Aynı boyutlu tutarlı sistemlerin sistem imzası ile karşılaştırılması

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Aynı boyutlu tutarlı sistemlerin sistem imzası ile karşılaştırılması"

Transkript

1 300 Bulut Yaman Erciyes Ünirsitesi Fen Bilimleri Enstitüsü Dergisi 30(): Aynı boyutlu tutarlı sistemlerin sistem imzası ile karşılaştırılması Yunus BULUT Hikmet YAMAN İnönü Ünirsitesi İktisadi İdari Bilimler Fakültesi Ekonometri Bölümü Malatya-Türkiye Çine Anadolu Öğretmen Lisesi Çine-Aydın-Türkiye Anahtar Kelimeler: Tutarlı sistemler başarı yol kümesi kesen küme sistem imzası sıralı istatistikler stokastik sıralama sağkalım hız sıralaması olasılıksal oran sıralaması. ÖZET Bu çalışmada bağımsız aynı dağılımlı n boyutlu tutarlı sistemlerin sistem imzası ile stokastik sağkalım hız olasılıksal oran sıralaması anlamında nasıl karşılaştırıldıklarını inceledik. Comparing coherent systems of same sizes via system signature Key Words: Coherent systems path set cut set system signature order statistics stochastic ordering hazard rate ordering likelihood ratio ordering. ABSTRACT In this study we examined how to compare the coherent systems of same sizes n whose components ha independent and identically distributed (i.i.d.) lifetimes through system signature in termsof stochastic ordering (st) hazard rate ordering (hr) likelihood ratio ordering (lr). *Sorumlu Yazar (Corresponding author) e-posta: ybulut79@gmail.com

2 30 Bulut Yaman Erciyes Ünirsitesi Fen Bilimleri Enstitüsü Dergisi 30(): Giriş ile gösterilir. Ayrıca i. bileşenin yaşam süresinin herhangi bir t anından büyük olma olasılığına bileşen günilirliği 0. yüzyılda teknolojinin gelişmesi ile birlikte ürünlerin ömürleri yaşam kaliteleri günlük hayatımızda önemli bir denir içind ir. yer tutmaya başlamıştır. Belirli bir t zamanından sonra ürünün yaşam kalitesi ya t zamanda kalan ömrü istatistiksel Benzer şekilde sistemin durumu olarak önem arz etmekte bu tür durumlar sistem günilirliği ile ölçülmektedir. Sistem günilirliği ile ilgili çalışmalar. Dünya Savaşından sonra daha da önem kazanmıştır. Günilirlik Teorisi ile ilgili temel kavramlar dönüşümü ile tanımlanır. olmak için []-[3] incelenebilir. üzere fonksiyonu yapı fonksiyonu olarak adlandırılır. Belli bir çalışma sahasındaki sistemlerden hangisinin daha Sistemdeki bileşen sayısı olan n sistemin boyutu olarak adlandırılır kullanışlı olduğu durumu daha iyi ifade edebildiği ya daha []-[3]. uzun ömürlü olduğunu belirleyebilmek için sistemlerin karşılaştırılması gerekir. Tutarlı sistemlerin Tanım.. Sistemin t anında çalışıyor olma olasılığına yani karşılaştırılmasında sistem imzası önemli bir yer tutmaktadır. olma olasılığına sistem günilirliği denir. n boyutlu bir Sistem İmzası kavramı ilk kez Samaniego (985) tarafından sistemin günilirliği eşitliği ile ortaya atılmıştır []. Sistem imzası ile ilgili daha detaylı bilgiler için [5] incelenebilir. Kochar vd. (999) aynı hesaplanır. Burada p=( ) dir []-[3]. boyutlu i.i.d. bileşenli tutarlı sistemlerin sistem imzası ile nasıl karşılaştırıldığını göstermiştir [6]. Tanım.3. Bir sistem a) yapı fonksiyonu her bir bileşen için Navarro vd. (005) ise sistem imzası yardımıyla aynı boyutlu bağımlı bileşenlere sahip tutarlı sistemlerin sıralamalarını incelemiştir [7]. Bunlara ilaten Navarro vd. (008) farklı boyutlu tutarlı sistemlerin sistem imzası ile sıralamalarını araştırmıştır [8]. Bileşen sayısı az olan sistemlerin sistem imzasını hesaplamak kolay iken çok boyutlu tutarlı sistemlerin imzasını hesaplamak oldukça zordur. Bu problemi ortadan kaldırmak için Da vd. (0) çok boyutlu sistemleri alt sistemlere ayırma prensibine dayanan bu tür sistemlerin imzasının hesaplanmasını kolaylaştıran iki formül geliştirmiştir [9]. Sistem imzası sistemi oluşturan her bileşenin bilgisi ile hesaplanmaktadır. Bu durum bazen sistem imzasının hesaplanmasını güçleştirmektedir. Bu tür durumlar için Marichal vd. (03) sistem imzasının türev yardımıyla yapı fonksiyonundan direkt hesaplanabileceğini göstermiştir [0]. Bulut Yaman (03) farklı boyutlu tutarlı sistemlerin Sistem İmzası ile nasıl karşılaştırıldıklarını incelemiştir []. Bu çalışmada i.i.d. bileşenli aynı boyutlu tutarlı sistemlerin Sistem İmzası ile nasıl karşılaştırıldıklarını inceledik.. Tutarlı Sistemler Günilirlik teorisinde çoğu uygulama tutarlı sistemlerin dizaynı performansı üzerine yapılmaktadır. Tutarlı sistemlerin tanımını rmeden önce bir sistemin bileşenlerinin yapı fonksiyonunun nasıl tanımlandığını receğiz. Tanım.. için i. bileşenin durumu monoton azalmayan ise b) sistem sadece ilişkili bileşenlerden oluşuyor ise tutarlı sistem adını alır. Tanımdan da anlaşılacağı gibi tutarlı sistemlerde başarısız bir bileşen yerine çalışan bir bileşen yerleştirildiğinde sistem performansı etkilenir. Ayrıca her bir bileşen sistemin başarısını ya başarısızlığını etkiler. i. bileşenin ilişkili bileşen olması her için önermesi ile ifade edilir []-[3]. Bir sistemin yapı fonksiyonu belirlenirken sistemin başarı yol kümeleri kesen kümelerinden faydalanılmaktadır. Tanım.. P sistemin bir kısım bileşenlerinden oluşan bir küme olsun. P kümesindeki bütün bileşenler çalıştığında sistem de çalışıyorsa P ye başarı yol kümesi denir.başka bir başarı yol kümesini kapsamayan başarı yol kümesi minimal başarı yol kümesi olarak adlandırılır []-[3]. Tanım.5. K sistemin bir kısım bileşenlerinden oluşan bir küme olsun. K kümesindeki bütün bileşenler başarısız olduğunda sistem de başarısız oluyorsa K ya kesen küme denir. Başka bir kesen kümeyi kapsamayan kesen kümeye minimal kesen küme denir []- [3]. P bir minimal başarı yol kümesi A P nin özalt kümesi olsun. O zaman kümesi bir kesen kümedir. K bir minimal kesen küme B K nin özalt kümesi olsun. O zaman kümesi bir başarı yol kümesidir. Burada kümeleri minimal olmak zorunda değildir. Bir sistemin yapı fonksiyonu Sistemin minimal başarı yol kümeleri ya minimal kesen kümeleri ile ifade edilebilir. kümeleri sırasıyla sistemin minimal başarı yol minimal kesen kümeleri kümesi olsun. O zamansistemin yapı fonksiyonu dönüşümü ile tanımlanır. Burada n sistemdeki bileşenlerin sayısıdır. dönüşümü bir Bernoulli değişkenidir ya operatörleri ile belirlenebilir []-[3]. ( Burada kümeleri sırasıyla A B kümelerinin tümleyen kümeleridir.)

