

Detaylı

1. ÜNİTE 1. SAYILAR. Not:1.3

1. ÜNİTE 1. SAYILAR. Not:1.3 ) Rlr,,,,,,,,, ) S Sılrı (N + ) ÜNİTE SAYILAR tnısızdır ( ol üzere, sısının sıfır ölerse sonuç tnısız olur) tnısız,,, ) Doğl Sılr (N),,,, ) T Sılr (Z), ni Z Z Z,,,,,,, Z Z Teli-Çiftli: Sonu,,,, ile iten

Detaylı

«ç ç Ç ş ö ş ç ş ş ş ö ş ö ç ç Ç ö Ç ç ç ö ş ç ş

«ç ç Ç ş ö ş ç ş ş ş ö ş ö ç ç Ç ö Ç ç ç ö ş ç ş Ş ç Ü Ü ÜÜ ö ş ş ç ş ç ş «ç ç Ç ş ö ş ç ş ş ş ö ş ö ç ç Ç ö Ç ç ç ö ş ç ş Ü ç ç Ç ç ş ö ş ç ş ö Ç ş ö Ç ş ö ç ş ç Çö ç ş ş ö ş ş ş ş ş ö ö ş ç ş ç Çö ş ö ş ş ç ş Ü ş ş Ö Ü ş ç ç Çö ö Ş ş Çö ş ö ş ş ç ş

Detaylı

TEST 1 ÇÖZÜMLER NEWTON IN HAREKET YASALARI

TEST 1 ÇÖZÜMLER NEWTON IN HAREKET YASALARI TEST 1 ÇÖZÜMER NEWTON IN HAREET ASAARI 1 P P 3 3 1 (/s) Şekil-I Şekil-II Şekil-III Or sürünesiz olduğundn kuvve ile ive doğru ornılıdır Bu durud, 3 3 P olur Bun göre, > P olur CEAP B ESEN AINARI 6 - grfiğinin

Detaylı

5. 6 x = 3 x + 3 x x = f(x) = 2 x + 1

5. 6 x = 3 x + 3 x x = f(x) = 2 x + 1 Üstlü Sılrd İşlemler, Üstel Fonksion BÖLÜM 0 Test 0. 7 7 denkleminin çözüm kümesi şğıdkilerden hngisidir?. 6 olduğun göre, ifdesinin değeri kçtır? A) B) C) D) E) 6 9 6 A) {, } B) {, } C) {, } D) {, } E)

Detaylı

YÜKSEKÖĞRETİM KURUMLARI SINAVI MATEMATİK SORU BANKASI ANKARA

YÜKSEKÖĞRETİM KURUMLARI SINAVI MATEMATİK SORU BANKASI ANKARA YÜKSEKÖĞRETİM KURUMLARI SINAVI MATEMATİK SORU ANKASI ANKARA İÇİNDEKİLER Fonksionlr... Polinomlr... II. Dereceden Denklemler... 7 II. Dereceden Fonksionlrın Grfiği (Prbol)... 7 Krmşık Sılr... 9 Mntık...

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı., b olduğun göre, b. b ifdesinin değeri şğıdkilerden hngisidir?,,,9 8... b b ifdesinin eşiti şğıdkilerden hngisidir?.. Bun göre, verilior. ifdesinin değeri kçtır? 8. b b c 8 c d

Detaylı

LYS LİMİT. x in 2 ye soldan yaklaşması hangisi ile ifade edilir? şeklinde gösterilir. lim. şeklinde gösterilir. f(x) lim f(x) ise lim f(x) yoktur.

LYS LİMİT. x in 2 ye soldan yaklaşması hangisi ile ifade edilir? şeklinde gösterilir. lim. şeklinde gösterilir. f(x) lim f(x) ise lim f(x) yoktur. Mtemtik SAĞDAN VE SOLDAN YAKLAŞMA Yndki tblod bir değişkeninin 4 sısın sğdn ve soldn klşımı ifde edilmiştir. u durumu genellemek gerekirse; değişkeni re el s ı sın, dn kü çük de ğer ler le k l şı or s,

Detaylı

Tek ve Çift Fonksiyonlar. Özel Tanýmlý Fonksiyonlar. Bir Fonksiyonun En Geniþ Taným Kümesi. 1. Parçalý Fonksiyonlar. 2. Mutlak Deðer Fonksiyonu

Tek ve Çift Fonksiyonlar. Özel Tanýmlý Fonksiyonlar. Bir Fonksiyonun En Geniþ Taným Kümesi. 1. Parçalý Fonksiyonlar. 2. Mutlak Deðer Fonksiyonu Fonksionlr Konu Özeti. Köklü fonksionlrın en geniş tnım kümesi: f( f( n f( g( fonksionun en geniş tnım kümesi, g( koşulunu sğln noktlr kümesidir. f( f( n f( g( tüm reel sılrd tnımlıdır. fonksionu g( in

Detaylı

ş ş şğ ş ş ş ö Ö ş ö ğ ş ö ö ğ ş ö ö ö ğ ğ ş ş ö ğ ö ş Ü ö ğ ş ş ö ş ğ ş ğ ğ ğ ö ğ ş

ş ş şğ ş ş ş ö Ö ş ö ğ ş ö ö ğ ş ö ö ö ğ ğ ş ş ö ğ ö ş Ü ö ğ ş ş ö ş ğ ş ğ ğ ğ ö ğ ş Ü ğ ğ ş ş ş ş ğ Ğ Ç Ş» ş ö ş ş ğ ş ğ ş Ç ş ğ ş ş ğ ş ş ÜÜ ş ş ö ş Ö Ş Ö ğ ş ö ğ ğ Ü Ş ş ş şğ ş ş ş ö Ö ş ö ğ ş ö ö ğ ş ö ö ö ğ ğ ş ş ö ğ ö ş Ü ö ğ ş ş ö ş ğ ş ğ ğ ğ ö ğ ş ş Ö» Ö Ç ö ğ ş ş ş ö ş ö ö ğ ğ

