Değişken Parametreli Kesirli PID Tasarımı

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Değişken Parametreli Kesirli PID Tasarımı"

Transkript

1 Değişken Parametreli Kesirli PID Tasarımı Mehmet Korkmaz 1, Ömer Aydoğdu 2 Elektrik - Elektronik Mühendisliği Bölümü Selçuk Üniversitesi 1 2 Özetçe Yapılarının ve tasarımlarının basit olmasına karşın etkin ve gürbüz bir kontrol sunan PID denetleyiciler bu özelliklerinden dolayı endüstriyel ve akademik camiada yaygın bir şekilde kullanılmaktadır. Teknolojik gelişmelerin gün geçtikçe artması ile birlikte kontrol sistemlerinde de ileri seviye denetleyicilere ihtiyaç duyulmaya başlanılmıştır. Bu düşünce ile geliştirilen kesirli PID yapıları geleneksel PID yapılarına göre daha iyi ve esnek bir denetleyici türü sunmaktadır. Bununla birlikte, kesirli PID denetleyicilerinin tasarımında da farklı metotların geliştirilmesine devam edilmektedir. Bu çalışmanın amacı, kesirli dereceden PID denetleyicilerin geliştirilmiş bir formu olan değişken parametreli kesirli denetleyicilerle ilgili bilgiler sunmak, bu denetleyici türlerini kıyaslamak ve elde edilen neticelerle bu türdeki denetleyicilerin üstünlüklerini ortaya koymaktır. Ayrıca bu tür denetleyicilerin tasarımında kullanılan yapay zeka yöntemlerinden yapay bağışıklık sistemi optimizasyon algoritmasının nasıl uygulanacağını da açıklamaktır. 1. Giriş Kesirli matematik olgusu en az türev ve integral kavramları kadar eski olmakla birlikte içerdiği yoğun matematikten dolayı uzun yıllar boyunca bilim ve mühendislik alanlarına uygulanamamıştır. Bununla birlikte, son yarım yüzyılda, bilgisayar tabanlı hesaplama türlerinin gelişmesiyle kesirli türev ve integral kavramları uygulamalı bilimlerde de yer almaya başlamıştır. Sistemlerin modellenmesinde kesirli türev ve integral içeren terimlerin kullanılması günümüzde daha da yaygınlaşmaktadır [1-3]. Örneğin, mekanik sistemler kesirli diferansiyel denklemlerle tasarlandığında daha iyi neticeler vermektedir [4-6]. Benzer şekilde biyolojik sistemlerin modellenmesinde de kesirli matematikten yararlanılmaktadır. Yine elektronikte kapasitör ve direnç arası bir özellik gösteren fraktans veya fraktör olarak adlandırılan elemanlar sistem modellenmesi ve kontrolünde kullanılmaktadır. Kontrol sistemlerinde ise kesirli matematiğin kullanılması yeni sayılabilecek bir konudur. Tustin in büyük objelerin pozisyon kontrolü için kesirli matematikten yararlandığı çalışma bu alanda öncü olarak nitelendirilmektedir (1958) [7]. Buna paralel olarak Manabe nin 1960 larda [8] yaptığı çalışmalar da kesirli matematik ve denetleyiciler hususunda ön plana çıkmaktadır. Kesirli dereceden PID denetleyiciler ilk kez Podlubny in 1999 [9] yılındaki makalesinde ortaya atılmış ve o günden bu yana gerek endüstriyel gerekse akademik çalışmalarda sıklıkla rastlanılmaya başlanılmıştır. Kesirli denetleyiciler temel olarak kesirli matematiğin kontrol sistemlerindeki uygulamalarından biridir. Bu türdeki denetleyiciler geleneksel PID denetleyicilere göre yapılarında fazladan iki parametre bulundurmaktadırlar; türev ve integral derecesi. Bu iki parametre, sistemin tanımlanması ve kontrolünde daha esnek davranılmasını olanaklı kılmaktadır. Bununla birlikte, kesirli denetleyicilerin sistemlerin denetiminde sunduğu bu esnek yapıya ek olarak sistemlerin gürbüzlük derecelerine yaptığı katkı çalışmalarca gösterilmektedir. Kesirli matematik ve uygulamalarına bugüne kadar birçok önemli biliminsanı destek vermiştir. Abel, Riemann, Lioville, Caputo, Lagrange, Laplace vb. matematikçilerin kesirli matematik konusuna önemli katkıları olmuştur. Yine bu alanla ilgili olarak uygulamalı bilimlerde de farklı türdeki çalışmalar yapılmış ve önemli çalışmalar ile katkılar sağlanmıştır. Podlubny 1999 [9] yılında kesirli PID yapısını ortaya koymuştur. Westerlund kapasitör [10] teorisinde kesirli matematikten yararlanmıştır. Kesirli denetleyiciler için Vinagre ve arkadaşları tarafından frekans domeni analizleri incelenmiştir [11]. Kesirli matematik ve uygulamalarının bilgisayar ortamında gerçeklenebilmesi içinde farklı türde bilgisayar yazılımları ile sağlanmaktadır. Bu alandaki Oustaloup tarafından 1991 yılında CRONE, (Commande Robuste d Ordre Non Entier), kesir dereceli sistemlerin dayanıklı kontrolü ile ilgil bir program geliştirilmiştir. Yine 2005 yılında Toolbox ninteger for MATLAB v. 2.3 adlı, MATLAB ortamında çalışan bir program da kesirli matematik ve türevlerini çalışmalarında kullanmak isteyen araştırmacılar için önemli bir kolaylık sağlamaktadır [12]. 2. Kesirli Dereceden Sistemler Şekil-1 de kesir dereceli kontrol sistemleri için genel bir kapalı çevrim blok şeması verilmiştir. Görüldüğü gibi denetleyicinin ya da kontrol edilecek sistemden en az birinin türev veya integral derecesinin reel olmasıyla kesir dereceli sistemler oluşmaktadır. Şekil 1: Kesirli dereceden sistem

