Ölçme Hataları ve Normal Dağılım

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Ölçme Hataları ve Normal Dağılım"

Transkript

1 Ölçme Hataları ve Normal Dağılım Yıl 967. Fzk ders mekak laoratuarıda rc laoratuar. Kousu: Ölçme ve çft kefel terazler hassasyet. Mesaj: ey ölçerse ölç, ölçmek stedğ şey ulamazsı, ölçü alet hassasyet sıırları çde r şeye ulaşırsı. Laoratuar hocasıda ashat: Marfet, hatalı ölçe alet le doğru ölçmek. Hata e demek? Doğru ölçmek e demek? Ölçülmes stee şey ulmak mı? Geometr dersdek hocada aşka r ashat: Geometr, yalış çzm üzerde doğru düşüme saatıdır. Yalış çzm e demek? Tahtaya çzle dk üçge, e üyük açısı doksa derece değl m, kear uzulukları ç Psagor teorem sağlamıyor mu? Hoca, çzemyorsa z e yapalım. Doğru çz, doğru düşüelm. Doğru düşümek e demek? Matematkte doğru düşümek e demek? (Ya statstkte?! Buu şmd soruyorum. Yıl 006.) Okulu açılışıda r ashat da dekada gelmşt: Bu gükü g lerde r gü gelecek ve sz mezu olacaksıız. Çoğuuz öğretme olacak. Matematk öğretme, fzk öğretme, kmya öğretme, yoloj öğretme. Br toracı, r cvatayı şlerke hata yaparsa, o cvatalar yede dökümhaeye gder, ertlr, çuuk hale getrlr ve yede toracıı öüe gelr. Sz öyle r hakkıız yok. Hata yapmada düşümek (öyle yapmıyor muyuz ya), hatasız eğtm (zor r ş) ve hatalı ölçümler (e güzel r hak, hele hatalar rasgele ya gelşgüzel olursa, ölçme aletlere u hakkı km vermşse) le lgl ashatler ve yıl 99 ĐS 5 Đstatstk Laoratuarı. Ölçme şlemde hata olaleceğ, uu ölçme aletler doğasıda uluduğuu, pazarda alıa kg domates kütles e olduğuu hç kmse, ama hç kmse lemeyeceğ öğreclere alatma çaasıdayım. Đamıyorlar. Hocam elk sz lemezsz, ama pazarcı lr. Teraz altıa taş ağlıyormuş, ayrıca kese kâğıdıı da hamurla yapıştırmış, ağır çeks dye, aem dyor. Đşm zor. Alatmak stedğm asıl alatacağım. -Çocuklar, pazarda alıa domates akkal amcaı terazsde tartsak ayı şey gözler myz? - Hayııır. - Eee, gördüüz mü? - Ama hocam, pazarcıı terazs, zate - Peky, akkaldak gözlem aklımızda tutup kuyumcuya gtsek ayı şey gözler myz? - Tamam hocam, tamam. Ne demek steyeceksez dey. - Terazde terazye hassasyet arttıkça, aşka aşka ölçüm değerler gelmektedr. Hattâ, hassas r terazde ayı şey k kez ölçtüğümüzde farklı değerler gözlemektedr. Buu görmek ç kmya laoratuarıa gdyoruz. - Hocam, çok yaşayı. - Sz de görü. Kalkı gdyoruz. Hatırladığım kadarıyla r teeşr parçasıı kütles ölçülmüştü. Sora teeşr parçası kefede alııp yede ölçülmüştü. Farklı gözlem çıktı. See edr dedğde, öğrecler, ellermzde r şeyler, em g, teeşre ulaşmış olalr dedler. Teeşr ellemede, sadece elektrkl teraz düğmes kapatılıp yede açılarak r ölçüm daha yapıldı ve farklı r gözlem çıktı. Öğrecler şaşırmıştı. Br camekâı çde ulua ve efesmzde le etklemeye u alet asıl olur da uu yapar. Ayı şeklde, 0 gözlem aldık (şu gözlem değerler odalık kısmı sekz asamaklı, yaz yaz tmyor, kedlere gelce Avogadro 3 sayısı , gerç ölçme soucu söylee r sayı değl, k gram hdrojedek moleküller saydıklarıı samıyorum, odalık kısmıda alamlı asamak sayısı sadece üç tae, zde sekz, hele so rakamı sıfır, lk gözlemde uu yazmayalım dedk, olmaz dedler, her halde kmyacıları leceğ r şey dedk, 0 gözlem ouda da so rakam sıfır gözlemez m, u sefer de kmyacılar şaşırmıştı, aşımıza öyle r olay lk defa gelyor dedler, gördüüz mü sıfırı tkamıı dye aklımızda geçrelm derke, kmyacı ular,

2 adamı eydek kmyayı le okurlar, sz statstkçsz ve olasılık da lrsz, öyle olması olasılığı edr dye sormazlar mı, tamam, üşemede sekzc odalığı da hesaplarımıza katacağız, yeter k sz şu olasılık hesaıı uutu, alaştık) ve ked statstk laoratuarımıza dödük. Gözlem değerler tahtaya yazıldı. Verler gözümüzü öüde. Teeşr parçası da. Kütles e?! - Tahtadak sayılarda rs olalr m, çocuklar? - Olalr hocam, olmayalr de. - Hocam gözlemlerde üc taes ayı, teeşr kütles u olalr. - Hayır. Bularda üyük ola altı tae aşka gözlem var. Arkadaşı dedğ olmaz hocam. - Se e dyorsu. - E küçük gözlem değer le e üyük gözlem değer ortasıdır dyorum. - Ne demek styorsu. - Hocam, arkadaş ortacayı dyor. - Hayır, ortaca aşka r şey. Arkadaş e küçük gözlem değer le e üyük gözlem değer ortalaması dyor, hocam. - Zate ou söyledk. Ortalama aşka r şey. - Hocam, ortalamayı alsak olmaz mı? - Tamam alalım. Şmd u çıka sayı teeşr kütles m? - Evet.. Hayır...Olalr de, olmayalr de hocam. - Hocam, e küçük gözlem, şu rr ayı ola gözlemlerde oldukça küçük, ou atalım, ger kalaları ortalamasıı alalım. - Hocaam, e üyük gözlem de sırıtıyor, ou da atıp gerye kala gözlemler ortalamasıı alalım. - Hocaaam, gözlemlere ağırlık verelm ve ağırlıklı ortalama alalım. - Hocaaaam, rc ve üçücü çeyreklğ ortalamasıı alalım. - Hocaaaaam, çeyreklkler ortalamasıı alalım. - Hocaaaaaam, çeyreklkler ağırlıklı ortalamasıı alalım. - Hocaaaaaaam, tepe değer, ortaca ve ortalamaı ortalamasıı alalım. - Hocaaaaaaaam, uları ağırlıklı ortalamasıı alalım, ama e ağırı ortalama olsu. - Çoçuklaaaaaaaaar yeter. Bz kütle ölçüyorduk, ağırlık erde çıktı. Kafam karıştı. Kütle ş, ağırlık ş, u fzkç ş. Ked şmze döelm. Bzm şmz e? - Tahm etmek hocam. - Ney tahm etmek? - Şu teeşr kütles. - Hocam, öreklem ortalaması yasız r tahm edcdr. Derste görmüştük. Ou alalım. Dğerlerde azıları da yasız olalr. - Hem teeşr kütles lmyorsuuz, hem de tahm yasız olacağıı söylüyorsuuz. - Sus. Bu soruyu derste hocaya z de sormuştuk, her zamak g ağzı açıldı ve öğle yemeğde olduk. Derse gelsee. - Araızda e kouşuyorsuuz, ye r tahm edc daha mı öeryorsuuz. Ağırlıklı olması, ayrıca varyasıı lmyorsaız söylemey. - Hocam e, öreklem ortalamasıı varyasıı lyorum. Öreklem ortalamasıı varyası ktle varyası ölü, ya öreklem hacm. - Çocuklar, gee kafamı karıştırdıız. Bz kütle ölçüyorduk. Ktle erde çıktı? Ktle e demek? Nerede? Teeşrler ktles m? - Hayır hocam, sz zm kafamızı karıştırmayı. Bazı araştırmalarda, ktle ve rm kavramları vardı ya, şte o. Bazı araştırmalarda da u kavramı kullamadığımızı söylemştz.