3 Örnek.. 30 Bulut Yaman Erciyes Ünirsitesi Fen Bilimleri Enstitüsü Dergisi 30(): Örnek.3. 3 Şekil. Seri Sistem 3 Şekil de rilen sistem seri sistem olarak adlandırılmaktadır minmaks operatörü yardımıylasistemin yapı fonksiyonu günilirliği sırasıyla Şekil 3 olarak elde edilir. Eğer sistem bileşenleri özdeş ise (yani ise) p=(pppp) olmak üzere sistemin yapı fonksiyonu günilirliği sırasıyla ifade edilir. ile Şekil 3 de rilen sistemseri-paralel sistem olarak adlandırılmaktadır minmaks operatörüne göre sistemin yapı fonksiyonu günilirliği sırasıyla Örnek.. olarak elde edilir. Eğer sistem bileşenleri özdeş ise sistemin yapı fonksiyonu günilirliği sırasıyla 3 Şekil. Paralel Sistem Şekil de rilen sistem paralel sistem olarak adlandırılmaktadır minmaks operatörü yardımıyla sistemin yapı fonksiyonu günilirliği sırasıyla Örnek.. Şekil 3 Şekil de rilen sistemseri-paralel sistem olarak adlandırılmaktadır minmaks operatörüne göre sistemin yapı fonksiyonu günilirliği sırasıyla olarak elde edilir. Eğer sistem bileşenleri özdeş ise sistemin yapı fonksiyonu günilirliği sırasıyla olarak elde edilir. Eğer sistem bileşenleri özdeş ise yapı fonksiyonu günilirliği sırasıyla

4 Örnek Bulut Yaman Erciyes Ünirsitesi Fen Bilimleri Enstitüsü Dergisi 30(): Örnek Şekil 5. den ardıl çıkışlı: G Sistem Şekil 5 de rilen sistem den ardıl çıkışlı:g Sistem olarak adlandırılmaktadır bu sistemin minimal başarı yol kümeleri {}{3} {3} olduğundan maksmin operatörüne göre sistemin yapı fonksiyonu günilirliği sırasıyla 3 5 Şekil 7. Köprü Sistemi Şekil 7 de rilen sistem Köprü Sistemi olarak adlandırılmaktadır. Bu sistemin minimal başarı kümeleri {}{5}{35} {3} olduğundan maksmin operatörü yardımıyla sistemin yapı fonksiyonu günilirliği sırasıyla olarak elde edilir. Eğer sistem bileşenleri özdeş ise sistemin yapı fonksiyonu günilirliği sırasıyla Örnek.6. 3 olarak elde edilir. Eğer sistem bileşenleri özdeş ise sistemin yapı fonksiyonu günilirliği sırasıyla 3 3 Şekil 6. den çıkışlı: F Sistem Şekil 6 de rilen sistem den çıkışlı:f Sistem olarak adlandırılmaktadır minmaks operatörüne göre sistemin yapı fonksiyonu günilirliği sırasıyla olarak elde edilir. Eğer sistem bileşenleri özdeş ise sistemin yapı fonksiyonu günilirliği sırasıyla 3. Sistem imzası özellikleri n bileşenli bir sistemin bileşen yaşam süreleri bu yaşam sürelerinin sıralı istatistikleri sistemin yaşam süresi T olsun. O zaman sistemin başarısızlık zamanı (ya T yaşam süresi) sıralı istatistiği ile ilişkili olacaktır. Samaniego (985) bu ilişkiyi temel alarak sistem imzasını tanımlamıştır. Aynı makalede sistem imzası bilinen sistemlerin sistem imzaları ile sistemlerin ömürleri arasındaki ilişkiyi rmiştir []. Bu çalışma tutarlı sistemlerin sistem imzası üzerine kurulmuştur. Tanım 3.. aralığında sürekli bir fonksiyon olsun. Aynı dağılımlı bağımsız bileşenden oluşan n boyutlu tutarlı bir sistemin bileşenleri olmak üzere bileşeni olan ktörüne sistem imzası denir. Burada dir [][5].

5 30 Bulut Yaman Erciyes Ünirsitesi Fen Bilimleri Enstitüsü Dergisi 30(): Sistem imzası ktörü sisteme özgüdür dağılımdan bağımsızdır (yalnızca sistemin dizaynına bağlıdır sistemin bileşenlerinin yaşam sürelerinin davranışından bağımsızdır) bu yüzden sistemlerin karşılaştırılmasında önemli bir ölçümdür. Sistem imzası bileşen sayısı az olan sistemlerde minmaks operatörü yardımıyla kolaylıkla hesaplanabilir. Da vd. (0) bileşen sayısı fazla olan sistemlerin imzasını sistemleri alt sistemlere ayırarak hesaplamıştır [9]. Örnek 3.. Örnek 3. de in elde edilişi gibi Örnek 3.. Şekil 3 de bileşenden oluşan sistemini göz önüne alalım. Bu sistemin kesme kümeleri kümesi olduğundan yapı fonksiyonu olarak elde edilir. minmaks operatörü yardımıyla T nin hangi sıralı istatistiğe eşit olduğu Tablo de elde edilmiştir. Tablo elde edilir. Genel olarak n boyutlu bir seri sistemin imzası (0 0) bir paralel sistemin imzası (00 ) k çıkışlı:f sistemin imzası (0 k 0) ktörleridir. Teorem 3.. n boyutlu tutarlı bir sistemin aynı F dağılımlı bağımsız bileşen yaşam süreleri olsunlar. T sistem yaşam süresi sistem imzasıolmak üzere sistemin t anındaki günilirliği eşitliği ile rilebilir []-[6]. Sonuç 3.. Teorem 3. den eşitlikleri elde edilebilir [8]. Örnek 3.3. Teorem 3. den seri sistemler için elde edilir. Burada n= alınırsa minmaks operatörü ile elde ettiğimiz özdeş bileşenden oluşan seri sistemin günilirliği elde edilir. Paralel sistemler için elde edilir. Burada n= alınırsa minmaks operatörü ile elde ettiğimiz özdeş bileşenden oluşan paralel sistemin günilirliği elde edilir. olmak üzere sistemlerinin sistem imzaları Teorem 3. e uygulanırsa; aşağıdaki sonuçlara ulaşılır. sistemi için Tablo den elde edilir ki bu Örnek.3 de elde ettiğimiz aynıdır. sistemi için ile elde edilir. Dolayısıyla olarak elde edilir. elde edilir ki bu Örnek. de elde ettiğimiz aynıdır. ile