2 R(s) referans giriş; C(s) sistem cevabı; Gc(s) kontrolör; Gp(s) denetlenecek sistem olmak üzere kesirli bir sistemin blok diyagramı şekil-1 deki gibi verilebilir. Kesirli matematikte işlemleri gerçekleştirebilmek için birçok tanımlama bulunmaktadır. Türev ve(ya) integral mertebeleri reel olan kesir dereceli diferansiyel denklemler için kullanılan tanımlamalardan başlıcaları Riemann-Lioville, Grünwald-Letnikov, Caputo vb olup aşağıdaki denklemlerdeki gibi ifade edilmektedir. Riemann-Lioville (RL) Tanımı: Denklem (1) RL için kesirli dereceyi ifade etmektedir. a D t n t 1 d f ( ) n d, n<α<n+1 (1) n1 ( n ) dt ( t ) a Bu denklemde Γ(.) Euler gama fonksiyonu, a D t integrotürev operatörü olup a ve t sınırlar, α ise türev veya integral derecesidir. α nın pozitif durumları için türevi temsil ederken, negatif değerlerinde integral ifadesi anlamına gelmektedir. Grünwald-Letnikov (GL) Tanımı: Aşağıdaki denklem (2) GL için kesirli dereceyi ifade eder: [ ] ( ) ( ) ( ) ( ) (2) Burada bahsedilen ifadesi tamsayılı kısımdır. ( ) kısmı ise binominal katsayılardır. birinci değerlerinden N ye kadar olan değerleri anlamına gelir. k ayarlanabilir kazançtır. Kesir dereceli PID denetleyiciler; Kesirli matematiğin alt dalı olup, kesirli dereceden sistemlerde olduğu gibi, türev ve integral parametrelerinin derecelerinin reel sayı olarak seçilmesiyle elde edilir. Bu tür denetleyiciler için transfer fonksiyonu denklem (6) da verildiği gibidir. G c ( s) KP KI s KDs (6) Denklem sisteminde K p, oransal kazancı (proportioal gain), K i integral kazancını (integral gain) ve K d türev kazancını (derivative gain) ifade etmektedir. Bununla birlikte λ ve µ reel sayıları sırasıyla integral ve türev derecelerine işaret etmektedir. Şekil-2 den görüleceği üzere sistemde türev (µ) ve integral (λ) derecelerinin sıfır alınması ile sistem alışık olduğumuz oransal kontrolör (P) yapısında olmaktadır. µ değerinin sıfır, λ değerinin 1 alınması ile PI yapısı oluşurken tersi durumda ise PD denetleyicisi elde edilmektedir. Bunlara paralel olarak µ ve λ değerlerinin 1 seçilmesi ile klasik PID yapısı oluşmaktadır. Geleneksel PID denetleyici, türev-integral düzleminde ancak dört nokta ile ifade edilirken, şekil-2 (b) de görüleceği gibi denetleyici kesirli yapıda olduğunda düzlemde sonsuz noktada ifade edilebilmektedir. Türev ve integral derecelerinin reel olarak alınabilmesi ile sistem parametreleri daha esnek seçilebilmektedir. Bu durum sistem gürbüzlüğüne olumlu katkı yapmaktadır. Caputo Tanımı: Caputo tanımı denklem (3) te görüldüğü gibidir. ( ) ( ) ( ) ( ) (3) İrrasyonel bir sayı olan π sayısının rasyonel olarak ifade edilmesinde kullanılan yaklaşık metotlar gibi (örneğin sürekli kesir açılımı) kesirli diferansiyel denklemler de çalışmalarda bazı yaklaşıklar ile tanımlanarak ifade edilebilir. Literatürde bu denklemlerin ifade edilmesi için tanımlanmış sürekli kesir açılımı (CFE), frekans tanımlaması ya da eğri uyumu, Carlson yöntemi vb. birçok yöntem bulunmaktadır. Bununla birlikte literatürde Laplace domeninde nin belli değerleri için hazırlanmış tablolarda bulunmaktadır [13]. Bu çalışmada, kesirli ifadelerin yaklaşıklarını elde etmek için Crone Yöntemi kullanılmıştır. Buna göre bu yaklaşım için denklem aşağıdaki gibidir. Bu işlem için hesap [ω l, ω h ] frekans aralığında geçerlidir. C v ( s) ks (4) C( s) k' N n 1 1 s 1 zn (5) s pn (a) (b) Şekil 2: (a) Tam Dereceli, (b) Kesir Dereceli PID denetleyicinin türev ve integral düzlemlerinde gösterilmesi 3. Otomatik Gerilim Düzenleyici (AVR) Sistemi Kontrol problemlerinde sıklıkla kullanılan otomatik gerilim düzenleyici sistemleri çıkış voltajının nominal seviyede kalmasını sağlamayı amaçlamaktadır. Bu tür sistemler için sabit gerilim seviyesi vazgeçilmez bir parametredir. Bununla birlikte sistemin içerisinde barındırdığı alt sistemler ve bunların parametreleri düşünüldüğünde bazı belirsizlikler ve parametre karmaşaları da sistem kararlılığını etkilemektedir. Bu yaklaşım, N kutup ve N sıfır için tekrarlı bölünme işlemini kullanır. ω zn ve ω pn, sırasıyla sıfır ve kutuplar için,

3 ( ) ( ) (12) ( ) ( ) (13) Şekil 3. AVR sistemi blok diyagramı Şekil 3 te de görüleceği üzere otomatik gerilim düzenleyici sistemler genel olarak dört farklı ana kısımdan oluşmaktadır; yükselteç, dinamo, jeneratör (üreteç), sensör. Bu alt sistemlerin matematiksel modelleri denklem (7-10) da görüldüğü gibi ifade edilmektedir. ( ) Yükselteç modeli (7) ( ) Dinamo modeli (8) ( ) Jeneratör modeli (9) ( ) Sensör modeli (10) Yukarıda alt sistemlerin modelleri verilen otomatik gerilim düzenleyicisi için parametreler çizelge 1 de görüleceği gibi seçilmiştir. MODEL Yükselteç Dinamo Jeneratör Sensör Çizelge 1. AVR sistem parametreleri ve sınırları Seçilen K a = 10 τ a = 0.1 K e = 1 τ e = 0.4 K g = 1 τ g = 1 K s = 1 τ s = 0.01 Parametre Sınırları 10 K a τ a K e τ e K g 1 1 τ g τ s Değişken Parametreli Kesirli PID Tasarımı Çalışmada sistem denetimi için üç farklı denetleyici tipi kullanılmıştır. Buna göre denetleyicilerin transfer fonksiyonları denklem (11-13) te görüldüğü gibi olmaktadır. ( ) ( ) (11) Burada PID ve kesirli PID denetleyicileri alışageldiğimiz formda olup (6) denklemindeki gibi formülize edilebilirler. Bunlardan farklı olarak değişken parametreli (nonlinear) kesirli PID denetleyicisi ise geleneksel yapıya ilave olarak katsayıların farklı olduğu durumları da içermektedir. Burada oransal kazanç K P, integral kazancı K I ve türev kazancı K D sabit olmayıp sistemde oluşan hataya göre değeri değişebilecek şekilde ayarlanmaktadır. (14) (15) (16) Denklem (14-16) dan görüleceği üzere örneğin K P oransal kazancı iki farklı parametrenin hataya bağlı belirli bir değerle kombinasyonu ile elde edilmektedir. Benzer şekilde diğer kazanç katsayıları da aynı yöntemle ifade edilmektedir. Bu düşünce ile elde edilen denetleyicilerin tasarımında en iyi değerlerin bulunması için sırasıyla elde edilmesi gereken 3, 5 ve 8 farklı parametre bulunmaktadır. PID --- [K P, K I, K D ] FOPID --- [K P, K I, K D, λ, µ] NL-FOPID --- [K P, K I K D, λ, µ] Bütün denetleyiciler için tasarım yöntemi olarak yapay zeka yöntemlerinden biri olan yapay bağışıklık sistemi optimizasyon algoritmasından yararlanılmıştır. Yapay bağışıklık sistemi(ybs) insan bağışıklık düzenini taklit etmektedir. Burada vücuda dışarıdan giren maddeler ya da antijenlere karşı vücudun savunma sisteminin cevabı esas alınmaktadır. Bu algoritma ile oluşturulan yazılım aracılığıyla MATLAB-Simulink programında blok diyagramlarla ifade edilen sistemler için en iyi denetleyiciler elde edilmiştir. Buna göre elde edilen denetleyici parametreleri çizelge 2 ve 3 te gösterilmiştir. Çizelge 2. YBS algoritmasına göre bulunan parametreler K P K I K D µ λ PID FOPID Çizelge 3. YBS ile elde edilen NL-FOPID parametreleri K P K I K D c µ λ 1 c 2 c 3 c 4 c 5 c 6 NL-FOPID Simülasyon Sonuçları Bu çalışmada yapılan benzetim çalışması için genel bir blok diyagramı şekil 4 teki gibi görülmektedir.