3 - Çocuklar, acaa doğru mu söylemştm. Burada, ktle terazler ktles olması. - Hayır hocam, urada ktle yok. Sadece şu teeşr var. Teraz de kmya laoratuarıda kaldı. Arkadaşı dedğ sözgelm: ktle varyası ölü öreklem hacm. Taktıız ye. Gerçek düya l lgl prolemmz açık r şeklde taımladıkta sora yola çıkmamız gerektğ söylemştz. Şuradak teeşr kütles tahm etmek styoruz, o kadar. - Tamam çocuklar toparlıyoruz. Her e kadar fzkçler, prestjler sarsılması dye ölçme soucu elde ettklere tahm demeseler de ular rer tahmdr. Đşmz trelm. Teeşr kütles kaç olarak tahm ettz gram çıktı hocam. Kmyacılar yok, soudak sıfırı atalım mı? - Ama kalsı Hocam, duyarlarsa olasılığı sorarlar. Belk aşka hesaplamalarda çıkmaz. - Bu teeşr kütles gram dyelrmyz? - Olduğuu tahm ettk Hocam. Ayrıca, fzkçler artmetk ortalamaı arkasıa artı eks r şeyler de yazıyorlar. - O, çay paketlerde de var. - Çocuklar ou tam olarak e alama geldğ e de lmyorum. Gauss hatası dye r şeyler hesaplattırıyorlardı fzk laoratuarıda. Her gözlem değerde ortalama çıkartılıp, kares alııp - e ölüüyordu ve ou karekökü yazılıyordu artı eks dye. Nç değl de - e öldükler alayamıyordum. - Bz lyoruz hocam. Teraz yaptığı hata r rasgele değşke, u rasgele değşke dağılımıı varyası ç yasız r tahm edc, o söyledğz. Ama karekökü alıdığıda, stadart sapma ç yasız olur mu lemeyz. - Baa sormayı. Aklıma yede hata sözcüğüü getrdz. Çocuklar, rasgelelk olgusu çere r özellğ (ua r rasgele değşke karşılık gelmektedr) celerke, sadece özellğ doğasıdak rasgelelğ ele alacağız. Öreğ, ell r ktledek r yaşıdak çocukları ağırlıklarıı celemeye kalkıştığımızda ölçü alet hatasıı görmezde geleceğz. Sak hatasız ölçüyormuşuz g düşüeceğz. Đlerde, ölçüm hatalarıı da ş çe katarak statstksel souç çıkarım asıl yapılır, lsasüstü derslerde öğrersz. Dkkat ed, leer modellerdek hata term ölçüm hatası le karıştırmayı. Ölçüm Hatalı Modeller ders de alı. Yıl 006. Zama e kadar çauk geçmş. ĐST 50 Đstatstk Teors ders. - Arkadaşlar, u gü ye mal edlmş ola şuradak kuyumcu teraz yaptığı hata yı araştırmaya çalışacağız. - Tamam hocam. Araştırma dedz, adıı söylemedz. - Teraz r ölçmede yaptığı hatayı r rasgele değşke olarak düşüüp, uu dağılımı edr, eklee değer edr, varyası edr? Araştırma koumuz u olsu. Ayrıca, u teraz ç hataı eklee değer sıfır olduğuu dda edyorlar. Haklıysak, ama z haksız çıkarmayı dyorlar. Blyoruz sz statstkçsz, öyle r karar kuralı, ya sz dlzde r test foksyou ulu k, dedğmz doğru olduğuda test soucu dedğmz reddedlmes olasılığı e çok %5 olsu, dyorlar. Buu da araştıralım. - Hocam, tüketc hakları e olacak. Terazy kullaalar ya. - Hocam, düzgü e güçlü test foksyou le ş trrz. - Tamam arkadaşlar. - Hocam, urada esas mesele teraz yaptığı hataı varyasıda. Hatalar sıfıra göre smetrk r dağılıma sahp ve varyas küçükse her k tarafı da şe gelr. Hataı varyası ç r ddaları var mı? - Varyas le lgl r şey söylemedler.

4 - Hocam. Kuyumcu terazler ç hataı stadart sapmasıı 0.0 gramda küçük, ya varyası de küçük olmasıı şart koşuyorlarmış. Buu yokluk hpotez olarak alıp %5 alam düzeyde test edelm. Belk şlere yarar. - Tamam arkadaşlar. - Hocam, hataı dağılımı le lgl varsayımda uluacakmıyız? - Örekleme ve gözlemler asıl yapılacak? - Araştırmadak gözlem alma ş k şeklde yapalım. Brcs, seeler öcede kala şuradak teeşr tartarak, kcs de stadartlar esttüsüde alıa ve 0 gram olduğu söylee şuradak esey tartarak yapalım. - Hocam, o ese üstüde TSE damgası yok. - Olsa e fark edecekt k? Kedler 0 gram olduğuu erede lyor? - Felsefe yok. Đş yapacağız arkadaşlar. Başlayalım. Đlk öce, ölçmelerdek hataı dağılımı meseles ele alalım. Bldğz g Gauss, astroom le lgl ölçme hataları üzerde çok çalışmış ve öeml souçlar elde etmştr. Şmd, C.R.Rao u Lear Statstcal Iferece ad Its Applcatos sml ktıda Hage Taımlaması ı ele alalım. Hatalar ç aşağıdak varsayımlar söz kousu olsu: a) Rasgele değşke ola ell r hata, küçük (steldğ kadar küçük) ve ayı değer ala çok sayıda hata leşeler toplamı olsu. ) Her hata leşe ç değer poztf veya egatf olma olasılığı eşt olsu. c) Hata leşeler ağımsız olsu. Her r hata leşe küçük veε üyüklüğüde olup, + ε le ε değerler olasılıkları le alsı. Her r hata leşe ortalaması 0 ve varyası X, X,..., X ve hata X olmak üzere, ve olur. X = X + X X E ( X ) = E( X ) + E( X ) E( X ) = 0 Var ( X ) = Var( X ) + Var( X ) Var( X ) = ε ε dır. Hata leşeler Var ( X ) = ε = olacak şeklde, ç X dağılımıı ulmak ç karakterstk foksyouu göz öüe alalım. X karakterstk foksyou, ( ) ( tx tx ) ( k t E e E e ) ( e tε e tε ϕ = = ) X = + k = t 4 t = ε + ε ! 4!

