Karma ve Bileşik Kesitler

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Karma ve Bileşik Kesitler"

Transkript

1 Karma ve Bileşik Kesitler Karma Kesit: Islak çevresi bounca farklı pürüzlülüklerden oluşan kanal kesitine karma kesit denir. Bu kesitler için eşdeğer Manning pürüzlülük katsaısı tanımlanır. n eq n i P i P i n, P n i, P i Q n eq R /3 S 0

2 Bileşik kanal Bileşik kanal kesit alanı birçok farklı alt kesitten oluşan kanala denir. 3 i /3 Q Qi Ri S0 n i

3 Bileşik kanal

4 Bileşik kanallarda debi hesabı Debi hesabında dike birleşim erlerinden şekildeki gibi kanal 3 alt kesite bölünür Manning denklemini kullanarak her bir alt kesit için arı arı debi hesaplanır. Islak çevre hesabında su-su etkileşim üzeleri hesaba katılmaz. II n m m I n III n 3 i i Q i So, ni Pi Q total 3 i Q i /3 i,,3

5 ÖZGÜL ENERJİ Özgül Enerji, E, herhangi bir kanal kesitinde, kanal tabanına göre ölçülen, birim ağırlık başına düşen enerjidir. Enerji çizgisi E V Q g g Referans

6 Özgül Enerji Eğrisi V /g B E V Q g g 45 o C c r = V /g V /g P P Verilen bir debi, Q, için, E = E(). E - çizimi Özgül Enerji Eğrisini verir. E E=E

7 ÖZGÜL ENERJİ EĞRİSİNİN ÖZELLİKLERİ Eğrinin asimptotu vardır: E = ve = 0 çizgileri. B Eğrinin kolu vardır: C ve BC. P C kolu 0 olduğunda ata eksene aklaşır. BC kolu olduğunda E = c C E min P çizgisine aklaşır. Eğri üstünde debi, Q sabittir. Eğrinin üzerinde herhangi bir P noktasında ordinat derinliği ve apsis özgül enerjii gösterir.

8 ÖZGÜL ENERJİ EĞRİSİNİN ÖZELLİKLERİ Tanımlanan bir özgül enerji, E, için olası akım derinliği vardır (P ve P noktaları). Bunlardan kritiküstü akım derinliğini, ise kritikaltı akım derinliğini gösterir Bu c C E min P P B derinliklere alternatif derinlikler denir. C noktasında özgül enerji minimumdur. Minimum özgül enerji, akımın kritik akım olduğu duruma karşılık gelir, r =. Kritik akım durumunda, iki alternatif derinlik bir derinlik haline gelir ve kritik derinlik, c olarak adlandırılır. Eğer < c, V>V c r> C kolu kritiküstü akıma karşı gelir. Eğer >c, V <V c r< BC kolu kritikaltı akıma karşılık gelir.

9 ÖZGÜL ENERJİ EĞRİSİNİN ÖZELLİKLERİ Debi, Q, arttıkça eğriler sağa doğru hareket eder. Q C > Q B > Q Q C Q B Q

10 Kritik kım Verilen bir debi, Q için; E V Q g g 4 3 de d Q g 3 Q T g 3 0, d d r 0 d d T c de d 0 r V gd ( Q / ) g Q T 3 / T g 0 0 E=E min 3 4 E =f() T d P d=t*d

11 Kritik kımın Özellikleri Rasgele bir kesit için: Dikdörtgen kesit için: c c r T g Q 3 c c c c c D E D g V Verilen debi, Q için, E = E min Verilen özgül enerji, E 0 için, Q=Q maks 3 3 g q g q c c r c c c c E g V 3 Verilen birim debi, q için, E = E min Verilen özgül enerji, E 0 için, q=q max

12 Koch Parabolü Verilen özgül enerji, E için, Q [ g ( E )] Q = Q() [q=q() dikdörtgen kesit ] Q - [q - ] çizimi Koch Parabolünü verir. / E 0 r < E 0 r < c c r = c c r = r > r > Q = Q max Q q = q max Rasgele bir kesit Dikdörtgen kesit : q

13 KNL GEÇİŞLERİ ) Basamak (Sabit genişlik) : ) Kritikaltı akım: E E z

14 KNL GEÇİŞLERİ ) Basamak (Sabit genişlik) : ) Kritiküstü akım: E E z

15 KNL GEÇİŞLERİ B) Düşü (Sabit genişlik): ) Kritikaltı akım: E E z

16 KNL GEÇİŞLERİ B) Düşü (Sabit genişlik):: ) Kritiküstü akım: E E z

17 KNL GEÇİŞLERİ C) Kanal Genişlemesi (Sabit kanal taban üksekliği): E = E

18 KNL GEÇİŞLERİ D) Kanal Daralması (Sabit kanal taban üksekliği): E = E

19 BOĞULM Basamak

20 BOĞULM- Daralma eğer

21 Özgül Kuvvet p () v H f p ğırlık merkezi x () Momentum Denklemi (x-önünde):: p p QV QV f H Pressure orce Basınç Kuvveti p γ assuming eğer f H 0 γ γ γ ρq Q ρqv γ ρqv ρq Q Q g Q g Specific orce Özgül Kuvvet

22 Özgül Kuvvet Herhangi bir kanal kesiti için hesaplanan özgül kuvvet: Q g Burada Kritik derinlikte: d d 0, d d kanal kesitinin ağırlık merkezinin derinliği. T r Q T, 3 g

23 Özgül Kuvvet Verilen bir debi, Q, için, = () - çizimi özgül kuvvet eğrisini verir Q g conjugate eşlenik derinlik depths

24 ÖZGÜL KUVVET EĞRİSİNİN ÖZELLİKLERİ Eğrinin kolu vardır: C ve BC. kım kritik olduğunda özgül kuvvet minimum olur. C kolu kritiküstü akıma karşılık gelir BC kolu kritikaltı akıma karşılık gelir. Tanımlanan ve Q için, ve derinliklerile gösterilen farklı akım tipi oluşmaktadır. Bu derinliklere eşlenik derinlik denir ve bu derinlikler kritiküstü ve kritikaltı akımlara karşılık gelir.