6 sistemi için 305 Bulut Yaman Erciyes Ünirsitesi Fen Bilimleri Enstitüsü Dergisi 30(): Lemma.. önermesi sağlanır []. elde edilir ki bu Örnek.5 de elde ettiğimiz sistemi için elde edilir ki bu Örnek.6 da elde ettiğimiz sistemi için elde edilir ki bu Örnek.7 de elde ettiğimiz ile aynıdır. ile aynıdır. ile aynıdır. Tanım.. X Y tesadüfi değişkenlerinin olasılık yoğunluk fonksiyonları sırasıyla olsun. X Y tesadüfi değişkenlerinin tanım bölgelerinin birleşimi üzerinde oranı azalmıyorsa X tesadüfi değişkeni Y tesadüfi değişkeninden olasılıksal oran anlamında küçüktür denir ile ifade edilir [][7]-[9]. Olasılıksal oran sıralaması iki sistem imzası arasında aşağıdaki şekilde tanımlanabilir; olmak üzere i olması için gerek yeter şart. Sistem imzası ile tutarlı sistemlerin karşılaştırılması Sistemler genel olarak stokastik sıralama []-[3] sağkalım hız sıralaması []-[6] olasılıksal oran sıralaması [7]-[9] ile karşılaştırılabilir. Kochar vd. (999) aynı boyutlu i.i.d. bileşenli tutarlı sistemlerin sistem imzası ile nasıl karşılaştırıldığını göstermiştir [6]. i.i.d. varsayımı sistemlerin aynı çalışma sahasına indirgenmesinde önemli bir rol oynamaktadır [8]. Bu yüzden çalışmamızda sistemi oluşturan bileşenlerin i.i.d. olduğunu kabul edeceğiz. Tanım.. X Y tesadüfi değişkenlerinin kümülatif dağılım fonksiyonları sırasıyla F G olsun. Eğer tüm t değerleri için eşitsizliği sağlanıyorsa X tesadüfi değişkeni Y tesadüfi değişkeninden stokastiksel olarak küçüktür denir ile ifade edilir []-[3]. Stokastik sıralama iki sistem imzası arasında aşağıdaki şekilde tanımlanabilir; j olmak üzere olması için gerek yeter şart her j için eşitsizliğinin sağlanmasıdır [6]. Tanım.. X sürekli tesadüfi değişkeninin olasılık yoğunluk fonksiyonu kümülatif fonksiyonu olsun. Eğer fonksiyonu azalmayan ise X tesadüfi değişkeni artan başarısızlık hızına sahiptir denir. Eğer fonksiyonu azalmayan ise X tesadüfi değişkeni azalan başarısızlık hızına sahiptir denir. fonksiyonu X in (ya F nin) tehlike hızı olarak da adlandırılır []. Tanım.3. eşitsizliği sağlanıyorsa X tesadüfi değişkeni Y tesadüfi değişkeninden sağkalım hızı anlamında küçüktür denir ile ifade edilir []. Sağkalım hız sıralaması iki sistem imzası arasında aşağıdaki şekilde tanımlanabilir; j olmak üzere olması için gerek yeter şart oranının üzerinde azalmayan olmasıdır [6]. oranının i üzerinde azalmayan olmasıdır [6]. Kochar vd. (999) sistem imzası yardımıyla sistemlerin ömürleri arasındaki stokastik sağkalım hız olasılıksal oran sıralamasının nasıl yapıldığını göstermiştir. Teorem.. n boyutlu i.i.d. bileşenli iki tutarlı sistemin sistem imzası sırasıyla sırasıyla olmak üzere i) ii) iii) önermeleri sağlanır [6]. olsun. Bu sistemlerin yaşam süreleri Sistem imzalarının stokastik sağkalım hız sıralamalarını incelemek için kuyruk olasılık ktörünü tanımlayacağız. Tanım.5. Bir olasılık ktörünün kuyruk olasılık ktörü j için olmak üzere dir [0]. ktörüdür. Burada Örnek.. Çalışmamızda yer alan sistemlerin imzalarına karşılık gelen kuyruk olasılık ktörleri aşağıda rilmiştir; elde edilir. sistemi 5 boyutlu olduğu için kuyruk olasılık ktörünü bulmayacağız. Buradan iki ktör arasındaki adi sıralamadan (yani herhangi iki ktör olmak üzere her için ise dir [0].)

7 306 Bulut Yaman Erciyes Ünirsitesi Fen Bilimleri Enstitüsü Dergisi 30(): Tablo Yok Yok Tablo kolaylıkla elde edilir. Tablonun içi ya göre büyük olan ktörlerden oluşmaktadır. Tablo Teorem. kullanılarak stokastik sıralama için aşağıdaki sonuçlara ulaşılır; i) her için ii) iii) iv) v) elde edilir. Ayrıca Tablo den sistem ikililerinin stokastik sıralamaya göre karşılaştırılamadığı görülür. oran ktörü ktörlerinin rağmen (ya ) dir. Yani; Lemma. in tersi sağlanmaz. Teorem. den her için oran ktörleri bileşen anlamında azalmayan olduğundan olasılıksal oran sıralama için aşağıdaki sonuçlara ulaşılır; i) her için ii) iii) iv) Ayrıca v) elde edilir. sistem ikilileri olasılıksal oran sıralamasına göre karşılaştırılamazlar. 5. Sonuç Çalışmamızda bağımsız aynı boyutlu tutarlı sistemlerin sistem imzası ile stokastik sağkalım olasılıksal oran sıralamaları anlamında nasıl karşılaştırıldığını gösterdik. boyutlu 0 tane tutarlı sistem olmasına rağmen biz bunlardan yalnızca 6 tanesini inceledik. Ele alınan sistem ikililerinden bazılarının söz konusu sıralama çeşitleri ile karşılaştırılamadıklarını gördük. İncelediğimiz tüm sıralama çeşitlerinde seri sistemlerin en küçük yaşam süresine stokastik sağkalım hız sıralamalarında paralel sistemlerin en büyük yaşam süresine sahip olduklarını fakat olasılıksal oran sıralamada paralel sistemlerin bazı sistemlerle karşılaştırılamadığını diğerleri arasında ise en büyük yaşam süresine sahip olduklarını gördük. olmak üzere Teorem. den her için Kaynaklar oran ktörleri bileşen anlamında azalmayan olduğundan sağkalım hız sıralama için aşağıdaki sonuçlara ulaşılır; i) her için ii) iii) iv) elde edilir. Ayrıca sistem ikilileri sağkalım hız sıralamasına göre karşılaştırılamazlar.öte yandan olmasına. Barlow R.E. Proschan F. Statistical Theory of Reliability and Life Testing: Probability Models s.-5 Holt Rinehart and Winston Inc. New York Rausand M. Hoyland A. System Reliability Theory: Models Statistical Methods and Applications s.8-33 John Wiley&Sons Inc. Hoboken New Jersey Kuo W. Zuo M. Optimal Reliability Modeling: Principles and Applications s John Wiley&Sons Inc. Hoboken New Jersey Samaniego F.J. On Closure the IFR Class Under Formation of Coherent Systems IEEE Trans. Reliab. Theory Samaniego F.J. System Signatures and Their Applications in Engineering Reliability s.0-7 Springer Science+Business Media LLC 007.