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

ü ü Ü ü Ş ö ü ü ü ü ö ç ç ç ü ü ü ü ü ü ü Ö ö ü ç ü ü ü ü ü ç Üçü ü ü ç ü ü ü üç ü ö ü ç Ş ö çü ü ü ö ü ü ö ö ö İ

ü ü Ü ü Ş ö ü ü ü ü ö ç ç ç ü ü ü ü ü ü ü Ö ö ü ç ü ü ü ü ü ç Üçü ü ü ç ü ü ü üç ü ö ü ç Ş ö çü ü ü ö ü ü ö ö ö İ ç ü ü ü ö ü ö ü ç ö ü ö ü ü ü ç ö ö ü ü ü ü ü üü ü ü ü ö ü ö üü ü Ü ü ü ö ö ö ü ü Ş ö ç ü ü ö ü ö çö ü ü üç ü Ş ö ü ö çü ü ü ü Ü ü Ş ö ü ü ü ü ö ç ç ç ü ü ü ü ü ü ü Ö ö ü ç ü ü ü ü ü ç Üçü ü ü ç ü ü ü

Detaylı

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ LYS / MATEMATİK DENEME ÇÖZÜMLERİ Deneme -. A) - - + B) - 7 - + C) 5-5 - 5 +. + m ; + me + > H + D) - 5 - + E) 7- - + Sılrın plrı eşit olduğun göre, pdsı en üük oln sı en küçüktür. Bun göre A seçeneğindeki

Detaylı

ASAL SAYILAR. Asal Sayılar YILLAR MATEMATĐK ĐM

ASAL SAYILAR. Asal Sayılar YILLAR MATEMATĐK ĐM YILLAR 00 003 004 00 006 007 008 009 00 0 ÖSS-YGS - - - - - - - ASAL SAYILAR ve kendisinden bşk pozitif böleni olmyn den büyük tmsyılr sl syı denir Negtif ve ondlıklı syılr sl olmz Asl syılrı veren bir

Detaylı

LOGARİTMA Test -1. olduğuna göre, x kaçtır? olduğuna göre, x aşağıdakilerden hangisidir? A) 3 B) 9 C) 16 D) 64 E) 81.

LOGARİTMA Test -1. olduğuna göre, x kaçtır? olduğuna göre, x aşağıdakilerden hangisidir? A) 3 B) 9 C) 16 D) 64 E) 81. LOGARİTMA Test -. olduğun göre, şğıdkilerden log log log. log olduğun göre, kçtır? 6 6 8. olduğun göre, şğıdkilerden 6. logm olduğun göre, m kçtır? log log log 6 log 6. olduğun göre, şğıdkilerden log log

Detaylı

Doğrusal hareket yapan bir maddesel noktanın hız konum bağıntısı

Doğrusal hareket yapan bir maddesel noktanın hız konum bağıntısı DNK1 Dinai Dersi Soru anası Dia! şağıdai soru e çözüler, gözden geçirilediği için haalar içerebilir. Sapadığınız haaları bildireniz dileğiyle. noanın onu-zaan bağınısı sin ise en büyü ie aşağıdailerden

Detaylı

12. a = log 5 7, b = log 3 2 ve c = log 2 13 sayıları arasındaki. 13. log 3 75 sayısı aşağıdaki aralıkların hangisinde bulunur?

12. a = log 5 7, b = log 3 2 ve c = log 2 13 sayıları arasındaki. 13. log 3 75 sayısı aşağıdaki aralıkların hangisinde bulunur? www.mtemtikclub.cm, 00 MC Cebir Ntlrı Gökhn DEMĐR, gdemir@h.cm.tr Lgritm. lg TEST I lg + lg 9 işleminin snucu C) 4. lg + = ise kçtır? 9 C) 4 9. lg 7! = ise lg 8! C) + 0. lg = ve lg = b ise lg 9 0 nin ve

Detaylı

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI LYS LİMİT VE SÜREKLİLİK KONU ÖETLİ ÇÖÜMLÜ SORU BANKASI ANKARA İÇİNDEKİLER Limit Kvrmı ve Grfik Sorulrı... Limitle İlgili Bzı Özellikler...7 Genişletilmiş Reel Sılrd Limit... Bileşke Fonksionun Limiti...

Detaylı

Düzlemde eğrisel hareket, parçacığın tek bir düzlem içerisinde eğrisel bir yörünge boyunca yaptığı harekettir. Belirli bir koordinat sisteminde

Düzlemde eğrisel hareket, parçacığın tek bir düzlem içerisinde eğrisel bir yörünge boyunca yaptığı harekettir. Belirli bir koordinat sisteminde Düzlemde eğrisel hreket, prçcığın tek bir düzlem içerisinde eğrisel bir örünge bounc ptığı hrekettir. Belirli bir koordint sisteminde tnımlmdn önce, sonuçlrın koordint sisteminden bğımsız olmsı nedenile

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI ., ÖZEL EGE LİSESİ OKULLR RSI 8. MTEMTİK YRIŞMSI 8. SINI TEST SORULRI 5. 0,0008.0 b 0,0000.0 ise; b.0 kç bsmklı bir sıdır? olduğun göre, ifdesinin değeri şğıdkilerden hngisine eşittir? ) 80 ) 8 ) 8 ) 8

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN VE MÜHENDİSLİK DERGİSİ Cilt: 7 Sayı: 3 s Ekim 2005

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN VE MÜHENDİSLİK DERGİSİ Cilt: 7 Sayı: 3 s Ekim 2005 DEÜ ÜHEDİLİK FAKÜLTEİ FE VE ÜHEDİLİK DERGİİ Cilt: 7 aı: s. 55-8 Ei 5 CEBİREL KATAYILI DİFERAİYEL DEKLELERİ PLİE FOKİYOU İLE ÇÖZÜÜ OLUTIO OF DIFFEREIYEL EQUATIO WITH ALGEBRAIC COEFFICIET BY PLIE FUCTIO

Detaylı

AKM 205-BÖLÜM 4-UYGULAMA SORU VE ÇÖZÜMLERİ

AKM 205-BÖLÜM 4-UYGULAMA SORU VE ÇÖZÜMLERİ AKM 5-BÖÜM -UYGUAMA SORU VE ÇÖZÜMERİ 1. Aşğıd erilen dimi, iki otl ız lnını dikkte lınız: V (, ) (.66.1) i (.7.1) j B kış lnınd ir drm noktsı r mıdır? Vrs nerededir? Kller: 1. Akış dimidir.. Akış -otldr.