25 ÖZGÜL KUVVET EĞRİSİNİN ÖZELLİKLERİ Dikdörtgen kesitli kanallarda, özgül kuvvet, birim kanal genişliği için azılır: b q g

26 Hidrolik Sıçrama Hidrolik sıçrama hızlı değişen bir akımdır. Burada akım aniden kritiküstü durumdan kritikaltı duruma, önemli bir türbülans ve enerji kabı eşliğinde geçiş apar. V h V g g r > r < () () Q g Q g E E h

27 g Q g Q 8 r 3 4 ) ( h Hidrolik Sıçrama Dikdörtgen kesitli kanallar için: = eşitliğinden

28 HİDROLİK SIÇRMNIN PRTİK UYGULMLRI Enerjii kırmak için Su seviesini ükseltmek için prondaki ağırlığı artırmak için Su arıtma için kullanılan kimasalları karıştırmak için Suu havalandırmak için

29 HİDROLİK SIÇRM ÇEŞİTLERİ Dalgalı sıçrama Zaıf sıçrama Salınımlı sıçrama Daimi sıçrama Kuvvetli sıçrama

30 E- ve - Eğrilerinin Kullanımları: Örnekler ) HİDROLİK SIÇRM: e.g.l. c E E E =

31 E- ve - Eğrilerinin Kullanımları: Örnekler ) SVK KPĞI: e.g.l. b c E =E E b /γ

32 E- ve - Eğrilerinin Kullanımları: Örnekler 3) BLOK YRDIMIYL OLUŞN HİDROLİK SIÇRM: e.g.l. b c E E E b /γ

τ s =0.76 ρghj o τ cs = τ cb { 1 Sin

τ s =0.76 ρghj o τ cs = τ cb { 1 Sin : Taban eğimi J o =0.000 olan trapez kesitli bir sulama kanalı ince çakıl bir zemine sahip olup, bu malzeme için kritik kama gerilmesi τ cb =3.9 N/m dir. Bu kanaldan 35 m 3 /s lik debi iletilmesi halinde

Detaylı

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM Yavaş değişen akımların analizinde kullanılacak genel denklem bir kanal kesitindeki toplam enerji yüksekliği: H = V g + h + z x e göre türevi alınırsa: dh d V = dx dx

Detaylı

AKIŞ REJİMLERİNİN SINIFLANDIRILMASI KRİTİK DERİNLİK KAVRAMI

AKIŞ REJİMLERİNİN SINIFLANDIRILMASI KRİTİK DERİNLİK KAVRAMI AKIŞ REJİMLERİNİN SINIFLANDIRILMASI KRİTİK DERİNLİK KAVRAMI Açık kanallarda akış, yerçekimi-eğim ortak bileşeni nedeniyle oluşur, bu nedenle kanal taban eğiminin sertliği (dikliği), kesinlikle akışın hızını

Detaylı

AÇIK KANAL AKIMI. Hopa Yukarı Sundura Deresi-ARTVİN

AÇIK KANAL AKIMI. Hopa Yukarı Sundura Deresi-ARTVİN AÇIK KANAL AKIMI Hopa Yukarı Sundura Deresi-ARTVİN AÇIK KANAL AKIMI (AKA) Açık kanal akımı serbest yüzeyli akımın olduğu bir akımdır. serbest yüzey hava ve su arasındaki ara yüzey @ serbest yüzeyli akımda

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

İnşaat Mühendisliği Bölümü UYGULAMA 8 SERBEST YÜZEYLİ AKIMLAR

İnşaat Mühendisliği Bölümü UYGULAMA 8 SERBEST YÜZEYLİ AKIMLAR SORU 1: Taban genişliği 8 m olan dikdörtgen kesitli bir kanaldan 24 m 3 /s debi geçerken su derinliği 2.0 m dir. Kanal genişliğinin 6 m ye düşürüldüğü kesitte; a) 0.20 m yüksekliğinde bir eşit yerleştirildiğinde

Detaylı

Bölüm 13 AÇIK KANAL AKIŞI

Bölüm 13 AÇIK KANAL AKIŞI Akışkanlar Mekaniği: Temelleri ve Uygulamaları 3. Baskı Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2014 Bölüm 13 AÇIK KANAL AKIŞI Slaytları Hazırlayan: Prof. Dr. Suat CANBAZOĞLU Yayın hakkı The McGraw-Hill

Detaylı

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU HİDROLİK Yrd. Doç. Dr. Fatih TOSUNOĞLU Ders Hakkında Genel Bilgiler Görüşme Saatleri:---------- Tavsiye edilen kitaplar: 1-Hidrolik (Prof. Dr. B. Mutlu SÜMER, Prof. Dr. İstemi ÜNSAL. ) 2-Akışkanlar Mekaniği

Detaylı

Ercan Kahya. Hidrolik. B.M. Sümer, İ.Ünsal, M. Bayazıt, Birsen Yayınevi, 2007, İstanbul

Ercan Kahya. Hidrolik. B.M. Sümer, İ.Ünsal, M. Bayazıt, Birsen Yayınevi, 2007, İstanbul Ercan Kahya 1 Hidrolik. B.M. Sümer, İ.Ünsal, M. Bayazıt, Birsen Yayınevi, 2007, İstanbul BÖLÜM 13 AÇIK KANALLARDA AKIM: SU YÜZEYİNDE YEREL DEGİŞİMLER Tabanın Yükselmesi (eşik) (kabarma olmaması durumu)

Detaylı

Bir kanalın herhangi bir kesitinde birim ağırlıktaki akışkanın kanal tabanına göre ölçülen enerjisidir.

Bir kanalın herhangi bir kesitinde birim ağırlıktaki akışkanın kanal tabanına göre ölçülen enerjisidir. ÖZGÜL ENERJİ Bir kanalın erani bir kesitinde birim ağırlıktaki akışkanın kanal tabanına öre ölçülen enerjisidir. V E + + J e (9.6) J w V / B E d d J H θ z Referans düzlemi - sabit ali: Ef() Kanal kesitinde

Detaylı

- 2-1 0 1 2 + 4a a 0 a 4a

- 2-1 0 1 2 + 4a a 0 a 4a İKİNCİ DERECEDEN FNKSİYNLARIN GRAFİKLERİ a,b,c,z R ve a 0 olmak üzere, F : R R f() = a + b + c şeklinde tanımlanan fonksionlara ikinci dereceden bir değişkenli fonksionlar denir. Bu tür fonksionların grafikleri

Detaylı

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği

Detaylı

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır?