5 olmak üzere, t + o( )! e t dır. Lmttek karakterstk foksyoa karşılık gele olasılık yoğuluk foksyou, x tx f ( x) = e ϕ X ( t) dt e π = π olup, u, ortalaması 0, varyası ola ormal dağılımı olasılık yoğuluk foksyoudur. Hatayı oluştura leşeler sayısı çok ve (a), (), (c) şıklarıdak özellkler sağlaıyorsa hataı dağılımı ç yaklaşık olarak u ormal dağılımı alalrz. Kısaca, r rasgele değşke ola hataı dağılımı, ortalaması 0 ve varyası ola r ormal dağılımdır, ya da hata 0 ortalamalı ve varyaslı ormal dağılıma sahptr dyeceğz. Elmzdek teraz ç (a), (), (c) şıklarıdak özellkler sağlaıyorsa ölçmelerde yaptığı hataı ormal dağılıma sahp olduğu söyleelr. Hataı doğası hakkıda hçr şey lmyorsa, gerektğde gözlemlerde r souç çıkarılalr. Bell r dağılıma sahp olduğu varsayımıda uluuluyorsa gözlemlerde varsayımı doğruluğu sıaalr (test edlelr). Elmzdek teraz ölçmelerde yaptığı hata ç (a), (), (c) şıklarıdak özellkler sağlaıyor olsu. Br ölçmedek hata ε le gösterls. ) ε N(0, olmak üzere, u dağılımı parametres, ya varyası tahm etmek steyelm. Gözlemlermz k farklı şeklde yapacağımızı söylemştk. Teeşr kez tartarak, Y, Y,..., Y öreklem (ağımsız ve her r N ( µ, ) dağılımıa sahp rasgele değşkeler) göz öüe alalım. Y = µ + ε, =,,..., olmak üzere, urada µ teeşr kütlesdr (şu a z lgledrmyor). küçük varyaslı yasız tahm edc (UMVUE), ç düzgü e dr. = S = = ( Y Y ) 0 gramlık esey kez tartarak, Y, Y,..., Y öreklem (ağımsız ve her r N(0, ) dağılımıa sahp rasgele değşkeler) göz öüe alalım. Y 0 =, =,,..., ε

6 olmak üzere, hataları doğruda gözlemş oluruz. ε, ε,..., ε ler rmlk öreklem olmak üzere, (UMVUE), dr. = = ε Arkadaşlar, hpotez teste geçmede öce, Teeşr tartmasıda, ç r pvot, dır. olmak üzere, ( ) S Q( X, ) = χ. P a P ) N(0, dağılımıda ç düzgü e küçük varyaslı yasız tahm edc ( ) S α = ( ) S ( ) S = a α ç aralık tahm de yapalım. yazılalr. O zama, ç u pvota dayalı α güve katsayılı güve aralıklarıı sııfı, ( ) S ( ) S C = C( X, a, ) : C( X, a, ) =,, a, > 0, a <, P ( C( X, a, ) ) = α a dır. Bu sııftak r güve aralığıı uzuluğu, l ( C( X, a, ) ) = ( ) S ( ). a olmak üzere, e küçük uzuluklu aralık edr? Başka r fade le, amaç : m ( ) S( ) a, a kısıt: 0 < a <, f ( q) dq = α Optmzasyo prolem çözümü edr? Burada, yoğuluk foksyoudur. Çözüm, Q Q Q a a Q a f ( a) = f ( ) le f ( q) dq = α.. f Q foksyou χ dağılımıı olasılık dekemler sağlaya a, değerlerdr. Bu deklemler çözümler ç Tate ad Klett (959) tarafıda talolar hazırlamıştır ( Optmum cofdece tervals for the varace of the ormal struto, JASA, Vol.54, pp ). Bu çözümler MATLAB da yazılmış aşağıdak lgsayar programıı şleterek de ulalrsz

7 alfa=.05;=6; aa=chv(alfa,-); for a=.:.0:aa =chv((-alfa+chcdf(a,-)),-); f a^*chpdf(a,-)-^*chpdf(,-)>=0;reak;ed ed [a ] as = Tate ve Klett talosudak değerler, a=4.636 ve = dr. dr. ç alışılmış (degel-kuyruklu, equally-taled) güve aralığı, ( ) S ( ) S χ, ; α / χ; α / 0 gramlık ese le yapıla gözlemlerde, ç alışılmış güve aralığı, χ dr. ç r pvot, ε ε = =, ; α / χ; α / ε = Q ( X, ) = χ olmak üzere, u pvota dayalı α güve katsayılı güve aralıklarıı, ε ε = = C = C( X, a, ) : C( X, a, ) =,, a, > 0, a <, P ( C( X, a, ) ) = α a sııfı çde, e küçük uzuluklu olaı, Q Q Q a a f ( a) = f ( ) le f ( q) dq = α deklemler çözümü ola a, değerlerde elde edlmektedr. Burada, Q f foksyou χ dağılımıı olasılık yoğuluk foksyoudur. - Geldk hpotez teste. - Hocam tahm prolem tmed k. - Ne kaldı gerye? - Gözlemler almak ve hesaplamak. - Gözlemler sz alı, hesaplamaları da lgsayar yapsı. - Tamam hocam. - Souçları yorumlamayı uutmayı. Ayrıca, hpotez test kısmı da ödev olsu.

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması . Ders ĐSTATĐSTĐKTE SĐMÜLASYON Tahm Edcler ve Test Đstatstkler Smülasyo le Karşılaştırılması Đstatstk rasgelelk olgusu çere olay süreç ve sstemler modellemesde özellkle bu modellerde souç çıkarmada ve

Detaylı

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu Br KANUN ve Br TEOREM Büyük Türkçe Sözlük kau Đg. law Doğa olaylarıı oluş edeler ortaya koya ve gelecektek olayları öcede kestrme olaağı vere bağıtı; Newto kauu, Kepler kauları. (BSTS / Gökblm Termler

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

6. Uygulama. dx < olduğunda ( )

6. Uygulama. dx < olduğunda ( ) . Uygulama Hatırlatma: Rasgele Değşelerde Belee Değer Kavramı br rasgele değşe ve g : R R br osyo olma üzere, ) esl ve g ) ) < olduğuda D ) sürel ve g ) ) d < olduğuda g belee değer der. c R ve br doğal

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. [email protected]

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI [email protected] İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

4/16/2013. Ders 9: Kitle Ortalaması ve Varyansı için Tahmin

4/16/2013. Ders 9: Kitle Ortalaması ve Varyansı için Tahmin 4/16/013 Ders 9: Kitle Ortalaması ve Varyası içi Tahmi Kitle ve Öreklem Öreklem Dağılımı Nokta Tahmii Tahmi Edicileri Özellikleri Kitle ortalaması içi Aralık Tahmii Kitle Stadart Sapması içi Aralık Tahmii

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ

Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ Taımlayıcı İstatstkler (Descrptve Statstcs) Dr. Musa KILIÇ TANIMLAYICI ÖRNEK İSTATİSTİKLERİ YER ÖLÇÜLERİ (Frekas dağılışıı abss eksedek durumuu belrtr.) DEĞİŞİM ÖLÇÜLERİ ( Frekas dağılışıı şekl belrtr.).

Detaylı

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR Ölçme, her deeysel blm temel oluşturur. Fzk blmde de teorler sıaması ç çeştl deeyler tasarlaır ve bu deeyler sırasıda çok çeştl ölçümler yapılır. Br fzksel celğ

Detaylı

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı)

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı) 3 TAHMİNLEYİCİLERİN ÖZELLİKLERİ 3.1. Sapmasızlık 3.. Tutarlılık 3.3. Etkilik miimum varyas 3.4. Aralık tahmii (güve aralığı) İyi bir tahmi edici dağılımı tahmi edilecek populasyo parametresie yakı civarda

Detaylı

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama TANIMLAYICI İSTATİSTİKLER Taımlayıcı İstatstkler MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl [email protected] Yer Ölçüler (Merkez Eğlm Ölçüler)

Detaylı

Regresyon ve Korelasyon Analizi. Regresyon Analizi

Regresyon ve Korelasyon Analizi. Regresyon Analizi Regresyo ve Korelasyo Aalz Regresyo Aalz Regresyo Aalz Regresyo aalz, aralarıda sebep-souç lşks bulua k veya daha fazla değşke arasıdak lşky belrlemek ve bu lşky kullaarak o kou le lgl tahmler (estmato)

Detaylı

BEKLENEN DEĞER VE VARYANS

BEKLENEN DEĞER VE VARYANS BEKLEE DEĞER VE VARYAS.1. İadel ve adesz öreklemede tüm mümkü örekler.. Beklee değer.3. Varyas.4. İk değşke ortak dağılımı.5. İstatstksel bağımsızlık.6. Tesadüf değşkeler doğrusal kombasyolarıı beklee