Detaylı

1983 ÖYS A) 410 B) 400 C) 380 D) 370 E) işleminin sonucu kaçtır. 7. a, b, c birer pozitif tam sayıdır. a= 2 A) 9 B) 3 C) 2 E) 8 D) 4

1983 ÖYS A) 410 B) 400 C) 380 D) 370 E) işleminin sonucu kaçtır. 7. a, b, c birer pozitif tam sayıdır. a= 2 A) 9 B) 3 C) 2 E) 8 D) 4 98 ÖYS. işleminin sonucu kçtır. 6. Bir stıcı ir mlı üzde 0 krl strken, stış fitı üzerinden üzde 0 indirim prk 8 lir stıor. Bu mlın mlieti kç lirdır? A) 0 B) 00 C) 80 D) 70 E) 60 7.,, c irer pozitif tm

Detaylı

ü İİ İ Ü ü ü ö ü ü İ Ö ü ö ö ü ö ö ü ü ü ü ö ö üü ü üü ü ö ö ü ö Ü ü ü İ ö Ö ü ü ü ü İ İ ö ü Ö ü ü ü ü ö ö Ş ö ü ü ü ö ü Ç ö ü ü ü ü ü ü ü ü ü ü ö ö ü ü ö ü ü ü Ü ü ü Ş ü ü ü ü üü ü ö ü İ ö ö üü ü ü Ç

Detaylı

ü ü ü ü ç ü ü ü üü ç ü ü ü ü ü ü ü ü ü ü ç ü ü ü ç ü ü ü ü ü ü ü ü ü ü ç ü ç ç ç ü ç ü ü üü ü ü ü üü ç ü ç ç ü ü ç ü ü ü ç ü ü üü üü ü ü ü üü ç ü ü ü ü üü ü ü üü ü ü üü ü ü ü ü üü ç ü ü ü üü ç ü ü ü ü

Detaylı

İ ş Ğ İ ş ü ü üü İş ü ü üü ş İ ş Ğ İ ş ş ş ş ş ş ş ü ş ş İ ş ü ü İ ü Ç ş ş ş İ ş ü Ş Ş ş ş ö ş ü ö ş ş ş ş ö ü ö ş ş ş ş ü ö ü ö ş ü ö ü ş ö ş ü ü ş ö İ ü ş ü ş Ş ş ö ş ş ö ü ö ö ö ş İ Ç İ İŞİ ş ö ş ş

Detaylı

İ ü ü ü ü İ ü üü üü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü ü Ş Ş ü üü İ ü üü Ö ü ü ü ü üü üü ü ü ü ü ü ü ü üü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü Ö ü ü ü ü ü ü Ş ü ü ü ü ü ü ü ü ü ü İ üü ü ü Ç Ç ü ü ü ü ü ü

Detaylı

Ö ö Ü Ü ÜÜ ö Ö ö ö Ş « ö Ö ö Ö Ö ö ö Ç Ö Ö Ş Ö Ö Ş Ş Ö Ç Ş Ş Ş ö Ö ö Ç ö ö Ö Ö ö ö Ö Ç ö ö Ö Ö Ö» ö ö ö ö Ö ö ö ö ö ö ö ö ö ö ö ö Ö ö Ö Ö Ö Ö Ö Ö ö Ş Ş ö Ş Ş ö ö ö ö Ş Ö Ö ö Ş ö Ş ö ö Ş Ş ö ö ö ö Ö Ş Ö

Detaylı

ö ü ş ç» ş ü ü ü ü ç» Ö Ö Ç ş Ö Ü ş ü ü ü ü ü ü ş ü ü ü ü ü üü ö ç ş ö ü ş ç ş ü ü ü ü ç» ü ü ş Ö Ö Ç ü ü ü Ö ü ü ü ü ö ü ö ü ü ü Ü ü ü ü ü ü ü ü ü ü ü ü ü ç ü ü üü ö ç ş Ö Ü ç ü ç ö ö Ç ü ü ü ü ü ö ü

Detaylı

Ğ Ü Ğ Ğ Ğ Ö Ğ ş ş ö ö ş Ç ş ş Ğ Ğ Ş Ğ ş ş ö ş ş ö ş ş ö ş Ğ Ö ö ö ö Ç ş ö ö ş ş ö ş ö ö ş ö ş ö ö ö ş ş ö ş ö ö ö ş ö ö Ö ş ş ş ş ş ş Ç Ğ Ğ ö ş ş ş ö ö ş ö ö ş Ç ö ş ö ş ö ş ş ş ö ö ş ş ö ş ş ö ş ş ö ş

Detaylı

Ğ Ğ ü «Ü Ğ Ö Ğ ü Ü ü Ğ ü ü ü Ç Ş ü Ğ Ğ Ü Ğ Ü Ö ü Ç Ü ü ü Ü ü ü ü ü ü ü Ü ü ü ü Ü ü ü ü ü ü ü Ü ü ü ü ü ü ü ü Ö ü ü ü ü ü üü ü ü üü ü Ü ü» ü ü Ü ü üü ü üü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü üü ü ü Ü «ü ü ü

Detaylı

ş ş» Ğ Ş ş Ş ş Ş Ş Ş ş ş Ş Ç ş ş Ş ş ş ş ş ş ş ş ş ş ş ş ş ş Ş ş Ş ş ş ş Ş ş ş ş ş ş ş ş ş ş Ş ş Ş ş ş ş ş ş ş ş ş Ş ş ş ş ş Ş ş ş ş ş ş Ş ş ş ş Ü Ü ş ş ş ş Ş ş ş Ş ş Ü Ş ş Ş ş ş Ş ş Ş ş ş Ş Ş ş ş ş ş