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır? . SINIF M Fonksionlar. f ( + a ) + vef( ) 7 olduğuna göre a kaçtır? E) TEST. f ( ) k + 6 fonksionu sabit fonksion olduğuna f ( ) göre aşağıdakilerden k E). f( ) 6 k ve f ( ) olduğuna göre k kaçtır? E)

Detaylı

Prof. Dr. Cengiz DÜNDAR

Prof. Dr. Cengiz DÜNDAR Prof. Dr. Cengiz DÜNDAR BASİT EĞİLME ETKİSİNDEKİ ELEMANLARIN TAŞIMA GÜCÜ Çekme çubuklarının temel işlevi, çekme gerilmelerini karşılamaktır. Moment kolunu arttırarak donatının daha etkili çalışmasını sağlamak

Detaylı

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN Mukavemet-II PROF. DR. MURAT DEMİR AYDIN KAYNAK KİTAPLAR Cisimlerin Mukavemeti F.P. BEER, E.R. JOHNSTON Mukavemet-2 Prof.Dr. Onur SAYMAN, Prof.Dr. Ramazan Karakuzu Mukavemet Mehmet H. OMURTAG 1 SİMETRİK

Detaylı

HİDROLİK KARARLI UNİFORM OLMAYAN AÇIK KANAL HİDROLİĞİ PROBLEMLER 3

HİDROLİK KARARLI UNİFORM OLMAYAN AÇIK KANAL HİDROLİĞİ PROBLEMLER 3 HİDROLİK KARARLI UNİFORM OLMAYAN AÇIK KANAL HİDROLİĞİ PROBLMLR.) Dikdörtgen kanal içerisindeki akıın biri debisi.5 /sn'dir. Bu akı için özgül enerji diagraını çizerek.5 değeri için ükün olabilecek su derinlikleri

Detaylı

7. f(x) = 2sinx cos2x fonksiyonunun. π x 3 2 A) y = 9. f(x) = 1 2 x2 3x + 4 eğrisinin hangi noktadaki teğetinin D) ( 10 3, 4 9 ) E) ( 2 3, 56

7. f(x) = 2sinx cos2x fonksiyonunun. π x 3 2 A) y = 9. f(x) = 1 2 x2 3x + 4 eğrisinin hangi noktadaki teğetinin D) ( 10 3, 4 9 ) E) ( 2 3, 56 , 006 MC Cebir Notları Gökhan DEMĐR, gdemir@ahoo.com.tr Türev TEST I 7. f() = sin cos fonksionunun. f()= sin( + )cos( ) için f'() nin eşiti nedir? A) B) C) 0 D) E) için erel minimum değeri nedir? A) B)

Detaylı

Açık Drenaj Kanallarının Boyutlandırılması. Prof. Dr. Ahmet ÖZTÜRK

Açık Drenaj Kanallarının Boyutlandırılması. Prof. Dr. Ahmet ÖZTÜRK Açık Drenaj Kanallarının Boyutlandırılması Prof. Dr. Ahmet ÖZTÜRK Drenaj kanalları, drenaj alanına ilişkin en yüksek yüzey akış debisi veya drenaj katsayısı ile belirlenen kanal kapasitesi gözönüne alınarak

Detaylı

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU HİDROLİK Yrd. Doç. Dr. Fatih TOSUNOĞLU Ders Hakkında Genel Bilgiler Görüşme Saatleri:---------- Tavsiye edilen kitaplar: 1-Hidrolik (Prof. Dr. B. Mutlu SÜMER, Prof. Dr. İstemi ÜNSAL. ) 2-Akışkanlar Mekaniği

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 kışkan Statiğine Giriş kışkan statiği (hidrostatik, aerostatik), durgun haldeki akışkanlarla

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Final Sınavı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Final Sınavı KOCEİ ÜNİVERSİTESİ Mühendislik akültesi Makina Mühendisliği ölümü Mukavemet I inal Sınavı dı Soadı : 9 Ocak 0 Sınıfı : h No : SORU : Şekildeki ucundan ankastre, ucundan serbest olan kirişinin uzunluğu

Detaylı

Bahar. Derivasyon Tünel (ler) i. Baraj. Yrd. Doç. Dr. Burhan ÜNAL Bozok Üniversitesi n aat Mühendisli i Bölümü 3.

Bahar. Derivasyon Tünel (ler) i. Baraj. Yrd. Doç. Dr. Burhan ÜNAL Bozok Üniversitesi n aat Mühendisli i Bölümü 3. 05-06 Bahar Su Yapıları II Derivasyon Tesisleri Yrd. Doç. Dr. Burhan ÜNAL Bozok Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Mühendisliği Bölümü Yozgat Yrd. Doç. Dr. Burhan ÜNAL Bozok Üniversitesi

Detaylı

BÖLÜM 4 4- TÜREV KAVRAMI 4- TÜREV KAVRAMI. Tanım y = fonksiyonunda x değişkeni x. artımını alırken y de. kadar artsın. = x.