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Taımlayıcı İstatstkler br değerler dzs statstksel olarak geel özellkler taımlaya ölçülerdr Taımlayıcı İstatstkler Yer Göstere Ölçüler Yaygılık Ölçüler Yer Göstere Ölçüler Br dağılımı

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

Parametrik Olmayan İstatistik Çözümlü Sorular - 2

Parametrik Olmayan İstatistik Çözümlü Sorular - 2 Parametrk Olmaya İstatstk Çözümlü Sorular - Soru Böbrek hastalarıa at Kreat (KRT) değerlere lşk br araştırma yapılmak stemektedr. Buu ç rasgele seçle hastaya at Kreat değerler aşağıdak gb elde edlmştr

Detaylı

Đst201 Đstatistik Teorisi I

Đst201 Đstatistik Teorisi I Đst20 Đstatstk Teors I DERSĐN TÜRÜ Zorulu DERSĐN DÖNEMĐ Yaz DERSĐN KREDĐSĐ Ulusal Kred: (4, 0, 0 ) 4 KTS: 7 DERSĐN VERĐLDĐĞĐ Bölüm: Đstatstk 200/20 Öğretm Yılı DERSĐN MCI Đstatstğ matematksel temeller

Detaylı

Giriş. Değişkenlik Ölçüleri İSTATİSTİK I. Ders 5 Değişkenlik ve Asimetri Ölçüleri. Değişkenlik. X i ve Y i aşağıdaki gibi iki seri verilmiş olsun:

Giriş. Değişkenlik Ölçüleri İSTATİSTİK I. Ders 5 Değişkenlik ve Asimetri Ölçüleri. Değişkenlik. X i ve Y i aşağıdaki gibi iki seri verilmiş olsun: Grş İSTATİSTİK I Ders Değşkelk ve Asmetr Ölçüler Ortalamalar, serler karşılaştırılmasıda her zama yeterl ölçüler değldr. Ayı ortalamayı sahp serler arklı dağılım göstereblrler. Bu edele serler karşılaştırılmasıda,

Detaylı

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testlerine Giriş Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testlerine Giriş Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK İstatistiksel Tahmileme ve Hipotez Testlerie Giriş Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üiversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr

Detaylı

9. Ders. Đstatistikte Monte Carlo Çalışmaları

9. Ders. Đstatistikte Monte Carlo Çalışmaları 9. Ders Đstatstkte Mote Carlo Çalışmaları Đstatstk rasgelelk olgusu çere olay süreç ve sstemler modellemesde özellkle bu modellerde souç çıkarmada ve bu modeller geçerllğ sıamada kullaıla bazı blg ve yötemler

Detaylı

ˆp x p p(1 p)/n. Ancak anakütle oranı p bilinmediğinden bu ilişki doğrudan kullanılamaz.

ˆp x p p(1 p)/n. Ancak anakütle oranı p bilinmediğinden bu ilişki doğrudan kullanılamaz. YTÜ-İktisat İstatistik II Aralık Tahmii II 1 ANAKÜTLE ORANININ (p GÜVEN ARALIKLARI (BÜYÜK ÖRNEKLEMLERDE Her birii başarı olasılığı p ola birbiride bağımsız Beroulli deemeside öreklemdeki başarı oraıı ˆp

Detaylı

İSTATİSTİKSEL TAHMİN. Prof. Dr. Levent ŞENYAY VIII - 1 İSTATİSTİK II

İSTATİSTİKSEL TAHMİN. Prof. Dr. Levent ŞENYAY VIII - 1 İSTATİSTİK II 8 İSTATİSTİKSEL TAHMİN 8.. İstatistiksel tahmileyiciler 8.. Tahmileyicileri Öellikleri 8... Sapmasılık 8... Miimum Varyaslılık 8..3. Etkilik 8.3. Aralık Tahmii 8.4. Tchebysheff teoremi Prof. Dr. Levet

Detaylı

FİNANSAL YÖNETİM. Finansal Yönetim Örnek Sorular Güz 2015. Yrd. Doç. Dr. Rüstem Barış Yeşilay 1. Örnek. Örnek. Örnek. Örnek. Örnek

FİNANSAL YÖNETİM. Finansal Yönetim Örnek Sorular Güz 2015. Yrd. Doç. Dr. Rüstem Barış Yeşilay 1. Örnek. Örnek. Örnek. Örnek. Örnek Fasal Yöetm Örek lar Güz 2015 Güz 2015 Fasal Yöetm Örek lar 2 Örek FİNNSL YÖNETİM ÖRNEKLER 1000 TL %10 fazde kaç yıl süreyle yatırıldığıda 1600 TL olur? =1000 TL, FV=1600 TL, =0.1 FV (1 ) FV 1600 (1 )

Detaylı

Quality Planning and Control

Quality Planning and Control Qualty Plag ad Cotrol END 3618 KALİTE PLANLAMA VE KONTROL Prof. Dr. Mehmet ÇAKMAKÇI Dokuz Eylül Üverstes Edüstr Mühedslğ Aablm Dalı 1 Qualty Maagemet İstatstksel Proses Kotrol Kotrol Kartları 2 END 3618

Detaylı

Açık Artırma Teorisi Üzerine Bir Çalışma

Açık Artırma Teorisi Üzerine Bir Çalışma Kocael Üerstes Sosyal Blmler Esttüsü Dergs (4) 27 / 2 : 5-77 Açık Artırma Teors Üzere Br Çalışma Şeket Alper Koç Özet: Bu çalışmada haleler üzere teork r araştırma yapılacaktır. Belrl arsayımlar altıda

Detaylı

MERKEZİ EĞİLİM ÖLÇÜLERİ

MERKEZİ EĞİLİM ÖLÇÜLERİ MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlee ver düzeleerek çzelgelerle, graklerle suulması çoğu kez yeterl olmaz. Geel durumu yasıtacak br takım ölçülere gereksm vardır. Bu ölçüler verler yalızca özlü br bçmde belrtmekle

Detaylı

YÖNEYLEM ARAŞTIRMASI III. Dinamik Programlama. Örnek 3: Tıbbi Müdahale Ekiplerinin Ülkelere Dağıtımı

YÖNEYLEM ARAŞTIRMASI III. Dinamik Programlama. Örnek 3: Tıbbi Müdahale Ekiplerinin Ülkelere Dağıtımı YÖNEYLEM ARAŞTIRMASI III Hafta Determstk Damk Programlama (devam) Damk Programlama Geçe derste küçük ölçekl problemler damk programlamayla yelemel olarak asıl çözüldüğüü gördük. Bu derste, öreklere devam

Detaylı

x 2$, X nın bir tahminidir. Bu durumda x ile X arasındaki farka bu örnek için örnekleme hatası x nın örnekleme hatasıdır. X = x - (örnekleme hatası)

x 2$, X nın bir tahminidir. Bu durumda x ile X arasındaki farka bu örnek için örnekleme hatası x nın örnekleme hatasıdır. X = x - (örnekleme hatası) 4 ÖRNEKLEME HATASI 4.1 Duyarlılık 4. Güveilirik 4.3 Örek hacmi ve uyarlılık arasıaki ilişki 4.4 Örek hacmi ve göreceli terimler ile uyarlılık arasıaki ilişki 4.5 Hata kareler ortalaması Örekte ele eile

Detaylı

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz;

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz; Öre A. Bezer pe 40 güç ayağıı dayama süreler aşağıda gbdr. Geşlelmş reas ablosu oluşuruuz;, 4,7 3, 3,4 3,3 3, 3,9 4, 3,4 4, 3,8 3,7 3,6 3,8 3,7 3,0,,6 3, 3,,6,9 3, 3,0 3,3 4,3 3, 4, 4,6 3, 3,3 4,4 3,9,9