8 307 Bulut Yaman Erciyes Ünirsitesi Fen Bilimleri Enstitüsü Dergisi 30(): Kochar S. Mukerjee H. Samaniego F.J. The Signature of a Coherent System and Its Application to Comparisons Among Systems Naval Research Logistic Navarro J. Ruiz J.M. Sandoval C.J. A Note on Comparisons among Coherent Systems with Dependent Components Using Signatures Statistics and Probability Letters Navarro. J. et al. On the Application and Extension of System Signatures in Engineering Reliability Naval Research Logistic Da G. Zheng B. Hu T. On Computing Signatures of Coherent Systems Journal of Multivariate Analysis Marichal J.L. Mathonet P. Computing System Signatures through Reliability Functions Statistics and Probability Letters Bulut Y. Yaman H. Farklı Boyutlu Tutarlı Sistemlerin Sistem İmzası ile Karşılaştırılması Gaziosmanpaşa Bilimsel Araştırma Dergisi David H.A. Nagaraja H.N. Order Statistics s.7-76 John Wiley&Sons Inc. Hoboken New Jersey Barbour A.D. Lindvall T. Rogers L.C.G. Stochastic Ordering of Order Statistics Journal of Applied Probability Navarro J. Shaked M. Hazard Rate Ordering of Order Statistics and Systems Journal of Applied Probability Boland P.J. El-Neweihi E. Proschan F. Applications of the Hazard Rate Ordering in Reliability and Order Statistics Journal of Applied Probability Navarro J. Tail Hazard Rate Ordering Properties of Order Statistics and Coherent Systems Naval Research Logistic Bapat R.B. Kochar S.C. On Likelihood-Ratio Ordering of Order Statistics Linear Algebra and Its Applications Ma C. Likelihood Ratio Ordering of Order Statistics Journal of Statistical Planning and Inference Navarro J. Likelihood Ratio Ordering of Order Statistics Mixtures and Systems Journal of Statistical Planning and Inference Roychowdhury S.Reliability Comparison Of Systems Of Different OrdersUsing Pseudo-Signatures Electron. J. App. Stat. Anal. 5() 99 0.

NENT SYSTEMS. cited. properly. emerged. and some. For this. system, Özet: Hızla gelişen. alanda, ölçümleri

NENT SYSTEMS. cited. properly. emerged. and some. For this. system, Özet: Hızla gelişen. alanda, ölçümleri Eurasian Academy of Sciences Eurasian Econometrics, Statistics & Emprical Economics Journal 205 Volume: S: 57 64 Published Online April 205 (http://econstat.eurasianacademy.org) http://dx.doi.org/0.7740/eas.stat.205

Detaylı

SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ

SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ Sıra İstatistikleri ve Uygulama Alanlarından Bir Örneğin Değerlendirmesi 89 SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ Esin Cumhur PİRİNÇCİLER Araş. Gör. Dr., Çanakkale Onsekiz

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE ÖZEL EGE LİSESİ GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE HAZIRLAYAN ÖĞRENCİ: Berk KORKUT DANIŞMAN ÖĞRETMEN: Gizem GÜNEL İZMİR 2013 İÇİNDEKİLER 1. PROJENİN AMACI 3.33 2. GİRİŞ... 3 3. YÖNTEM 3 4.

Detaylı

Lineer Bağımlılık ve Lineer Bağımsızlık

Lineer Bağımlılık ve Lineer Bağımsızlık Lineer Bağımlılık ve Lineer Bağımsızlık Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayı ve alt uzay yapısını daha iyi tanıyacak, Bir vektör uzayındaki vektörlerin

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Reliability Evaluation of k out of n System used in the Engineering Applications

Reliability Evaluation of k out of n System used in the Engineering Applications Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi Afyon Kocatepe University Journal of Science and Engineering AKÜ FEMÜBİD 16 (2016) 027101(461 467) AKU J. Sci. Eng. 16 (2016) 027101(461

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

ĐST 474 Bayesci Đstatistik

ĐST 474 Bayesci Đstatistik ĐST 474 Bayesci Đstatistik Ders Sorumlusu: Dr. Haydar Demirhan haydarde@hacettepe.edu.tr Đnternet Sitesi: http://yunus.hacettepe.edu.tr/~haydarde Đçerik: Olasılık kuramının temel kavramları Bazı özel olasılık

Detaylı

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Alıştırmalar 1 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Denklem Mertebe Derece a) 2 1 ( ) 4 6 c) 2 1 d) 2 2 e) 3 1 f) 2 4 g)

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR

ÖZGEÇMİŞ. 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR Resim ÖZGEÇMİŞ 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR Telefon : 386 280 45 50 Mail : kskula@ahievran.edu.tr

Detaylı

KIRIKKALE ÜNİVERSİTESİ FEN-EDEBIYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI

KIRIKKALE ÜNİVERSİTESİ FEN-EDEBIYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI KIRIKKALE ÜNİVERSİTESİ FEN-EDEBIYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI Kırıkkale Üniversitesi Fen-Edebiyat Fakültesi İstatistik Bölümü Lisans Programı, Kırıkkale Üniversitesi Önlisans ve Lisans

Detaylı

DİZGE TABANLI BİLEŞEN DENEMELERİNİN TASARIMINDA BEKLENEN DİZGE YAŞAM SÜRESİNİN MODELLENMESİ 1

DİZGE TABANLI BİLEŞEN DENEMELERİNİN TASARIMINDA BEKLENEN DİZGE YAŞAM SÜRESİNİN MODELLENMESİ 1 DİZGE TABANLI BİLEŞEN DENEMELERİNİN TASARIMINDA BEKLENEN DİZGE YAŞAM SÜRESİNİN MODELLENMESİ 1 Emre YAMANGİL Orhan FEYZİOĞLU Süleyman ÖZEKİCİ Galatasaray Üniversitesi Galatasaray Üniversitesi Koç Üniversitesi

Detaylı

Tesadüfi Değişken. w ( )

Tesadüfi Değişken. w ( ) 1 Tesadüfi Değişken Tesadüfi değişkenler gibi büyük harflerle veya gibi yunan harfleri ile bunların aldığı değerler de gibi küçük harflerle gösterilir. Tesadüfi değişkenler kesikli veya sürekli olmak üzere

Detaylı

İndirgenme Boyutu Üç Olan Fibonacci Simetrik Sayısal Yarıgruplarının Bir Sınıfı

İndirgenme Boyutu Üç Olan Fibonacci Simetrik Sayısal Yarıgruplarının Bir Sınıfı İndirgenme Boyutu Üç Olan Fibonacci Simetrik Sayısal Yarıgruplarının Bir Sınıfı Meral SÜER * ve Sedat İLHAN * Batman Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü,7060 Batman, Türkiye Dicle Üniversitesi,

Detaylı

ÖZGEÇMİŞ. : :

ÖZGEÇMİŞ. : : 1. Adı Soyadı : Fatma Zehra DOĞRU ÖZGEÇMİŞ Adres Telefon E-posta : Giresun Üniversitesi, İktisadi ve İdari Bilimler Fakültesi, Ekonometri Bölümü, GİRESUN : 04543105411 : fatma.dogru@giresun.edu.tr 2. Doğum

Detaylı

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c 0. Küme Cebri Bu bölümde verilen keyfikümeler üzerinde birleşim, kesişim, fark, tümleyen,...gibi özellikleri sağlayan eşitliklerle ilgilenceğiz. İlk olarak De Morgan kurallarıdiye bilinen bir Teoremi ifade

Detaylı

DEĞİŞMELİ BANACH CEBİRLERİNİN GELFAND SPEKTRUMLARI ÜZERİNE

DEĞİŞMELİ BANACH CEBİRLERİNİN GELFAND SPEKTRUMLARI ÜZERİNE Ekim 25 Cilt:3 No:2 Kastamonu Eğitim Dergisi 547-554 DEĞİŞMELİ BANACH CEBİRLERİNİN GELFAND SPEKRUMLARI ÜZERİNE Hayri AKAY, Ziya ARGÜN Gazi Üniversitesi, Gazi Eğitim Fakültesi, Matematik Eğitimi Bölümü,

Detaylı

FONKSİYONLAR. Örnek: (2x-2,y-3)=(10,-3) olduğuna göre x ve y sayılarını bulunuz.