BÖLÜM 4 4- TÜREV KAVRAMI 4- TÜREV KAVRAMI. Tanım y = fonksiyonunda x değişkeni x. artımını alırken y de. kadar artsın. = x. - TÜREV KAVRAMI - TÜREV KAVRAMI 7 iadesinin türevini alınız. Çözüm lim lim 7 7 lim 7 7 lim lim onksionunun türevini alınız. Tanım onksionunda değişkeni artımını alırken de kadar artsın. oranının giderken

Detaylı

MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: SORULAR-CEVAPLAR

MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: SORULAR-CEVAPLAR MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: 1- (24 Puan) Şekildeki 5.08 cm çaplı 38.1 m uzunluğunda, 15.24 cm çaplı 22.86 m uzunluğunda ve 7.62 cm çaplı

Detaylı

METALİK MALZEMELERİN ÇEKME DENEYİ

METALİK MALZEMELERİN ÇEKME DENEYİ METALİK MALZEMELERİN ÇEKME DENEYİ Çekme deneyi, malzemelerin statik yük altında elastik ve plastik davranışını belirlemek amacıyla uygulanır. Çekme deneyi, asıl malzemeyi temsil etmesi için hazırlanan

Detaylı

Bileşik Kesitlerde Enerji ve Momentum Düzeltme Katsayılarının Deneysel İrdelenmesi 1

Bileşik Kesitlerde Enerji ve Momentum Düzeltme Katsayılarının Deneysel İrdelenmesi 1 İMO Teknik Dergi, 2004 3323-3334, Yazı 223 Bileşik Kesitlerde Enerji ve Momentum Düzeltme Katsayılarının Deneysel İrdelenmesi 1 Galip SEÇKİ * Mehmet ARDIÇLIOĞLU ** eslihan SEÇKİ *** Serter ATABAY ****

Detaylı

SU YAPILARI. 2.Hafta. Genel Tanımlar

SU YAPILARI. 2.Hafta. Genel Tanımlar SU YAPILARI 2.Hafta Genel Tanımlar Havzalar-Genel özellikleri Akım nedir? ve Akım ölçümü Akım verilerinin değerlendirilmesi Akarsularda katı madde hareketi Prof.Dr.N.Nur ÖZYURT nozyurt@hacettepe.edu.tr

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık

Detaylı

Io 2 = Io 1 =0.0016

Io 2 = Io 1 =0.0016 AÇIK KANAL HİDROLİĞİ 4 / Su yüzü Profilleri Soru : Dikdörten kesitli kanalda Q0 m /s, B4 m, k50 dir Kanal tabanı şekilde österildiği ibi farklı taban eğimine sahiptir Kanalın üç farklı kısmındaki üniform

Detaylı

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir? PROL est -. m parabolü eksenini kesmiorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?. f a b c (, ) ) (, ) (, ) (, ) ( 6, ). m parabolü eksenini iki farklı noktada kesmektedir. una göre,

Detaylı

7. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

7. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 7. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.7. MALİYET TEORİSİ: YENİDEN Sabit Maliyetler (FC): Üretim miktarından bağımsız olan maliyetleri

Detaylı

YARDIRMALI MATEMATİK TÜREV FASİKÜLÜ

YARDIRMALI MATEMATİK TÜREV FASİKÜLÜ YRIRMLI MTEMTİK TÜREV FSİKÜLÜ Maksimum-Minimum Problemleri MESUT ERİYES MKSİMUM - MİNİMUM PROLEMLERİ Maksimum ve minimum problemlerini çözmek için şu kurallar ugulanır; 1) Maksimum a da minimum olması

Detaylı

Borularda Akış. Hesaplamalarda ortalama hız kullanılır.

Borularda Akış. Hesaplamalarda ortalama hız kullanılır. En yaygın karşılaşılan akış sistemi Su, petrol, doğal gaz, yağ, kan. Boru akışkan ile tam dolu (iç akış) Dairesel boru ve dikdörtgen kanallar Borularda Akış Dairesel borular içerisi ve dışarısı arasındaki

Detaylı

1998 ÖYS. 1. Üç basamaklı bir x doğal sayısının 7. iki basamaklı bir y doğal sayısına eşittir. Buna göre, y doğal sayısı en az kaç olabilir?

1998 ÖYS. 1. Üç basamaklı bir x doğal sayısının 7. iki basamaklı bir y doğal sayısına eşittir. Buna göre, y doğal sayısı en az kaç olabilir? 99 ÖYS. Üç basamaklı bir doğal saısının 7 katı, iki basamaklı bir doğal saısına eşittir. Buna göre, doğal saısı en az kaç olabilir? A) B) C) 6. Bugünkü aşları 6 ve ile orantılı olan iki kardeşin 6 ıl sonraki

Detaylı

YILDIZ TEKNİK ÜNİVERSİTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ HİDROLİK ANABİLİM DALI AKIŞKANLAR MEKANİĞİ DERSİ (PROBLEMLER 4)

YILDIZ TEKNİK ÜNİVERSİTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ HİDROLİK ANABİLİM DALI AKIŞKANLAR MEKANİĞİ DERSİ (PROBLEMLER 4) YLDZ TEKNİK ÜNİVERSİTESİ İNŞT MÜHENDİSLİĞİ BÖLÜMÜ HİDROLİK NBİLİM DL KŞKNLR MEKNİĞİ DERSİ (PROBLEMLER ).1) Şekilde görülen ve noktasından mafsallı dikdörtgen kaağın uzunluğu.5 m, şekle dik derinliği 1.

Detaylı

DÜZENLİ AKIMLARDA ENERJİ DENKLEMİ VE UYGULAMALARI

DÜZENLİ AKIMLARDA ENERJİ DENKLEMİ VE UYGULAMALARI DÜZENLİ AKIMLARDA ENERJİ DENKLEMİ VE UYGULAMALARI, iş yapabilme yeteneği olarak tanımlanır(kg.m yada Kwh). Bir sıvının enerjisi, sıvı birim ağırlığının sahip olduğu iş yapabilme yeteneğidir. 1. Potansiyel

Detaylı

BÖLÜM 9 AÇIK KANAL AKIMLARI

BÖLÜM 9 AÇIK KANAL AKIMLARI 8.03.03 BÖLÜM 9 ÇIK KNL KIMLI 8.03.03 tmosferle Temasta Olan Serbest Yüzeyli kımlar. Sulama Kanalları, Kanalizasyon Boruları, ren Borularındaki kımlar Ve Tabi karsular çık Kanal kımlarıdır. çık Kanaldaki

Detaylı

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25 İÇİNDEKİLER Ön Söz...2 Noktanın Analitik İncelenmesi...3 Doğrunun Analitiği...11 Analitik Düzlemde Simetri...25 Analitik Sistemde Eşitsizlikler...34 Çemberin Analitik İncelenmesi...40 Elips...58 Hiperbol...70

