O NOTASYONU. Abdullah Gazi Emre DAĞLI

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "O NOTASYONU. Abdullah Gazi Emre DAĞLI 0804.01026"

Transkript

1 O NOTASYONU Abdullah Gazi Emre DAĞLI

2 Program Çalışma Hızı ve Bellek Gereksinimi Programın çalışma hızı karmaşıklıkla ifade edilir; bu kavram zaman birimiyle ifade edilmeyip doğrudan işlem adedi veya döngü sayısıyla ifade edilir. Çünkü, programın çalışma hızında zaman miktarı programın üzerinde koştuğu donanıma çok bağlıdır; dolayısıyla algoritmaları birbiriyle karşılaştırmak için zaman miktarını kullanmak gerçekçi olmayıp yanılgılara neden olmaktadır. Bunun yerine, ilgili algoritmanın bilgisayar donanımından bağımsız olarak kaç adet işlem veya döngüyle gerçekleştirilebileceği hesaplanır. Algoritma karmaşıklığı iki açıdan ele alınır. Biri zaman karmaşıklığı, diğeri alan (veya bellek) karmaşıklığıdır. Zaman karmaşıklığı (time complexity) algoritmanın sonuca ulaşması için gerekli zaman hakkında bilgi verir. Alan karmaşıklığı (space complexity) ise algoritmanın ihtiyaç duyacağı bellek miktarı hakkında bilgi verir. Algoritma karmaşıklığı iki şekilde ifade edilebilir. Biri doğrudan parametrelere bağlı olarak tam matematiksel ifadeyle; ikincisiyse, parametrelerin karmaşıklığı nasıl etkilediğini mertebe şeklinde gösterir; Mertebesi göstermek için O (büyük o), gibi birçok asimtotik notasyon kullanılır; genel olarak O notasyonunu kullanmak yaygındır. Örneğin iki matrisin çarpılması için gerekli zaman karmaşıklığı olarak hesaplanmışsa bu algoritma zaman karmaşıklığı den daha iyidir. Bir program iki açıdan belleğe ihtiyaç duyar; biri kodun tutulması diğeri de kodun çalışması için üzerinde işlem yapacağı verilerin tutulması için. Temel Kavramlar Bir programın çalışma hızı veya bellek gereksinimi denildiğinde birçok kavram söz konusudur. Bunların hangi anlama geldiği ve ayrıldığı noktaların açıkça bilinmesinde yarar vardır. Örneğin çalışma

3 hızı denildiğinde, bu soyut bir kavram olup değişik anlamlar çıkarılabilir; yürütme zamanı, çalışma süresi, zaman karmaşıklığı gibi kavramların hepsi çalışma hızı kapsamına girmektedir. Aşağıda bazı kavramların kısaca tanımları verilmiştir:

4

5 Programın Çalışma Hızı ve Karmaşıklık Program çalışma hızı, program kodunun zaman açısından başarımını; karmaşıklık ise, ilgili program kodunun parametre sayısına bağlı olarak çalışma süresinin ve gerekli işlem sayısının artım miktarını gösterir. Çalışma hızını belirlemek için, biri kıyaslama, diğeri algoritma analizi olarak adlandırılan iki yol vardır: Kıyaslama (Benchmarking) Algoritma Analizi (Algorithm Analysis)

6 Birisi uygulamanın gerçekleştirilmesini, diğeri ise bir bağıntı hesabı gerektirir. Kıyaslamada söz konusu algoritma gerçekleştirilir ve örnek veri için koşturulur. Algoritma analizinde ise, belirli bir veri yapısı için, söz konusu algoritmanın analizi yapılır ve bir zaman bağıntısı bulunur. Analiz, algoritma gerçekleştirimi karmaşıklaştıkça ciddi bir matematiksel birikim gerektirir. Kıyaslama (Benchmarking) Kıyaslama, geliştirilen programın önceden belirlenmiş örnek giriş değerleri için çalışma hızını gösteren deneysel sınama sonucudur. Programa, giriş değerleri olarak, her olası durumu içeren örnek giriş verileri uygulanır ve bunlara karşı düşen başarı skoru elde edilir. Bu skor, çoğu zaman, belirli bir maksimum değere göre orantılanmış bir gerçel veya tamsayıdır. Örneğin en yüksek başarının 1.0 olduğu skor değerlendirmesinde başarım sınaması sonucu 0,5 veya %50 çıkarsa yarı başarımlı olarak değerlendirilir. Algoritma analizi, tasarlanan program veya fonksiyonun belirli bir işleme göre matematiksel ifadesini bulmaya dayanır. Burada temel hesap birimi seçilir ve programın görevini yerine getirebilmesi için bu işlemden kaç adet yapılması gerektiğini bulmaya yarayan bir bağıntı hesaplanır. Eğer bu bağıntı zamanla ilgiliyle çalışma hızını, bellek gereksinimiyle ilgiliyse bellek gereksinimi ortaya koyar. Örneğin, n bağımsız değişken olmak üzere T(n) yürütme zamanını, S(n) ise bellek gereksinimi gösteren bağıntılardır. Eğer bir programın T(n) ve S(n) bağıntıları hesaplanabiliyorsa o programın çeşitli model bilgisayar üzerindeki çalışma hızı ve bellek gereksinimi kestirilebilir. Yürütme Zamanı (Running Time) Yürütme zamanı, algoritmanın belirli bir işleme veya eyleme kaç kez gereksinim duyulduğunu gösteren bağıntıdır ve T(n) ile gösterilir. Temel hesap birimi olarak, programlama dilindeki deyimler seçilebildiği gibi döngü sayısı, toplama işlemi sayısı, atama sayısı, dosyaya erişme sayısı gibi işler de temel hesap birimi olarak seçilebilir.

7 Yürütme zamanı bağıntısı, fiziksel gerçeğe yakın bir sonuç verir; ancak sapmalar da olabilir. Çünkü kabul edilen temel hesap birimi, tüm hesaplar için aynı olmayabilir. Örneğin, bir tamsayı sayacın bir arttırılmasıyla iki gerçel sayının çarpımı maliyeti farklı olabilir; veya iki tamsayıyı karşılaştırmak ile iki katarı karşılaştırma maliyetleri farklı olur! Karmaşıklık (Complexity) Karmaşıklık bir algoritmanın çok sayıda parametre karşısında maliyet davranışındaki değişikliği/artmayı gösteren kavramsal bir ifadedir. Genel olarak, az sayıda parametreler için karmaşıklıkla ilgilenilmez; eleman sayısı n'nin sonsuza gitmesi durumunda algoritmanın maliyet hesabının davranışını görmek veya diğer benzer işleri yapan algoritmalarla karşılaştırmak için kullanılır.