Detaylı

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler 3. Ders Parametre Tahmii Tahmi Edicilerde Araa Özellikler Gerçek düyada rasgelelik olgusu içere bir özellik ile ilgili ölçme işlemie karş l k gele X rasgele de¼gişkeii olas l k (yo¼guluk) foksiyou, F ff(;

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üiversitesi İşaat Mühedisliği Bölümü [email protected] İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN idrolik Aabilim Dalı Balıkesir Üiversitesi İşaat Mühedisliği Bölümü Bölüm 5 Örekleme

Detaylı

Polinom İnterpolasyonu

Polinom İnterpolasyonu Polom İterpolasyou (Ara Değer Bulma Br foksyou solu sayıdak, K, R oktalarıda aldığı f (, f (,, f ( değerler bls (foksyou keds blmyor. Bu oktalarda geçe. derecede br tek, P a + a + a + + a (... polumu vardır

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

EME 3117 SİSTEM SIMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9

EME 3117 SİSTEM SIMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9 ..7 EME 37 Girdi Aalizi Prosedürü SİSTEM SIMÜLASYONU Modelleecek sistemi (prosesi) dokümate et Veri toplamak içi bir pla geliştir Veri topla Verileri grafiksel ve istatistiksel aalizii yap Girdi Aalizi-II

Detaylı

1. GAZLARIN DAVRANI I

1. GAZLARIN DAVRANI I . GZLRIN DRNI I İdeal Gazlar ç: lm 0 RT İdeal gazlar ç: RT Hacm() basıçla() değşk sıcaklıklarda değşm ekl.. de gösterlmştr. T >T 8 T T T 3 asıç T 4 T T 5 T 7 T 8 Molar Hacm ekl.. Gerçek br gazı değşk sıcaklıklardak

Detaylı

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler. OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre

Detaylı

5.1 Olasılık Tarihi. 5.2. Temel Olasılık Kavramları

5.1 Olasılık Tarihi. 5.2. Temel Olasılık Kavramları 5 OLSILIK 5.. Olasılık Tarh 5.. Temel Olasılık Kavramları 5.3. Deeysel Olasılık 5.4. Temel olasılık Teoremler 5.5. Olasılığı Tolaablrlk Kuralı: 5.6. Olasılığı çarım kuralı: 5.7. Değl ağıtısı: 5.8. Koşullu

Detaylı

İstatistik Ders Notları 2018 Cenap Erdemir BÖLÜM 5 ÖRNEKLME DAĞILIMLARI. 5.1 Giriş

İstatistik Ders Notları 2018 Cenap Erdemir BÖLÜM 5 ÖRNEKLME DAĞILIMLARI. 5.1 Giriş İstatistik Ders Notları 08 Ceap Erdemir BÖLÜM 5 ÖRNEKLME DAĞILIMLARI 5. Giriş Öreklem istatistikleri kullaılarak kitle parametreleri hakkıda çıkarsamalar yapmak istatistik yötemleri öemli bir bölümüü oluşturur.gülük

Detaylı

ÖNSÖZ. 2) Evde yapabileceklerinizi yapıp, laboratuar kılavuzundaki yerleri doldurun (!!! işaretli yerler).

ÖNSÖZ. 2) Evde yapabileceklerinizi yapıp, laboratuar kılavuzundaki yerleri doldurun (!!! işaretli yerler). ÖNSÖZ Bu laboratuar kılavuzu ĐST 5 Đstatstk Laboratuarı deeyler ç hazırlamıştır. Buradak deeyler ve çalışmaları amacı, şu aa kadar görüle dersler çerçevesde, rasgelelk olgusuu alaşılması ve alatılması

Detaylı

Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine

Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine Geelleşrlmş Oralama Foksyou ve Bazı Öeml Eşszlkler Öğrem Üzere Gabl ADİLOV, Gülek TINAZTEPE & Serap KEALİ * Öze Armek oralama, Geomerk oralama, Harmok oralama, Kuvadrak oralama ve bular arasıdak lşk vere

Detaylı

İSTATİSTİKSEL TAHMİNLEME VE

İSTATİSTİKSEL TAHMİNLEME VE 1 ölüm maçları İSTTİSTİKSEL THMİLEME VE YORUMLM SÜRECİ ÖREKLEME VE ÖREKLEME DĞILIMLRI u bölümde öğreeceklerz. Örekleme gereksm ve yötemler celemek. Örekleme hatası kavramıı taımlamak Örekleme dağılışı

Detaylı

denklemini sağlayan tüm x kompleks sayılarını bulunuz. denklemini x = 64 = 2 i şeklinde yazabiliriz. Bu son kompleks sayıları için x = 2iy

denklemini sağlayan tüm x kompleks sayılarını bulunuz. denklemini x = 64 = 2 i şeklinde yazabiliriz. Bu son kompleks sayıları için x = 2iy Ders Sorumlusu: Doç. Dr. Necp ŞİMŞEK Problem. deklem sağlaya tüm kompleks sayılarıı buluu. Çöüm deklem şeklde yaablr. Bu so y kompleks sayıları ç y yaalım. Bu taktrde deklemde, baı y ( ) y elde edlr. Burada

Detaylı

Bağımsızlık özelliğinden hareketle Ortak olasılık fonksiyonu (sürekli ise

Bağımsızlık özelliğinden hareketle Ortak olasılık fonksiyonu (sürekli ise YTÜ-İktisat İstatistik II Örekleme ve Öreklem Dağılımları BASİT RASSAL ÖRNEKLEME N tae ese arasıda taelik bir öreklem seçilmesii istediğii düşüelim. eseli olaaklı her öreklemi seçilme şasıı eşit kıla seçim

Detaylı

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ Bu bölümdeki yötemler, bilimeye POPULASYON PARAMETRE değeri hakkıda; TAHMİN yapmaya yöelik ve, KARAR vermekle ilgili, olmak üzere iki grupta icelemektedir. Parametre

Detaylı

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda

Detaylı

RANKI 2 OLAN SERBEST LIE CEBİRLERİNİN OTOMORFİZM GRUPLARININ SUNUMLARI 1 Reports Of Free Groups Otomorfizm Rank 2 Lie Algebras

RANKI 2 OLAN SERBEST LIE CEBİRLERİNİN OTOMORFİZM GRUPLARININ SUNUMLARI 1 Reports Of Free Groups Otomorfizm Rank 2 Lie Algebras RANKI OLAN SERBEST LIE CEBİRLERİNİN OTOMORFİZM GRUPLARININ SUNUMLARI Reports Of Free Groups Otomorfzm Rak Le Algebras Özge ÖZTEKİN Matematk Aa Blm Dalı Name EKİCİ Matematk Aa Blm Dalı ÖZET Bu çalışmada,

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı TOBB Ekoom ve Tekoloj Üverstes İKT351 Ekoometr I, Ara Sıavı Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sıav toplam 100 pua değerde 4 soruda oluşmaktadır. Sıav süres 90 dakkadır ve

Detaylı

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1 ĐÇI DEKILER Sayfa. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR.. Grş.. Đstatstk.3. Populasyo.4. Örek.5. Brm.6. Parametre.7. Değşke 3.8. Ver ve Ver Tpler 3.9. Toplama Sembolü 4 ÇALIŞMA PROBLEMLERĐ 6. VERĐLERĐ

Detaylı

Yrd.Doç.Dr.İstem Köymen KESER

Yrd.Doç.Dr.İstem Köymen KESER Yr.Doç.Dr.İstem Köyme KESER Güve Aralıkları Ortalama yaa iki ortalama farkı içi biliiyor bilimiyor 30

Detaylı

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir.