Detaylı

713 SU TEMİNİ VE ÇEVRE ÖDEV #1

713 SU TEMİNİ VE ÇEVRE ÖDEV #1 713 SU TEMİNİ VE ÇEVRE ÖDEV #1 Teslim tarihi:- 1. Bir şehrin 1960 yılındaki nüfusu 35600 ve 1980 deki nüfusu 54800 olarak verildiğine göre, bu şehrin 1970 ve 2010 yıllarındaki nüfusunu (a) aritmetik artışa

Detaylı

KAYMA GERİLMESİ (ENİNE KESME)

KAYMA GERİLMESİ (ENİNE KESME) KAYMA GERİLMESİ (ENİNE KESME) Demir yolu traversleri çok büyük kesme yüklerini taşıyan kiriş olarak davranır. Bu durumda, eğer traversler ahşap malzemedense kesme kuvvetinin en büyük olduğu uçlarından

Detaylı

Açık Kanallarda Debi Ölçümü. Hazırlayan: Onur Dündar

Açık Kanallarda Debi Ölçümü. Hazırlayan: Onur Dündar Açık Kanallarda Debi Ölçümü Hazırlayan: Onur Dündar Doğal nehirlerde debi ölçümü ğ ç Orta nokta yöntemi ile debi hesabı Debi ölçümünde doğru kesitin belirlenmesi Dbiöl Debi ölçümü ü yapılacak kkesit nehrin

Detaylı

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş Mukavemet-I Yrd.Doç.Dr. Akın Ataş Bölüm 5 Eğilmede Kirişlerin Analizi ve Tasarımı Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

YEREL KAYIPLAR. Borudaki yerel fiziki şekil değişimleri akımın yapısını mansaba doğru uzunca bir mesafe etkileyebilir.

YEREL KAYIPLAR. Borudaki yerel fiziki şekil değişimleri akımın yapısını mansaba doğru uzunca bir mesafe etkileyebilir. YEREL KAYIPLAR Bir boru hattı üzerinde akımı rahatsız edebilecek her çeşit yerel değişim bir miktar enerjinin kaybolmasına sebep olur. Örneğin boru birleşimleri, düğüm noktaları, çap değiştiren parçalar,

Detaylı

2. Basınç ve Akışkanların Statiği

2. Basınç ve Akışkanların Statiği 2. Basınç ve Akışkanların Statiği 1 Basınç, bir akışkan tarafından birim alana uygulanan normal kuvvet olarak tanımlanır. Basıncın birimi pascal (Pa) adı verilen metrekare başına newton (N/m 2 ) birimine

Detaylı

Ercan Kahya. Hidrolik. B.M. Sümer, İ.Ünsal, M. Bayazıt, Birsen Yayınevi, 2007, İstanbul

Ercan Kahya. Hidrolik. B.M. Sümer, İ.Ünsal, M. Bayazıt, Birsen Yayınevi, 2007, İstanbul Ercan Kahya 1 Hidrolik. B.M. Sümer, İ.Ünsal, M. Bayazıt, Birsen Yayınevi, 2007, İstanbul BÖLÜM 10 BORULAR İÇERİSİNDE AKIM 10.5. u; Bir önceki bölümde (10.3 'to / p ile 2 f V ENERJI KAYBI 10.5. HIDROLIK

Detaylı

Örnek...1 : f (x)=2x 2 5x+6 parabolü K(2,p) noktasından geçiyorsa p kaçtır? Örnek...2 : Aşağıda çeşitli parabol grafikleri verilmiştir incele yi niz.

Örnek...1 : f (x)=2x 2 5x+6 parabolü K(2,p) noktasından geçiyorsa p kaçtır? Örnek...2 : Aşağıda çeşitli parabol grafikleri verilmiştir incele yi niz. a, b,c R,a 0 olmak koşulula f ()=a 2 +b+c fonksionuna ikinci dereceden bir değişkenli fonksion ve bu fonksionun belirttiği eğrie de parabol denir. Uarı ir parabolün grafiği başkatsaı olan a saısına bağlı

Detaylı

Bölüm 8: Borularda sürtünmeli Akış

Bölüm 8: Borularda sürtünmeli Akış Bölüm 8: Borularda sürtünmeli Akış Laminer ve Türbülanslı Akış Laminer Akış: Çalkantısız akışkan tabakaları ile karakterize edilen çok düzenli akışkan hareketi laminer akış olarak adlandırılır. Türbülanslı

Detaylı

İÇİNDEKİLER. Tekrar Zamanı TÜREVİN GEOMETRİK YORUMU ÇÖZÜMLÜ TEST 1... 52 ÇÖZÜMLÜ TEST 2... 54 MAKS. - MİN. PROBLEMLERİ. Uygulama Zamanı 1...

İÇİNDEKİLER. Tekrar Zamanı TÜREVİN GEOMETRİK YORUMU ÇÖZÜMLÜ TEST 1... 52 ÇÖZÜMLÜ TEST 2... 54 MAKS. - MİN. PROBLEMLERİ. Uygulama Zamanı 1... İÇİNDEKİLER TÜREVİN GEOMETRİK YORUMU Teğet ve Normal Doğruların Eğimi... Teğet Doğrusunun Eğim Açısı... Teğet ve Normal Denklemleri... Eğrinin Teğetine Paralel ve Dik Doğrular... Grafikte Teğet I... 5

Detaylı

Tablo 4.2 Saat Yağış yüksekliği (mm)

Tablo 4.2 Saat Yağış yüksekliği (mm) Soru-) 97 yılının ayları boyunca Dicle Barajı havzasında hesaplanan potansiyel evapotranspirasyon miktarları ve ölçülen aylık yağış yükseklikleri Tablo. de verilmiştir. Zeminin tutabileceği maksimum nemin

Detaylı

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir.