4 Şekil 4. Sistem blok diyagramı Blok diyagramda sistem olarak görülen kısım otomatik gerilim düzenleyici olmakla birlikte parametreleri önceki bölümde çizelge 1 de verildiği gibidir. Sistemde denetleyici olarak geleneksel PID (IOPID), kesirli PID (FOPID) ve değişken parametreli kesirli PID (NL-FOPID) yapıları kullanılmıştır. Parametrelerin elde edilmesinde YBS algoritmasından yararlanılmıştır. Elde edilen neticelere göre şekil 5 te üç farklı türdeki denetleyici için sistem birim basamak girişine karşı elde edilen cevaplar görülmektedir. Buna göre sistem kontrolünün kesirli PID ve geleneksel PID ile yapıldığı durum incelendiğinde FOPID ile kontrol edilen sistemin üstünlüğü görülmektedir. Ayrıca doğrusal olmayan kesirli PID ler her iki türdeki denetleyiciden daha iyi sonuç vermiştir. Buna ek olarak, sistem gürbüzlüğünü test etmek amacı ile sistem parametre belirsizliği durumu da incelenmiştir. Bu kapsamda otomatik gerilim düzenleyicinin yükselteç parametrelerinde belirsizlik olma durumu göz önüne alınmıştır., olarak ilk durumda seçilen yükselteç parametreleri, olarak değiştirilmiş ve sistem tepkisi yeniden incelenmiştir. Şekil 6 da bu durumla ilgili grafik değerleri görülmektedir. Buradan da görüleceği üzere doğrusal olmayan kesirli PID denetleyicisi ile kontrol edilen sistem gerek aşma değerlerinin daha iyi olması gerekse daha kısa sürede yerleşmesinden dolayı daha iyi sonuç vermektedir. Şekil 5. Birim Basamak Girişe karşı Sistem Cevapları Şekil 6. Sistem parametre belirsizliği durumundaki çıkış eğrileri 6. Kaynakça [1] Oldham KB, Spanier J, The Fractional Calculus, New York and London, Academic Press, [2] Caputo M, Elasticita e dissipacione, Bologna, Zanichelli, [3] Y. Luo, Y. Q. Chen, C. Y. Wang, Y. G. Pi, 2010, Tuning fractional order proportional integral controllers for fractional order system, Journal of Process Control, Cilt: 20, no: 7; s: [4] R. L. Bagley ve R. A. Calico, Fractional-Order State Equations for the Control of Viscoelastic Damped Structures, J. Guidance, Control and Dynamics, Cilt: 14, no: 2, s: , [5] R. L. Bagley ve P. Torvik, On the Appearance of the Fractional Derivative in the Behavior of Real Materials, J. Appl. Mech., Cilt:51, s: , [6] A. Makroglou, R. K. Miller ve S. Skaar, Computational Results for a Feedback Control for a Rotating Viscoelastic Beam, J. Guidance, Control and Dynamics, Cilt:17, no:1, s: 84 90, [7] A. Tustin, et. al, The Design of Systems for Automatic Control of the Position of Massive Objects, The Institute of Electrical Engineers, (105-C)1: s:1-57, [8] S. Manabe, The Non-integer Integral and its Application to Control Systems, Journal of Institute

5 of Electrical Engineers of Japan, (80)860:, s: , [9] I. Podlubny, Fractional-Order Systems and PI λ D µ Controllers, IEEE Transactions on Automatic Control, Cilt: 44, no:1, s: , [10] S. Westerlund, Capacitor Theory, IEEE Trans. Dielectrics Electron. Insulation, vol. 1, no. 5, pp , [11] Vinagre, B. M., & Podlubny, I. (2000), Some approximations of fractional order operators used in control theory and applications Fractional Calculus & Applications and Analysis, Cilt:3, s: [12] Url-1http://web.ist.utl.pt/duarte.valerio/ninteger/ Manual.pdf [13] Ozyetkin M.M., Tan N., Kesirli Dereceli Sistemlerin Tamsayı Dereceli Yaklaşımı, SIU IEEE 18.Sinyal isleme ve iletisim uygulamalari kurultayi, Diyarbakır, 2010.

Kesir Dereceli bir PID Denetleyicinin Genetik Algoritma Optimizasyonlu ANFIS Modeli

Kesir Dereceli bir PID Denetleyicinin Genetik Algoritma Optimizasyonlu ANFIS Modeli Kesir Dereceli bir PID Denetleyicinin Genetik Algoritma Optimizasyonlu ANFIS Modeli Mehmet Korkmaz 1, Ömer Aydoğdu 2 Elektrik ve Elektronik Mühendisliği Bölümü, Selçuk Üniversitesi 1 mkorkmaz@selcuk.edu.tr,

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KESİRLİ DERECEDEN PI λ D µ DENETLEYİCİLERİN, TASARIMI, UYGULAMASI VE KARŞILAŞTIRILMASI Mehmet KORKMAZ YÜKSEK LİSANS TEZİ Elektrik-Elektronik Mühendisliği

Detaylı

Belirsiz Kesirli Dereceli Türev için Tamsayı Dereceli Yaklaşım

Belirsiz Kesirli Dereceli Türev için Tamsayı Dereceli Yaklaşım Belirsiz Kesirli Dereceli Türev için Tamsayı Dereceli Yaklaşım M.Mine Özyetkin 1, Nusret Tan 2 1,2 Elektrik ve Elektronik Mühendisliği Bölümü İnönü Üniversitesi, Mühendislik Fakültesi munevver.ozyetkin@inonu.edu.tr

Detaylı

Kesirli Türevde Son Gelişmeler

Kesirli Türevde Son Gelişmeler Kesirli Türevde Son Gelişmeler Kübra DEĞERLİ Yrd.Doç.Dr. Işım Genç DEMİRİZ Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü 6-9 Eylül, 217 Kesirli Türevin Ortaya Çıkışı Gama ve Beta Fonksiyonları Bazı

Detaylı

Kesir Dereceli Kontrol Sistemlerinin Analizi için Kolay Kullanımlı Program

Kesir Dereceli Kontrol Sistemlerinin Analizi için Kolay Kullanımlı Program Kesir Dereceli Kontrol Sistemlerinin Analizi için Kolay Kullanımlı Program Bilal Şenol, Celaleddin Yeroğlu, Nusret Tan 2 Bilgisayar Mühendisliği İnönü Üniversitesi, Malatya bilalsenol@inonu.edu.tr cyeroglu@inonu.edu.tr

Detaylı

FGATool - Kesir Dereceli Sistemler için Grafiksel Analiz Programı FGATool Graphical Analysis Tool for Fractional Order Systems