Detaylı

ü ü ü ü ü ü ü Ş ü ü ü ü ü üü ü ü

ü ü ü ü ü ü ü Ş ü ü ü ü ü üü ü ü ü ü İ ü Ç İ İ ü İ İİ İ İ ü ü ü ü ü ü ü Ş ü ü ü ü ü üü ü ü İ İ üü ü ü ü üü ü ü ü ü ü ü ü ü ü ü üü ü ü ü ü ü ü ü İ Ç ü ü ü ü ü ü ü ü ü ü ü ü ü İ ü ü ü ü ü ü ü ü Ç üü ü ü ü Ö ü ü ü ü ü ü ü ü ü ü ü ü ü Ç ü

Detaylı

Ğ Ü Ş Ş Ü Ş Ş Ü Ü Ş Ş Ç Ş Ş Ğ Ü Ö Ö Ş Ü Ç Ş Ü Ş Ş Ş Ö Ş Ü Ş Ö Ü Ş Ç « Ö Ö Ş « Ü Ü Ü Ü Ü «Ü Ş Ü «Ö Ö Ç Ö Ö Ö Ö Ö Ş Ü Ç Ş Ç Ş Ö Ö Ü Ğ ÜŞ «Ü Ç Ç Ç Ç Ö Ö Ğ Ö Ö Ö Ö » Ü Ü Ü Ü Ş Ğ Ü Ç Ö « Ç Ö Ü Ş Ö Ş

Detaylı

«ç Ü Ü Ü ü ç ü ü Ö Ü ü ü ü ü ü ü ö ü«ç ü ü ü ç ü ü ü» ü ü ü ü ç ü ü ü ü ü ü ü ü ü ü ü ü ü ç ü üü ü ü ü ü ü ü ü ü ü ç ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü ü ü ü ç ü üü ü ü ü ü ü ü Ü

Detaylı

ÜÜ Ü ö ö ö Ö ö ö ö ö ö Ş Ş Ç ö Ş Ş ö

ÜÜ Ü ö ö ö Ö ö ö ö ö ö Ş Ş Ç ö Ş Ş ö Ş ö Ü ö ö ö ö Ç ö Ç Ö Ö ö ö ÜÜ Ü ö ö ö Ö ö ö ö ö ö Ş Ş Ç ö Ş Ş ö ö ö ö ö Ç ö ö ö ö ö ö ö ö ö ö ö Ş ö Ş Ç Ö ö ö Ş ö ö ö ö ö ö ö ö ö ö ö Ç Ç ö ö Ç ö Ö Ç ö ö Ç ö ö ö ö Ü ö ö Ü ö Ş ö Ü ö ö Ş ö ö Ş Ü ö Ş ö

Detaylı

LİNEER CEBİR MATRİSLER: şeklindeki tablosuna mxn tipinde bir matris denir. [a ij ] mxn şeklinde gösterilir. m satır, n sütun sayısıdır.

LİNEER CEBİR MATRİSLER: şeklindeki tablosuna mxn tipinde bir matris denir. [a ij ] mxn şeklinde gösterilir. m satır, n sütun sayısıdır. LİNEER CEBİR MTRİSLER: i,,,...,m ve j,,,..., n için ij sılrının. m m...... n n mn şeklindeki tblosun mn tipinde bir mtris denir. [ ij ] mn şeklinde gösterilir. m stır, n sütun sısıdır. 5 mtrisi için ;

Detaylı

KOMPLEKS ANALİZ (MAT 472) DERS NOTLARI

KOMPLEKS ANALİZ (MAT 472) DERS NOTLARI KOMPLEKS AALİZ (MAT 47) DERS OTLARI Prof. Dr. AYHA ŞERBETÇİ GİRİŞ Komples düzlemde bir bölgede medana gelen bir fizisel problem örneğin ararlı drm sıcalıları eletrostati ideal sıvı aışı vs. bazı oşlların

Detaylı

ÇÖZÜMLER HAREKET. 4. hız. t(s) zaman

ÇÖZÜMLER HAREKET. 4. hız. t(s) zaman TEST ÇÖZÜMER HAREET. rlığınd rç durmkdır. (m) o rlığınd rcın ı sbiir. o o o II. yrgı ynlışır. o nınd bşlngıç noksın oln uzklığı: o o o III. yrgı ynlışır.. nın d cis min konum ko nu mu ir. I. yr gı doğ

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) 009 - ÖSS / MT- MTEMTİK TESTİ (Mt ). u testte sırsıl, Mtemtik ( 8) Geometri (9 7) nlitik Geometri (8 0) lnlrın it 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için rıln kısmın işretleiniz..

Detaylı

Ü Ğ Ç Ç Ğ

Ü Ğ Ç Ç Ğ Ü Ğ Ç Ç Ü Ğ Ç Ç Ğ Ö Ü Ç Ö Ç Ü Ö Ç Ö Ç Ç Ç Ç Ç Ç Ü Ü Ü Ü Ü Ö Ç Ç Ü Ç Ç Ç Ö Ç Ç Ç Ç Ü Ç Ö Ç Ğ Ğ Ğ Ğ Ü Ü Ğ Ğ Ç Ü Ğ Ğ Ç Ç Ç Ç Ç Ğ Ğ Ç Ğ Ğ Ç Ç Ç Ü Ğ Ç Ü Ç Ğ Ğ Ç Ü Ğ Ğ Ç Ğ Ğ Ç Ç Ç Ö Ü Ç Ç Ç Ç Ö Ç Ö Ö Ç Ç Ç

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı 8. sısının pozitif tek tmsı bölenlerinin sısı kçtır? 8. olmk üzere; kesrinin değeri şğıdkilerden hngisi olmz?. (8!) sısının sondn kç bsmğı sıfırdır? 8. ifdesinin sonucu kçtır? (

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı. İki bsmklı bir sının rkmlrı toplmı dir. Rkmlrı er değiştirdiğinde elde edilen sı, ilk sının sinden fzldır.. Birbirinden frklı tne pozitif tmsının OKEK i olduğun göre, en çok kçtır?