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. STATIK VE MUKAVEMET 4. Ağırlık Merkezi AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük bir alana etki eden birbirlerine

Detaylı

ÇEV-220 Hidrolik. Çukurova Üniversitesi Çevre Mühendisliği Bölümü Yrd. Doç. Dr. Demet KALAT

ÇEV-220 Hidrolik. Çukurova Üniversitesi Çevre Mühendisliği Bölümü Yrd. Doç. Dr. Demet KALAT ÇEV-220 Hidrolik Çukurova Üniversitesi Çevre Mühendisliği Bölümü Yrd. Doç. Dr. Demet KALAT Borularda Türbülanslı Akış Mühendislik uygulamalarında akışların çoğu türbülanslıdır ve bu yüzden türbülansın

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR-II BORU ve DİRSEKLERDE ENERJİ KAYBI DENEYİ 1.Deneyin Adı: Boru ve dirseklerde

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

HİDROJEOLOJİ. Hidrolojik Çevrim Bileşenleri Akış ve süzülme. 3.Hafta. Prof.Dr.N.Nur ÖZYURT

HİDROJEOLOJİ. Hidrolojik Çevrim Bileşenleri Akış ve süzülme. 3.Hafta. Prof.Dr.N.Nur ÖZYURT HİDROJEOLOJİ 3.Hafta Hidrolojik Çevrim Bileşenleri Akış ve süzülme Prof.Dr.N.Nur ÖZYURT nozyurt@hacettepe.edu.tr Hidrolojik Çevrim Bileşenleri Buharlaşma-terleme Yağış Yüzeysel akış Yeraltına süzülme ve

Detaylı

Akışkanların Dinamiği

Akışkanların Dinamiği Akışkanların Dinamiği Akışkanların Dinamiğinde Kullanılan Temel Prensipler Gaz ve sıvı akımıyla ilgili bütün problemlerin çözümü kütlenin korunumu, enerjinin korunumu ve momentumun korunumu prensibe dayanır.

Detaylı

YTÜ İnşaat Fakültesi Geoteknik Anabilim Dalı. Ders 5: İÇTEN DESTEKLİ KAZILAR. Prof.Dr. Mehmet BERİLGEN

YTÜ İnşaat Fakültesi Geoteknik Anabilim Dalı. Ders 5: İÇTEN DESTEKLİ KAZILAR. Prof.Dr. Mehmet BERİLGEN YTÜ İnşaat Fakültesi Geoteknik Anabilim Dalı Ders 5: İÇTEN DESTEKLİ KAZILAR Prof.Dr. Mehmet BERİLGEN İçten Destekli Kazılar İçerik: Giriş Uygulamalar Tipler Basınç diagramları Tasarım Toprak Basıncı Diagramı

Detaylı

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek Boyut analizi, göz önüne alınan bir fiziksel olayı etkileyen deneysel değişkenlerin sayısını ve karmaşıklığını azaltmak için kullanılan bir yöntemdir. Akışkanlar mekaniğinin gelişimi ağırlıklı bir şekilde

Detaylı

Momentum iletimi. Kuvvetin bileşenleri (Momentum akısının bileşenleri) x y z x p + t xx t xy t xz y t yx p + t yy t yz z t zx t zy p + t zz

Momentum iletimi. Kuvvetin bileşenleri (Momentum akısının bileşenleri) x y z x p + t xx t xy t xz y t yx p + t yy t yz z t zx t zy p + t zz 1. Moleküler momentum iletimi Hız gradanı ve basınç nedenile Kesme gerilmesi (t ij ) ve basınç (p) Momentum iletimi Kuvvetin etki ettiği alana dik ön (momentum iletim önü) Kuvvetin bileşenleri (Momentum

Detaylı

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1 Y. Doç. Dr. Güray Doğan 1 Kinematik Kinematik: akışkanların hareketlerini tanımlar Kinematik harekete sebep olan kuvvetler ile ilgilenmez. Akışkanlar mekaniğinde

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08 LİSNS YRLŞTİRM SINVI- MTMTİK-GMTRİ SINVI MTMTİK TSTİ SRU KİTPÇIĞI 08 U SRU KİTPÇIĞI LYS- MTMTİK TSTİ SRULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik Testi

Detaylı

MATERIALS. Basit Eğilme. Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf. Lecture Notes: J. Walt Oler Texas Tech University

MATERIALS. Basit Eğilme. Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf. Lecture Notes: J. Walt Oler Texas Tech University CHAPTER BÖLÜM MECHANICS MUKAVEMET OF I MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Basit Eğilme Lecture Notes: J. Walt Oler Teas Tech Universit Düzenleen: Era Arslan 2002 The McGraw-Hill

Detaylı

TÜRKİYE GENELİ DENEME SINAVI LYS - 1 MATEMATİK

TÜRKİYE GENELİ DENEME SINAVI LYS - 1 MATEMATİK TÜRKİY GNLİ SINVI LYS - 1 7 MYIS 017 LYS 1 - TSTİ 1. u testte 80 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz. + k+ n 15 + 10 1. : = + 6 16 + 8 0 + 8 olduğuna

Detaylı

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 1. Asal sayılar 2. Bir tam sayının bölenleri 3. Modüler aritmetik 4. Bölünebilme kuralları 5. Lineer modüler aritmetik 6. Euler

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI

BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI YILLAR 966 967 968 969 97 97 97 975 976 977 978 980 98 98 98 98 985 986 987 988 989 990 99 99 99 99 995 996 997 998 006 007 ÖSS / ÖSS-I ÖYS / ÖSS-II 5 6 6 5

Detaylı

EKSTREMUM PROBLEMLERİ. Örnek: Çözüm: Örnek: Çözüm:

EKSTREMUM PROBLEMLERİ. Örnek: Çözüm: Örnek: Çözüm: EKSTREMUM PROBLEMLERİ Ekstremum Problemleri Bu tür problemlerde bir büyüklüğün (çokluğun alabileceği en büyük (maksimum değer ya da en küçük (minimum değer bulunmak istenir. İstenen çokluk bir değişkenin

Detaylı

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI BİREYSEL YARIŞMA SORULARI CEVAPLARI CEVAP KAĞIDI ÜZERİNE YAZINIZ. SORU KİTAPÇIĞINI KARALAMA MAKSATLI KULLANABİLİRSİNİZ 1

Detaylı

Örnek...1 : Örnek...3 : Örnek...2 :

Örnek...1 : Örnek...3 : Örnek...2 : FONKSİYONLR FONKSİYONUN EKSENLERİ KESİM NOKTLRI fonksionunun ekseninin kestiği k noktaların m apsisleri b, c, e dir. u noktalar a b c f()= denkleminin n kök leridir p in eksenini kestiği nokta ise (,p)