FONKSİYONLAR. Örnek: (2x-2,y-3)=(10,-3) olduğuna göre x ve y sayılarını bulunuz. 1 FONKSİYONLAR Sıralı İkili: A ve B boş olmayan iki küme olmak üzere, aa ve bb iken (a, b) ifadesine bir sıralı ikili denir. Burada a ya, sıralı ikilinin birinci bileşeni, b ye de ikinci bileşeni denir.

Detaylı

Leyla Bugay Doktora Nisan, 2011

Leyla Bugay Doktora Nisan, 2011 ltanguler@cu.edu.tr Çukurova Üniversitesi, Matematik Bölümü Doktora 2010913070 Nisan, 2011 Yarıgrup Teorisi Nedir? Yarıgrup teorisi cebirin en temel dallarından biridir. Yarıgrup terimi ilk olarak 1904

Detaylı

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ Günümüz simülasyonları gerçek sistem davranışlarını, zamanın bir fonksiyonu olduğu düşüncesine dayanan Monte Carlo yöntemine dayanır. 1.

Detaylı

14.Konu Reel sayılarının topolojisi. 1.Tanım:, verilsin. açık aralığına noktasının -komşuluğu denir. { } kümesine nın delinmiş -komşuluğu denir.

14.Konu Reel sayılarının topolojisi. 1.Tanım:, verilsin. açık aralığına noktasının -komşuluğu denir. { } kümesine nın delinmiş -komşuluğu denir. 14.Konu Reel sayılarının topolojisi 1.Teorem: cismi tamdır. 1.Tanım:, verilsin. açık aralığına noktasının -komşuluğu denir. { } kümesine nın delinmiş -komşuluğu denir. 2.Tanım: ve verilsin. nın her komşuluğunda

Detaylı

İSTATİSTİKSEL DARALTICI (SHRINKAGE) MODEL VE UYGULAMALARI * A Statistical Shrinkage Model And Its Applications*

İSTATİSTİKSEL DARALTICI (SHRINKAGE) MODEL VE UYGULAMALARI * A Statistical Shrinkage Model And Its Applications* Ç.Ü. Fen Bilimleri Enstitüsü Yıl:010 Cilt:-1 İSTATİSTİKSEL DARALTICI (SHRINKAGE) MODEL VE UYGULAMALARI * A Statistical Shrinkage Model And Its Applications* Işıl FİDANOĞLU İstatistik Anabilim Dalı Fikri

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents 1 İyi Sıralama 5 Bibliography 13 1 İyi Sıralama Well Ordering İyi sıralama kavramı, doğal sayıların

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

Olasılık, bir deneme sonrasında ilgilenilen olayın tüm olaylar içinde ortaya çıkma ya da gözlenme oranı olarak tanımlanabilir.

Olasılık, bir deneme sonrasında ilgilenilen olayın tüm olaylar içinde ortaya çıkma ya da gözlenme oranı olarak tanımlanabilir. 5.SUNUM Olasılık, bir deneme sonrasında ilgilenilen olayın tüm olaylar içinde ortaya çıkma ya da gözlenme oranı olarak tanımlanabilir. Günlük hayatta sıklıkla kullanılmakta olan olasılık bir olayın ortaya

Detaylı

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n,

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n, DİZİLER Tamamen belirli bir kurala göre sıralanmış sayılar topluluğuna veya kümeye Dizi denir. Belirli bir kurala göre birbiri ardınca gelen bu sayıların her birine dizinin terimi ve hepsine birden dizinin

Detaylı

İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik

İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik 6.SUNUM İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik özellikleri (ortalama, varyans v.b. gibi) hakkında

Detaylı

QUANTILE REGRESYON * Quantile Regression

QUANTILE REGRESYON * Quantile Regression QUANTILE REGRESYON * Quantile Regression Fikriye KURTOĞLU İstatistik Anabilim Dalı Olcay ARSLAN İstatistik Anabilim Dalı ÖZET Bu çalışmada, Lineer Regresyon analizinde kullanılan en küçük kareler yöntemine

Detaylı

4.3. Türev ile İlgili Teoremler

4.3. Türev ile İlgili Teoremler 4.. Türev ile İlgili Teoremler Bu kesimde ortalama değer teoremini vereceğiz. Ortalama değer teoremini ispatlarken kullanılacak olan Fermat teoremini ve diğer bazı teoremleri ispat edeceğiz. 4...Teorem

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

FİNANSAL RİSK ANALİZİNDE KARMA DAĞILIM MODELİ YAKLAŞIMI * Mixture Distribution Approach in Financial Risk Analysis

FİNANSAL RİSK ANALİZİNDE KARMA DAĞILIM MODELİ YAKLAŞIMI * Mixture Distribution Approach in Financial Risk Analysis FİNANSAL RİSK ANALİZİNDE KARMA DAĞILIM MODELİ YAKLAŞIMI * Mixture Distribution Approach in Financial Risk Analysis Keziban KOÇAK İstatistik Anabilim Dalı Deniz ÜNAL İstatistik Anabilim Dalı ÖZET Son yıllarda

Detaylı

Para-Kenmotsu Manifoldların Warped Çarpım Hemislant Alt Manifoldlarının Varlık Problemi

Para-Kenmotsu Manifoldların Warped Çarpım Hemislant Alt Manifoldlarının Varlık Problemi Erciyes Ünirsitesi Fen Bilimleri Enstitüsü Derisi Cilt 33, Sayı, 07 0 Erciyes Unirsity Journal of atural and Applied Sciences Volume 33, Issue, 07 Para-Kenmotsu Manifoldların Warped Çarpım Hemislant Alt

Detaylı

ZAMAN SKALASINDA LİNEER OLMAYAN İNTEGRAL EŞİTSİZLİKLERİ. YÜKSEK LİSANS TEZİ Hakan TEMİZ. Danışman Doç. Dr. Mustafa Kemal YILDIZ

ZAMAN SKALASINDA LİNEER OLMAYAN İNTEGRAL EŞİTSİZLİKLERİ. YÜKSEK LİSANS TEZİ Hakan TEMİZ. Danışman Doç. Dr. Mustafa Kemal YILDIZ ZAMAN SKALASINDA LİNEER OLMAYAN İNTEGRAL EŞİTSİZLİKLERİ YÜKSEK LİSANS TEZİ Hakan TEMİZ Danışman Doç. Dr. Mustafa Kemal YILDIZ MATEMATİK ANABİLİM DALI Haziran, 2014 AFYON KOCATEPE ÜNİVERSİTESİ FEN BİLİMLERİ

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 8: Prof. Dr. Tanım Hipotez, bir veya daha fazla anakütle hakkında ileri sürülen, ancak doğruluğu önceden bilinmeyen iddialardır. Ortaya atılan iddiaların, örnekten elde edilen