Detaylı

TG 2 ÖABT İLKÖĞRETİM MATEMATİK

TG 2 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT İLKÖĞRETİM MATEMATİK Bu testlerin her hı slıdır. Hngi mçl olurs olsun, testlerin tmmının vey ir ısmının

Detaylı

Mekanik Titreşimler ve Kontrolü. Makine Mühendisliği Bölümü

Mekanik Titreşimler ve Kontrolü. Makine Mühendisliği Bölümü Meani Titreşiler ve Kontrolü Maine Mühendisliği Bölüü s.seli@gtu.edu.tr 7..8 Sönüsüz te serbestli dereceli sisteler Sistede yay ve ütle veya ütlesel atalet ile burula yay etisinin olduğu denge onuu etrafında

Detaylı

3. BÖLÜM DOĞRUSAL HAREKET YERDEĞİŞTİRME HIZ İVME NEWTON KANUNLARI. İŞ, GÜÇ ve ENERJİ

3. BÖLÜM DOĞRUSAL HAREKET YERDEĞİŞTİRME HIZ İVME NEWTON KANUNLARI. İŞ, GÜÇ ve ENERJİ 3. BÖÜM DOĞRUSA HAREET YERDEĞİŞTİRME HIZ İME NEWTON ANUNARI İŞ, GÜÇ ve ENERJİ Yzr: Dr. Tyfun Deirürk E-pos: deirurk@pu.edu.r 1 HAREET Önce reke nedir, bunun nıını bir yplı. Eğer bir cisi sbi kbul edilen

Detaylı

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır.

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır. gösterilir. MUTLAK DEĞER Syı doğrusu üzerinde syısının sıfır oln uzklığın in mutlk değeri denir ve ile B O A 0 OA = OB =, 0 =, < 0 olrk tnımlnır. < 0 < y için y = y işleminin eşitini bulunuz. < 0 için

Detaylı

BÖLÜM IV SİNÜZOİDAL KARARLI-DURUM (STEADY-STATE) ANALİZİ

BÖLÜM IV SİNÜZOİDAL KARARLI-DURUM (STEADY-STATE) ANALİZİ BÖLÜM IV SİNÜZOİDAL KARARLI-DURUM (STEADY-STATE) ANALİZİ Bağılı veya bağısız bir sinüzoidal kaynak, zaana bağlı olarak sinüzoidal şekilde değişen bir gerili üretir. Bu tip kaynaklara ait gerili ifadesi

Detaylı

DENKLEM ve EŞİTSİZLİKLER

DENKLEM ve EŞİTSİZLİKLER DENKLEM ve EŞİTSİZLİKLER Sf No..................................................... - 7 Denklem ve Eşitsizlikler Konu Özeti............................................. Konu Testleri ( 0)..........................................................

Detaylı

) ile algoritma başlatılır.

) ile algoritma başlatılır. GRADYANT YÖNTEMLER Bütün ısıtsız optimizasyon problemlerinde olduğu gibi, bir başlangıç notasından başlayara ardışı bir şeilde en iyi çözüme ulaşılır. Kısıtsız problemlerin çözümü aşağıdai algoritma izlenere

Detaylı

İntegralin Uygulamaları

İntegralin Uygulamaları Bölüm İntegrlin Uygulmlrı. Aln f ve g, [, b] rlığındki her x için f(x) g(x) eşitsizliğini sğlyn sürekli fonksiyonlr olmk üzere y = f(x), y = g(x) eğrileri, x = ve x = b düşey doğrulrı rsındki S bölgesini

Detaylı

biçiminde standart halde tanımlı olsun. Bu probleme ilişkin simpleks tablosu aşağıdaki gibidir

biçiminde standart halde tanımlı olsun. Bu probleme ilişkin simpleks tablosu aşağıdaki gibidir KONU 6: DOĞRUSAL PROGRAMLAMA MODELİ İÇİN ÇÖZÜM YÖNTEMLERİ III 6 Siples Tablo Siples algoritasında en ii çözü, verilen dpp için bir teel ugun çözüden başlanara, ardışı saısal işlelerle araştırılır Bu işleler,

Detaylı

( x y ) 2 = 3 2, x. y = 5 tir. x 2 + y 2 2xy = 9. x 2 + y 2 = 19 bulunur. Cevap D / 24 / 0 ( mod 8 ) Pikaçu.

( x y ) 2 = 3 2, x. y = 5 tir. x 2 + y 2 2xy = 9. x 2 + y 2 = 19 bulunur. Cevap D / 24 / 0 ( mod 8 ) Pikaçu. eneme - / YT / MT MTMTİK NMSİ. I. KK (, ) = : Z II. KK (, ) = : Z III. KK ( 8, ) = 7 7 : Z. - - = = ( ) ile. rlrınd sl ise ( ) =,. = tir. + = + = bulunur. evp evp. + / / ( mod 8 ) Pikçu. M n + n n + 8

Detaylı

A, A, A ) vektör bileşenleri

A, A, A ) vektör bileşenleri Elektromnetik Teori hr 006-007 Dönemi VEKTÖR VE SKLER KVRMI Mühendislik, fiik ve geometri ugulmlrınd iki türlü büüklük kullnılır: skler ve vektör. Skler, sdece büüklüğü oln niceliklerdir. elli bir ölçeği

Detaylı

ö ğ ğ ğ ö ö ö ö ç ö çö ç ö ö ö ğ ç ö ç ğ ğ ö ğ ö ç ğ ö ğ ç ğ ğ ç ğ Ö ğ ğ ç ç ö ç ğ ö ğ ç ö ğ ç ç ö ö ğ ç ğ ğ ö ğ ç ğ ğ ö ç ö ç ö ö ğ ö ç Ş Ü ğ Ü ö Ö Ş ğ Ş Ü ö ğ ö ğ ö ö Ü ö «Ç ğ ö ğ ç ğ ğ ğ çö ç ğ ö ğ