Detaylı

Hidroloji Uygulaması-7

Hidroloji Uygulaması-7 Hidroloji Uygulaması-7 1-) Bir akım gözlem istasyonunda anahtar eğrisinin bulunması için aşağıda verilmiş olan ölçümler yapılmıştır: Anahtar eğrisini çiziniz Su seviyesi (cm) 3 4 5 6 8 1 15 5 Debi (m 3

Detaylı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı 1. Basma Deneyinin Amacı Mühendislik malzemelerinin çoğu, uygulanan gerilmeler altında biçimlerini kalıcı olarak değiştirirler, yani plastik şekil değişimine uğrarlar. Bu malzemelerin hangi koşullar altında

Detaylı

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012 Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi e Ku ru lu Baş kan lı ğı nın.8. ta rih ve sa ı lı ka ra rı ile ka bul edi len ve - Öğ re tim Yı lın dan iti ba ren u gu lana cak olan prog ra ma gö re ha zır

Detaylı

İ çindekiler. xvii GİRİŞ 1 TEMEL AKIŞKANLAR DİNAMİĞİ BERNOULLİ DENKLEMİ 68 AKIŞKANLAR STATİĞİ 32. xvii

İ çindekiler. xvii GİRİŞ 1 TEMEL AKIŞKANLAR DİNAMİĞİ BERNOULLİ DENKLEMİ 68 AKIŞKANLAR STATİĞİ 32. xvii Last A Head xvii İ çindekiler 1 GİRİŞ 1 1.1 Akışkanların Bazı Karakteristikleri 3 1.2 Boyutlar, Boyutsal Homojenlik ve Birimler 3 1.2.1 Birim Sistemleri 6 1.3 Akışkan Davranışı Analizi 9 1.4 Akışkan Kütle

Detaylı

Surface Processes and Landforms (12.163/12.463) Fall K. Whipple

Surface Processes and Landforms (12.163/12.463) Fall K. Whipple MIT Açık Ders Malzemeleri http://ocw.mit.edu 12.163./12.463 Yeryüzü Süreçleri ve Yüzey Şekillerinin Evrimi 2004 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms

Detaylı

Akışkan Kinematiği 1

Akışkan Kinematiği 1 Akışkan Kinematiği 1 Akışkan Kinematiği Kinematik, akışkan hareketini matematiksel olarak tanımlarken harekete sebep olan kuvvetleri ve momentleri gözönüne almadan; Yerdeğiştirmeler Hızlar ve İvmeler cinsinden

Detaylı

KESİT TESİR DİYAGRAMLARI YAPI STATİĞİ 1

KESİT TESİR DİYAGRAMLARI YAPI STATİĞİ 1 KESİT TESİR DİYAGRAMLARI YAPI STATİĞİ 1 GİRİŞ Sabit yu klerden meydana gelen kesit tesiri fonksiyonlarından elde edilen grafiklere Kesit Tesir Diyagramları denir. Du zlem c ubuk sistemlerde M, N, T (V)

Detaylı

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI SORU 1. Köşeleri (1,4) (3,0) (7,2) noktaları olan ABC üçgeninin bir ikizkenar dik üçgen (İpucu:, ve vektörlerinden yararlanın) SORU 2. Bir ABC üçgeninin

Detaylı

Akarsular hidrolojik çevrimin en önemli elemanlarıdır. Su yapılarının projelendirilmesi ve işletilmesinde su miktarının bilinmesi gerekir.

Akarsular hidrolojik çevrimin en önemli elemanlarıdır. Su yapılarının projelendirilmesi ve işletilmesinde su miktarının bilinmesi gerekir. AKARSU AKIMLARI Akarsular hidrolojik çevrimin en önemli elemanlarıdır. Su yapılarının projelendirilmesi ve işletilmesinde su miktarının bilinmesi gerekir. Örneğin taşkınların kontrolü ile ilgili çalışmalarda

Detaylı

EĞİLME. Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır.

EĞİLME. Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır. EĞİLME Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır. EĞİLME Mühendislikte en önemli yapı ve makine elemanları mil ve kirişlerdir. Bu bölümde, mil ve kirişlerde

Detaylı

İnşaat Mühendisliği Bölümü Uygulama VIII ÇÖZÜMLER

İnşaat Mühendisliği Bölümü Uygulama VIII ÇÖZÜMLER Soru 1 : Şekildeki hazne boru sisteminde sıkışmaz ve ideal akışkanın (su) permanan bir akımı mevcuttur. Su yatay eksenli ABC borusu ile atmosfere boşalmaktadır. Mutlak atmosfer basıncını 9.81 N/cm 2 ve

Detaylı

Prof. Dr. Cengiz DÜNDAR

Prof. Dr. Cengiz DÜNDAR Prof. Dr. Cengiz DÜNDAR TABLALI KESİTLER Betonarme inşaatın monolitik özelliğinden dolayı, döşeme ve kirişler birlikte çalışırlar. Bu nedenle kesit hesabı yapılırken, döşeme parçası kirişin basınç bölgesine

Detaylı

Kirişlerde Kesme (Transverse Shear)

Kirişlerde Kesme (Transverse Shear) Kirişlerde Kesme (Transverse Shear) Bu bölümde, doğrusal, prizmatik, homojen ve lineer elastik davranan bir elemanın eksenine dik doğrultuda yüklerin etkimesi durumunda en kesitinde oluşan kesme gerilmeleri

Detaylı

MAKİNE ELEMANLARI DERS SLAYTLARI

MAKİNE ELEMANLARI DERS SLAYTLARI MAKİNE ELEMANLARI DERS SLAYTLARI YORULMA P r o f. D r. İ r f a n K A Y M A Z P r o f. D r. A k g ü n A L S A R A N A r ş. G ör. İ l y a s H A C I S A L İ HOĞ LU Aloha Havayolları Uçuş 243: Hilo dan Honolulu

Detaylı

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek Boyut analizi, göz önüne alınan bir fiziksel olayı etkileyen deneysel değişkenlerin sayısını ve karmaşıklığını azaltmak için kullanılan bir yöntemdir. kışkanlar mekaniğinin gelişimi ağırlıklı bir şekilde

Detaylı

Akışkanların Dinamiği

Akışkanların Dinamiği Akışkanların Dinamiği Akışkanların Dinamiğinde Kullanılan Temel Prensipler Gaz ve sıvı akımıyla ilgili bütün problemlerin çözümü kütlenin korunumu, enerjinin korunumu ve momentumun korunumu prensibe dayanır.