FGATool - Kesir Dereceli Sistemler için Grafiksel Analiz Programı FGATool Graphical Analysis Tool for Fractional Order Systems FGATool - Kesir Dereceli Sistemler için Grafiksel Analiz Programı FGATool Graphical Analysis Tool for Fractional Order Systems Bilal Şenol 1, Celaleddin Yeroğlu 1 1 Bilgisayar Mühendisliği Bölümü İnönü

Detaylı

DENEY.3 - DC MOTOR KONUM-HIZ KONTROLÜ

DENEY.3 - DC MOTOR KONUM-HIZ KONTROLÜ DENEY.3 - DC MOTOR KONUM-HIZ KONTROLÜ 3.1 DC MOTOR MODELİ Şekil 3.1 DC motor eşdeğer devresi DC motor eşdeğer devresinin elektrik şeması Şekil 3.1 de verilmiştir. İlk olarak motorun elektriksel kısmını

Detaylı

Hanta-virüs Modelinden Elde Edilen Lojistik Diferansiyel Denklem. Logistic Differential Equations Obtained from Hanta-virus Model

Hanta-virüs Modelinden Elde Edilen Lojistik Diferansiyel Denklem. Logistic Differential Equations Obtained from Hanta-virus Model SDU Journal of Science (E-Journal), 2016, 11 (1): 82-91 Hanta-virüs Modelinden Elde Edilen Lojistik Diferansiyel Denklem Zarife Gökçen Karadem 1,*, Mevlüde Yakıt Ongun 2 1 Süleyman Demirel Üniversitesi,

Detaylı

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Ball and Beam Deneyi.../../205 ) Giriş Bu deneyde amaç kök yerleştirme (Pole placement) yöntemi ile top ve çubuk (ball

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

SAYISAL KONTROL 2 PROJESİ

SAYISAL KONTROL 2 PROJESİ SAYISAL KONTROL 2 PROJESİ AUTOMATIC CONTROL TELELAB (ACT) ile UZAKTAN KONTROL DENEYLERİ Automatic Control Telelab (ACT), kontrol deneylerinin uzaktan yapılmasını sağlayan web tabanlı bir sistemdir. Web

Detaylı

KST Lab. Manyetik Top Askı Sistemi Deney Föyü

KST Lab. Manyetik Top Askı Sistemi Deney Föyü KST Lab. Manyetik Top Askı Sistemi Deney Föyü. Deney Düzeneği Manyetik Top Askı sistemi kontrol alanındaki popüler uygulamalardan biridir. Buradaki amaç metal bir kürenin manyetik alan etkisi ile havada

Detaylı

MEB YÖK MESLEK YÜKSEKOKULLARI PROGRAM GELĐŞTĐRME PROJESĐ. 1. Endüstride kullanılan Otomatik Kontrolun temel kavramlarını açıklayabilme.

MEB YÖK MESLEK YÜKSEKOKULLARI PROGRAM GELĐŞTĐRME PROJESĐ. 1. Endüstride kullanılan Otomatik Kontrolun temel kavramlarını açıklayabilme. PROGRAMIN ADI DERSĐN ADI DERSĐN ĐŞLENECEĞĐ YARIYIL HAFTALIK DERS SAATĐ DERSĐN SÜRESĐ ENDÜSTRĐYEL OTOMASYON SÜREÇ KONTROL 2. Yıl III. Yarıyıl 4 (Teori: 3, Uygulama: 1, Kredi:4) 56 Saat AMAÇLAR 1. Endüstride

Detaylı

PROSES KONTROL DENEY FÖYÜ

PROSES KONTROL DENEY FÖYÜ T.C. SAKARYA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA TEORİSİ, SİSTEM DİNAMİĞİ VE KONTROL ANA BİLİM DALI LABORATUARI PROSES KONTROL DENEY FÖYÜ 2016 GÜZ 1 PROSES KONTROL SİSTEMİ

Detaylı

BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK İlhan AYDIN SIMULINK ORTAMI Simulink bize karmaşık sistemleri tasarlama ve simülasyon yapma olanağı vermektedir. Mühendislik sistemlerinde simülasyonun önemi

Detaylı

U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN3102 OTOMATİK KONTROL Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı

U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN3102 OTOMATİK KONTROL Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN30 OTOMATİK KONTROL 00 Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı Sınav Süresi 90 dakikadır. Sınava Giren Öğrencinin AdıSoyadı :. Prof.Dr.

Detaylı

Kontrol Sistemlerinin Tasarımı

Kontrol Sistemlerinin Tasarımı Kontrol Sistemlerinin Tasarımı Kök Yer Eğrileri ile Tasarım IV Geribesleme Üzerinden Denetim ve Fiziksel Gerçekleme Prof.Dr.Galip Cansever 2 3 Denetleyiciyi veya dengeleyiciyi geribesleme hattı üzerine

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

G( q ) yer çekimi matrisi;

G( q ) yer çekimi matrisi; RPR (DÖNEL PRİZATİK DÖNEL) EKLE YAPISINA SAHİP BİR ROBOTUN DİNAİK DENKLELERİNİN VEKTÖR-ATRİS FORDA TÜRETİLESİ Aytaç ALTAN Osmancık Ömer Derindere eslek Yüksekokulu Hitit Üniversitesi aytacaltan@hitit.edu.tr

Detaylı

(Mekanik Sistemlerde PID Kontrol Uygulaması - 3) HAVA KÜTLE AKIŞ SİSTEMLERİNDE PID İLE SICAKLIK KONTROLÜ. DENEY SORUMLUSU Arş.Gör.

(Mekanik Sistemlerde PID Kontrol Uygulaması - 3) HAVA KÜTLE AKIŞ SİSTEMLERİNDE PID İLE SICAKLIK KONTROLÜ. DENEY SORUMLUSU Arş.Gör. T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK LABORATUVARI 1 (Mekanik Sistemlerde PID Kontrol Uygulaması - 3) HAVA KÜTLE AKIŞ SİSTEMLERİNDE PID İLE SICAKLIK

Detaylı

Aktif Titreşim Kontrolü için Bir Yapının Sonlu Elemanlar Yöntemi ile Modelinin Elde Edilmesi ve PID, PPF Kontrolcü Tasarımları

Aktif Titreşim Kontrolü için Bir Yapının Sonlu Elemanlar Yöntemi ile Modelinin Elde Edilmesi ve PID, PPF Kontrolcü Tasarımları Uluslararası Katılımlı 17. Makina Teorisi Sempozyumu, İzmir, 1-17 Haziran 15 Aktif Titreşim Kontrolü için Bir Yapının Sonlu Elemanlar Yöntemi ile Modelinin Elde Edilmesi ve PID, PPF Kontrolcü Tasarımları

Detaylı

BULANIK MANTIK YÖNTEMİNİN PID DENETLEYİCİ PERFORMANSINA ETKİSİ

BULANIK MANTIK YÖNTEMİNİN PID DENETLEYİCİ PERFORMANSINA ETKİSİ 16. ULUSAL MAKİNA TEORİSİ SEMPOZYUMU Atatürk Üniversitesi, Mühendislik Fakültesi, 12-13 Eylül, 2013 BULANIK MANTIK YÖNTEMİNİN PID DENETLEYİCİ PERFORMANSINA ETKİSİ 1 Mustafa ARDA, 2 Aydın GÜLLÜ, 3 Hilmi