8 Programların karmaşıklığını matemetiksel olarak değişebilir. Karmaşıklığı ifade edebilmek için asimtotik ifadeler kullanılmaktadır; bu amaçla O(g(n)), (g(n)), (g(n)), o(g(n)) gibi tanımlara başvurulur. Genel olarak büyük O ve q notasyonları daha çok kullanılmaktadır. Örneğin, bir sıralama algoritmasının karmaşıklığı O(n2) ise, bunun anlamı, n çok büyük değerlere giderken algoritmanın zaman maliyeti karesel olarak artar şeklindedir. Örneğin karmaşıklığı O(nlog2n) olan bir sıralama algoritması O(n2) olana göre daha iyidir; n çok büyük değerlere giderken karmaşıklık doğrusal çarpanlı logaritmik olarak artar. Aslında, bulunabilse, en iyi çözümü veren karmaşıklık O(1) şeklinde sabit olanıdır; ancak asosiyatif bellek1 veya çok iyi bir çırpı fonksiyonu bulunmadıkça bu durum çoğu zaman sağlanmaz. Sonsuz asimptotikler Büyük O gösterimi algoritma başarım çözümlemesinde faydalıdır. Söz gelimi n boyundaki bir problemi çözmek için gereken zaman (adım sayısı) T(n) = 4n² - 2n + 2 olarak bulunabilir. n büyüdükçe n² terimi o kadar hızlı büyüyecektir ki diğer terimlerin büyüme hızı buna kıyasla ihmal edilebilecek kadar düşük kalacaktır; örneğin n = 500 için 4n² terimi 2n teriminin 1000 katı büyüklüğünde olacaktır ve dolayısıyla bu ikinci terimin değeri tüm ifadenin değerini

9 belirlemede çoğu amaç bakımından ihmal edilebilir bir etkiye sahip olacaktır. Buna ek olarak, aynı ifadeyi n³ veya 2n terimleri içeren bir ifade ile kıyaslayacak olursak katsayılar da anlamlarını yitirecektir. T(n) = n² ve U(n) = n³ olsa bile ikinci ifade, n 'u geçtikçe birinci ifadeye kıyasla daima daha büyük olacaktır (T( ) = ³ = U( )). O halde Büyük O gösterimi işin özünü sade biçimde sunmaktadır: şu şekilde yazabilir ve algoritmanın n2 dereceden zaman karmaşıklığına sahip olduğunu söyleyebiliriz. Sonsuz küçük asimptotikler Büyük O aynı zamanda bir matematiksel işlev için geliştirilen yaklaşık işlevin hata terimini tarif etmek için de kullanılabilir. Örneğin, : ifadesi hatanın (yani farkının) mutlak değer bakımından, sıfıra yeterince yakın x değerleri için bir sabit çarpı x3 değerinden daha küçük olduğunu belirtir. Biçimsel tanım f(x) ve g(x) gerçel sayılar kümesinin bir alt kümesi üzerinde tanımlanmış iki işlev olsun. Bu durumda deriz ki f(x), O(g(x))dir; x yalnız ve yalnız öyle x0 ve M sayıları varsa ki f(x) M g(x) ; x > x0 için. Aynı gösterim f işlevinin bir a gerçel sayısı civarındaki davranışını tarif etmek için de kullanılabilir: Deriz ki f(x) O(g(x))dir; x a

10 yalnız ve yalnız öyle δ>0 ve M sayıları varsa ki f(x) M g(x) ; x - a < δ için. Eğer g(x) a sayısına yeterince yakın x değerleri için sıfırdan farklı ise yukarıdaki iki tanım limit superior kullanılarak birleştirilebilir: f(x) O(g(x))dir;x a yalnız ve yalnız iken. Matematikte hem hem de a civarındaki asimptotikler kullanılır. bilgi işlemsel karmaşıklık kuramında ise sadece a giden asimptotikler kullanılır. Ayrıca sadece pozitif değerli işlevler ele alındığından mutlak değer de kullanılmadan yazılabilir. Örnek Şu çokterimlilere bakalım: f(x), O(g(x)) ya da O(x4) derecesindedir diyebiliriz. Tanıma göre, tüm x>1 degerleri için ve C bir sabit iken, f(x) C g(x) ifadesi geçerlidir. İspat: x > 1 iken çünkü x3 < x4, ve devam eder.

11 Dikkat edilmesi gereken hususlar Yukarıda bahsi geçen "f(x) O(g(x))dir" ifadesi genellikle f(x) = O(g(x)) şeklinde yazılır. Bu, gösterimin bir nebze kötüye kullanılması demektir. Elbette kastettiğimiz iki işlevin birbirine eşit olmaları değildir. O(g(x)) olma hali simetrik değildir: fakat. Bu yüzden bazı yazarlar küme gösterimini tercih ederler ve f O(g) yazarlar, bunu yaparken de O(g)yi g işlevinin altında kalan tüm işlevlerin kümesi olarak düşünürler. Ayrıca, aşağıdaki gibi bir "eşitlik" "f(x) ile h(x)nin farkı O(g(x))dir" olarak anlaşılmalıdır. Pek sık rastlanmasa da, Büyük O gösterimi ile kullanılan çok daha hızlı büyüyen işlevler mevcuttur, mesela A(n,n) olarak temsil edilen Ackermann işlevinin tek değerli hâli. Bunun tam tersi çok yavaş büyüyen işlevler da vardır, ör. Ackermann işlevinin ters işlevi olan ve genellikle α(n) ile gösterilen işlev. Her ne kadar bu işlevler sınırsız olsa da pratik amaçlar için sabit çarpanlar olarak kabul edilirler. Özellikler Eğer bir f(n) işlevi diğer işlevlerin sonlu toplamı olarak yazılabiliyorsa o zaman bunların içinden en hızlı büyüyeni f(n) işlevinin derecesini belirler. Örneğin.

12 Özel olarak eğer bir işlev n terimine bağlı birçokterimli tarafından üstten sınırlandırılabiliyorsa o zaman n değeri sonsuza gittikçe çokterimlinin düşük dereceli terimleri ihmal edilebilir. O(nc) ve O(cn) çok farklıdır. İkincisi çok çok daha hızlı büyür ve c sabitinin değeri, bu değer 1 sayısından büyük olduğu sürece, bu durumu değiştirmez. n'nin herhangi bir kuvvetinden daha hızlı büyüyen bir işleve yüksek çokterimli (superpolynomial) denir. cn biçimindeki herhangi bir üssel işlevden daha yavaş büyüyen işleve ise altüssel denir. Bir algoritmanın zaman karmaşıklığı hem yüksek çokterimli hem de altüssel olabilir, bu tür algoritmalara örnek olarak bilinen en hızlı çarpanlara ayırma algoritmaları verilebilir. O(log n) tam olarak O(log(nc)) ile aynıdır. Logaritmalar arasındaki fark sadece sabit değerden kaynaklanan farktır (çünkü log(nc)=c log n) ve bundan ötürü büyük O gösteriminde ihmal edilir. Benzer şekilde farklı tabanlara göre yazılmış logaritmalar da denk kabul edilir. Çarpma Toplama Bir sabit ile çarpma, k 0 Bir sabit ile toplama g(n) o(1) olmadığı takdirde ki bu durumda O(1)dir. Yürütme Zamanı ve Karmaşıklık Hesabı Örnek: Aşağıda matris çarpa işlemi yapan bir fonksiyon görülmektedir; A ve B matrisleri giriş C ise sonucun saklandığı matristir. Fonksiyonun n.m boyutlu A matrisiyle n.r boyutlu B