Detaylı

Bekleme Hattı Teorisi

Bekleme Hattı Teorisi Bekleme Hattı Teorisi Sürekli Parametreli Markov Zincirleri Tanım 1. * +, durum uzayı * +olan sürekli parametreli bir süreç olsun. Aşağıdaki özellik geçerli olduğunda bu sürece sürekli parametreli Markov

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

DÜZGÜN ÖLÇÜM. Ali DÖNMEZ Doğuş Üniversitesi, Fen Bilimleri Bölümü. Halit ORHAN Atatürk Üniversitesi, Matematik Bölümü

DÜZGÜN ÖLÇÜM. Ali DÖNMEZ Doğuş Üniversitesi, Fen Bilimleri Bölümü. Halit ORHAN Atatürk Üniversitesi, Matematik Bölümü DÜZGÜN ÖLÇÜM Ali DÖNMEZ Doğuş Ünirsitesi, Fen Bilimleri Bölümü Halit ORHAN Atatürk Ünirsitesi, Matematik Bölümü Özet: Düzgün ölçüm üzerine bazı teoremler ispatlandı. Anahtar sözcükler: Ölçüm, düzgün ölçüm,

Detaylı

RÜZGAR ÇİFTLİĞİ POTANSİYELİNİN GÜVENİLİRLİĞE DAYALI TEORİK DAĞILIMI

RÜZGAR ÇİFTLİĞİ POTANSİYELİNİN GÜVENİLİRLİĞE DAYALI TEORİK DAĞILIMI RÜZGAR ÇİFTLİĞİ POTANSİYELİNİN GÜVENİLİRLİĞE DAYALI TEORİK DAĞILIMI Serkan Eryılmaz 1 ve Femin Yalçın 2 1 Atılım Üniversitesi, Endüstri Mühendisliği Bölümü, serkan.eryilmaz@atilim.edu.tr 2 İzmir Katip

Detaylı

Nitel Tepki Bağlanım Modelleri

Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Ekonometri 2 Konu 18 Sürüm 2,0 (Ekim 2011) Doğrusal-Dışı Yaklaşım ve UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ DAĞILIM FONKSİYONLARI KONVOLÜSYONLARININ MONTE CARLO TAHMİNİ VE BAZI UYGULAMALARI

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ DAĞILIM FONKSİYONLARI KONVOLÜSYONLARININ MONTE CARLO TAHMİNİ VE BAZI UYGULAMALARI ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ DAĞILIM FONKSİYONLARI KONVOLÜSYONLARININ MONTE CARLO TAHMİNİ VE BAZI UYGULAMALARI Ömer ALTINDAĞ İSTATİSTİK ANABİLİM DALI ANKARA 212 Her hakkı

Detaylı

Yard. Doç. Dr. İrfan DELİ. Matematik

Yard. Doç. Dr. İrfan DELİ. Matematik Unvanı Yard. Doç. Dr. Adı Soyadı İrfan DELİ Doğum Yeri ve Tarihi: Çivril/Denizli -- 06.04.1986 Bölüm: E-Posta Matematik irfandeli20@gmail.com, irfandeli@kilis.edu.tr AKADEMİK GELİŞİM ÜNİVERSİTE YIL Lisans

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI)

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) 1 BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) Hipotez testi konusunda görüldüğü üzere temel betimleme, sayma ve sınıflama işlemlerine dayalı yöntemlerin ötesinde normal dağılım

Detaylı

BERNOULLI TEOREMİNİN İSPATINA BİR YAKLAŞIM

BERNOULLI TEOREMİNİN İSPATINA BİR YAKLAŞIM BERNOULLI TEOREMİNİN İSPATINA BİR YAKLAŞIM Prof. Dr. Erol YARIZ ( ) GiRiŞ ihtimaller Teorisinin tarihsel gelişimi içinde yer alan bazı teoremlere, yeni ispat şekillerinin bulunması veya ispatlara yeni

Detaylı

Olasılık ve İstatistik (IE 220) Ders Detayları

Olasılık ve İstatistik (IE 220) Ders Detayları Olasılık ve İstatistik (IE 220) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Olasılık ve İstatistik IE 220 Her İkisi 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin

Detaylı

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir. BĞANTI - FONKSİYON 1. Sıralı İkili : (a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.! (x 1,x 2, x 3,x 4,...x n ) : sıralı n li denir. Örnek, (a,b,c) : sıralı

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b Bölüm 1 Temel Kavramlar Bu bölümde bağıntı ve fonksiyon gibi bazı temel kavramlar üzerinde durulacak, tamsayıların bazı özellikleri ele alınacaktır. Bu çalışma boyunca kullanılacak bazı kümelerin gösterimleri

Detaylı

GRUP ARDIŞIK TEST YÖNTEMLERİ İLE SAĞKALIM ANALİZİNDE ÖRNEKLEM HACMİNİN BELİRLENMESİ. Afyonkarahisar. Samsun

GRUP ARDIŞIK TEST YÖNTEMLERİ İLE SAĞKALIM ANALİZİNDE ÖRNEKLEM HACMİNİN BELİRLENMESİ. Afyonkarahisar. Samsun Afyon Kocatepe Üniversitesi 8(1) Afyon Kocatepe University FEN BİLİMLERİ DERGİSİ JOURNAL OF SCIENCE GRUP ARDIŞIK TEST YÖNTEMLERİ İLE SAĞKALIM ANALİZİNDE ÖRNEKLEM HACMİNİN BELİRLENMESİ Yüksel Terzi 1, Naci

Detaylı

1 BAĞINTILAR VE FONKSİYONLAR

1 BAĞINTILAR VE FONKSİYONLAR 1 BAĞINTILAR VE FONKSİYONLAR Bu bölümde ilk olarak Matematikte çok önemli bir yere sahip olan Bağıntı kavramnı verip daha sonra ise Fonksiyon tanımı verip genel özelliklerini inceleyeceğiz. Tanım 1 A B

Detaylı

IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R

IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R Geçen Ders Envanter yonetımı: Gazetecı problemı Rastsal Rakamlar Üret Talebi hesapla Geliri hesapla Toplam maliyeti hesapla Günlük ve aylık

Detaylı

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri Ders izlence Formu Dersin Kodu ve İsmi Dersin Sorumlusu Dersin Düzeyi MAT407 REEL ANALİZ Prof. Dr. Ertan İBİKLİ ve

Detaylı

BÖLÜM 12 STUDENT T DAĞILIMI

BÖLÜM 12 STUDENT T DAĞILIMI 1 BÖLÜM 12 STUDENT T DAĞILIMI 'Student t dağılımı' ya da kısaca 't dağılımı'; normal dağılım ve Z dağılımının da içerisinde bulunduğu 'sürekli olasılık dağılımları' ailesinde yer alan dağılımlardan bir

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

Topolojik Uzaylarda Süreklilik Çeşitleri Üzerine

Topolojik Uzaylarda Süreklilik Çeşitleri Üzerine S Ü Fen Ed Fak Fen Derg Sayı 26 (2005) 43-50, KONYA Topolojik Uzaylarda Süreklilik Çeşitleri Üzerine Kemal USLU 1, Şaziye YÜKSEL Selçuk Üniversitesi Fen Edebiyat Fakültesi Matematik Bölümü Kampüs-Konya

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

ÖZGEÇMİŞ. Derece Alan Üniversite Yıl

ÖZGEÇMİŞ. Derece Alan Üniversite Yıl ÖZGEÇMİŞ 1. Adı Soyadı: Hande GÜNAY AKDEMİR 2. Doğum Tarihi: 29.08.1980 3. Unvanı: Dr. Öğr. Üyesi 4. Öğrenim Durumu: Derece Alan Üniversite Yıl Lisans Matematik Yıldız Teknik Üniversitesi 2003 Y. Lisans

Detaylı

Rastgelelik, Rastgele Sinyaller ve Sistemler Rastgelelik Nedir?