Detaylı

Kontrol Sistemlerinin Tasarımı

Kontrol Sistemlerinin Tasarımı Kontrol Sistemlerinin Tasarımı Kök Yer Eğrileri ile Tasarım II PD Denetleyici ve Faz İlerletici Dengeleyici 1 Ardarda (Kaskat) bağlantı kullanılarak geri beslemeli sistemin geçici rejim cevabının iyileştirilmesi

Detaylı

PID Parametrelerinin Ayarlama Yöntemleri: 2. Derece Sistem Modeline Uygulanması ve KarĢılaĢtırmalı Olarak. Değerlendirilmesi**

PID Parametrelerinin Ayarlama Yöntemleri: 2. Derece Sistem Modeline Uygulanması ve KarĢılaĢtırmalı Olarak. Değerlendirilmesi** Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 30(2), ss. 355-362, Aralık 2015 Çukurova University Journal of the Faculty of Engineering and Architecture, 30(2), pp. 355-362, December 2015

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

BÖLÜM-6 BLOK DİYAGRAMLARI

BÖLÜM-6 BLOK DİYAGRAMLARI 39 BÖLÜM-6 BLOK DİYAGRAMLARI Kontrol sistemlerinin görünür hale getirilmesi Bileşenlerin transfer fonksiyonlarını gösterir. Sistemin fiziksel yapısını yansıtır. Kontrol giriş ve çıkışlarını karakterize

Detaylı

OTOMATİK KONTROL SİSTEMLERİ TEMEL KAVRAMLAR VE TANIMLAR

OTOMATİK KONTROL SİSTEMLERİ TEMEL KAVRAMLAR VE TANIMLAR OTOMATİK KONTROL SİSTEMLERİ TEMEL KAVRAMLAR VE TANIMLAR KONTROL SİSTEMLERİ GİRİŞ Son yıllarda kontrol sistemleri, insanlığın ve uygarlığın gelişme ve ilerlemesinde çok önemli rol oynayan bir bilim dalı

Detaylı

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ YAZ OKULU DERS İÇERİGİ. Bölümü Dersin Kodu ve Adı T P K AKTS

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ YAZ OKULU DERS İÇERİGİ. Bölümü Dersin Kodu ve Adı T P K AKTS Bir Dönemde Okutulan Ders Saati MAT101 Genel I (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri) 1 Kümeler, reel sayılar, bir denklem veya eşitsizliğin grafiği 2 Fonksiyonlar,

Detaylı

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Otomatik Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri H a z ı r l aya n : D r. N u r d a n B i l g i n Kapalı Çevrim Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Bir önceki

Detaylı

OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI

OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI BLOK DİYAGRAM İNDİRGEME KURALLARI Örnek 9: Aşağıdaki açık çevrim blok diyagramının transfer fonksiyonunu bulunuz? 2 BLOK DİYAGRAM İNDİRGEME

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-2

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-2 T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-2 DENEY SORUMLUSU Arş. Gör. Memduh SUVEREN MART 2015 KAYSERİ OPAMP DEVRELERİ

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

EEM 452 Sayısal Kontrol Sistemleri /

EEM 452 Sayısal Kontrol Sistemleri / EEM 452 Sayısal Kontrol Sistemleri / Yrd. Doç. Dr. Rıfat HACIOĞLU Bahar 2016 257 4010-1625, hacirif@beun.edu.tr EEM452 Sayısal Kontrol Sistemleri (3+0+3) Zamanda Ayrık Sistemlerine Giriş. Sinyal değiştirme,

Detaylı

Aktif Titreşim Kontrolü için Bir Yapının Sonlu Elemanlar Yöntemi ile Modelinin Elde Edilmesi ve PID, PPF Kontrolcü Tasarımları

Aktif Titreşim Kontrolü için Bir Yapının Sonlu Elemanlar Yöntemi ile Modelinin Elde Edilmesi ve PID, PPF Kontrolcü Tasarımları Uluslararası Katılımlı 7. Makina Teorisi Sempozyumu, Izmir, -7 Haziran 5 Aktif Titreşim Kontrolü için Bir Yapının Sonlu Elemanlar Yöntemi ile Modelinin Elde Edilmesi ve PID, PPF Kontrolcü Tasarımları E.

Detaylı

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ OTOMATİK KONTROL SİSTEMLERİ DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ 1) İdeal Sönümleme Elemanı : a) Öteleme Sönümleyici : Mekanik Elemanların Matematiksel Modeli Basit mekanik elemanlar, öteleme hareketinde;

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

KST Lab. Shake Table Deney Föyü

KST Lab. Shake Table Deney Föyü KST Lab. Shake Table Deney Föyü 1. Shake Table Deney Düzeneği Quanser Shake Table, yapısal dinamikler, titreşim yalıtımı, geri-beslemeli kontrol gibi çeşitli konularda eğitici bir deney düzeneğidir. Üzerine

Detaylı

Contents. Doğrusal sistemler için kontrol tasarım yaklaşımları

Contents. Doğrusal sistemler için kontrol tasarım yaklaşımları Contents Doğrusal sistemler için kontrol tasarım yaklaşımları DC motor modelinin matematiksel temelleri DC motor modelinin durum uzayı olarak gerçeklenmesi Kontrolcü tasarımı ve değerlendirilmesi Oransal

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 2- HATA VE HATA KAYNAKLARI Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ Bir denklemin veya problemin çözümünde kullanılan sayısal yöntem belli bir giriş verisini işleme tabi tutarak sayısal

Detaylı

Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi

Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi Afyon Kocatepe University Journal of Science and Engineering AKÜ FEMÜBİD 6 (06) 0330 (576-584) AKU J Sci Eng 6 (06) 0330 (576-584) DOI:

Detaylı

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics 2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics Özet: Bulanık bir denetleyici tasarlanırken karşılaşılan en önemli sıkıntı, bulanık giriş çıkış üyelik fonksiyonlarının

Detaylı

10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması

10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması 10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Laplace Devre Çözümleri Aşağıdaki devrenin

Detaylı

FIRAT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EMÜ-419 OTOMATİK KONTROL LABORATUARI DENEY 8

FIRAT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EMÜ-419 OTOMATİK KONTROL LABORATUARI DENEY 8 FIRAT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EMÜ-419 OTOMATİK KONTROL LABORATUARI DENEY 8 DC MOTORUN AYRIK ZAMANDA KONUM VE HIZ KONTROLÜ 1. Amaç: Bir DC motorunun konum

Detaylı

Analog Alçak Geçiren Filtre Karakteristikleri

Analog Alçak Geçiren Filtre Karakteristikleri Analog Alçak Geçiren Filtre Karakteristikleri Analog alçak geçiren bir filtrenin genlik yanıtı H a (jω) aşağıda gösterildiği gibi verilebilir. Ω p : Geçirme bandı kenar frekansı Ω s : Söndürme bandı kenar

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Bu bölümde eşitsizlik kısıtlarına bağlı bir doğrusal olmayan kısıta sahip problemin belirlenen stasyoner noktaları

Detaylı

Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü

Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü HAZIRLIK ÇALIŞMALARI İŞLEMSEL YÜKSELTEÇLER VE UYGULAMALARI 1. 741 İşlemsel yükselteçlerin özellikleri ve yapısı hakkında bilgi veriniz. 2. İşlemsel yükselteçlerle gerçekleştirilen eviren yükselteç, türev