Detaylı

Ğ Ğ Ğ Ç Ç Ç Ş ç Ş Ü ö çö ö ö Ç ö ç ç ç ö ö ç ç ç ö Ç Ç ç Ç Ç Ç Ç ç ç ç Ç Ö Ç ç Ç ç ç ç ö ç ö ö Ç ç ö ö ö ö ç ö Ş Ş Ü Ü ç ö ö Ö ö ö ö çö ç Ğ ö ç Ğ ö Ü Ü ç ö ö Ö Ç Ç ç Ç Ç ç Ç Ö ö ö ç Ş Ç ç ö Ö Ş Ş Ü Ü ç

Detaylı

Ğ İ Ç Ü Ö Ö ö Ü ö ç İ ö ç ç ğ ç «Ü İ ğ İ Ü Ü İ İ İ ğ Ü Ü İ İ ğ ç ç ğ ğ ö ö Ç Ö İ ö İ ö ö ö ç ç ö ç ç ö ö ç ç ö ğ ğ ç ğ ğ ğ ö ğ ğ ğ ğ ç ğ ö ğ ğ ğ ç ğ ğ ğ ğ ö ö ö ö ç ç ö ç ç ö ö ç ç ö ğ ğ ç ğ ğ ğ ö ğ ğ

Detaylı

3 fazlı sistemler genellikle "akım ve gerilim açısından" dengeli sistemlerdir.

3 fazlı sistemler genellikle akım ve gerilim açısından dengeli sistemlerdir. 4 ĐMĐLĐ BĐLŞNL 98 yılınd Fortescue, "n-bğlı fzörden eydn gelen dengesiz bir sistein, dengeli fzörlerden eydn gelen n det siste içinde yeniden çözülebilir" olduğunu gösteriştir. Bunlr sistein orijinl fzörlerinin

Detaylı

Cebirsel ifadeler ve Özdeslik Föyü

Cebirsel ifadeler ve Özdeslik Föyü 6 Ceirsel ifdeler ve Özdeslik Föyü KAZANIMLAR Bsit ceirsel ifdeleri nlr ve frklı içimlerde yzr. Ceirsel ifdelerin çrpımını ypr. Özdeslikleri modellerle çıklr. 06 8. SINIF CEBiRSEL ifadeler VE ÖZDESLiK

Detaylı

9. log1656 x, log2 y ve log3 z

9. log1656 x, log2 y ve log3 z ÖĞRENCİNİN ADI SOYADI: NUMARASI: Dersin Adı SINIFI: KONU: Logritm Alm Kurllrı Dersin Konusu. log4 loge ln4 işleminin sonucu kçtır? D) ln E) ln 6. olduğun göre, 8 9 log 9 4 ifdesi nee eşittir? D) E). log

Detaylı

MEKANİK TİTREŞİMLER. Örnek olarak aşağıdaki iki serbestlik dereceli öteleme sistemini ele alalım. ( ) ( ) 1

MEKANİK TİTREŞİMLER. Örnek olarak aşağıdaki iki serbestlik dereceli öteleme sistemini ele alalım. ( ) ( ) 1 MEKANİK TİTREŞİMLER ÇOK SERBESTLİK DERECELİ SİSTEMLER: Gerçe uygulaalarda birço ühendili iei birden fazla erbeli dereei içeretedir. Ço erbeli dereeli ielerin titreşi analizlerinde diferaniyel denle taıları

Detaylı

Cevap D. 6. x = 3, y = 7, z = 9 olduğundan x + y < y ve. Cevap C. 7. x ile y aralarında asal olduğundan x 2 ile y sayıları da. Cevap A.

Cevap D. 6. x = 3, y = 7, z = 9 olduğundan x + y < y ve. Cevap C. 7. x ile y aralarında asal olduğundan x 2 ile y sayıları da. Cevap A. eneme - / Mt MTEMTİK ENEMESİ. c - m. c - m -.., bulunur. y. 7, + 7 y + + 00 y + + + y + +, y lınr ı.. ^ - h. ^ + h. ^ + h ^ - h. ^ + h - & & bulunur.. ΩΩΩΩΔφφφ ΩΩφφ ΩΩΔφ 0 evp. ise ^ h ^h 7 ise ^ 7h b

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

1 Lineer Diferansiyel Denklem Sistemleri

1 Lineer Diferansiyel Denklem Sistemleri Outline İçindekiler 1 Lineer Diferansiyel Denklem Sistemleri 1 1.1 Lineer sistem türleri (iki bilinmeyenli iki denklem)................. 1 2 Normal Formda lineer denklem sistemleri (İki bilinmeyenli iki

Detaylı

TG 1 ÖABT İLKÖĞRETİM MATEMATİK

TG 1 ÖABT İLKÖĞRETİM MATEMATİK KAMU PESONEL SEÇME SINAI ÖĞETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞETİM MATEMATİK ÖĞETMENLİĞİ TG ÖABT İLKÖĞETİM MATEMATİK Bu testlerin her hı slıdır. Hngi mçl olurs olsun, testlerin tmmının vey bir ısmının İhtiyç

Detaylı

12. SINIF KONU ANLATIMLI

12. SINIF KONU ANLATIMLI . SINIF NU ANAIMI. ÜNİE: BASİ HARMNİ HAREE EİNİ VE ES ÇÖZÜMERİ . Ünite. onu Etinli A nın Çözüleri.. f b. v x ~ R 05 s r v x R 0 v x 0 /s c. x ~ R Bsit Hroni Hreet r x R 0 x 0 /s A B. ( ) (+) A( 5) yty

Detaylı

3 fazlı sistemler genellikle "akım ve gerilim açısından" dengeli sistemlerdir.