Rastgelelik, Rastgele Sinyaller ve Sistemler Rastgelelik Nedir? Rastgelelik, Rastgele Sinyaller ve Sistemler Rastgelelik Nedir? Rastgelelik en basit anlamda kesin olarak bilinememektir. Rastgele olmayan deterministiktir (belirli). Bazı rastgele olgu örnekleri şöyle

Detaylı

Parametric Soft Semigroups

Parametric Soft Semigroups Ordu Üniversitesi Bilim ve Teknoloji Dergisi / Ordu University Journal of Science and Technology Ordu Üniv. Bil. Tek. Derg., 2018; 8(1): 91-99 Ordu Univ. J. Sci. Tech., 2018; 8(1): 91-99 e-issn: 2146-6459

Detaylı

Degree Department Üniversity Year B.S. Statistics Gazi University 1993 M.s. Statistics Gazi University 1998 Ph.D. Statistics Gazi University 2005

Degree Department Üniversity Year B.S. Statistics Gazi University 1993 M.s. Statistics Gazi University 1998 Ph.D. Statistics Gazi University 2005 Gazi University Faculty of Science Department of Statistics 06500 Teknikokullar ANKARA/TURKEY Tel:+903122021479 e-mail: yaprak@gazi.edu.tr Web site: www.gazi.edu.tr/yaprak EDUCATION Degree Department Üniversity

Detaylı

EME Sistem Simülasyonu. Giriş. Olasılık Dağılımı. Rassal Degiskenler

EME Sistem Simülasyonu. Giriş. Olasılık Dağılımı. Rassal Degiskenler EME 3105 1 Giriş Sistem Simülasyonu Önümüzdeki hafta simulasyon girdilerinin modellenmesinde kullanılan kesikli ve sürekli Simulasyonda İstatistiksel Modeller-I Ders 4 dağılımlar hatırlatılacaktır. Rassal

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Tamir Edilebilir Ardışık n'den 2-çıkışlı: F Sistemi

Tamir Edilebilir Ardışık n'den 2-çıkışlı: F Sistemi Fırat Üniv. Müh. Bil. Dergisi Science and Eng. J of Fırat Univ. 29(1), 349-354, 2017 29(1), 349-354, 2017 Tamir Edilebilir Ardışık n'den 2-çıkışlı: F Sistemi Özet Gökhan GÖKDERE Fırat Üniversitesi, İstatistik

Detaylı

Plazma İletiminin Optimal Kontrolü Üzerine

Plazma İletiminin Optimal Kontrolü Üzerine Plazma İletiminin Optimal Kontrolü Üzerine 1 Yalçın Yılmaz, 2 İsmail Küçük ve 3 Faruk Uygul *1 Faculty of Arts and Sciences, Dept. of Mathematics, Sakaya University, Sakarya, Turkey 2 Faculty of Chemical

Detaylı

L-BULANIK ESNEK GRUPLAR

L-BULANIK ESNEK GRUPLAR Ordu Üniv. Bil. Tek. Derg., Cilt:7, Sayı:, 207,98-0/Ordu Univ. J. Sci. Tech., Vol:7, No:,207,98-0 L-BULANIK ESNEK RUPLAR Yıldıray ÇELİK *, Sevgi DEMİR Ordu Üniversitesi, Fen Edebiyat Fakültesi, Matematik

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Analiz Cilt 2 Ünite 8-14 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1082 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 600

Detaylı

1.4. KISMİ SIRALAMA VE DENKLİK BAĞINTILARI

1.4. KISMİ SIRALAMA VE DENKLİK BAĞINTILARI Reel sayılar kümesinin "küçük ya da eşit", bağıntısı ile sıralanmış olduğunu biliyoruz. Bu bağıntı herhangi bir X kümesine aşağıdaki şekilde genelleştirilebilir. Bir X kümesi üzerinde aşağıdaki yansıma,

Detaylı

Genelleştirilmiş bulanık esnek cebirsel yapılar. Generalized fuzzy soft algebraic structures

Genelleştirilmiş bulanık esnek cebirsel yapılar. Generalized fuzzy soft algebraic structures SAÜ. Fen Bil. Der. 17. Cilt, 3. Sayı, s. 301-306, 2013 SAU J. Sci. Vol 17, No 3, p. 301-306, 2013 Genelleştirilmiş bulanık esnek cebirsel yapılar Hacı Aktaş 1*, Özlem Bulut 1 1* Erciyes Üniversitesi Fen

Detaylı

SA Ğ KALIM ANAL Ġ ZLER Ġ

SA Ğ KALIM ANAL Ġ ZLER Ġ SAĞKALIM ANALĠZLERĠ Sağkalım Analizleri Sağkalım verilerini analiz etmek üzere kullanılan istatistiksel yöntemlerdir. Sağkalım verileri, yanıt değişkeni bir olay meydana gelene kadar geçen süre olan verilerdir.

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

BULANIK AMAÇ KATSAYILI DOĞRUSAL PROGRAMLAMA. Ayşe KURUÜZÜM (*)

BULANIK AMAÇ KATSAYILI DOĞRUSAL PROGRAMLAMA. Ayşe KURUÜZÜM (*) D.E.Ü.İ.İ.B.F. Dergisi Cilt:14, Sayı:1, Yıl:1999, ss:27-36 BULANIK AMAÇ KATSAYILI DOĞRUSAL PROGRAMLAMA Ayşe KURUÜZÜM (*) ÖZET Çalışmada bulanık ( fuzzy ) katsayılı amaç fonksiyonuna sahip doğrusal programlama

Detaylı

ndirgenme Boyutu Üç Olan Fibonacci Simetrik Sayısal Yarıgruplarının Bir Sınıfı

ndirgenme Boyutu Üç Olan Fibonacci Simetrik Sayısal Yarıgruplarının Bir Sınıfı ndirgenme Boyutu Üç Olan Fibonacci Simetrik Sayısal Yarıgruplarının Bir Sınıfı Meral SÜER * ve Sedat LHAN * Batman Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü,72060 Batman, Türkiye Dicle Üniversitesi,

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DOKTORA YETERLİK SINAVI YÖNETMELİĞİ

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DOKTORA YETERLİK SINAVI YÖNETMELİĞİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DOKTORA YETERLİK SINAVI YÖNETMELİĞİ Doktora Yeterlik Sınavı, başvurunun yapıldığı ve Doktora Yeterlik Komitesi nin başvuruyu onayladığı dönemdeki, dönem sonu sınavlarının

Detaylı

ÖDEV 5 ÇÖZÜMLERİ. 1. A, B, C Ω olmak üzere A B ve A B C olaylarını ayrık olayların birleşimi olarak yazınız.