Detaylı

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI Hatice YANIKOĞLU a, Ezgi ÖZKARA a, Mehmet YÜCEER a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği

Detaylı

Kontrol Sistemleri (EE 326) Ders Detayları

Kontrol Sistemleri (EE 326) Ders Detayları Kontrol Sistemleri (EE 326) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Kontrol Sistemleri EE 326 Bahar 3 0 0 3 5 Ön Koşul Ders(ler)i MATH 275, MATH 276

Detaylı

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever Ders #2 Otomatik Kontrol Laplas Dönüşümü Prof.Dr.Galip Cansever Pierre-Simon Laplace, 1749-1827 Matematiçi ve Astronomdur. http://www-history.mcs.st-andrews.ac.uk/biographies/laplace.html LAPLAS DÖNÜŞÜMÜ

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 1- GİRİŞ Doç. Dr. Ali Rıza YILDIZ 1 Mühendislikte, herhangi bir fiziksel sistemin matematiksel modellenmesi sonucu elde edilen karmaşık veya analitik çözülemeyen denklemlerin

Detaylı

MATLAB a GİRİŞ. Doç. Dr. Mehmet İTİK. Karadeniz Teknik Üniversitesi Makine Mühendisliği Bölümü

MATLAB a GİRİŞ. Doç. Dr. Mehmet İTİK. Karadeniz Teknik Üniversitesi Makine Mühendisliği Bölümü MATLAB a GİRİŞ Doç. Dr. Mehmet İTİK Karadeniz Teknik Üniversitesi Makine Mühendisliği Bölümü İçerik: MATLAB nedir? MATLAB arayüzü ve Bileşenleri (Toolbox) Değişkenler, Matris ve Vektörler Aritmetik işlemler

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM309 Elektronik-2 Laboratuarı Deney Föyü Deney#6 İşlemsel Kuvvetlendiriciler (OP-AMP) - 2 Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA, 2015 DENEY

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI DENEY RAPORU. Deney No: 3 PID KONTROLÜ

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI DENEY RAPORU. Deney No: 3 PID KONTROLÜ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI DENEY RAPORU Deney No: 3 PID KONTROLÜ Öğr. Gör. Cenk GEZEGİN Arş. Gör. Ayşe AYDIN YURDUSEV Öğrenci: Adı Soyadı Numarası

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 301 Kontrol Sistemleri I.

TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 301 Kontrol Sistemleri I. TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE Kontrol Sistemleri I Final Sınavı 9 Ağustos 24 Adı ve Soyadı: Bölüm: No: Sınav süresi 2 dakikadır.

Detaylı

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi 1) Giriş Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Pendulum Deneyi.../../2015 Bu deneyde amaç Linear Quadratic Regulator (LQR) ile döner ters sarkaç (rotary inverted

Detaylı

Otomatik Kontrol Kapalı Çevrim Kontrol Si stemin İ şl evsel Kalitesi. H a z ı r l aya n : D r. N u r d a n B i l g i n

Otomatik Kontrol Kapalı Çevrim Kontrol Si stemin İ şl evsel Kalitesi. H a z ı r l aya n : D r. N u r d a n B i l g i n Otomatik Kontrol Kapalı Çevrim Kontrol Si stemin İ şl evsel Kalitesi H a z ı r l aya n : D r. N u r d a n B i l g i n Kapalı Çevrim Kontrol Sistemin İşlevsel Kalitesi Kapalı Çevrim Kontrol Sistemin İşlevsel

Detaylı

Kontrol Sistemlerinin Analizi

Kontrol Sistemlerinin Analizi Sistemlerin analizi Kontrol Sistemlerinin Analizi Otomatik kontrol mühendisinin görevi sisteme uygun kontrolör tasarlamaktır. Bunun için öncelikle sistemin analiz edilmesi gerekir. Bunun için test sinyalleri

Detaylı

SAYISAL ANALİZ. Doç. Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç. Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ Doç. Dr. Cüneyt BAYILMIŞ 1 SAYISAL ANALİZ 1. Hafta SAYISAL ANALİZE GİRİŞ 2 AMAÇ Mühendislik problemlerinin çözümünde kullanılan sayısal analiz yöntemlerinin algoritmik olarak çözümü ve bu

Detaylı

ELE 301L KONTROL SİSTEMLERİ I LABORATUVARI DENEY 4B: DC MOTOR TRANSFER FONKSİYONU VE PARAMETRELERİNİN ELDE EDİLMESİ

ELE 301L KONTROL SİSTEMLERİ I LABORATUVARI DENEY 4B: DC MOTOR TRANSFER FONKSİYONU VE PARAMETRELERİNİN ELDE EDİLMESİ Geç teslim edilen raporlardan gün başına 10 puan kırılır. Raporlarınızı deneyden en geç bir hafta sonra teslim etmeniz gerekmektedir. Raporunuzu yazarken föyde belirtilmeyen ancak önemli gördüğünüz kısımların

Detaylı

ELE 301L KONTROL SİSTEMLERİ I LABORATUVARI DENEY 4:ORANSAL, TÜREVSEL VE İNTEGRAL (PID) KONTROL ELEMANLARININ İNCELENMESİ 2

ELE 301L KONTROL SİSTEMLERİ I LABORATUVARI DENEY 4:ORANSAL, TÜREVSEL VE İNTEGRAL (PID) KONTROL ELEMANLARININ İNCELENMESİ 2 ELE 301L KONTROL SİSTEMLERİ I LABORATUVARI DENEY 4:ORANSAL, TÜREVSEL VE İNTEGRAL (PID) KONTROL ELEMANLARININ İNCELENMESİ 2 1. DENEY MALZEMELERİ 33-110 Analog Ünite 33-100 Mekanik Ünite 01-100 Güç Kaynağı

Detaylı

AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ Elektrik Elektronik Mühendisliği Bölümü

AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ Elektrik Elektronik Mühendisliği Bölümü AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ Elektrik Elektronik Mühendisliği Bölümü Denetim Sistemleri Laboratuvarı Deney Föyü Öğr.Gör.Cenk GEZEGİN Arş.Gör.Birsen BOYLU AYVAZ DENEY 3-RAPOR PİD DENETİM Öğrencinin

Detaylı

Otomatik Kontrol (Doğrusal sistemlerde Kararlılık Kriterleri) - Ders sorumlusu: Doç.Dr.HilmiKuşçu

Otomatik Kontrol (Doğrusal sistemlerde Kararlılık Kriterleri) - Ders sorumlusu: Doç.Dr.HilmiKuşçu ROOT-LOCUS TEKNİĞİ Lineer kontrol sistemlerinde en önemli kontrollerden biri belirli bir sistem parametresi değişirken karakteristik denklem köklerinin nasıl bir yörünge izlediğinin araştırılmasıdır. Kapalı

Detaylı

Kalkülüs I (MATH 151) Ders Detayları

Kalkülüs I (MATH 151) Ders Detayları Kalkülüs I (MATH 151) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Kalkülüs I MATH 151 Güz 4 2 0 5 7.5 Ön Koşul Ders(ler)i Dersin Dili Dersin Türü Dersin

Detaylı

KLASİK BULANIK MANTIK DENETLEYİCİ PROBLEMİ : INVERTED PENDULUM

KLASİK BULANIK MANTIK DENETLEYİCİ PROBLEMİ : INVERTED PENDULUM KLASİK BULANIK MANTIK DENETLEYİCİ PROBLEMİ : INVERTED PENDULUM M.Ali Akcayol Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü (Yüksek Lisans Tezinden Bir Bölüm) Şekil 1'

Detaylı

5. (10 Puan) Op-Amp devresine aşağıda gösterildiği gibi bir SİNÜS dalga formu uygulanmıştır. Op-Amp devresinin çıkış sinyal formunu çiziniz.