13 matrisini çarpıp n.r boyutlu C matrisini elde etmesi için gerekli T(n)'ni ve büyük O notasyonundaki karmaşıklığı hesaplayınız. Eğer matrisler n.n boyunda kare matrisler olsaydı T(n) ve O(?) ne olurlardı? Çözüm: Burada üç tane döngü vardır ve sayaç değişkenleri x, y ve z olarak adlandırılmıştır; bağıntılar ise matrisin boyutunu belirleyen n, m ve r'ye bağlı çıkacaktır. Hesaplama yapılırken şöyle bir yol izlenebilir: önce for deyimlerinde yapılan işlem sayısı bulunur ve ardından her for döngüsü içerisinde yapılan işlem sayısı bulunur ve her ikisi toplanır.1. satırda for deyiminde x=0 işlemi 1 kez; x<n işlemi (n+1) kez ve x++ işlemi n kez yapılır. Dolayısıyla, en dışdaki for deyimi içerisinde yapılan işlem sayısı 1+(n+1)+n= 2n+2 kez yapılır.2. satırdaki for deyiminde ise, işlem sayısı (2r+2)n, 4. satırdaki for deyiminde ise (2m+2)nr çıkarak. Dolayısıyla, yalnızca for deyimleri için yapılan işlem sayısı Tfor(n, m, r)= (2n+2)+(2r+2)n+(2m+2)nr olur. Döngüler içerisindeki işlem sayısı ise, 3. satırdaki işlem sayısı nr kez; benzer şekilde 6. satırda da nr kez yapılır; 5. satırdaki işlem sayısı ise (satırın bütünü 1 işlem kabul edilerek) nmr olur. Tdöngü içi(n, m, r)= nr+nr+nmr olur. Buna göre toplam işlem sayısı T(n, m, r)= Tfor(n, m, r)+ Tdöngü içi(n, m, r) bağıntısı uyarınca, T(n, m, r)= (2n+2)+(2r+2)n+(2m+2)nr+ nr+nr+nmr = 2n+2+2nr+2n+2mnr+2nr+nr+nr+nmr = 3nmr+6nr+4n+2

14 olarak bulunur. Yürütme zamanı bağıntısından O(?) karmaşıklığı, kabaca şöyle bulunur; tüm sabit çarpanlar ve düşük dereceli terimler atılır. Dolayısıyla karmaşıklık O(nmr) bulunur. Eğer matrislerin her yöndeki boyutları n olursa, yürütme zamanı bağıntısındaki m ve r'ler yerine n yerleştirilip sadeleştirme işlemi yapılırsa, T(n)= 3nnn+6nn+4n+2= 2n3+6n2+4n+2 ve O(n3) bulunur. Büyük O notasyonu hesabı Örnek Bir algoritmanın yürütme zamanı bağıntısı T(n)= An2+Bn+C şeklinde hesaplanmıştır. Burada A, B ve C sabit sayılar olup n ise eleman sayısını göstermektedir. Bu algoritmanın büyük o notasyonuna göre karmaşıklığı ne olur? Çözüm: Büyük o notasyonunu bulmak için birçok yol vardır. En kolay görüneni aşağıdaki gibi olabilir. Bağıntımız T(n)= An2+Bn+C şeklindedir. Sağ taraf n2'ye bölünürse, aşağıdaki gibi bir sonuç elde edilir. Burada 'a giderken birinci terim sabit, ikinci ve üçüncü terimler sıfıra doğru yaklaşır. Dolayısıyla için A sabiti kalır. Dolayısıyla T(n)= An2+Bn+C bağıntısı için büyük o notasyonundaki karmaşıklık için O(n2) denilebilir. Bu karmaşıklık belirli bir A değeri ve üstü için geçerlidir.

15 Örneğin ise T(n)= 3n2+7n+5, eşitliği sağ tarafı n2'ye bölünürse, elde edilir. Burada A değeri 3'tür. Bazı sıralamalar ve karmaşıklıkları:

16 KAYNAKÇA

ALGORİTMA ANALİZİ. Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü

ALGORİTMA ANALİZİ. Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü ALGORİTMA ANALİZİ Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü 2 Yürütme Zamanı (Running Time) Algoritmanın belirli bir işleme veya eyleme kaç kez gereksinim duyulduğunu gösteren bağıntıdır ve

Detaylı

Yrd. Doç. Dr. A. Burak İNNER Bilgisayar Mühendisliği

Yrd. Doç. Dr. A. Burak İNNER Bilgisayar Mühendisliği Yrd. Doç. Dr. A. Burak İER Bilgisayar Mühendisliği Algoritma Analizi İçerik: Temel Kavramlar Yinelemeli ve Yinelemesiz Algoritma Analizi Asimptotik otasyonlar Temel Kavramlar Algoritma: Bir problemin çözümüne

Detaylı

Algoritma Geliştirme ve Veri Yapıları 1 Temel Algoritma Kavramları. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 1 Temel Algoritma Kavramları. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 1 Temel Algoritma Kavramları Giriş 1) Algoritma geliştirme üzerine temel kavramlar 2) Veri modelleri 3) Veri yapıları 4) Algoritma veya yazılım şekilsel gösterimi

Detaylı

ALGORİTMA ANALİZİ. Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü

ALGORİTMA ANALİZİ. Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü ALGORİTMA ANALİZİ Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü 2 Temel Kavramlar Algoritma: Bir problemin çözümünü belirli bir zamanda çözmek için sonlu sayıdaki adım-adım birbirini takip eden

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler değer kümelerine göre adlandırılırlar. Dizinin değer kümesi

Detaylı

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#2: ALGORİTMA ANALİZİ

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#2: ALGORİTMA ANALİZİ YZM 3207- ALGORİTMA ANALİZİ VE TASARIM DERS#2: ALGORİTMA ANALİZİ Algoritma Analizi Çerçevesi Algoritma Analizinde Göz Önünde Bulundurulması Gerekenler Neler? Algoritmanın Doğruluğu (Correctness) Zaman

Detaylı

BİL-341 ALGORİTMALAR BÜYÜK O NOTASYONU AHMET ATAKAN 0904.01036. atakanahmet@hotmail.com KIRGIZİSTAN-TÜRKİYE MANAS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