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir. HİPOTEZ TETLERİ İstatistikte hipotez testleri, karar teorisi olarak adladırılır. Ortaya atıla doğru veya yalış iddialara hipotez deir. Öreği para hilesizdir deildiğide bu bir hipotezdir. Ortaya atıla iddiaya

Detaylı

Matematik olarak normal dağılım fonksiyonu. 1 exp X 2

Matematik olarak normal dağılım fonksiyonu. 1 exp X 2 Matematk olarak ormal dağılım foksyou f ( ) ep ( ) Şeklde fade edlr. Burada μ artmetk ortalama, σ se stadart sapma değer gösterr ve dağılım foksyou N(μ, σ) otasyou le gösterlr. Bu deklem geometrk görütüsü

Detaylı

=... 29 İÇİNDEKİLER. E(X) = k... 22. 3.5. Pascal (Negatif Binom) Dağılımı... 22 1. 3.6. Hipergeometrik Dağılım... 22. N y= ... 24

=... 29 İÇİNDEKİLER. E(X) = k... 22. 3.5. Pascal (Negatif Binom) Dağılımı... 22 1. 3.6. Hipergeometrik Dağılım... 22. N y= ... 24 İÇİNDEKİLER SİMGE LİSTESİ... KISALTMA LİSTESİ... v ÇİZELGE LİSTESİ... v ŞEKİL LİSTESİ... v ÖNSÖZ... v ÖZET... x ABSTRACT... x GİRİŞ... BÖLÜM : OLASILIK DAĞILIMLARI VE OLASILIK YOĞUNLUKLARI... BÖLÜM : OLASILIK

Detaylı

BAZI YARIGRUP AİLELERİ ve YAPILARI İÇİN SONLULUK KOŞULLARI ve ETKİNLİK *

BAZI YARIGRUP AİLELERİ ve YAPILARI İÇİN SONLULUK KOŞULLARI ve ETKİNLİK * BAZI YARIGRUP AİLELERİ ve YAPILARI İÇİN SONLULUK KOŞULLARI ve ETKİNLİK * Fteess Codtos For Soe Segroup Fales ad Costructos ad Effcecy Basr ÇALIŞKAN Mateatk Aabl Dalı Hayrullah AYIK Mateatk Aabl Dalı ÖZET

Detaylı

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım Normal Dağılımlı Bir Yığı a İlişi İstatistisel Çıarım Bir üretici edi ürüleride, piyasadai 3,5 cm li vidalarda yalıca boyları 3,4 cm ile 3,7 cm aralığıda olaları ullaabilmetedir. Üretici, piyasadai bu

Detaylı

Kİ-KARE TESTLERİ. şeklinde karesi alındığında, Z i. değerlerinin dağılımı ki-kare dağılımına dönüşür.

Kİ-KARE TESTLERİ. şeklinde karesi alındığında, Z i. değerlerinin dağılımı ki-kare dağılımına dönüşür. Kİ-KARE TESTLERİ A) Kİ-KARE DAĞILIMI VE ÖZELLİKLERİ Örnekleme yoluyla elde edlen rakamların, anakütle rakamlarına uygun olup olmadığı; br başka fadeyle gözlenen değerlern teork( beklenen) değerlere uygunluk

Detaylı

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir.

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir. Bölüm 2 Matrsler aım 2.1 F br csm, m, brer doğal sayı olsu. a F ( 1,.., m; j 1,..., ) olmak üzere, a11... a1 fadese m satır sütuda oluşa (veya m tpde) br F matrs der. am 1... a m Böyle br matrs daha sade

Detaylı

PORTFÖY OPTİMİZASYONUNDA ORTALAMA MUTLAK SAPMA MODELİ VE MARKOWITZ MODELİNİN KULLANIMI VE İMKB VERİLERİNE UYGULANMASI

PORTFÖY OPTİMİZASYONUNDA ORTALAMA MUTLAK SAPMA MODELİ VE MARKOWITZ MODELİNİN KULLANIMI VE İMKB VERİLERİNE UYGULANMASI Süleyma Demrel Üverstes İktsad ve İdar Blmler Fakültes Dergs Y.2008, C.3, S.2 s.335-350. Suleyma Demrel Uversty The Joural of Faculty of Ecoomcs ad Admstratve Sceces Y.2008, vol.3, No.2 pp.335-350. PORTFÖY

Detaylı

Kİ-KARE TESTLERİ A) Kİ-KARE DAĞILIMI VE ÖZELLİKLERİ

Kİ-KARE TESTLERİ A) Kİ-KARE DAĞILIMI VE ÖZELLİKLERİ Kİ-KAR TSTLRİ A) Kİ-KAR DAĞILIMI V ÖZLLİKLRİ Örnekleme yoluyla elde edlen rakamların, anakütle rakamlarına uygun olup olmadığı; br başka fadeyle gözlenen değerlern teork( beklenen) değerlere uygunluk gösterp

Detaylı

LEFKE AVRUPA ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ PSİKOLOJİ BÖLÜMÜ PSK 106 İSTATİSTİK YÖNTEMLER I BAHAR DÖNEMİ ARASINAV SORULARI

LEFKE AVRUPA ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ PSİKOLOJİ BÖLÜMÜ PSK 106 İSTATİSTİK YÖNTEMLER I BAHAR DÖNEMİ ARASINAV SORULARI LEFKE AVRUPA ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ PSİKOLOJİ BÖLÜMÜ PSK 106 İSTATİSTİK YÖNTEMLER I 2015-2016 BAHAR DÖNEMİ ARASINAV SORULARI Tarih: 22/04/2016 Istructor: Prof. Dr. Hüseyi Oğuz Saat: 11:00-12:30

Detaylı

4/4/2013. Ders 8: Verilerin Düzenlenmesi ve Analizi. Betimsel İstatistik Merkezsel Eğilim Ölçüleri Dağılım Ölçüleri Grafiksel Gösterimler

4/4/2013. Ders 8: Verilerin Düzenlenmesi ve Analizi. Betimsel İstatistik Merkezsel Eğilim Ölçüleri Dağılım Ölçüleri Grafiksel Gösterimler Ders 8: Verileri Düzelemesi ve Aalizi Betimsel İstatistik Merkezsel Eğilim Ölçüleri Dağılım Ölçüleri Grafiksel Gösterimler Bir kitlei tamamıı, ya da kitlede alıa bir öreklemi özetlemekle (betimlemekle)

Detaylı

NİÇİN ÖRNEKLEME YAPILIR?

NİÇİN ÖRNEKLEME YAPILIR? İÇİ ÖREKEME YAPIIR? Zama Kısıdı Maliyeti Azaltma Hata Oraıı Azaltma Souca Ulaşma Hızı Doç.Dr. Ali Kemal ŞEHİRİOĞU Araş.Gör. Efe SARIBAY Örekleme Teorisi kousuu içide, Örekleme Tipleri populasyoda örek

Detaylı

ü ü üü ş ş ş Ü ÜÜ ü ü üü ş ü ş ş ö ç ş ş ç ş ü ü ü ç ç ş ü ş ş ü ü ü ö ş ö ş ö ş ş ç ş ü ş ç ş Ç ç Ü öü ü ü üü ü ü üü ç ş ç ş ö ö ü ç ş ç ş ş ö ç ş ö

ü ü üü ş ş ş Ü ÜÜ ü ü üü ş ü ş ş ö ç ş ş ç ş ü ü ü ç ç ş ü ş ş ü ü ü ö ş ö ş ö ş ş ç ş ü ş ç ş Ç ç Ü öü ü ü üü ü ü üü ç ş ç ş ö ö ü ç ş ç ş ş ö ç ş ö ş ü ş ü ü üü ü ş ö ş ş ö Ü ş ş ş ö Ç ö öü ö ö Ç ş ş ş ö ç ç ş ş ş ş ü ç ş ö ü ü ü üü ş ş ş Ü ÜÜ ü ü üü ş ü ş ş ö ç ş ş ç ş ü ü ü ç ç ş ü ş ş ü ü ü ö ş ö ş ö ş ş ç ş ü ş ç ş Ç ç Ü öü ü ü üü ü ü üü ç ş ç

Detaylı

dir. Bir başka deyişle bir olayın olasılığı, uygun sonuçların sayısının örnek uzaydaki tüm sonuçların sayısına oranıdır.

dir. Bir başka deyişle bir olayın olasılığı, uygun sonuçların sayısının örnek uzaydaki tüm sonuçların sayısına oranıdır. BÖLÜM 3 OLASILIK HESABI 3.. Br Olayın Olasılığı Tanım 3... Br olayın brbrnden ayrık ve ortaya çıkma şansı eşt n mümkün sonucundan m tanes br A olayına uygun se, A olayının P(A) le gösterlen olasılığı P(A)

Detaylı

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi,

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi, . Ders Büyü Sayılar Kauları Kouya geçmede öce DeMoivre-Stirlig formülüü ve DeMoivre-Laplace teoremii hatırlayalım. DeMoivre, geel terimi, a!,,, 3,... e ola dizii yaısa olduğuu göstermiş, aca limitii bulamamış.