5. (10 Puan) Op-Amp devresine aşağıda gösterildiği gibi bir SİNÜS dalga formu uygulanmıştır. Op-Amp devresinin çıkış sinyal formunu çiziniz. MAK442 MT3-MEKATRONİK S Ü L E Y M A N D E MİREL ÜNİVERSİTES E Sİ M Ü H E N DİSLİK-MİMM A R L I K F A K Ü L T E Sİ M A KİNA M Ü H E N DİSLİĞİ BÖLÜMÜ Ü ÖĞRENCİ ADI NO İMZA SORU/PUAN 1/15 2/15 3/10 4/10 5/10

Detaylı

ELM 331 ELEKTRONİK II LABORATUAR DENEY FÖYÜ

ELM 331 ELEKTRONİK II LABORATUAR DENEY FÖYÜ ELM 33 ELEKTRONİK II LABORATUAR DENEY ÖYÜ DENEY 2 Ortak Emitörlü Transistörlü Kuvvetlendiricinin rekans Cevabı. AMAÇ Bu deneyin amacı, ortak emitörlü (Common Emitter: CE) kuvvetlendiricinin tasarımını,

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I 1/19 İçerik Yöneylem Araştırmasının Dalları Kullanım Alanları Yöneylem Araştırmasında Bazı Yöntemler Doğrusal (Lineer) Programlama, Oyun Teorisi, Dinamik Programlama, Tam Sayılı

Detaylı

ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU

ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU T.C. MARMARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU Mehmet SUCU (Teknik Öğretmen, BSc.)

Detaylı

1. DÖNEM Kodu Dersin Adı T U K. Matematik II Mathematics II (İng) Fizik I 3 2 4. Bilgisayar Programlama I (Java) Computer Programming I (Java) (İng)

1. DÖNEM Kodu Dersin Adı T U K. Matematik II Mathematics II (İng) Fizik I 3 2 4. Bilgisayar Programlama I (Java) Computer Programming I (Java) (İng) Müfredat: Mekatronik Mühendisliği lisans programından mezun olacak bir öğrencinin toplam 131 kredilik ders alması gerekmektedir. Bunların 8 kredisi öğretim dili Türkçe ve 123 kredisi öğretim dili İngilizce

Detaylı

Okut. Yüksel YURTAY. İletişim : (264) Sayısal Analiz. Giriş.

Okut. Yüksel YURTAY. İletişim :  (264) Sayısal Analiz. Giriş. Okut. Yüksel YURTAY İletişim : Sayısal Analiz yyurtay@sakarya.edu.tr www.cs.sakarya.edu.tr/yyurtay (264) 295 58 99 Giriş 1 Amaç : Mühendislik problemlerinin bilgisayar ortamında çözümünü mümkün kılacak

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Hessien Matris-Quadratik Form Mutlak ve Bölgesel Maksimum-Minimum Noktalar Giriş Kısıtlı ve kısıtsız fonksiyonlar için

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ Prof. Dr. İbrahim UZUN Yayın No : 2415 İşletme-Ekonomi Dizisi : 147 5. Baskı Eylül 2012 - İSTANBUL ISBN 978-605 - 377-438 - 9 Copyright Bu kitabın

Detaylı

Sistem Dinamiği. Bölüm 1- Sistem Dinamiğine Giriş. Doç.Dr. Erhan AKDOĞAN

Sistem Dinamiği. Bölüm 1- Sistem Dinamiğine Giriş. Doç.Dr. Erhan AKDOĞAN Sistem Dinamiği - Sistem Dinamiğine Giriş Doç.Dr. Erhan AKDOĞAN Sunumlarda kullanılan semboller: El notlarına bkz. Yorum Soru MATLAB Bolum No.Alt Başlık No.Denklem Sıra No Denklem numarası Şekil No Şekil

Detaylı

PID SÜREKLİ KONTROL ORGANI:

PID SÜREKLİ KONTROL ORGANI: PID SÜREKLİ KONTROL ORGANI: Kontrol edilen değişken sürekli bir şekilde ölçüldükten sonra bir referans değer ile karşılaştırılır. Oluşacak en küçük bir hata durumunda hata sinyalini değerlendirdikten sonra,

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 KÜMELER 11 1.1. Küme 12 1.2. Kümelerin Gösterimi 13 1.3. Boş Küme 13 1.4. Denk Küme 13 1.5. Eşit Kümeler 13 1.6. Alt Küme 13 1.7. Alt Küme Sayısı 14 1.8. Öz Alt Küme 16 1.9.

Detaylı

1. Hafta SAYISAL ANALİZE GİRİŞ

1. Hafta SAYISAL ANALİZE GİRİŞ SAYISAL ANALİZ 1. Hafta SAYISAL ANALİZE GİRİŞ 1 AMAÇ Mühendislik problemlerinin çözümünde kullanılan sayısal analiz yöntemlerinin algoritmik olarak çözümü ve bu çözümlemelerin MATLAB ile bilgisayar ortamında

Detaylı

S Ü L E Y M A N D E M İ R E L Ü N İ V E R S İ T E S İ M Ü H E N D İ S L İ F A K Ü L T E S İ O T O M O T İ V M Ü H E N D İ S L İ Ğ İ P R O G R A M I

S Ü L E Y M A N D E M İ R E L Ü N İ V E R S İ T E S İ M Ü H E N D İ S L İ F A K Ü L T E S İ O T O M O T İ V M Ü H E N D İ S L İ Ğ İ P R O G R A M I OTM309 MEKATRONİK S Ü L E Y M A N D E M İ R E L Ü N İ V E R S İ T E S İ M Ü H E N D İ S L İ F A K Ü L T E S İ O T O M O T İ V M Ü H E N D İ S L İ Ğ İ P R O G R A M I ÖĞRENCİ ADI NO İMZA TARİH 26.11.2013

Detaylı

DENEY 3 HAVALI KONUM KONTROL SİSTEMİ DENEY FÖYÜ

DENEY 3 HAVALI KONUM KONTROL SİSTEMİ DENEY FÖYÜ DENEY 3 HAVALI KONUM KONTROL SİSTEMİ DENEY FÖYÜ 1. Deneyin Amacı Bu deneyde, bir fiziksel sistem verildiğinde, bu sistemi kontrol etmek için temelde hangi adımların izlenmesi gerektiğinin kavranması amaçlanmaktadır.

Detaylı

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri. Hazırlayan: Dr. Nurdan Bilgin

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri. Hazırlayan: Dr. Nurdan Bilgin Otomatik Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Hazırlayan: Dr. Nurdan Bilgin Kapalı Çevrim Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Tüm uygulamalar için aşağıdaki

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ 6.2. Laplace Dönüşümü Tanımı Bir f(t) fonksiyonunun Laplace alındığında oluşan fonksiyon F(s) ya da L[f(t)] olarak gösterilir. Burada tanımlanan s; ÇÖZÜM: a) b) c) ÇÖZÜM: 6.3.