ÖDEV 5 ÇÖZÜMLERİ. 1. A, B, C Ω olmak üzere A B ve A B C olaylarını ayrık olayların birleşimi olarak yazınız. OLASILIĞA GİRİŞ IDERSİ ÖDEV 5 ÇÖZÜMLERİ 1. A, B, C Ω olmak üzere A B ve A B C olaylarını ayrık olayların birleşimi olarak yazınız. A B = A (B A) =A (B A c ) A B C = A (B A) (C (A B)) = A (B A c ) (C B

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

İstatistikçiler Dergisi

İstatistikçiler Dergisi www.istatistikciler.org İstatistikçiler Dergisi (28) 6-22 İstatistikçiler Dergisi COX REGRESYON MODELİ VE AKCİĞER KANSERİ VERİLERİ İLE BİR UYGULAMA Durdu KARASOY Hacettepe Üniversitesi Fen Fakültesi İstatistik

Detaylı

Prof.Dr.Ünal Ufuktepe

Prof.Dr.Ünal Ufuktepe İzmir Ekonomi Üniversitesi, Matematik Bölümü 21 Ocak 2012 KLASİK ANLAMDA TÜREV Fiziğin en temel işlevlerinden biri hareketi tanımlamaktır. Newton ve Leibniz hareketi tanımlama ve tahmin etme konusunda

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 3

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 3 1.3. Kompleks Düzlemin Topolojisi Tanım 1. D ε (z 0 ) = {z C : z z 0 < ε} kümesine z 0 ın bir ε komşuluğu denir. Tanım 2. Bir A C kümesi verilsin. z 0 ın sadece A nın elemanlarından oluşan bir komşuluğu

Detaylı

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan 1 Ders Planı 1. Karar Problemleri i. Karar problemlerinin bileşenleri ii. Değerler, amaçlar, bağlam iii. Etki diagramları 2. Model Girdilerinde Belirsizlik

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -I-

DOĞRUSAL OLMAYAN PROGRAMLAMA -I- DOĞRUSAL OLMAYAN PROGRAMLAMA -I- Dışbükeylik / İçbükeylik Hazırlayan Doç. Dr. Nil ARAS Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü İST38 Yöneylem Araştırması Dersi 0-0 Öğretim Yılı Doğrusal olmayan

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

DERS BİLGİLERİ Ders Kodu Yarıyıl T+U Saat Kredi AKTS Çok Değişkenli İstatistik EKO428 Bahar Ön Koşul Dersin Dili

DERS BİLGİLERİ Ders Kodu Yarıyıl T+U Saat Kredi AKTS Çok Değişkenli İstatistik EKO428 Bahar Ön Koşul Dersin Dili DERS BİLGİLERİ Ders Kodu Yarıyıl T+U Saat Kredi AKTS Çok Değişkenli İstatistik EKO428 Bahar 3+0 3 3 Ön Koşul Yok Dersin Dili Türkçe Dersin Seviyesi Lisans Dersin Türü Seçmeli Dersi Veren Öğretim Elemanı

Detaylı

Dr.Öğr.Üyesi HALİL TANIL

Dr.Öğr.Üyesi HALİL TANIL Dr.Öğr.Üyesi HALİL TANIL ÖZGEÇMİŞ DOSYASI KİŞİSEL BİLGİLER Doğum Yılı : Doğum Yeri : Sabit Telefon : Faks : E-Posta Adresi : Web Adresi : Posta Adresi : 1974 ALAŞEHİR T: 23231117281728 F: halil.tanil@ege.edu.tr

Detaylı

Örnek 4.1: Tablo 2 de verilen ham verilerin aritmetik ortalamasını hesaplayınız.

Örnek 4.1: Tablo 2 de verilen ham verilerin aritmetik ortalamasını hesaplayınız. .4. Merkezi Eğilim ve Dağılım Ölçüleri Merkezi eğilim ölçüleri kitleye ilişkin bir değişkenin bütün farklı değerlerinin çevresinde toplandığı merkezi bir değeri gösterirler. Dağılım ölçüleri ise değişkenin

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DÖNEM PROJESİ TAŞINMAZ DEĞERLEMEDE HEDONİK REGRESYON ÇÖZÜMLEMESİ. Duygu ÖZÇALIK

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DÖNEM PROJESİ TAŞINMAZ DEĞERLEMEDE HEDONİK REGRESYON ÇÖZÜMLEMESİ. Duygu ÖZÇALIK ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DÖNEM PROJESİ TAŞINMAZ DEĞERLEMEDE HEDONİK REGRESYON ÇÖZÜMLEMESİ Duygu ÖZÇALIK GAYRİMENKUL GELİŞTİRME VE YÖNETİMİ ANABİLİM DALI ANKARA 2018 Her hakkı saklıdır

Detaylı

Mühendislikte İstatistik Metotlar

Mühendislikte İstatistik Metotlar Mühendislikte İstatistik Metotlar Recep YURTAL Çukurova Üniveristesi Mühendislik Mimarlık Fakültesi İnşaat Mühendisliği Bölümü Referans Kitaplar Türkçe : Mühendisler için İstatistik, Mehmetçik Bayazıt,

Detaylı

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri Mehmet YILMAZ mehmetyilmaz@ankara.edu.tr 10 KASIM 2017 14. HAFTA 8 Tek kanallı, Sonsuz Kapasiteli, Servis Süreleri Keyfi Dağılımlı Kuyruk Sistemi M/G/1/

Detaylı

EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME

EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME GİRİŞ Bu bölümde benzetim için excel örnekleri önerilmektedir. Örnekler excel ile yapılabileceği gibi el ile de yapılabilir. Benzetim örnekleri

Detaylı

PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TOPLANABİLEN VEYA SINIRLI OLAN DİZİ UZAYLARI ARASINDAKİ DÖNÜŞÜMLERİN ÖZELLİKLERİ

PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TOPLANABİLEN VEYA SINIRLI OLAN DİZİ UZAYLARI ARASINDAKİ DÖNÜŞÜMLERİN ÖZELLİKLERİ PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TOPLANABİLEN VEYA SINIRLI OLAN DİZİ UZAYLARI ARASINDAKİ DÖNÜŞÜMLERİN ÖZELLİKLERİ YÜKSEK LİSANS TEZİ İnci BİRGİN Anabilim Dalı : Matematik Programı : Matematik

Detaylı

için Örnek 7.1. simetri grubunu göz önüne alalım. Şu halde dür. Şimdi kalan sınıflarını göz önüne alalım. Eğer ve olarak alırsak işlemini kullanarak

için Örnek 7.1. simetri grubunu göz önüne alalım. Şu halde dür. Şimdi kalan sınıflarını göz önüne alalım. Eğer ve olarak alırsak işlemini kullanarak 7. Bölüm Grupları olmak üzere grubunu nasıl inşa ettiğimizi hatırlayalım. grubunun alt grubu grubu tüm olacak şekilde tüm sınıflardan oluşmuştur. Sınıfların toplamını ile, yani ile tanımlamıştık. Şimdi

Detaylı

Örneklemden elde edilen parametreler üzerinden kitle parametreleri tahmin edilmek istenmektedir.

Örneklemden elde edilen parametreler üzerinden kitle parametreleri tahmin edilmek istenmektedir. ÇIKARSAMALI İSTATİSTİKLER Çıkarsamalı istatistikler, örneklemden elde edilen değerler üzerinde kitleyi tanımlamak için uygulanan istatistiksel yöntemlerdir. Çıkarsamalı istatistikler; Tahmin Hipotez Testleri

Detaylı