Detaylı

ÖZET Yüksek Lsas Tez NORMAL DAĞILIM VE NORMAL DAĞILIMLA İLGİLİ ÇIKARIMLAR Şeol ÇELİK Akara Üverstes Fe Blmler Esttüsü İstatstk Aablm Dalı Daışma : Doç

ÖZET Yüksek Lsas Tez NORMAL DAĞILIM VE NORMAL DAĞILIMLA İLGİLİ ÇIKARIMLAR Şeol ÇELİK Akara Üverstes Fe Blmler Esttüsü İstatstk Aablm Dalı Daışma : Doç ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ NORMAL DAĞILIM VE NORMAL DAĞILIMLA İLGİLİ ÇIKARIMLAR Şeol ÇELİK İSTATİSTİK ANABİLİM DALI ANKARA 006 Her hakkı saklıdır ÖZET Yüksek Lsas Tez

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

TEZ ONAYI Nur ÇELİK tarafıda hazırlaa ANOVA Modellerde Çarpık Dağılımlar Kullaılarak Dayaıklı İstatstksel Souç Çıkarımı ve Uygulamaları adlı tez çalış

TEZ ONAYI Nur ÇELİK tarafıda hazırlaa ANOVA Modellerde Çarpık Dağılımlar Kullaılarak Dayaıklı İstatstksel Souç Çıkarımı ve Uygulamaları adlı tez çalış ANKARA ÜNİVERSİTESİ EN BİLİERİ ENSTİTÜSÜ DOKTORA TEZİ ANOVA MODELLERİNDE ÇARPIK DAĞILIAR KULLANILARAK DAYANIKLI İSTATİSTİKSEL SONUÇ ÇIKARIMI VE UYGULAMALARI Nur ÇELİK İSTATİSTİK ANABİLİM DALI ANKARA 0

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F. EKONOMETRİ BÖLÜMÜ [email protected] Taımlayıcı İstatstkler Yer Ölçüler (Merkez Eğlm Ölçüler) Duyarlı Ortalamalar

Detaylı

İSTATİSTİKSEL HİPOTEZ TESTLERİ (t z testleri)

İSTATİSTİKSEL HİPOTEZ TESTLERİ (t z testleri) İSTATİSTİKSEL İOTEZ TESTLERİ (t z testleri) iotez Nedir? İOTEZ, arametre hakkıdaki bir iaıştır. Bu sııfı ot ortalamasıı 75 olduğua iaıyorum. arametre hakkıdaki iaışımızı test etmek içi hiotez testi yaarız.

Detaylı

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç Sayısal Türev Sayısal İtegrasyo İterpolasyo Ekstrapolasyo Bölüm Üç Bölüm III 8 III-. Pvot Noktaları Br ( ) oksyouu değer, geellkle ekse üzerdek ayrık oktalarda belrler. Bu oktalara pvot oktaları der. Bu

Detaylı

REGRESYON VE KORELASYON ANALİZİ

REGRESYON VE KORELASYON ANALİZİ REGRESYON VE KORELASYON ANALİZİ.. Doğrusal İlşler.. Yalı (ast) Regreso... E Küçü Kareler Metodu a) Normal Delemler Çözümü ) Determat metodu c) Orj Kadırma... Regresou Stadart Sapması..3. Regresou Duarlılığı..4.

Detaylı

5. Ders Yeterlilik. f(x 1 ; x 2 ; :::; x n ; ) = g (T (x 1 ; x 2 ; :::; x n ); ) h(x 1 ; x 2 ; :::; x n )

5. Ders Yeterlilik. f(x 1 ; x 2 ; :::; x n ; ) = g (T (x 1 ; x 2 ; :::; x n ); ) h(x 1 ; x 2 ; :::; x n ) 5. Ders Yeterlilik Yeterlilik Ilkesi: Bir T(X ; X ; :::; X ) istatisti¼gi, hakk da yeterli bir istatistik olacaksa hakk da herhagi bir souç ç kar m T arac l ¼g ile (X ; X,...,X ) öreklemie ba¼gl olmal

Detaylı

Bağıl Değerlendirme Sisteminin Simülasyon Yöntemi ile Test Edilmesi: Kilis 7 Aralık Üniversitesi Örneği

Bağıl Değerlendirme Sisteminin Simülasyon Yöntemi ile Test Edilmesi: Kilis 7 Aralık Üniversitesi Örneği Akademk Blşm 11 - III. Akademk Blşm Koferası Bldrler 2-4 Şubat 2011 İöü Üverstes, Malatya Bağıl Değerledrme Sstem Smülasyo Yötem le Test Edlmes: Kls 7 Aralık Üverstes Öreğ Kls 7 Aralık Üverstes, Blgsayar

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde fazla dağılışı karşılaştırmak ç kullaıla veya ayrıca örek verlerde hareketle frekas dağılışlarıı sayısal olarak düzeleye değerlere taımlayıcı statstkler der. Aalzlede

Detaylı

6. NORMAL ALT GRUPLAR

6. NORMAL ALT GRUPLAR 6. ORMAL ALT GRUPLAR G br grup ve olsun. 5. Bölümden çn eştlğnn her zaman doğru olamayacağını blyoruz. Fakat bu özellğ sağlayan gruplar, grup teorsnde öneml rol oynamaktadır. Bu bölümde bu tür grupları

Detaylı

Yayılma (Değişkenlik) Ölçüleri

Yayılma (Değişkenlik) Ölçüleri Yayılma (Değşel) Ölçüler Br ver set taıma yada farlı ver set brbrde ayırt etme ç her zama yalızca yer ölçüler yeterl olmayablr. Dağılımları brbrde ayırt etmede ullaıla ve geellle artmet ortalama etrafıda

Detaylı

TABAKALI ŞANS ÖRNEKLEME

TABAKALI ŞANS ÖRNEKLEME 6 TABAKAI ŞA ÖREKEME 6.. Populasyo ortalaması ve populasyo toplamıı tam 6.. Populasyo ortalamasıı ve toplamıı varyası 6... Populasyo ortalamasıı varyası 6... Populasyo toplamıı varyası 6..3. Ortalama ve

Detaylı

AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI. için. 01 olaslk younluk fonksiyonu aa daki seçeneklerden hangisinde yer.

AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI. için. 01 olaslk younluk fonksiyonu aa daki seçeneklerden hangisinde yer. SORU : AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI X raslat deikeii olas l k youluk foksiyou 8x, x f(x) = 0, ö.d olarak verilmitir. Bua göre 0< y içi Y = raslat deikeii X olaslk youluk

Detaylı

Filbert Matrislerinin Normları İçin Alt ve Üst Sınırlar. The Upper and Lower Bounds For Norms of Filbert Matrices

Filbert Matrislerinin Normları İçin Alt ve Üst Sınırlar. The Upper and Lower Bounds For Norms of Filbert Matrices lert Matrsler Normları İç lt ve Üst Sıırlar Sülema Demrel Üverstes B Türe E Sarııar e Blmler Esttüsü Dergs - (00 - lert Matrsler Normları İç lt ve Üst Sıırlar Bahr TÜREN E SRIPINR Sülema Demrel Üverstes

Detaylı

5.1 Olasılık Tarihi Temel Olasılık Kavramları

5.1 Olasılık Tarihi Temel Olasılık Kavramları 5 OLSILIK 5.. Olasılık Tarh 5.. Temel Olasılık Kavramları 5.3. Deeysel Olasılık 5.4. Temel olasılık Teoremler 5.5. Koşullu (Şartlı Olasılık 5.6. ayes Teorem 5.7. ağımsızlık: 5.8. Olasılık Foksyoları 5.8..

Detaylı

Zaman Skalasında Box-Cox Regresyon Yöntemi

Zaman Skalasında Box-Cox Regresyon Yöntemi Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:7, Sayı:, Yıl:0, ss.57-70. Zama Skalasıda Bo-Co Regresyo Yötem Atlla Özur İŞÇİ Sbel PAŞALI GÖKTAŞ ATMACA 3 M. Nyaz ÇANKAYA 4 Özet Hata term

Detaylı

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır.

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır. UYUM ĐYĐLĐĞĐ TESTĐ Posson: H o: Ver Posson dağılıma sahp br ktleden gelmektedr. H a : Ver Posson dağılıma sahp br ktleden gelmemektedr. Böyle br hpotez test edeblmek çn, önce Posson dağılım parametres

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM [email protected] Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

Doğru Önermeler, Yanlış Önermeler 1 Ali Nesin

Doğru Önermeler, Yanlış Önermeler 1 Ali Nesin Doğru Önermeler, Yanlış Önermeler Al Nesn Bu yazıda 6 mantık sorusu sorup yanıtlayacağız. Brnc Blmece. Yargıç karar recek. Mahkeme tutanaklarından şu blgler çıkıyor: Eğer A suçsuzsa, hem B hem C suçlu.

Detaylı

Yrd. Doç. Dr. İhsa KARABULUT u daışmalığıda, Begül ARKANT tarafıda hazırlaa bu çalışma 3/07/008 tarhde aşağıdak jür tarafıda oy brlğ le Akara Üverstes

Yrd. Doç. Dr. İhsa KARABULUT u daışmalığıda, Begül ARKANT tarafıda hazırlaa bu çalışma 3/07/008 tarhde aşağıdak jür tarafıda oy brlğ le Akara Üverstes ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ BAĞIMLI GÖZLEMLERLE BOOTSTRAP YÖNTEMİ Begül ARKANT İSTATİSTİK ANABİLİM DALI ANKARA 008 Her hakkı saklıdır Yrd. Doç. Dr. İhsa KARABULUT u daışmalığıda,

Detaylı

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011)

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011) SEK Tahmnclernn Arzulanan Özellkler İk Değşkenl Bağlanım Model SEK Tahmnclernn Arzulanan Özellkler Ekonometr 1 Konu 9 Sürüm 2,0 (Ekm 2011) http://www.ackders.org.tr SEK Tahmnclernn Arzulanan Özellkler

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Ayça Hatce TÜRKAN GÜVENİLİRLİK ANALİZİNDE KULLANILAN İSTATİSTİKSEL DAĞILIM MODELLERİ İSTATİSTİK ANABİLİM DALI ADANA, 007 ÇUKUROVA ÜNİVERSİTESİ

Detaylı

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI Ki-Kare Analizleri

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI  Ki-Kare Analizleri Kİ KAR ANALİZİ 1 Doç. Dr. Mehmet AKSARAYLI www.mehmetaksarayl K-Kare Analzler OLAY 1: Genelde br statstk sınıfında, öğrenclern %60 ının devamlı, %30 unun bazen, %10 unun se çok az derse geldkler düşünülmektedr.

Detaylı

Öğretim Üyesi. Topoğrafya İnşaat Mühendisliği

Öğretim Üyesi. Topoğrafya İnşaat Mühendisliği Öğretim Üyesi Mehmet Zeki COŞKUN Y. Doç. Dr. İşaat Fak., Jeodezi ve Fotogrametri Müh. Ölçme Tekiği Aabilim Dalı (1) 85-6573 [email protected] http://atlas.cc.itu.edu.tr/~cosku Adres Öğreci görüşme saatleri:

Detaylı

SOYUT CEBİR VE SAYILAR TEORİSİ

SOYUT CEBİR VE SAYILAR TEORİSİ ÇÖZÜMLÜ PROBLEMLERLE SOYUT CEBİR VE SAYILAR TEORİSİ PROF. DR. MEHMET ERDOĞAN Beyket Üverstes Fe-Edebyat Fakültes Matematk-Blgsayar Bölümü YRD. DOÇ. DR. GÜLŞEN YILMAZ Beyket Üverstes Fe-Edebyat Fakültes

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BAZI DAĞILIMLAR İÇİN EN ÇOK OLABİLİRLİK VE FARKLI KAYIP FONKSİYONLARI ALTINDA BAYES TAHMİN EDİCİLERİNİN PERFORMANSLARININ KARŞILAŞTIRILMASI Gülca GENCER

Detaylı

SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ

SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ ÖRNEKLEM BÜYÜKLÜĞÜNÜN SAPTANMASI ÖRNEKLEME YÖNTEMLERİ Prof. Dr. Ergu Karaağaoğlu H.Ü. Tıp Fakültesi Biyoistatistik ABD ÖRNEKLEM BÜYÜKLÜĞÜNÜN SAPTANMASI

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri   Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeler http://ocm.mt.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında blg almak çn http://ocm.mt.edu/terms veya http://tuba.açık ders.org.tr adresn zyaret ednz. 18.102

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

DEĞİŞİM ÖLÇÜLERİ 4. TAŞINMAZ GELİŞTİRME TEZSİZ YÜKSEK LİSANS PROGRAMI. Ünite: 4 DEĞİŞİM ÖLÇÜLERİ. Doç. Dr. Yüksel TERZİ İÇİNDEKİLER İÇİNDEKİLER

DEĞİŞİM ÖLÇÜLERİ 4. TAŞINMAZ GELİŞTİRME TEZSİZ YÜKSEK LİSANS PROGRAMI. Ünite: 4 DEĞİŞİM ÖLÇÜLERİ. Doç. Dr. Yüksel TERZİ İÇİNDEKİLER İÇİNDEKİLER TAŞINMAZ GELİŞTİRME Üte: DEĞİŞİM ÖLÇÜLERİ Doç. Dr. üksel TERZİ TAŞINMAZ GELİŞTİRME TEZSİZ ÜKSEK LİSANS PROGRAMI İÇİNDEKİLER.1. GİRİŞ.. DEĞİŞİM ÖLÇÜLERİ..1. Değşm Geşlğ... Kartller Arası fark... Ortalama

Detaylı

PAMUKKALE ÜNİVERSİTESİ. Mühendislik Fakültesi, Makine Mühendisliği Bölümü. Zekeriya Girgin DENİZLİ, 2015 OTOMATİK KONTROL DERS NOTLARI

PAMUKKALE ÜNİVERSİTESİ. Mühendislik Fakültesi, Makine Mühendisliği Bölümü. Zekeriya Girgin DENİZLİ, 2015 OTOMATİK KONTROL DERS NOTLARI PAMUKKALE ÜNİVERSİTESİ Mühedlk Fakülte, Make Mühedlğ Bölümü Zekerya Grg DENİZLİ, 05 OTOMATİK KONTROL DERS NOTLARI Ööz Mühedlkte vermeye başladığım Otomatk Kotrol der daha y alaşılablme ç bu otlar hazırlamaya

Detaylı