3 fazlı sistemler genellikle akım ve gerilim açısından dengeli sistemlerdir. 4 İMİLİ BİLŞNL 98 yılınd Fortescue, "n-bğlı fzörden eydn gelen dengesiz bir sistein, dengeli fzörlerden eydn gelen n det siste içinde yeniden çözülebilir" olduğunu gösteriştir. Bunlr sistein orijinl fzörlerinin

Detaylı

ö ö ş Ğ ş ü İ ç ö ş ş Ç ş ü ş ş İ ş ü ş İ ş ö İ ü ö üşü ö şü İ İ İ ü İ ö üş Ğ İ İİ ö ö ş ü ü ö ş ö ö ş ö ş ö ö ü ç ş ç ş ö ü çö ü ü ü ç ç ş ş ş ş ş ç

ö ö ş Ğ ş ü İ ç ö ş ş Ç ş ü ş ş İ ş ü ş İ ş ö İ ü ö üşü ö şü İ İ İ ü İ ö üş Ğ İ İİ ö ö ş ü ü ö ş ö ö ş ö ş ö ö ü ç ş ç ş ö ü çö ü ü ü ç ç ş ş ş ş ş ç ü İ Ğİ İ İ İ ü Ğ Ğ ü İ İ Ğ ü İ ş ö ö ş ş ü İ ö ö ş Ö Ü Ö ü ö ö İ İ İ ü İ İ ç İ Ş ö İ ç ş İ ö ö ş Ğ ş ü İ ç ö ş ş Ç ş ü ş ş İ ş ü ş İ ş ö İ ü ö üşü ö şü İ İ İ ü İ ö üş Ğ İ İİ ö ö ş ü ü ö ş ö ö ş ö ş ö ö

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı

Ünite 5 ÜSTEL VE LOGARİTMİK FONKSİYONLAR. 5.1. Üstel Fonksiyon. 5.2. Logaritma Fonksiyonu. 5.3. Üstel ve Logaritmik Denklem ve Eşitsizlikler

Ünite 5 ÜSTEL VE LOGARİTMİK FONKSİYONLAR. 5.1. Üstel Fonksiyon. 5.2. Logaritma Fonksiyonu. 5.3. Üstel ve Logaritmik Denklem ve Eşitsizlikler Ünite ÜSTEL VE LOGARİTMİK FONKSİYONLAR f() g() log.. Üstel Fonksion / / / /.. Logritm Fonksionu.. Üstel ve Logritmik Denklem ve Eşitsizlikler . ÜNİTE: ÜSTEL ve LOGARİTMİK FONKSİYONLAR KAZANIM ve İÇERİK.

Detaylı

BİR FONKSİYONUN FOURİER SERİSİNE AÇILIMI:

BİR FONKSİYONUN FOURİER SERİSİNE AÇILIMI: FOURIER SERİERİ GİRİŞ Elastisite probleminin çözümünde en büyü zorlu sınır şartlarının sağlatılmasındadır. Bu zorluğu gidermenin yollarından biride sınır yülerini Fourier serilerine açmatır. Fourier serilerinin

Detaylı

KÜRESEL AYNALAR. 1. Çukur aynanın odağı F, merkezi M (2F) dir. Aşağıdaki ışınlar çukur aynada yansıdıktan sonra şekillerdeki gibi yol izler.

KÜRESEL AYNALAR. 1. Çukur aynanın odağı F, merkezi M (2F) dir. Aşağıdaki ışınlar çukur aynada yansıdıktan sonra şekillerdeki gibi yol izler. . BÖLÜ ÜRESEL AYNALAR ALŞRALAR ÇÖZÜLER ÜRESEL AYNALAR. Çukur ynnın odğı, merkez () dr. Aşğıdk ışınlr çukur ynd ynsıdıktn sonr şekllerdek b yol zler. / / 7 / / / / / 8 / / / / / 9 / / / / N 0 OPİ . Çukur

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matemat Deneme Sınavı. ii basamalı doğal saıdır. 6 en büü saısı ile en üçü saısının toplamı açtır? 8 89 8 6. için, 9 ( ) ifadesinin sonucu aşağıdailerden hangisidir? 6. ile saıları arasındai çift saıların

Detaylı

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57 99 ÖYS. si oln si kçtır? A) 9 B) 8 C) D) 6 E) 5 6. Bir nın yşı, iki çocuğunun yşlrı toplmındn üyüktür. yıl sonr nın yşı, çocuklrının yşlrı toplmının ktı olcğın göre ugün kç yşınddır? A) 5 B) 5 C) 55 D)

Detaylı

Ğ ç «Ğ ç Ö Ö Ö ş ö ö ç Ö Ö ö ş ö ş Ş Ö Ö ç ş ş ç Ş ş

Ğ ç «Ğ ç Ö Ö Ö ş ö ö ç Ö Ö ö ş ö ş Ş Ö Ö ç ş ş ç Ş ş ö ş Ğ ç ç Ü Ü ÜĞÜ Ö Ö ş ö ö ç Ö Ö ö ş ö ş ç Ö Ö Ğ Ö ş ç ş Ğ ç «Ğ ç Ö Ö Ö ş ö ö ç Ö Ö ö ş ö ş Ş Ö Ö ç ş ş ç Ş ş Ğ Ğ Ö Ö ç Ğ Ö ş ö Ö ş ö ç ş ö ö ş ş ö ö ş ş ç ç ş ö ö ö ç ş ş ö ö ş ç ş ş ç ç ş Ö ö ş Ö ş

Detaylı

GRUP TANIMLAYAN BAZI YARIGRUP VE MONOİD TAKDİMLERİ* Some Semigroup and Monoid Presentations Defining a Group*

GRUP TANIMLAYAN BAZI YARIGRUP VE MONOİD TAKDİMLERİ* Some Semigroup and Monoid Presentations Defining a Group* GRU TANIMLAYAN BAZI YARIGRU VE MONOİD TAKDİMLERİ* Soe Seigroup d Mooid resettios Defiig Group* Bsri ÇALIŞKAN Ç.Ü. Fe Biieri Estitüsü Mteti Abii Dı Firet KUYUCU Ç.Ü.Fe Edebit Fütesi Mteti Böüü ÖZET Bu çışd

Detaylı

Ğ Ğ Ğ Ş İ ğ ğ ç İ ç İ ç ş ğ ş ş ğ ö Ç ç ş ğ ç ö Şİ ş Ş ç İ ç İ İş ç ö Ç İ İ İ ö çi İ İş ç Ü Ç Ç Ü ÇÖ İ İ İ İ İ İ İ Ü İ İĞ Ü Ç İ İ İ ş Ü İ İ ö Ç ç Ş ş ç ç ş ö İ Ö Ş İ ğ ğ ö ş Ş İ İ ç Ş Ü İ İç ş Ş» Ş Ş ş