BİL-341 ALGORİTMALAR BÜYÜK O NOTASYONU AHMET ATAKAN 0904.01036. atakanahmet@hotmail.com KIRGIZİSTAN-TÜRKİYE MANAS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİL-341 ALGORİTMALAR BÜYÜK O NOTASYONU AHMET ATAKAN 0904.01036 atakanahmet@hotmail.com KIRGIZİSTAN-TÜRKİYE MANAS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİŞKEK 2012 Ahmet Atakan

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

f(x) ve g(x) reel sayılarda tanımlı iki fonksiyon olmak üzere, x > k olacak şekilde bir k vardır öyle ki,

f(x) ve g(x) reel sayılarda tanımlı iki fonksiyon olmak üzere, x > k olacak şekilde bir k vardır öyle ki, Algoritma Karmaşıklığı ve Büyük O Gösterimi (Big O Notation) Yazdığımız bir algoritmanın doğru çalıştığından emin olmakla birlikte bu algoritmayı, daha önce yazılmış ve aynı sonucu veren başka algoritmalarla

Detaylı

Algoritma Analizi. Özelliklerinin analizi Algoritmanın çalışma zamanı Hafızada kapladığı alan

Algoritma Analizi. Özelliklerinin analizi Algoritmanın çalışma zamanı Hafızada kapladığı alan Karmaşıklık Giriş 1 Algoritma Analizi Neden algoritmayı analiz ederiz? Algoritmanın performansını ölçmek için Farklı algoritmalarla karşılaştırmak için Daha iyisi mümkün mü? Olabileceklerin en iyisi mi?

Detaylı

Algoritma Analizi Big O

Algoritma Analizi Big O Algoritma Analizi Big O 0 {\} /\ Suhap SAHIN Onur GÖK Giris Verimlilik Karsılastırma Giris Hangisi daha iyi? Hangi kritere göre? Giris Hangisi daha iyi? Hangi kritere göre? Giris Giris? Verimin ölçülmesi

Detaylı

Algoritmaların Karşılaştırılması. Doç. Dr. Aybars UĞUR

Algoritmaların Karşılaştırılması. Doç. Dr. Aybars UĞUR Algoritmaların Karşılaştırılması Doç. Dr. Aybars UĞUR Giriş Bir programın performansı genel olarak programın işletimi için gerekli olan bilgisayar zamanı ve belleğidir. Bir programın zaman karmaşıklığı

Detaylı

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada, TAMSAYILAR Z = {.., -, -, -, 0,,,, } kümesinin her bir elemanına tamsayı denir. Burada, + Z = {,,,...} kümesine, pozitif tamsayılar kümesi denir. Z = {...,,,,} kümesine, negatif tamsayılar kümesi denir.

Detaylı

Algoritmalar ve Karmaşıklık

Algoritmalar ve Karmaşıklık Algoritmalar ve Karmaşıklık Ders 11 Algoritma Ayrık matematikte karşılaşılan bir çok problem sınıfı mevcuttur. Örneğin, verilen tamsayı grubu içindeki en büyük olanının bulunması, verilen bir kümenin bütün

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

SAYILAR DOĞAL VE TAM SAYILAR

SAYILAR DOĞAL VE TAM SAYILAR 1 SAYILAR DOĞAL VE TAM SAYILAR RAKAM: Sayıları ifade etmek için kullandığımız 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembollerinden her birine rakam denir. Soru: a ve b farklı rakamlar olmak üzere a + b nin alabileceği

Detaylı

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b Bölüm 1 Temel Kavramlar Bu bölümde bağıntı ve fonksiyon gibi bazı temel kavramlar üzerinde durulacak, tamsayıların bazı özellikleri ele alınacaktır. Bu çalışma boyunca kullanılacak bazı kümelerin gösterimleri

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

YZM 2116 Veri Yapıları

YZM 2116 Veri Yapıları YZM 2116 Veri Yapıları Yrd. Doç. Dr. Deniz KILINÇ Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Yazılım Mühendisliği BÖLÜM - 2 Bu bölümde, Algoritma Analizi, Çalışma Zamanı Analizi

Detaylı

Algoritmalar, Akış Şemaları ve O() Karmaşıklık Notasyonu

Algoritmalar, Akış Şemaları ve O() Karmaşıklık Notasyonu Algoritmalar, Akış Şemaları ve O() Karmaşıklık Notasyonu Öğr. Gör. M. Ozan AKI r1.0 Algoritmalar (Algorithms) Algoritma, bir problemin çözümünü sağlayan ancak deneme-yanılma ve sezgisel çözüme karşıt bir

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

ELN1002 BİLGİSAYAR PROGRAMLAMA 2

ELN1002 BİLGİSAYAR PROGRAMLAMA 2 ELN1002 BİLGİSAYAR PROGRAMLAMA 2 SIRALAMA ALGORİTMALARI Sunu Planı Büyük O Notasyonu Kabarcık Sıralama (Bubble Sort) Hızlı Sıralama (Quick Sort) Seçimli Sıralama (Selection Sort) Eklemeli Sıralama (Insertion

Detaylı

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM EŞİTSİZLİKLER A. TANIM f(x)>0, f(x) - eşitsizliğinin

Detaylı

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 8. HAFTA BLM323 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 MATRİSLER Matris veya dizey, dikdörtgen bir sayılar tablosu

Detaylı

VERİ YAPILARI DERS NOTLARI BÖLÜM 2 ALGORİTMA ANALİZİ. Yard. Doç. Dr. Deniz KILINÇ

VERİ YAPILARI DERS NOTLARI BÖLÜM 2 ALGORİTMA ANALİZİ. Yard. Doç. Dr. Deniz KILINÇ VERİ YAPILARI DERS NOTLARI BÖLÜM 2 ALGORİTMA ANALİZİ Yard. Doç. Dr. Deniz KILINÇ CELAL BAYAR ÜNİVERSİTESİ, YAZILIM MÜHENDİSLİĞİ 2015-2016 1. ALGORİTMA TANIMI Verilen herhangi bir sorunun çözümüne ulaşmak

Detaylı

Mustafa Sezer PEHLİVAN. Yüksek İhtisas Üniversitesi Beslenme ve Diyetetik Bölümü

Mustafa Sezer PEHLİVAN. Yüksek İhtisas Üniversitesi Beslenme ve Diyetetik Bölümü * Yüksek İhtisas Üniversitesi Beslenme ve Diyetetik Bölümü SAYILAR Doğal Sayılar, Tam Sayılar, Rasyonel Sayılar, N={0,1,2,3,,n, } Z={,-3,-2,-1,0,1,2,3, } Q={p/q: p,q Z ve q 0} İrrasyonel Sayılar, I= {p/q

Detaylı

12.Konu Rasyonel sayılar

12.Konu Rasyonel sayılar 12.Konu Rasyonel sayılar 1. Rasyonel sayılar 2. Rasyonel sayılar kümesinde toplama ve çarpma 3. Rasyonel sayılar kümesinde çıkarma ve bölme 4. Tam rayonel sayılar 5. Rasyonel sayılar kümesinde sıralama

Detaylı

SAYILAR SAYI KÜMELERİ

SAYILAR SAYI KÜMELERİ SAYILAR SAYI KÜMELERİ 1.Sayma Sayıları Kümesi: S=N =1,2,3,... 2. Doğal Sayılar Kümesi : N=0,1,2,... 3. Tamsayılar Kümesi : Z=..., 2, 1,0,1,2,... Sıfırın sağında bulunan 1,2,3,. tamsayılarına pozitif tamsayılar

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı

SAYILAR SAYI KÜMELERİ

SAYILAR SAYI KÜMELERİ 1 SAYILAR SAYI KÜMELERİ 1.Sayma Sayıları Kümesi: S=N =1,2,3,... 2. Doğal Sayılar Kümesi : N=0,1,2,... 3. Tamsayılar Kümesi : Z=..., 2, 1,0,1,2,... Sıfırın sağında bulunan 1,2,3,. tamsayılarına pozitif

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 5.KONU Cebiresel yapılar; Grup, Halka 1. Matematik yapı 2. Denk yapılar ve eş yapılar 3. Grup 4. Grubun basit özellikleri 5. Bir elemanın kuvvetleri

Detaylı

Fonksiyonlarda limiti öğrenirken değişkenlerin limitini ve sağdan-soldan limit kavramlarını öğreneceksiniz.

Fonksiyonlarda limiti öğrenirken değişkenlerin limitini ve sağdan-soldan limit kavramlarını öğreneceksiniz. 8.2. Fonksiyonlarda Limit Fonksiyonlarda limiti öğrenirken değişkenlerin limitini ve sağdan-soldan limit kavramlarını öğreneceksiniz. 8.2.1. Değişkenin Limiti Sonsuz sayıda değer alabilen bir x değişkeninin

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

1.1 Üslü İfadeler: Üslü ifadelerle ilgili aşağıdaki kuralların hatırlanması faydalıdır.

1.1 Üslü İfadeler: Üslü ifadelerle ilgili aşağıdaki kuralların hatırlanması faydalıdır. FİNANSAL MATEMATİK ALTYAPI. Üslü İfadeler: Üslü ifadelerle ilgili aşağıdaki kuralların hatırlanması faydalıdır. i-) Toplama: Eşit üslü benzer ifadelerin katsayıları toplanır. 3a 5 +,5a 5 =,5a 5 a 3-7a

Detaylı

Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar

Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar Bir Matrisin Rankı A m n matrisinin determinantı sıfırdan farklı olan alt kare matrislerinin boyutlarının en büyüğüne A matrisinin rankı denir. rank(a)

Detaylı

Üstel ve Logaritmik Fonksiyonlar

Üstel ve Logaritmik Fonksiyonlar Üstel ve Logaritmik Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; üstel ve logaritmik fonksiyonları tanıyacak, üstel ve logaritmik fonksiyonların grafiklerini

Detaylı

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n,

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n, DİZİLER Tamamen belirli bir kurala göre sıralanmış sayılar topluluğuna veya kümeye Dizi denir. Belirli bir kurala göre birbiri ardınca gelen bu sayıların her birine dizinin terimi ve hepsine birden dizinin

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması Ağaç, verilerin birbirine sanki bir ağaç yapısı oluşturuyormuş gibi sanal olarak bağlanmasıyla elde edilen hiyararşik yapıya sahip

Detaylı

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#3: ALGORİTMA ANALİZİ#2

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#3: ALGORİTMA ANALİZİ#2 YZM 3207- ALGORİTMA ANALİZİ VE TASARIM DERS#3: ALGORİTMA ANALİZİ#2 Özyineli Olmayan (Nonrecursive) Algoritmaların Matematiksel Analizi En büyük elemanı bulma problemi En Büyük Elemanı Bulma Problemi Girdi

Detaylı

F(A, N, K) // A dizi; N, K integer if N<0 then return K; if A[N]>K then K = A[N]; return F(A, N-1, K);

F(A, N, K) // A dizi; N, K integer if N<0 then return K; if A[N]>K then K = A[N]; return F(A, N-1, K); 2009-2010 BAHAR DÖNEMİ MC 689 ALGORİTMA TASARIMI ve ANALİZİ I. VİZE ÇÖZÜMLERİ 1. a) Böl ve yönet (divide & conquer) tarzındaki algoritmaların genel özelliklerini (çalışma mantıklarını) ve aşamalarını kısaca

Detaylı

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere,

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere, Bölüm 33 Denklemler 33.1 İkinci Dereceden Denklemler İkinci dereceden Bir Bilinmeyenli Denklemler a,b,c IR ve a 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli

Detaylı

Bölüm Özeti. Algoritmalar. Fonksiyonların Büyümesi. Algoritmaların Karmaşıklığı. Örnek Algoritmalar Algoritmik Paradigmalar

Bölüm Özeti. Algoritmalar. Fonksiyonların Büyümesi. Algoritmaların Karmaşıklığı. Örnek Algoritmalar Algoritmik Paradigmalar Bölüm 3 Bölüm Özeti Algoritmalar Örnek Algoritmalar Algoritmik Paradigmalar Fonksiyonların Büyümesi Büyük-O ve diğer gösterimler Algoritmaların Karmaşıklığı Bölüm 3.1 Bölüm Özet Algoritmaların Özellikleri

Detaylı

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84 N 0,1,,... Sayı kümesine doğal sayı kümesi denir...., 3,, 1,0,1,,3,... sayı kümesine tamsayılar kümesi denir. 1,,3,... saı kümesine sayma sayıları denir.pozitif tamsayılar kümesidir. 15 y z x 3 5 Eşitliğinde

Detaylı

Algoritmalar ve Programlama. Algoritma

Algoritmalar ve Programlama. Algoritma Algoritmalar ve Programlama Algoritma Algoritma Bir sorunu / problemi çözmek veya belirli bir amaca ulaşmak için gerekli olan sıralı mantıksal adımların tümüne algoritma denir. Algoritma bir sorunun çözümü

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

FAKTÖRİYEL. TANIM Pozitif ilk n tam sayının çarpımı n = n! biçiminde gösterilir. n Faktöriyel okunur.

FAKTÖRİYEL. TANIM Pozitif ilk n tam sayının çarpımı n = n! biçiminde gösterilir. n Faktöriyel okunur. FAKTÖRİYEL TANIM Pozitif ilk n tam sayının çarpımı 1.2.3 n = n! biçiminde gösterilir. n Faktöriyel okunur. 1!=1 2!=1.2=2 3!=1.2.3=6 4!=1.2.3.4=24 5!=1.2.3.4.5=120 gibi. Özel olarak; 0! = 1 olarak tanımlanmıştır.

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

Sayılar Kuramına Giriş Özet

Sayılar Kuramına Giriş Özet Eğer bir b noktası bir a noktasının sağındaysa, o zaman a, b den küçük ve b, a dan büyük olarak sayılır, ve Sayılar Kuramına Giriş Özet David Pierce a < b, b > a yazılır. Tanıma göre a a, a < b a b, a

Detaylı

Özdeğer ve Özvektörler

Özdeğer ve Özvektörler Özdeğer ve Özvektörler Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 9 Amaçlar Bu üniteyi çalıştıktan sonra; bir lineer dönüşümün ve bir matrisin özdeğer ve özvektör kavramlarını anlayacak, bir dönüşüm matrisinin

Detaylı

Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları

Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları Projenin Amacı: Metalik Oranların elde edildiği ikinci dereceden denklemin diskriminantını ele alarak karmaşık sayılarla uygulama yapmak ve elde

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

SONLU FARKLAR GENEL DENKLEMLER

SONLU FARKLAR GENEL DENKLEMLER SONLU FARKLAR GENEL DENKLEMLER Bir elastik ortamın gerilme probleminin Airy gerilme fonksiyonu ile formüle edilebilen halini göz önüne alalım. Problem matematiksel olarak bölgede biharmonik denklemi sağlayan

Detaylı

Motivasyon Matrislerde Satır İşlemleri Eşelon Matris ve Uygulaması Satırca İndirgenmiş Eşelon Matris ve Uygulaması Matris Tersi ve Uygulaması Gauss

Motivasyon Matrislerde Satır İşlemleri Eşelon Matris ve Uygulaması Satırca İndirgenmiş Eşelon Matris ve Uygulaması Matris Tersi ve Uygulaması Gauss Motivasyon Matrislerde Satır İşlemleri Eşelon Matris ve Uygulaması Satırca İndirgenmiş Eşelon Matris ve Uygulaması Matris Tersi ve Uygulaması Gauss Jordan Yöntemi ve Uygulaması Performans Ölçümü 2 Bu çalışmada,

Detaylı

VERİ YAPILARI VE PROGRAMLAMA (BTP104)

VERİ YAPILARI VE PROGRAMLAMA (BTP104) VERİ YAPILARI VE PROGRAMLAMA (BTP104) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

Atatürk Anadolu. Temel Kavramlar Üzerine Kısa Çalışmalar

Atatürk Anadolu. Temel Kavramlar Üzerine Kısa Çalışmalar Atatürk Anadolu Lisesi M A T E M A T İ K Temel Kavramlar Üzerine Kısa Çalışmalar KONYA \ SELÇUKLU 01 MATEMATİK 1. TEMEL KAVRAMLAR 1.1. RAKAM Sayıların yazılmasında kullanılan sembollere rakam denir. Onluk

Detaylı

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER LAGRANGE YÖNTEMİ Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde değişkenler ve kısıtlar genel olarak şeklinde gösterilir. fonksiyonlarının

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 2- HATA VE HATA KAYNAKLARI Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ Bir denklemin veya problemin çözümünde kullanılan sayısal yöntem belli bir giriş verisini işleme tabi tutarak sayısal

Detaylı

Lineer Cebir. Doç. Dr. Niyazi ŞAHİN TOBB. İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler

Lineer Cebir. Doç. Dr. Niyazi ŞAHİN TOBB. İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler Lineer Cebir Doç. Dr. Niyazi ŞAHİN TOBB İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler Bölüm 1 - Lineer Eşitlikler 1.1. Lineer Eşitliklerin Tanımı x 1, x 2,..., x

Detaylı

Rakam : Sayıları yazmaya yarayan sembollere rakam denir.

Rakam : Sayıları yazmaya yarayan sembollere rakam denir. A. SAYILAR Rakam : Sayıları yazmaya yarayan sembollere rakam denir. Sayı : Rakamların çokluk belirten ifadesine sayı denir.abc sayısı a, b, c rakamlarından oluşmuştur.! Her rakam bir sayıdır. Fakat bazı

Detaylı

LYS MATEMATİK DENEME - 1

LYS MATEMATİK DENEME - 1 LYS MATEMATİK DENEME - BU SORULAR FİNAL EĞİTİM KURUMLARI TARAFINDAN SAĞLANMIŞTIR. İZİNSİZ KOPYALANMASI VE ÇOĞALTILMASI YASAKTIR, YAPILDIĞI TAKDİRDE CEZAİ İŞLEM UYGULANACAKTIR. LYS MATEMATİK TESTİ. Bu testte

Detaylı

Algoritma ve Akış Diyagramları

Algoritma ve Akış Diyagramları Algoritma ve Akış Diyagramları Bir problemin çözümüne ulaşabilmek için izlenecek ardışık mantık ve işlem dizisine ALGORİTMA, algoritmanın çizimsel gösterimine ise AKIŞ DİYAGRAMI adı verilir 1 Akış diyagramları

Detaylı

MATEMATiKSEL iktisat

MATEMATiKSEL iktisat DİKKAT!... BU ÖZET 8 ÜNİTEDİR BU- RADA İLK ÜNİTE GÖSTERİLMEKTEDİR. MATEMATiKSEL iktisat KISA ÖZET KOLAY AOF Kolayaöf.com 0362 233 8723 Sayfa 2 içindekiler 1.ünite-Türev ve Kuralları..3 2.üniteTek Değişkenli

Detaylı

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER HEDEFLER İÇİNDEKİLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER Özdeşlikler Birinci Dereceden Bir Bilinmeyenli Denklemler İkinci Dereceden Bir Bilinmeyenli Denklemler Yüksek Dereceden Denklemler Eşitsizlikler

Detaylı

Ayrık Fourier Dönüşümü

Ayrık Fourier Dönüşümü Ayrık Fourier Dönüşümü Tanım: 0 n N 1 aralığında tanımlı N uzunluklu bir dizi x[n] nin AYRIK FOURIER DÖNÜŞÜMÜ (DFT), ayrık zaman Fourier dönüşümü (DTFT) X(e jω ) nın0 ω < 2π aralığında ω k = 2πk/N, k =

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents Rasyonel Fonksiyonlar 5 Bibliography 35 Inde 39 Rasyonel Fonksiyonlar Polinomlar Yetmez! Bölme

Detaylı

T I M U R K A R A Ç AY, H AY D A R E Ş, O R H A N Ö Z E R K A L K U L Ü S N O B E L

T I M U R K A R A Ç AY, H AY D A R E Ş, O R H A N Ö Z E R K A L K U L Ü S N O B E L T I M U R K A R A Ç AY, H AY D A R E Ş, O R H A N Ö Z E R K A L K U L Ü S N O B E L 1 Denklemler 1.1 Doğru deklemleri İki noktası bilinen ya da bir noktası ile eğimi bilinen doğruların denklemlerini yazabiliriz.

Detaylı

m=n şeklindeki matrislere kare matris adı verilir. şeklindeki matrislere ise sütun matrisi denir. şeklindeki A matrisi bir kare matristir.

m=n şeklindeki matrislere kare matris adı verilir. şeklindeki matrislere ise sütun matrisi denir. şeklindeki A matrisi bir kare matristir. Matrisler Satır ve sütunlar halinde düzenlenmiş tabloya matris denir. m satırı, n ise sütunu gösterir. a!! a!" a!! a!" a!! a!! a!! a!! a!" m=n şeklindeki matrislere kare matris adı verilir. [2 3 1] şeklinde,

Detaylı

MATEMATİK ASAL ÇARPANLARA AYIRMA. ÖRNEK 120 sayısını asal çarpanlarına ayırınız. ÖRNEK 150 sayısının asal çarpanları toplamını bulunuz.

MATEMATİK ASAL ÇARPANLARA AYIRMA. ÖRNEK 120 sayısını asal çarpanlarına ayırınız. ÖRNEK 150 sayısının asal çarpanları toplamını bulunuz. MATEMATİK ASAL ÇARPANLARA AYIRMA A S A L Ç A R P A N L A R A A Y I R M A T a n ı m : Bir tam sayıyı, asal sayıların çarpımı olarak yazmaya, asal çarpanlarına ayırma denir. 0 sayısını asal çarpanlarına

Detaylı

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces TANIM n bir doğal sayı ve a 0, a 1, a 2,..., a n 1, a n birer gerçel sayı olmak üzere, P(x) = a 0 + a 1 x + a 2 x 2 +... + a n 1 x n 1 +a n x n biçimindeki ifadelere x değişkenine bağlı, gerçel (reel)

Detaylı

Yeşilköy Anadolu Lisesi

Yeşilköy Anadolu Lisesi Yeşilköy Anadolu Lisesi TANIM (KONUYA GİRİŞ) a, b, c gerçel sayı ve a ¹ 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli denklem denir. Bu açık önermeyi

Detaylı

Konu Anlatımı Açık Uçlu Sorular Çoktan Seçmeli Sorular Doğru Yanlış Soruları Boşluk Doldurmalı Sorular Çıkmış Sorular

Konu Anlatımı Açık Uçlu Sorular Çoktan Seçmeli Sorular Doğru Yanlış Soruları Boşluk Doldurmalı Sorular Çıkmış Sorular Maths@bi 8 3.BÖLÜM Kareköklü Sayılar Konu Anlatımı Açık Uçlu Sorular Çoktan Seçmeli Sorular Doğru Yanlış Soruları Boşluk Doldurmalı Sorular Çıkmış Sorular Kerime ASKER-Abdullah ASKER Matematik Öğretmeni

Detaylı

MODÜLER ARİTMETİK. Örnek:

MODÜLER ARİTMETİK. Örnek: MODÜLER ARİTMETİK Bir doğal sayının ile bölünmesinden elde edilen kalanlar kümesi { 0,, } dir. ile bölünmesinden elde edilen kalanlar kümesi { 0,,, } tür. Tam sayılar kümesi üzerinde tanımlanan {( x, y)

Detaylı

Algoritmalar. Sıralama Problemi ve Analizi. Bahar 2017 Doç. Dr. Suat Özdemir 1

Algoritmalar. Sıralama Problemi ve Analizi. Bahar 2017 Doç. Dr. Suat Özdemir 1 Algoritmalar Sıralama Problemi ve Analizi Bahar 2017 Doç. Dr. Suat Özdemir 1 Sıralama Problemi ve Analizi Bu bölümde öncelikle bir diğer böl-ve-yönet yöntemine dayalı algoritma olan Quick Sort algoritması

Detaylı

Bu kısımda işlem adı verilen özel bir fonksiyon çeşidini ve işlemlerin önemli özelliklerini inceleyeceğiz.

Bu kısımda işlem adı verilen özel bir fonksiyon çeşidini ve işlemlerin önemli özelliklerini inceleyeceğiz. Bölüm 3 Gruplar Bu bölümde ilk olarak bir küme üzerinde tanımlı işlem kavramını ele alıp işlemlerin bazı özelliklerini inceleyeceğiz. Daha sonra kümeler ve üzerinde tanımlı işlemlerden oluşan cebirsel

Detaylı

Örnek 1: 2 x = 3 x = log 2 3. Örnek 2: 3 2x 1 = 2 2x 1 = log 3 2. Örnek 3: 4 x 1 = 7 x 1 = log 4 7. Örnek 4: 2 x = 3 2 x 2 = 3

Örnek 1: 2 x = 3 x = log 2 3. Örnek 2: 3 2x 1 = 2 2x 1 = log 3 2. Örnek 3: 4 x 1 = 7 x 1 = log 4 7. Örnek 4: 2 x = 3 2 x 2 = 3 Soru : f(x) = log x 4 5 fonksiyonunun tanım aralığını bulunuz? a x = b eşitliğinde a ve b belli iken x i bulmaya logaritma işlemi denir. Üstel fonksiyon bire bir ve örten olduğundan ters fonksiyonu vardır.

Detaylı

ÜNİTE: RASYONEL SAYILAR KONU: Rasyonel Sayılar Kümesinde Çıkarma İşlemi

ÜNİTE: RASYONEL SAYILAR KONU: Rasyonel Sayılar Kümesinde Çıkarma İşlemi ÜNTE: RASYONEL SAYILAR ONU: Rasyonel Sayılar ümesinde Çıkarma şlemi ÖRNE SORULAR VE ÇÖZÜMLER. işleminin sonucu B) D) ki rasyonel sayının farkını bulmak için çıkan terimin toplama işlemine göre tersi alınarak

Detaylı

T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ

T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ DERS: CEBİRDEN SEÇME KONULAR KONU: KARDİNAL SAYILAR ÖĞRETİM GÖREVLİLERİ: PROF.DR. NEŞET AYDIN AR.GÖR. DİDEM YEŞİL HAZIRLAYANLAR: DİRENCAN DAĞDEVİREN ELFİYE ESEN

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Algoritma Analizi ve Büyük O Notasyonu. Şadi Evren ŞEKER YouTube: Bilgisayar Kavramları

Algoritma Analizi ve Büyük O Notasyonu. Şadi Evren ŞEKER YouTube: Bilgisayar Kavramları Algoritma Analizi ve Büyük O Notasyonu Şadi Evren ŞEKER YouTube: Bilgisayar Kavramları Algoritmaların Özellikleri Algoritmalar Input Girdi, bir kümedir, Output ÇıkF, bir kümedir (çözümdür) Definiteness

Detaylı

TEMEL KAVRAMLAR A: SAYI Sayıları ifade etmeye yarayan sembollere rakam denir. Ör: 0,1,2,3,4,5,6 Rakamların çokluk belirtecek şekilde bir araya getirilmesiyle oluşturulan ifadeler ifadesine sayı denir.