Detaylı

TEK BÖLGELİ GÜÇ SİSTEMLERİNDE BULANIK MANTIK İLE YÜK FREKANS KONTRÜLÜ

TEK BÖLGELİ GÜÇ SİSTEMLERİNDE BULANIK MANTIK İLE YÜK FREKANS KONTRÜLÜ TEKNOLOJİ, Yıl 5, (2002), Sayı 3-4, 73-77 TEKNOLOJİ TEK BÖLGELİ GÜÇ SİSTEMLERİNDE BULANIK MANTIK İLE YÜK FREKANS KONTRÜLÜ Ertuğrul ÇAM İlhan KOCAARSLAN Kırıkkale Üniversitesi, Mühendislik Fakültesi, Elektrik-Elektronik

Detaylı

Hatalar ve Bilgisayar Aritmetiği

Hatalar ve Bilgisayar Aritmetiği Hatalar ve Bilgisayar Aritmetiği Analitik yollardan çözemediğimiz birçok matematiksel problemi sayısal yöntemlerle bilgisayarlar aracılığı ile çözmeye çalışırız. Bu şekilde Sayısal yöntemler kullanarak

Detaylı

OTOMATİK KONTROL 18.10.2015

OTOMATİK KONTROL 18.10.2015 18.10.2015 OTOMATİK KONTROL Giriş, Motivasyon, Tarihi gelişim - Tanım ve kavramlar, Lineer Sistemler, Geri Besleme Kavramı, Sistem Modellenmesi, Transfer Fonksiyonları - Durum Değişkenleri Modelleri Elektriksel

Detaylı

(Mekanik Sistemlerde PID Kontrol Uygulaması - 1) SÜSPANSİYON SİSTEMLERİNİN PID İLE KONTROLÜ. DENEY SORUMLUSU Arş.Gör. Sertaç SAVAŞ

(Mekanik Sistemlerde PID Kontrol Uygulaması - 1) SÜSPANSİYON SİSTEMLERİNİN PID İLE KONTROLÜ. DENEY SORUMLUSU Arş.Gör. Sertaç SAVAŞ T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK LABORATUVARI 1 (Mekanik Sistemlerde PID Kontrol Uygulaması - 1) SÜSPANSİYON SİSTEMLERİNİN PID İLE KONTROLÜ DENEY

Detaylı

Sponsorlar için detaylı bilgi, ekte sunulan Sponsor Başvuru Dosyası nda yer almaktadır.

Sponsorlar için detaylı bilgi, ekte sunulan Sponsor Başvuru Dosyası nda yer almaktadır. TOK 2014 OTOMATİK KONTROL ULUSAL TOPLANTISI KOCAELİ ÜNİVERSİTESİ İZMİT Sayın Yetkili, Otomatik Kontrol Türk Milli Komitesi nin kararıyla Otomatik Kontrol Ulusal Toplantısı ve Sergisi 2014 (TOK 2014), Kocaeli

Detaylı

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. Çankırı Karatekin Üniversitesi Matematik Bölümü 2015 Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. (Adi ) Bir ya da daha fazla bağımsız değişkenden oluşan bağımlı değişken ve türevlerini

Detaylı

DENEY 5 RC DEVRELERİ KONDANSATÖRÜN YÜKLENMESİ VE BOŞALMASI

DENEY 5 RC DEVRELERİ KONDANSATÖRÜN YÜKLENMESİ VE BOŞALMASI DENEY 5 R DEVRELERİ KONDANSATÖRÜN YÜKLENMESİ VE BOŞALMAS Amaç: Deneyin amacı yüklenmekte/boşalmakta olan bir kondansatörün ne kadar hızlı (veya ne kadar yavaş) dolmasının/boşalmasının hangi fiziksel büyüklüklere

Detaylı

Prof.Dr. ÜNAL ERKAN MUMCUOĞLU. merkan@metu.edu.tr

Prof.Dr. ÜNAL ERKAN MUMCUOĞLU. merkan@metu.edu.tr Ders Bilgisi Ders Kodu 9060528 Ders Bölüm 1 Ders Başlığı BİLİŞİM SİSTEMLERİ İÇİN MATEMATİĞİN TEMELLERİ Ders Kredisi 3 ECTS 8.0 Katalog Tanımı Ön koşullar Ders saati Bu dersin amacı altyapısı teknik olmayan

Detaylı

Akım Modlu Çarpıcı/Bölücü

Akım Modlu Çarpıcı/Bölücü Akım Modlu Çarpıcı/Bölücü (Novel High-Precision Current-Mode Multiplier/Divider) Ümit FARAŞOĞLU 504061225 1/28 TAKDİM PLANI ÖZET GİRİŞ AKIM MODLU ÇARPICI/BÖLÜCÜ DEVRE ÖNERİLEN AKIM MODLU ÇARPICI/BÖLÜCÜ

Detaylı

T ve K kazançları 1. nci dereceden Nomoto parametreleridir. Her iki tarafın Laplace sı alınırsa son durum aşağıdaki gibi olur.

T ve K kazançları 1. nci dereceden Nomoto parametreleridir. Her iki tarafın Laplace sı alınırsa son durum aşağıdaki gibi olur. Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Sigma 4 MRAC PD İLE GEMİ ROTA KONTROLÜ Fuat ALARÇİN * Yıldız Teknik Üniversitesi, Makine Fakültesi, Gemi İnşaatı Mühendisliği

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

1. YARIYIL / SEMESTER 1

1. YARIYIL / SEMESTER 1 T.C. NECMETTİN ERBAKAN ÜNİVERSİTESİ MÜHENDİSLİK VE MİMARLIK FAKÜLTESİ, MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ, 2017-2018 AKADEMİK YILI ÖĞRETİM PLANI T.C. NECMETTIN ERBAKAN UNIVERSITY ENGINEERING AND ARCHITECTURE

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI. Deney No:2 Birinci-İkinci Dereceden Denklemler Açık-Kapalı Çevrim Sistemler

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI. Deney No:2 Birinci-İkinci Dereceden Denklemler Açık-Kapalı Çevrim Sistemler TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI DENEY RAPORU Deney No:2 Birinci-İkinci Dereceden Denklemler Açık-Kapalı Çevrim Sistemler Öğr. Gör. Cenk GEZEGİN Arş.

Detaylı

25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ

25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ 25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ a-) Routh Hurwitz Kararlılık Ölçütü b-) Kök Yer Eğrileri Yöntemi c-) Nyquist Yöntemi d-) Bode Yöntemi 1 2 3 4 a) Routh Hurwitz Kararlılık

Detaylı

FIRAT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EMÜ-419 OTOMATİK KONTROL LABORATUARI DENEY 8

FIRAT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EMÜ-419 OTOMATİK KONTROL LABORATUARI DENEY 8 FIRAT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EMÜ-419 OTOMATİK KONTROL LABORATUARI DENEY 8 DC MOTORUN TÜM DURUM GERİ BESLEMELİ HIZ KONTROLÜ VE CE120 CONTROLLER SETİN

Detaylı