Detaylı

T.C. NİĞDE ÜNİVERSİTESİ FEN BİLİMLER ENSTİTÜSÜ MATEMATİK ANABİLİM DALI

T.C. NİĞDE ÜNİVERSİTESİ FEN BİLİMLER ENSTİTÜSÜ MATEMATİK ANABİLİM DALI NİĞDE ÜNİVERSİTESİ YÜKSEK LİSANS TEZİ A M GEÇGEL, 03 FEN BİLİMLER ENSTİTÜSÜ TC NİĞDE ÜNİVERSİTESİ FEN BİLİMLER ENSTİTÜSÜ MATEMATİK ANABİLİM DALI SÜREKLİ GECİKMELİ YÜKSEK MERTEBEDEN NÖTRAL DİFERANSİYEL

Detaylı

www.ortokulmtemtik.org BİR BİLİNMEYENLİ DENKLEMLER İçerisinde en z bir bilinmeyen bulunn eşitliklere denklem denir. Denklemde semboller y d hrfler ile gösterilen değişkenlere bilinmeyen denir. Denklemde

Detaylı

( ) ( ) ( ) Üslü Sayılar (32) 2. ( ) ( 2 (2) 3. ( ) ( ) 3 4. ( 4 9 ) eşitliğini sağlayan a değeri kaçtır? (0) 0,6 0,4 : 4,9 =?

( ) ( ) ( ) Üslü Sayılar (32) 2. ( ) ( 2 (2) 3. ( ) ( ) 3 4. ( 4 9 ) eşitliğini sağlayan a değeri kaçtır? (0) 0,6 0,4 : 4,9 =? Üslü Sılr. +.4 8 (8) 4. ( ) (. ). ( ) 4 6 ( ) :( ) () + + 5..4. ( ) ( ) () 4. 5 5 ( 4 9 ) 5. 9 + + 9 = + eşitliğini sğln değeri kçtır (0) 6. ( ) ( ) ( ) 0,6 0,4 : 4,9 (-6) 4 8.. c 7. 4.. c ( c ) 8. 6 8

Detaylı

ş Ğ» ş Ğ ş Ü ğ Ö ğ ğ ğ ç ğ ş ğ ç ç ğ ğ ş ç ğ ş ğ ç ğ ş Ö Ö ç ö ş ç ş ö ş ğ ğ ğ ş ö ç ş ç ğ ğ ğ ç ş ç ö ş ş ç ğ Ö ğ ç ş ş ç ş ö ç ş ç ş ş ö ğ ş ş ö ö ş ö ş ç ş ğ ç ş ç ş ğ ç ç ö ş ö ö ş ö ğ ç ç ö ş ğ ö

Detaylı

yasaktır. Öğrenci İmza:

yasaktır. Öğrenci İmza: YTÜ Fizik ölümü 08-09 hr Dönemi Sınv Trihi: 9.0.09 Sınv Süresi: 90 dk. FIZ00 FİZİK-.rsınv YÖK ün 47 sılı Öğrenci Disiplin Yönetmeliğinin 9. Soru Kitpçığı d-sod Öğrenci No Grup No ölümü Sınv Slonu Öğretim

Detaylı

İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9

İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9 İÇİNDEKİLER Ön Söz... Adi Diferansiyel Denklemler... Birinci Mertebeden ve Birinci Dereceden Diferansiyel Denklemler...9 Homojen Diferansiyel Denklemler...15 Tam Diferansiyel Denklemler...19 Birinci Mertebeden

Detaylı

Eğitim Öğretim Yılı Güz Dönemi Diferansiyel Denklemler Çalışma Soruları

Eğitim Öğretim Yılı Güz Dönemi Diferansiyel Denklemler Çalışma Soruları 0 0 Eğiim Öğreim Yılı Güz Dönemi Diferansiel Denklemler Çalışma Soruları 0/0/0 ) 3 8 diferansiel denklemini çözünüz. ) a) d d ( ) diferansiel denklemini çözünüz. b) 3 5 diferansiel denklemini çözünüz.

Detaylı

c) Bire bir fonksiyon: eğer fonksiyonun görüntü kümesindeki her elemanının tanım kümesinde yalnız bir karşılığı varsa bu fonksiyonlara denir.

c) Bire bir fonksiyon: eğer fonksiyonun görüntü kümesindeki her elemanının tanım kümesinde yalnız bir karşılığı varsa bu fonksiyonlara denir. FONKSİYONLAR Boş kümeden frklı oln A ve B kümeleri verildiğinde, A kümesindeki her elemnı B kümesindeki ir elemn krşı getiren ğıntıy A dn B ye fonksiyon denir. y=f(x) ile gösterilir. Bir diğer ifdeyle

Detaylı

EŞANLI DENKLEMLİ MODELLER

EŞANLI DENKLEMLİ MODELLER EŞANLI DENKLEMLİ MODELLER EŞANLI DENKLEMLİ MODELLER Eşnlı denklem siseminde, Y den X e ve X den Y ye krşılıklı iki yönlü eki vrdır. Y ile X rsındki krşılıklı ilişki nedeniyle ek denklemli ir model krlmz.

Detaylı

DİNAMİK BÖLÜM 7 MODEL SORU 1 DEK SORULARIN ÇÖZÜMLER. Hız-zaman grafiğinin eğimi ivmeyi verir. L cisminin ivmesi, al = = 3a

DİNAMİK BÖLÜM 7 MODEL SORU 1 DEK SORULARIN ÇÖZÜMLER. Hız-zaman grafiğinin eğimi ivmeyi verir. L cisminin ivmesi, al = = 3a DİNAİ BÖÜ 7 ODE SORU 1 DE SORUARIN ÇÖZÜER h z 1 h z V V V θ V V 0 t t t, ve cisilerinin iveleri; V V V t 0 t V 0 V t 0 t zn 0 θ t zn Hız-zn rğinin eğii iveyi verir V V V cisinin ivesi, t t V cisinin ivesi,

Detaylı