Detaylı

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 4. Ağırlık Merkezi Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük

Detaylı

AÇIK KANALLARDA DEBİ VE EŞİK YÜKSEKLİĞİ DEĞİŞİMİNİN SU YÜZEYİ PROFİLLERİNE ETKİSİNİN DENEYSEL OLARAK İNCELENMESİ

AÇIK KANALLARDA DEBİ VE EŞİK YÜKSEKLİĞİ DEĞİŞİMİNİN SU YÜZEYİ PROFİLLERİNE ETKİSİNİN DENEYSEL OLARAK İNCELENMESİ AÇIK KANALLARDA DEBİ VE EŞİK YÜKSEKLİĞİ DEĞİŞİMİNİN SU YÜZEYİ PROFİLLERİNE ETKİSİNİN DENEYSEL OLARAK İNCELENMESİ Cahit Yerdelen, Cansu Özyaman Ege Üniversitesi, Yrd. Doç. Dr., İzmir, Ege Üniversitesi,

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN TEKNOLOJİNİN BİLİMSEL İLKELERİ 3 Malzemelerin esnekliği Gerilme Bir cisme uygulanan kuvvetin, kesit alanına bölümüdür. Kuvvetin yüzeye dik olması halindeki gerilme "normal gerilme" adını alır ve şeklinde

Detaylı

HADDELEME YOLU İLE İMALAT

HADDELEME YOLU İLE İMALAT HADDELEME YOLU İLE İMALAT TANIM : İki tane döner merdanenin basma kuvvetinin etkisiyle araya giren malzemeye soğuk yada sıcak olarak plastik şekil verme işlemine haddeleme denir. Haddeleme yoluyla ; kare,

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METODLAR -I BERNOULLİ DENEYİ FÖYÜ 2014 1. GENEL BİLGİLER Bernoulli denklemi basınç, hız

Detaylı

Akarsu Geçişleri Akarsu Geçişleri

Akarsu Geçişleri Akarsu Geçişleri Akarsu Geçişleri Akarsu Geçişleri Akarsu Geçişleri Akarsu Geçişleri Akarsu Geçişleri Akarsu Geçişleri KÖPRÜLER Köprü yapımı ile; Akarsu tabanında oyulmalar Yatak değişmeleri Membada su kabarmaları meydana

Detaylı

DENEY 2. Şekil 2.1. 1. KL-13001 modülünü, KL-21001 ana ünitesi üzerine koyun ve a bloğunun konumunu belirleyin.

DENEY 2. Şekil 2.1. 1. KL-13001 modülünü, KL-21001 ana ünitesi üzerine koyun ve a bloğunun konumunu belirleyin. DENEY 2 2.1. AC GERİLİM ÖLÇÜMÜ 1. AC gerilimlerin nasıl ölçüldüğünü öğrenmek. 2. AC voltmetrenin nasıl kullanıldığını öğrenmek. AC voltmetre, AC gerilimleri ölçmek için kullanılan kullanışlı bir cihazdır.

Detaylı

Kesit Tesirleri Tekil Kuvvetler

Kesit Tesirleri Tekil Kuvvetler Statik ve Mukavemet Kesit Tesirleri Tekil Kuvvetler B ÖĞR.GÖR.GÜLTEKİN BÜYÜKŞENGÜR Çevre Mühendisliği Mukavemet Şekil Değiştirebilen Cisimler Mekaniği Kesit Tesiri ve İşaret Kabulleri Kesit Tesiri Diyagramları

Detaylı

Hidrograf. Hiyetograf. Havza. Hidrograf. Havza Çıkışı. Debi (m³/s) Zaman (saat)

Hidrograf. Hiyetograf. Havza. Hidrograf. Havza Çıkışı. Debi (m³/s) Zaman (saat) Hidrograf Analizi Hidrograf Hiyetograf Havza Debi (m³/s) Havza Çıkışı Hidrograf Zaman (saat) Hidrograf Q Hiyetograf Hidrograf t Hidrograf Gecikme zamanı Q Pik Debi Yükselme Eğrisi (kabarma) A B C Alçalma

Detaylı

TÜREVİN GEOMETRİK YORUMU

TÜREVİN GEOMETRİK YORUMU TÜREVİN GEOMETRİK YORUMU f :R R, =f ( fonksionuna düzlemde A karşılık gelen f( +h eğri anda ki =f( P gibi olsun. f( Eğrinin P(,f( noktasındaki teğetlerini +h araştıralım. Bunun için P(,f( noktasının sağıda

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları. KUVVET SİSTEMLERİ - İki Boutlu

Detaylı

DİŞLİ ÇARKLAR III: Makine Elemanları 2 HELİSEL DİŞLİ ÇARKLAR. Doç.Dr. Ali Rıza Yıldız

DİŞLİ ÇARKLAR III: Makine Elemanları 2 HELİSEL DİŞLİ ÇARKLAR. Doç.Dr. Ali Rıza Yıldız Makine Elemanları 2 DİŞLİ ÇARKLAR III: HELİSEL DİŞLİ ÇARKLAR Doç.Dr. Ali Rıza Yıldız 1 Bu bölümden elde edilecek kazanımlar Helisel ın Tanımı Helisel ın Geometrik Özellikleri Helisel da Ortaya Çıkan Kuvvetler

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

MATEMATÝK GEOMETRÝ DENEMELERÝ

MATEMATÝK GEOMETRÝ DENEMELERÝ NM 1 MTMTÝK OMTRÝ NMLRÝ 1. o o = 75 ve y = 5 olduğuna göre,. 3 + 8 = 0 sin( y)cos( + y) + sin( + y)cos( y) sin( y)sin( + y) cos( + y)cos( y) denkleminin kaç tane farklı reel kökü vardır? ifadesinin eşiti

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı