İkinci Mertebeden Lineer Diferansiyel Denklemler

Benzer belgeler
HOMOGEN OLMAYAN DENKLEMLER

1 Lineer Diferansiyel Denklem Sistemleri

İleri Diferansiyel Denklemler

Yüksek Mertebeden Diferansiyel Denklemler. İkinci Mertebeden. İndirgenebilir Diferansiyel Denklemler

İleri Diferansiyel Denklemler

DENKLEMLER CAUCHY-EULER DENKLEMİ. a n x n dn y dx n + a n 1x n 1 dn 1 y

İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.

Sağ Taraf Fonksiyonu İle İlgili Özel Çözüm Örnekleri(rezonans durumlar)

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler

Birinci Mertebeden Diferansiyel Denklemler Edwards and Penney, Difarensiyel denklemler ve sınır değer problemleri (çeviri: Prof. Dr.

4. y=-2 doğrusundan 5 birim uzaklıkta. 5. O(0,0) başlangıç noktasından 3 birim. 6. A(1,2) ve B(5,8) noktalarından eşit. 7. x=-2 doğrusundan ve A(2,0)

Değişken Katsayılı Adi Diferensiyel Denklemler Katsayıları bağımsız(x) değişkene bağlı diferensiyel denklemlerdir. Genel ifadesi şöyledir.

İleri Diferansiyel Denklemler

1. O(0,0) merkezli, 3 birim yarıçaplı. 2. x 2 +y 2 =16 denklemi ile verilen. 3. O(0,0) merkezli ve A(3,4)

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces

Math 322 Diferensiyel Denklemler Ders Notları 2012

Diferensiyel Denklemler I Uygulama Notları

S4 u(x, y) = ln ( sin y. S5 u(x, y) = 2α 2 sec(α(x 4α 2 t)) fonksiyonunun

İSTANBUL SABAHATTİN ZAİM ÜNİVERSİTESİ

Sınav süresi 75 dakika. Student ID # / Öğrenci Numarası

2. (1 + y ) ln(x + y) = yy dif. denk. çözünüz. 3. xy dy y 2 dx = (x + y) 2 e ( y/x) dx dif. denk. çözünüz.

Diferansiyel denklemler uygulama soruları

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.

Polinomlar. Rüstem YILMAZ

Iki Boyutlu Sabit Katsay l Lineer Homogen Diferensiyel Denklem Sistemleri (Euler Metodu)

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

Kübik Spline lar/cubic Splines

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır.

1. Analitik düzlemde P(-4,3) noktasının eksenlerden ve O başlangıç noktasından uzaklığı kaç birimdir?

x 0 = A(t)x + B(t) (2.1.2)

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 9. Tanım 2. Kompleks düzlemin tamamında analitik olan bir fonksiyona tam fonksiyon denir.

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

KUADRATİK FORM. Tanım: Kuadratik Form. Bir q(x 1,x 2,,x n ) fonksiyonu

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM

İleri Diferansiyel Denklemler

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

8.Konu Vektör uzayları, Alt Uzaylar

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

DÜZCE ÜN IVERS ITES I FEN-EDEB IYAT FAKÜLTES I

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler


ARASINAV SORULARININ ÇÖZÜMLERİ GÜZ DÖNEMİ A A A A A A A

TÜREV VE UYGULAMALARI

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

Özdeğer ve Özvektörler

İÇİNDEKİLER. Bölüm 2 CEBİR 43

Yrd. Doç. Dr. A. Burak İNNER

VEKTÖR UZAYLARI 1.GİRİŞ

İleri Diferansiyel Denklemler

Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14.

(14) (19.43) de v yi sağlayan fonksiyona karşılık gelen u = F v fonksiyonunun ikinci türevi sürekli, R de 2π periodik ve

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri. Hazırlayan: Dr. Nurdan Bilgin

İleri Diferansiyel Denklemler

DOĞRUNUN ANALİTİK İNCELEMESİ

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

[ AN ] doğrusu açıortay olduğundan;

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır?

Elastisite Teorisi Düzlem Problemleri için Sonuç 1

Yeşilköy Anadolu Lisesi

İleri Diferansiyel Denklemler

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

1 RASYONEL SAYILARDA İŞLEMLER Sorular Sorular DOĞRUSAL DENKLEMLER Sorular DOĞRUSAL DENKLEM SİSTEMLERİ 25

MAK 210 SAYISAL ANALİZ

DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ

13. Karakteristik kökler ve özvektörler

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b

= e DIŞ MERKEZLİK HAZİNE-1 HAZİNE-2

Fonksiyonlarda limiti öğrenirken değişkenlerin limitini ve sağdan-soldan limit kavramlarını öğreneceksiniz.

Mustafa Sezer PEHLİVAN. Yüksek İhtisas Üniversitesi Beslenme ve Diyetetik Bölümü

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n i 2 0 n + 6 =?

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir.

KPSS MATEMATÝK. SOYUT CEBÝR ( Genel Tekrar Testi-1) N tam sayılar kümesinde i N için, A = 1 i,i 1

POL NOMLAR. Polinomlar

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 2. yapılırsa bu durumda θ ya z nin esas argümenti denir ve Argz ile gösterilir. argz = Argz + 2nπ, n Z

Prof.Dr.F.Nejat EKMEKCİ, Prof. Dr. Yusuf YAYLI, BAHAR

3. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

2) Bir mağazada, bir ürüne satış fiyatı üzerinden %7 indirim yapılmış. Eğer yeni fiyatı 372 TL ise, kaç liralık indirim yapılmıştır?

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Örnek...4 : P(x) = 3x + 2 ve Q(x)= x 2 +4x -3 polinomları için a) P(x). Q(x) b)x.p(x) 2.Q(x) işlem lerini ya pınız.

T I M U R K A R A Ç AY, H AY D A R E Ş, O R H A N Ö Z E R K A L K U L Ü S N O B E L

İKİNCİ DERECEDEN DENKLEMLER

MAT 2011 MATEMATİK III

BÖLÜM 1 1- KOMPLEKS (KARMAŞIK) SAYILAR 1-1 KARMAŞIK SAYILAR VE ÖZELLİKLERİ

Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması.

Lecture 2. Mahir Bilen Can. Mayıs 10, 2016

TÜREV VE UYGULAMALARI

ÖZEL EGE LİSESİ 10. OKULLARARASI MATEMATİK YARIŞMASI 10. SINIFLAR SORULARI

SÜREKLİLİK. 9.1 Süreklilik ve Süreksizlik Kavramları

Transkript:

A(x)y + B(x)y + C(x)y = F (x) (5) Denklem (5) in sağ tarafında bulunan F (x) fonksiyonu, I aralığı üzerinde sıfıra özdeş ise, (5) denklemine lineer homogen; aksi taktirde lineer homogen olmayan denklem denir. Öğr.Gör.Dr. Ali Sevimlican 1/ 26

A(x)y + B(x)y + C(x)y = F (x) (5) Denklem (5) in sağ tarafında bulunan F (x) fonksiyonu, I aralığı üzerinde sıfıra özdeş ise, (5) denklemine lineer homogen; aksi taktirde lineer homogen olmayan denklem denir. x 2 y + 2xy + 3y = cos x ikinci mertebeden lineer, homogen olmayan bir denklem, Öğr.Gör.Dr. Ali Sevimlican 1/ 26

A(x)y + B(x)y + C(x)y = F (x) (5) Denklem (5) in sağ tarafında bulunan F (x) fonksiyonu, I aralığı üzerinde sıfıra özdeş ise, (5) denklemine lineer homogen; aksi taktirde lineer homogen olmayan denklem denir. x 2 y + 2xy + 3y = cos x ikinci mertebeden lineer, homogen olmayan bir denklem, x 2 y + 2xy + 3y = 0 ise bununla ilgili olan ikinci mertebeden lineer homogen denklemlerdir. Öğr.Gör.Dr. Ali Sevimlican 1/ 26

İkinci Mertebeden Lineer Homogen Denklemler İkinci mertebeden genel lineer A(x)y + B(x)y + C(x)y = F (x) diferansiyel denklemi ele alalım. Öğr.Gör.Dr. Ali Sevimlican 2/ 26

İkinci Mertebeden Lineer Homogen Denklemler İkinci mertebeden genel lineer A(x)y + B(x)y + C(x)y = F (x) diferansiyel denklemi ele alalım.burada A(x), B(x), C(x) ve F (x) fonksiyonları I da sürekli ve x I A(x) 0 dır. Öğr.Gör.Dr. Ali Sevimlican 2/ 26

İkinci Mertebeden Lineer Homogen Denklemler İkinci mertebeden genel lineer A(x)y + B(x)y + C(x)y = F (x) diferansiyel denklemi ele alalım.burada A(x), B(x), C(x) ve F (x) fonksiyonları I da sürekli ve x I A(x) 0 dır.yukarıdaki denklemin her iki tarafı A(x) e bölünürse, denklem biçiminde ifade edilebilir. y + p(x)y + q(x)y = f(x) (1) Öğr.Gör.Dr. Ali Sevimlican 2/ 26

İkinci Mertebeden Lineer Homogen Denklemler İkinci mertebeden genel lineer A(x)y + B(x)y + C(x)y = F (x) diferansiyel denklemi ele alalım.burada A(x), B(x), C(x) ve F (x) fonksiyonları I da sürekli ve x I A(x) 0 dır.yukarıdaki denklemin her iki tarafı A(x) e bölünürse, denklem biçiminde ifade edilebilir. İlk olarak (5) ile ilgili olan homogen denklemi inceleyeceğiz. y + p(x)y + q(x)y = f(x) (1) y + p(x)y + q(x)y = 0 (2) Öğr.Gör.Dr. Ali Sevimlican 2/ 26

y + p(x)y + q(x)y = 0 (7) Teorem: (Superposition prensibi) y 1 ve y 2, (7) ile verilen homogen denklemin I aralığı üzerinde iki çözümü olsun, C 1 ve C 2 keyfi sabitler olmak üzere, y = C 1 y 1 + C 2 y 2 (3) ifadeside (7) ile verilen denklemin I aralığı üzerinde bir çözümüdür. Öğr.Gör.Dr. Ali Sevimlican 3/ 26

y 1 (x) = cos x ve y 2 (x) = sin x fonksiyonlarının y + y = 0 denkleminin çözümleri oldukları kolaylıkla görülebilir. Öğr.Gör.Dr. Ali Sevimlican 4/ 26

fonksiyonlarının y 1 (x) = cos x ve y 2 (x) = sin x y + y = 0 denkleminin çözümleri oldukları kolaylıkla görülebilir.teorem, bu çözümlerin örneğin; y(x) = 3y 1 (x) 2y 2 (x) Öğr.Gör.Dr. Ali Sevimlican 4/ 26

fonksiyonlarının y 1 (x) = cos x ve y 2 (x) = sin x y + y = 0 denkleminin çözümleri oldukları kolaylıkla görülebilir.teorem, bu çözümlerin örneğin; y(x) = 3y 1 (x) 2y 2 (x) = 3 cos x 2 sin x gibi herhangi bir lineer birleşimininde denklemin bir çözümü olduğunu belirtir. Öğr.Gör.Dr. Ali Sevimlican 4/ 26

fonksiyonlarının y 1 (x) = cos x ve y 2 (x) = sin x y + y = 0 denkleminin çözümleri oldukları kolaylıkla görülebilir.teorem, bu çözümlerin örneğin; y(x) = 3y 1 (x) 2y 2 (x) = 3 cos x 2 sin x gibi herhangi bir lineer birleşimininde denklemin bir çözümü olduğunu belirtir. Tersine, y + y = 0 denkleminin her bir çözümünün, bu denklemin y 1 ve y 2 özel çözümlerinin bir lineer birleşimi olduğunu ilerde göreceğiz. Öğr.Gör.Dr. Ali Sevimlican 4/ 26

Teorem: (Varlık ve Teklik) p,q ve f fonksiyonları a noktasını içeren bir I aralığı üzerinde sürekli olsun. Bu takdirde, b 0 ve b 1 verilen sabitler olmak üzere denklemi, I aralığının tamamında, y + p(x)y + q(x)y = f(x) (6) y(a) = b 0, y (a) = b 1 başlangış koşullarını sağlayan bir tek (bir ve yalnız bir) çözüme sahiptir. Öğr.Gör.Dr. Ali Sevimlican 5/ 26

y + y = 0 y(0) = 3, y (0) = 2 başlangıç değer probleminin çözümünü bulalım. Öğr.Gör.Dr. Ali Sevimlican 6/ 26

y(0) = 3, y + y = 0 y (0) = 2 başlangıç değer probleminin çözümünü bulalım. ÇÖZÜM Bir önceki örnekte y(x) = C 1 cos x + C 2 sin x (tüm reel eksen üzerinde) y + y = 0 denkleminin çözümü olduğunu söylemiştik. (Teorem yardımıyla) Öğr.Gör.Dr. Ali Sevimlican 6/ 26

Başlangıç koşullarından y(0) = C 1 cos 0 + C 2 sin 0 = C 1 Öğr.Gör.Dr. Ali Sevimlican 7/ 26

Başlangıç koşullarından y(0) = C 1 cos 0 + C 2 sin 0 = C 1 ve y (0) = C 1 sin 0 + C 2 cos 0 = C 2 Öğr.Gör.Dr. Ali Sevimlican 7/ 26

Başlangıç koşullarından y(0) = C 1 cos 0 + C 2 sin 0 = C 1 ve y (0) = C 1 sin 0 + C 2 cos 0 = C 2 C 1 = 3 ve C 2 = 2 bulunur. Öğr.Gör.Dr. Ali Sevimlican 7/ 26

Başlangıç koşullarından ve y(0) = C 1 cos 0 + C 2 sin 0 = C 1 y (0) = C 1 sin 0 + C 2 cos 0 = C 2 C 1 = 3 ve C 2 = 2 bulunur. Sonuç olarak başlangıç değer problemimizin çözümü dür. y(x) = 3 cos x 2 sin x Öğr.Gör.Dr. Ali Sevimlican 7/ 26

Başlangıç koşullarından ve y(0) = C 1 cos 0 + C 2 sin 0 = C 1 y (0) = C 1 sin 0 + C 2 cos 0 = C 2 C 1 = 3 ve C 2 = 2 bulunur. Sonuç olarak başlangıç değer problemimizin çözümü dür. y(x) = 3 cos x 2 sin x Görüldüğü gibi keyfi sabitler basit bir lineer denklem sisteminden bulunabilmektedir. Öğr.Gör.Dr. Ali Sevimlican 7/ 26

y 2y + y = 0 y(0) = 3, y (0) = 1 başlangıç değer probleminin çözümünü bulalım. Öğr.Gör.Dr. Ali Sevimlican 8/ 26

y 2y + y = 0 y(0) = 3, y (0) = 1 başlangıç değer probleminin çözümünü bulalım. ÇÖZÜM y 1 (x) = e x ve y 2 (x) = 2e x (tüm reel eksen üzerinde) y 2y + y = 0 denkleminin çözümleri olduğu kolaylıkla görülebilir. Öğr.Gör.Dr. Ali Sevimlican 8/ 26

y 2y + y = 0 y(0) = 3, y (0) = 1 başlangıç değer probleminin çözümünü bulalım. ÇÖZÜM y 1 (x) = e x ve y 2 (x) = 2e x (tüm reel eksen üzerinde) y 2y + y = 0 denkleminin çözümleri olduğu kolaylıkla görülebilir. Teorem yardımıyla y(x) = c 1 y 1 (x) + c 2 y 2 (x) = c 1 e x + c 2 2e x fonksiyonunda denklemimizin bir çözümü olduğunu söyleyebilir ve başlangıç koşullarını sağlayan c 1 ve c 2 yi bulabilirsek başlangıç değer problemimizi çözümünü bulmuş oluruz. Öğr.Gör.Dr. Ali Sevimlican 8/ 26

Başlangıç koşullarından y(0) = c 1 e 0 + c 2 2e 0 Öğr.Gör.Dr. Ali Sevimlican 9/ 26

Başlangıç koşullarından y(0) = c 1 e 0 + c 2 2e 0 = 3 Öğr.Gör.Dr. Ali Sevimlican 9/ 26

Başlangıç koşullarından y(0) = c 1 e 0 + c 2 2e 0 = 3 ve y (0) = c 1 e 0 + c 2 2e 0 Öğr.Gör.Dr. Ali Sevimlican 9/ 26

Başlangıç koşullarından y(0) = c 1 e 0 + c 2 2e 0 = 3 ve y (0) = c 1 e 0 + c 2 2e 0 = 1 Öğr.Gör.Dr. Ali Sevimlican 9/ 26

Başlangıç koşullarından y(0) = c 1 e 0 + c 2 2e 0 = 3 ve y (0) = c 1 e 0 + c 2 2e 0 = 1 Çözümü olmayan (sağlayan c 1 ve c 2 nin bulunamayacağı) c 1 + 2c 2 = 3 c 1 + 2c 2 = 1 denklem sistemi gelir. Öğr.Gör.Dr. Ali Sevimlican 9/ 26

Başlangıç koşullarından y(0) = c 1 e 0 + c 2 2e 0 = 3 ve y (0) = c 1 e 0 + c 2 2e 0 = 1 Çözümü olmayan (sağlayan c 1 ve c 2 nin bulunamayacağı) c 1 + 2c 2 = 3 c 1 + 2c 2 = 1 denklem sistemi gelir. Çözümlerimizin nasıl fonksiyonlar olması durumunda başlangıç koşulları yardımıyla kefilerimizi (c 1 ve c 2 ) bulabileceğimizi görelim. Öğr.Gör.Dr. Ali Sevimlican 9/ 26

TANIM y 1 (x) ve y 2 (x) fonksiyonları bir [a, b] kapalı aralığında reel değerli ve türevlenebilir fonksiyonlar olsun y 1 (x) y 1 (x) y 2 (x) y 2 (x) determinantı y 1 (x) ve y 2 (x) fonksiyonlarının Wronskiyeni olarak adlandırılır. W (y 1 (x), y 2 (x)) olarak gösterilir. Öğr.Gör.Dr. Ali Sevimlican 10/ 26

Teorem y 1 (x) ve y 2 (x) fonksiyonları bir [a, b] kapalı aralığında sürekli türevlenebilir fonksiyonlar olsun ve [a, b] kapalı aralığındaki bir x 0 için W [y 1 (x), y 2 (x)](x 0 ) 0 ise y 1 (x) ve y 2 (x) fonksiyonları lineer bağımsızdır. Öğr.Gör.Dr. Ali Sevimlican 11/ 26

Teorem y 1 (x) ve y 2 (x) fonksiyonları bir [a, b] kapalı aralığında sürekli türevlenebilir fonksiyonlar olsun ve [a, b] kapalı aralığındaki bir x 0 için W [y 1 (x), y 2 (x)](x 0 ) 0 ise y 1 (x) ve y 2 (x) fonksiyonları lineer bağımsızdır. y 1 (x) = e x ve y 2 (x) = e x fonksiyonlarının Wronskiyeni W (y 1 (x), y 2 (x)) = y 1(x) y 2 (x) y 1 (x) y 2 (x) = ex e x e x e x = 2 0 y 1 (x) = e x ve y 2 (x) = e x fonksiyonları lineer(doğrusal) bağımsızdır. Öğr.Gör.Dr. Ali Sevimlican 11/ 26

y 1 (x) = sin x ve y 2 (x) = cos x fonksiyonlarının Wronskiyeni W (y 1 (x), y 2 (x)) = y 1(x) y 2 (x) y 1 (x) y 2 (x) = sin x cos x cos x sin x = 1 0 y 1 (x) = sin x ve y 2 (x) = cos x fonksiyonları doğrusal bağımsızdır. Öğr.Gör.Dr. Ali Sevimlican 12/ 26

TEOREM p ve q fonksiyonları açık bir I aralığı üzerinde sürekli olmak üzere y 1 ve y 2 y + p(x)y + q(x)y = 0 homogen denkleminin doğrusal bağımsız iki çözümü olsun. c 1 ve c 2 keyfi sabitler olmak üzere genel çözümdür. Y (x) = c 1 y 1 (x) + c 2 y 2 (x) Öğr.Gör.Dr. Ali Sevimlican 13/ 26

İKİNCİ MERTEBEDEN SABİT KATSAYILI LİNEER DENKLEMLER Bu bölümde a, b ve c sabitler olmak üzere diferansiyel denklemi ele alınacaktır. ay + by + cy = 0 (4) Öğr.Gör.Dr. Ali Sevimlican 14/ 26

İKİNCİ MERTEBEDEN SABİT KATSAYILI LİNEER DENKLEMLER Bu bölümde a, b ve c sabitler olmak üzere diferansiyel denklemi ele alınacaktır. ay + by + cy = 0 (4) Denkleme baktığımızda aradığımız fonksiyonun türevlerinin belirli sabitlerle çarpılıp toplandığında 0 elde edildiğini görürüz. Türevleri kendisinin katı olan fonksiyon bu denklemi sağlayacaktır. Bu özelliği e rx üstel fonksiyonu taşır. Öğr.Gör.Dr. Ali Sevimlican 14/ 26

y(x) = e rx fonksiyonu denklemde yerine yazılır ve buradaki r bulunabilirse çözümümüzü bulmuş oluruz. y(x) = e rx Öğr.Gör.Dr. Ali Sevimlican 15/ 26

y(x) = e rx fonksiyonu denklemde yerine yazılır ve buradaki r bulunabilirse çözümümüzü bulmuş oluruz. y(x) = e rx y (x) = re rx Öğr.Gör.Dr. Ali Sevimlican 15/ 26

y(x) = e rx fonksiyonu denklemde yerine yazılır ve buradaki r bulunabilirse çözümümüzü bulmuş oluruz. y(x) = e rx y (x) = re rx y (x) = r 2 e rx ay + by + cy = 0 Öğr.Gör.Dr. Ali Sevimlican 15/ 26

y(x) = e rx fonksiyonu denklemde yerine yazılır ve buradaki r bulunabilirse çözümümüzü bulmuş oluruz. y(x) = e rx y (x) = re rx y (x) = r 2 e rx ay + by + cy = 0 ar 2 e rx + bre rx + ce rx = 0 Öğr.Gör.Dr. Ali Sevimlican 15/ 26

y(x) = e rx fonksiyonu denklemde yerine yazılır ve buradaki r bulunabilirse çözümümüzü bulmuş oluruz. y(x) = e rx y (x) = re rx y (x) = r 2 e rx ay + by + cy = 0 ar 2 e rx + bre rx + ce rx = 0 (ar 2 + br + c)e rx = 0 Öğr.Gör.Dr. Ali Sevimlican 15/ 26

y(x) = e rx fonksiyonu denklemde yerine yazılır ve buradaki r bulunabilirse çözümümüzü bulmuş oluruz. y(x) = e rx y (x) = re rx y (x) = r 2 e rx ay + by + cy = 0 ar 2 e rx + bre rx + ce rx = 0 (ar 2 + br + c)e rx = 0 çarpanlarımızdan e rx fonksiyonu 0 olamıyacağı için ar 2 + br + c ikinci derece polinomu 0 olmalıdır. Öğr.Gör.Dr. Ali Sevimlican 15/ 26

y(x) = e rx fonksiyonu denklemde yerine yazılır ve buradaki r bulunabilirse çözümümüzü bulmuş oluruz. y(x) = e rx y (x) = re rx y (x) = r 2 e rx ay + by + cy = 0 ar 2 e rx + bre rx + ce rx = 0 (ar 2 + br + c)e rx = 0 çarpanlarımızdan e rx fonksiyonu 0 olamıyacağı için ar 2 + br + c ikinci derece polinomu 0 olmalıdır.bu polinomun köklerini bulabilirsek y(x) = e rx fonksiyonu denklem (1) in bir çözümü olacaktır. Öğr.Gör.Dr. Ali Sevimlican 15/ 26

y 5y + 6y = 0 diferansiyel denklemin genel çözümünü bulunuz. Öğr.Gör.Dr. Ali Sevimlican 16/ 26

y 5y + 6y = 0 diferansiyel denklemin genel çözümünü bulunuz. ÇÖZÜM Denklemimizde y(x) = e rx i yerine yazarsak, Öğr.Gör.Dr. Ali Sevimlican 16/ 26

y 5y + 6y = 0 diferansiyel denklemin genel çözümünü bulunuz. ÇÖZÜM Denklemimizde y(x) = e rx i yerine yazarsak, r 2 e rx Öğr.Gör.Dr. Ali Sevimlican 16/ 26

y 5y + 6y = 0 diferansiyel denklemin genel çözümünü bulunuz. ÇÖZÜM Denklemimizde y(x) = e rx i yerine yazarsak, r 2 e rx 5re rx Öğr.Gör.Dr. Ali Sevimlican 16/ 26

y 5y + 6y = 0 diferansiyel denklemin genel çözümünü bulunuz. ÇÖZÜM Denklemimizde y(x) = e rx i yerine yazarsak, r 2 e rx 5re rx + 6e rx = 0 Öğr.Gör.Dr. Ali Sevimlican 16/ 26

y 5y + 6y = 0 diferansiyel denklemin genel çözümünü bulunuz. ÇÖZÜM Denklemimizde y(x) = e rx i yerine yazarsak, r 2 e rx 5re rx + 6e rx = 0 bulunur. (r 2 5r + 6)e rx = 0 Öğr.Gör.Dr. Ali Sevimlican 16/ 26

y 5y + 6y = 0 diferansiyel denklemin genel çözümünü bulunuz. ÇÖZÜM Denklemimizde y(x) = e rx i yerine yazarsak, r 2 e rx 5re rx + 6e rx = 0 (r 2 5r + 6)e rx = 0 bulunur. r 2 5r + 6 polinomunun kökleri r = 2 ve r = 3 tür. Öğr.Gör.Dr. Ali Sevimlican 16/ 26

y 5y + 6y = 0 diferansiyel denklemin genel çözümünü bulunuz. ÇÖZÜM Denklemimizde y(x) = e rx i yerine yazarsak, r 2 e rx 5re rx + 6e rx = 0 (r 2 5r + 6)e rx = 0 bulunur. r 2 5r + 6 polinomunun kökleri r = 2 ve r = 3 tür. Bir çözüm ararken y 1 (x) = e 2x ve y 2 (x) = e 3x gibi iki çözüm bulduk. Öğr.Gör.Dr. Ali Sevimlican 16/ 26

y 5y + 6y = 0 diferansiyel denklemin genel çözümünü bulunuz. ÇÖZÜM Denklemimizde y(x) = e rx i yerine yazarsak, r 2 e rx 5re rx + 6e rx = 0 (r 2 5r + 6)e rx = 0 bulunur. r 2 5r + 6 polinomunun kökleri r = 2 ve r = 3 tür. Bir çözüm ararken y 1 (x) = e 2x ve y 2 (x) = e 3x gibi iki çözüm bulduk. Eğer bu fonksiyonlar doğrusal bağımsız ise genel çözümümüzü y(x) = c 1 y 1 (x) + c 2 y 2 (x) Öğr.Gör.Dr. Ali Sevimlican 16/ 26

y 1 (x) = e 2x ve y 2 (x) = e 3x foksiyonlarının Wronskiyeni W (y 1 (x), y 2 (x)) Öğr.Gör.Dr. Ali Sevimlican 17/ 26

y 1 (x) = e 2x ve y 2 (x) = e 3x foksiyonlarının Wronskiyeni W (y 1 (x), y 2 (x)) = y 1(x) y 2 (x) y 1 (x) y 2 (x) Öğr.Gör.Dr. Ali Sevimlican 17/ 26

y 1 (x) = e 2x ve y 2 (x) = e 3x foksiyonlarının Wronskiyeni W (y 1 (x), y 2 (x)) = y 1(x) y 2 (x) y 1 (x) y 2 (x) = e2x e 3x 2e 2x 3e 3x Öğr.Gör.Dr. Ali Sevimlican 17/ 26

y 1 (x) = e 2x ve y 2 (x) = e 3x foksiyonlarının Wronskiyeni W (y 1 (x), y 2 (x)) = y 1(x) y 2 (x) y 1 (x) y 2 (x) = e2x e 3x 2e 2x W (y 1 (x), y 2 (x)) = 3e 5x 2e 5x = e 5x 3e 3x Öğr.Gör.Dr. Ali Sevimlican 17/ 26

y 1 (x) = e 2x ve y 2 (x) = e 3x foksiyonlarının Wronskiyeni W (y 1 (x), y 2 (x)) = y 1(x) y 2 (x) y 1 (x) y 2 (x) = e2x e 3x 2e 2x W (y 1 (x), y 2 (x)) = 3e 5x 2e 5x = e 5x 3e 3x Hiç bir reel sayı için Wronskiyen 0 olamıyacağı için bu iki fonksiyon doğrusal bağımsızdır ve denklemimizi genel çözümü bu iki fonksiyonun lineer kombinasyonu şeklinde yazılabilir. y(x) = c 1 e 2x + c 2 e 3x şeklinde genel çözümümüzü bulmuş oluruz. Öğr.Gör.Dr. Ali Sevimlican 17/ 26

ar 2 + br + c = 0 denklemine ay + by + cy = 0 (1) denkleminin karakteristik denklemi denir. Eğer r 1 ve r 2 karakteristik denklemin reel ve farklı iki kökü ise, y(x) = c 1 e r1x + c 2 e r 2x fonksiyonu denklem (1) in genel çözümüdür. Öğr.Gör.Dr. Ali Sevimlican 18/ 26

2y 7y + 3y = 0 diferansiyel denklemin genel çözümünü bulunuz. Öğr.Gör.Dr. Ali Sevimlican 19/ 26

2y 7y + 3y = 0 diferansiyel denklemin genel çözümünü bulunuz. ÇÖZÜM Karakteristik denklemimiz 2r 2 7r + 3 = 0 dir. Öğr.Gör.Dr. Ali Sevimlican 19/ 26

2y 7y + 3y = 0 diferansiyel denklemin genel çözümünü bulunuz. ÇÖZÜM Karakteristik denklemimiz 2r 2 7r + 3 = 0 dir. Karakteristik denklemimizin kökleri Öğr.Gör.Dr. Ali Sevimlican 19/ 26

2y 7y + 3y = 0 diferansiyel denklemin genel çözümünü bulunuz. ÇÖZÜM Karakteristik denklemimiz 2r 2 7r + 3 = 0 dir. Karakteristik denklemimizin kökleri r 1 = 1/2 ve r 2 = 3 tür. Öğr.Gör.Dr. Ali Sevimlican 19/ 26

2y 7y + 3y = 0 diferansiyel denklemin genel çözümünü bulunuz. ÇÖZÜM Karakteristik denklemimiz 2r 2 7r + 3 = 0 dir. Karakteristik denklemimizin kökleri r 1 = 1/2 ve r 2 = 3 tür. Dolayısıyla denklemimizin genel çözümü Öğr.Gör.Dr. Ali Sevimlican 19/ 26

2y 7y + 3y = 0 diferansiyel denklemin genel çözümünü bulunuz. ÇÖZÜM Karakteristik denklemimiz 2r 2 7r + 3 = 0 dir. Karakteristik denklemimizin kökleri r 1 = 1/2 ve r 2 = 3 tür. Dolayısıyla denklemimizin genel çözümü y(x) = c 1 e 1 2 x + c 2 e 3x olarak yazılır. Öğr.Gör.Dr. Ali Sevimlican 19/ 26

y + 2y = 0 diferansiyel denklemin genel çözümünü bulunuz. Öğr.Gör.Dr. Ali Sevimlican 20/ 26

y + 2y = 0 diferansiyel denklemin genel çözümünü bulunuz. ÇÖZÜM Karakteristik denklemimiz r 2 + 2r = 0 dir. Öğr.Gör.Dr. Ali Sevimlican 20/ 26

y + 2y = 0 diferansiyel denklemin genel çözümünü bulunuz. ÇÖZÜM Karakteristik denklemimiz r 2 + 2r = 0 dir. Karakteristik denklemimizin kökleri Öğr.Gör.Dr. Ali Sevimlican 20/ 26

y + 2y = 0 diferansiyel denklemin genel çözümünü bulunuz. ÇÖZÜM Karakteristik denklemimiz r 2 + 2r = 0 dir. Karakteristik denklemimizin kökleri r 1 = 0 ve r 2 = 2 dir. Öğr.Gör.Dr. Ali Sevimlican 20/ 26

y + 2y = 0 diferansiyel denklemin genel çözümünü bulunuz. ÇÖZÜM Karakteristik denklemimiz r 2 + 2r = 0 dir. Karakteristik denklemimizin kökleri r 1 = 0 ve r 2 = 2 dir. Dolayısıyla denklemimizin genel çözümü Öğr.Gör.Dr. Ali Sevimlican 20/ 26

y + 2y = 0 diferansiyel denklemin genel çözümünü bulunuz. ÇÖZÜM Karakteristik denklemimiz r 2 + 2r = 0 dir. Karakteristik denklemimizin kökleri r 1 = 0 ve r 2 = 2 dir. Dolayısıyla denklemimizin genel çözümü y(x) = c 1 e 0x + c 2 e 2x Öğr.Gör.Dr. Ali Sevimlican 20/ 26

y + 2y = 0 diferansiyel denklemin genel çözümünü bulunuz. ÇÖZÜM Karakteristik denklemimiz r 2 + 2r = 0 dir. Karakteristik denklemimizin kökleri r 1 = 0 ve r 2 = 2 dir. Dolayısıyla denklemimizin genel çözümü y(x) = c 1 e 0x + c 2 e 2x = c 1 + c 2 e 2x olarak yazılır. Öğr.Gör.Dr. Ali Sevimlican 20/ 26

ay + by + cy = 0 (1) Eğer karakteristik denklem r 1 = r 2 gibi eşit iki reel köke sahip ise, y(x) = (c 1 + c 2 x)e r 1x fonksiyonu denklem (1) in genel çözümüdür. Öğr.Gör.Dr. Ali Sevimlican 21/ 26

9y 12y + 4y = 0 diferansiyel denklemin genel çözümünü bulunuz. Öğr.Gör.Dr. Ali Sevimlican 22/ 26

9y 12y + 4y = 0 diferansiyel denklemin genel çözümünü bulunuz. ÇÖZÜM Karakteristik denklemimiz 9r 2 12r + 4 = 0 dir. Öğr.Gör.Dr. Ali Sevimlican 22/ 26

9y 12y + 4y = 0 diferansiyel denklemin genel çözümünü bulunuz. ÇÖZÜM Karakteristik denklemimiz 9r 2 12r + 4 = 0 dir. Karakteristik denklemimizin kökleri Öğr.Gör.Dr. Ali Sevimlican 22/ 26

9y 12y + 4y = 0 diferansiyel denklemin genel çözümünü bulunuz. ÇÖZÜM Karakteristik denklemimiz 9r 2 12r + 4 = 0 dir. Karakteristik denklemimizin kökleri r 1 = r 2 = 2 3 dür. Öğr.Gör.Dr. Ali Sevimlican 22/ 26

9y 12y + 4y = 0 diferansiyel denklemin genel çözümünü bulunuz. ÇÖZÜM Karakteristik denklemimiz 9r 2 12r + 4 = 0 dir. Karakteristik denklemimizin kökleri r 1 = r 2 = 2 3 dür. Dolayısıyla denklemimizin genel çözümü Öğr.Gör.Dr. Ali Sevimlican 22/ 26

9y 12y + 4y = 0 diferansiyel denklemin genel çözümünü bulunuz. ÇÖZÜM Karakteristik denklemimiz 9r 2 12r + 4 = 0 dir. Karakteristik denklemimizin kökleri r 1 = r 2 = 2 3 dür. Dolayısıyla denklemimizin genel çözümü y(x) = (c 1 + c 2 x)e 2 3 x olarak yazılır. Öğr.Gör.Dr. Ali Sevimlican 22/ 26

y + 2y + y = 0 y(0) = 5, y (0) = 3 başlangıç değer problemini çözünüz. Öğr.Gör.Dr. Ali Sevimlican 23/ 26

y + 2y + y = 0 y(0) = 5, y (0) = 3 başlangıç değer problemini çözünüz. ÇÖZÜM Karakteristik denklemimiz r 2 + 2r + 1 Öğr.Gör.Dr. Ali Sevimlican 23/ 26

y + 2y + y = 0 y(0) = 5, y (0) = 3 başlangıç değer problemini çözünüz. ÇÖZÜM Karakteristik denklemimiz r 2 + 2r + 1 = (r + 1) 2 = 0 dir. Öğr.Gör.Dr. Ali Sevimlican 23/ 26

y + 2y + y = 0 y(0) = 5, başlangıç değer problemini çözünüz. ÇÖZÜM Karakteristik denklemimiz y (0) = 3 r 2 + 2r + 1 = (r + 1) 2 = 0 dir. Dolayısıyla karakteristik denklemimizin kökleri birbirine eşit ve r 1 = r 2 = 1 dir. Öğr.Gör.Dr. Ali Sevimlican 23/ 26

y + 2y + y = 0 y(0) = 5, başlangıç değer problemini çözünüz. ÇÖZÜM Karakteristik denklemimiz y (0) = 3 r 2 + 2r + 1 = (r + 1) 2 = 0 dir. Dolayısıyla karakteristik denklemimizin kökleri birbirine eşit ve r 1 = r 2 = 1 dir. Denklemimizin genel çözümü Öğr.Gör.Dr. Ali Sevimlican 23/ 26

y + 2y + y = 0 y(0) = 5, başlangıç değer problemini çözünüz. ÇÖZÜM Karakteristik denklemimiz y (0) = 3 r 2 + 2r + 1 = (r + 1) 2 = 0 dir. Dolayısıyla karakteristik denklemimizin kökleri birbirine eşit ve r 1 = r 2 = 1 dir. Denklemimizin genel çözümü olarak yazılır. y(x) = (c 1 + c 2 x)e x Öğr.Gör.Dr. Ali Sevimlican 23/ 26

y(x) = (c 1 + c 2 x)e x Başlangıç koşullarımız yardımıyla c 1 ve c 2 yi bulabiliriz. Öğr.Gör.Dr. Ali Sevimlican 24/ 26

y(x) = (c 1 + c 2 x)e x Başlangıç koşullarımız yardımıyla c 1 ve c 2 yi bulabiliriz. y(0) = (c 1 + c 2 0)e 0 Öğr.Gör.Dr. Ali Sevimlican 24/ 26

y(x) = (c 1 + c 2 x)e x Başlangıç koşullarımız yardımıyla c 1 ve c 2 yi bulabiliriz. y(0) = (c 1 + c 2 0)e 0 = c 1 Öğr.Gör.Dr. Ali Sevimlican 24/ 26

y(x) = (c 1 + c 2 x)e x Başlangıç koşullarımız yardımıyla c 1 ve c 2 yi bulabiliriz. y(0) = (c 1 + c 2 0)e 0 = c 1 = 5 Öğr.Gör.Dr. Ali Sevimlican 24/ 26

y(x) = (c 1 + c 2 x)e x Başlangıç koşullarımız yardımıyla c 1 ve c 2 yi bulabiliriz. y(0) = (c 1 + c 2 0)e 0 = c 1 = 5 ve y (x) = c 1 e x + c 2 e x c 2 xe x Öğr.Gör.Dr. Ali Sevimlican 24/ 26

y(x) = (c 1 + c 2 x)e x Başlangıç koşullarımız yardımıyla c 1 ve c 2 yi bulabiliriz. y(0) = (c 1 + c 2 0)e 0 = c 1 = 5 ve y (x) = c 1 e x + c 2 e x c 2 xe x y (0) = c 1 e 0 + c 2 e 0 c 2 0e x Öğr.Gör.Dr. Ali Sevimlican 24/ 26

y(x) = (c 1 + c 2 x)e x Başlangıç koşullarımız yardımıyla c 1 ve c 2 yi bulabiliriz. y(0) = (c 1 + c 2 0)e 0 = c 1 = 5 ve y (x) = c 1 e x + c 2 e x c 2 xe x y (0) = c 1 e 0 + c 2 e 0 c 2 0e x = c 1 + c 2 Öğr.Gör.Dr. Ali Sevimlican 24/ 26

y(x) = (c 1 + c 2 x)e x Başlangıç koşullarımız yardımıyla c 1 ve c 2 yi bulabiliriz. y(0) = (c 1 + c 2 0)e 0 = c 1 = 5 ve y (x) = c 1 e x + c 2 e x c 2 xe x y (0) = c 1 e 0 + c 2 e 0 c 2 0e x = c 1 + c 2 = 3 Bu iki denklemden Öğr.Gör.Dr. Ali Sevimlican 24/ 26

y(x) = (c 1 + c 2 x)e x Başlangıç koşullarımız yardımıyla c 1 ve c 2 yi bulabiliriz. y(0) = (c 1 + c 2 0)e 0 = c 1 = 5 ve y (x) = c 1 e x + c 2 e x c 2 xe x y (0) = c 1 e 0 + c 2 e 0 c 2 0e x = c 1 + c 2 = 3 Bu iki denklemden c 1 = 5 ve c 2 = 2 değerlerine ulaşırız. Öğr.Gör.Dr. Ali Sevimlican 24/ 26

y(x) = (c 1 + c 2 x)e x Başlangıç koşullarımız yardımıyla c 1 ve c 2 yi bulabiliriz. y(0) = (c 1 + c 2 0)e 0 = c 1 = 5 ve y (x) = c 1 e x + c 2 e x c 2 xe x y (0) = c 1 e 0 + c 2 e 0 c 2 0e x = c 1 + c 2 = 3 Bu iki denklemden c 1 = 5 ve c 2 = 2 değerlerine ulaşırız. Sonuç olarak çözümümüz y(x) = (5 + 2x)e x tür. Öğr.Gör.Dr. Ali Sevimlican 24/ 26

ay + by + cy = 0 (1) Eğer karakteristik denklemin a ib, (b 0) gibi kompleks eşlenik iki köke sahip ise, y(x) = e ax (c 1 cos (bx) + c 2 sin (bx)) fonksiyonu denklem (1) in genel çözümüdür. Öğr.Gör.Dr. Ali Sevimlican 25/ 26

y 4y + 5y = 0 denkleminin genel çözümünü bulun. Öğr.Gör.Dr. Ali Sevimlican 26/ 26

y 4y + 5y = 0 denkleminin genel çözümünü bulun. ÇÖZÜM Karakteristik denklemimiz r 2 4r + 5 = 0 dır. Öğr.Gör.Dr. Ali Sevimlican 26/ 26

y 4y + 5y = 0 denkleminin genel çözümünü bulun. ÇÖZÜM Karakteristik denklemimiz r 2 4r + 5 = 0 dır. = b 2 4ac Öğr.Gör.Dr. Ali Sevimlican 26/ 26

y 4y + 5y = 0 denkleminin genel çözümünü bulun. ÇÖZÜM Karakteristik denklemimiz r 2 4r + 5 = 0 dır. = b 2 4ac = ( 4) 2 4.1.5 Öğr.Gör.Dr. Ali Sevimlican 26/ 26

y 4y + 5y = 0 denkleminin genel çözümünü bulun. ÇÖZÜM Karakteristik denklemimiz r 2 4r + 5 = 0 dır. = b 2 4ac = ( 4) 2 4.1.5 = 4 < 0 olduğu için karakteristik denklemin reel kökü yoktur. Öğr.Gör.Dr. Ali Sevimlican 26/ 26

y 4y + 5y = 0 denkleminin genel çözümünü bulun. ÇÖZÜM Karakteristik denklemimiz r 2 4r + 5 = 0 dır. = b 2 4ac = ( 4) 2 4.1.5 = 4 < 0 olduğu için karakteristik denklemin reel kökü yoktur. Kompleks köklerimiz 2 i dir. Öğr.Gör.Dr. Ali Sevimlican 26/ 26

y 4y + 5y = 0 denkleminin genel çözümünü bulun. ÇÖZÜM Karakteristik denklemimiz r 2 4r + 5 = 0 dır. = b 2 4ac = ( 4) 2 4.1.5 = 4 < 0 olduğu için karakteristik denklemin reel kökü yoktur. Kompleks köklerimiz 2 i dir. Böylece genel çözümümüz şeklinde yazılabilir. y(x) = e 2x (c 1 cos x + c 2 sin x) Öğr.Gör.Dr. Ali Sevimlican 26/ 26