Detaylı

Ders 9: Bézout teoremi

Ders 9: Bézout teoremi Ders 9: Bézout teoremi Konikler doğrularla en fazla iki noktada kesişir. Şimdi iki koniğin kaç noktada kesiştiğini saptayalım. Bunu, çok kolay gözlemlerle başlayıp temel ve ünlü Bézout teoremini kanıtlayarak

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir.

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir. TÜREV y= f(x) fonksiyonu [a,b] aralığında tanımlı olsun. Bu aralıktaki bağımsız x değişkenini h kadar arttırdığımızda fonksiyon değeri de buna bağlı olarak değişecektir. Fonksiyondaki artma miktarını değişkendeki

Detaylı

MATEMATİK. Doç Dr Murat ODUNCUOĞLU

MATEMATİK. Doç Dr Murat ODUNCUOĞLU MATEMATİK Doç Dr Murat ODUNCUOĞLU Mesleki Matematik 1 TEMEL KAVRAMLAR RAKAM Sayıları yazmak için kullandığımız işaretlere rakam denir. Sayıları ifade etmeye yarayan sembollere rakam denir. Rakamlar 0,1,2,3,4,5,6,7,8,9

Detaylı

MAT 302 SOYUT CEBİR II SORULAR. (b) = ise =

MAT 302 SOYUT CEBİR II SORULAR. (b) = ise = MAT 302 SOYUT CEBİR II SORULAR 1. : bir dönüşüm, olsunlar. a) ( ) = ( ) ( ) b) ( ) ( ) ( ) olduğunu c) ( ) nin eşitliğinin sağlanması için gerekli ve yeterli bir koşulun nin 1 1 olması ile mümkün olduğunu

Detaylı

ÜNİTE MATEMATİK-1 İÇİNDEKİLER HEDEFLER ÜSTEL VE LOGARİTMA FONKSİYONLARI. Prof.Dr.Ahmet KÜÇÜK. Üstel Fonksiyon Logaritma Fonksiyonu

ÜNİTE MATEMATİK-1 İÇİNDEKİLER HEDEFLER ÜSTEL VE LOGARİTMA FONKSİYONLARI. Prof.Dr.Ahmet KÜÇÜK. Üstel Fonksiyon Logaritma Fonksiyonu HEDEFLER İÇİNDEKİLER ÜSTEL VE LOGARİTMA FONKSİYONLARI Üstel Fonksiyon Logaritma Fonksiyonu MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK Bu ünite çalışıldıktan sonra, Üstel fonksiyonun tanımı öğrenilecek Üstel fonksiyonun

Detaylı

10. DİREKT ÇARPIMLAR

10. DİREKT ÇARPIMLAR 10. DİREKT ÇARPIMLAR Teorem 10.1. H 1,H 2,, H n bir G grubunun alt gruplarının bir ailesi ve H = H 1 H 2 H n olsun. Aşağıdaki ifadeler denktir. a ) dönüşümü altında dır. b) ve olmak üzere her yi tek türlü

Detaylı

ÖZDEĞERLER- ÖZVEKTÖRLER

ÖZDEĞERLER- ÖZVEKTÖRLER ÖZDEĞERLER- ÖZVEKTÖRLER GİRİŞ Özdeğerler, bir matrisin orijinal yapısını görmek için kullanılan alternatif bir yoldur. Özdeğer kavramını açıklamak için öncelikle özvektör kavramı ele alınsın. Bazı vektörler

Detaylı

C PROGRAMLAMA YRD.DOÇ.DR. BUKET DOĞAN PROGRAM - ALGORİTMA AKIŞ ŞEMASI

C PROGRAMLAMA YRD.DOÇ.DR. BUKET DOĞAN PROGRAM - ALGORİTMA AKIŞ ŞEMASI C PROGRAMLAMA DİLİ YRD.DOÇ.DR. BUKET DOĞAN 1 PROGRAM - ALGORİTMA AKIŞ ŞEMASI Program : Belirli bir problemi çözmek için bir bilgisayar dili kullanılarak yazılmış deyimler dizisi. Algoritma bir sorunun

Detaylı

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler ORGANİZASYON ŞEMASI 1. BÖLÜM Mantık... 7. BÖLÜM Sayılar... 13 3. BÖLÜM Rasyonel Sayılar... 93 4. BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler... 103 5. BÖLÜM Mutlak Değer... 113 6. BÖLÜM Çarpanlara Ayırma...

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -I-

DOĞRUSAL OLMAYAN PROGRAMLAMA -I- DOĞRUSAL OLMAYAN PROGRAMLAMA -I- Dışbükeylik / İçbükeylik Hazırlayan Doç. Dr. Nil ARAS Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü İST38 Yöneylem Araştırması Dersi 0-0 Öğretim Yılı Doğrusal olmayan

Detaylı

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR 5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR ÖZEL BÜYÜKÇEKMECE ÇINAR KOLEJİ 19 Mayıs Mah. Bülent Ecevit Cad. Tüyap Yokuşu

Detaylı

15. Bağıntılara Devam:

15. Bağıntılara Devam: 15. Bağıntılara Devam: Yerel Bağıntılardan Örnekler: Doğal sayılar kümesi üzerinde bir küçüğüdür (< 1 ) bağıntısı: < 1 {(x, x+1) x N} {(0,1), (1, 2), } a< 1 b yazıldığında, a doğal sayılarda bir küçüktür

Detaylı

3.Hafta Master Teorem ve Böl-Fethet Metodu

3.Hafta Master Teorem ve Böl-Fethet Metodu 1 3.Hafta Master Teorem ve Böl-Fethet Metodu 2 Ana Metod (The Master Method) Ana method aşağıda belirtilen yapıdaki yinelemelere uygulanır: T(n) = at(n/b) + f (n), burada a 1, b > 1, ve f asimptotik olarak

Detaylı

EN AZ SAYIDA AĞIRLIKLA AĞIRLIKLARI TARTMAK

EN AZ SAYIDA AĞIRLIKLA AĞIRLIKLARI TARTMAK EN AZ SAYIDA AĞIRLIKLA AĞIRLIKLARI TARTMAK Amaç: 1 den n ye kadar olan tamsayı ağırlıkları, toplamları n olan en az sayıda ağırlığı kullanarak tartmak. Giriş: Bu araştırmanın temelini Ulusal Bilgisayar

Detaylı