DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI

Benzer belgeler
ELEKTRİK DEVRE TEMELLERİ ÖDEV-2

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

İleri Diferansiyel Denklemler

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü GEÇİCİ OLAYLARIN İNCELENMESİ

11. Sunum: İki Kapılı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

İleri Diferansiyel Denklemler

Problemler: Devre Analizi-II

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri. Hazırlayan: Dr. Nurdan Bilgin

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever

EEM 307 Güç Elektroniği

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

İleri Diferansiyel Denklemler

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

Sistem Dinamiği. Bölüm 2- Dinamik Cevap ve Laplace Dönüşümü. Doç.Dr. Erhan AKDOĞAN

Nedim Tutkun, PhD, MIEEE Düzce Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Konuralp Düzce

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

3.5. Devre Parametreleri

2. (1 + y ) ln(x + y) = yy dif. denk. çözünüz. 3. xy dy y 2 dx = (x + y) 2 e ( y/x) dx dif. denk. çözünüz.

BLM1612 DEVRE TEORİSİ

Bahar Yarıyılı D_IFERANS_IYEL DENKLEMLER II ARA SINAV 6 Nisan 2011 Süre: 90 dakika CEVAP ANAHTARI. y = c n x n+r. (n + r) c n x n+r 1 +

İleri Diferansiyel Denklemler

İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9

Birinci Mertebeden Adi Diferansiyel Denklemler

İleri Diferansiyel Denklemler

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever

7. BÖLÜM BARA ADMİTANS VE BARA EMPEDANS MATRİSLERİ

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

Ayrık zamanlı sinyaller için de ayrık zamanlı Fourier dönüşümleri kullanılmatadır.

Chapter 9. Elektrik Devreleri. Principles of Electric Circuits, Conventional Flow, 9 th ed. Floyd

10. e volt ve akımıi(

İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER

DENEY 5 RC DEVRELERİ KONDANSATÖRÜN YÜKLENMESİ VE BOŞALMASI

2 1 fonksiyonu veriliyor. olacak şekilde ortalama değer teoremini sağlayacak bir c sayısının var olup olmadığını araştırınız. Eğer var ise bulunuz.

TUNCELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ LİNEER CEBİR DERSİ 2012 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜTÜNLEME SORULARI ÖĞR.GÖR.

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

GÜZ DÖNEMİ ARASINAV SORULARI. 1. Sayısal çözümleme ve fonksiyonu tanımlayarak kullanıldığı alanları kısaca açıklayınız?

Sistem Dinamiği ve Kontrolü Bütünleme 26 Ocak 2017 Süre: 1.45 Saat. Adı ve Soyadı : İmzası : Öğrenci Numarası :

BÖLÜM 2 İKİNCİ DERECEDEN FİLTRELER

EĞİTİM - ÖĞRETİM YILI 10. SINIF MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ

BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK. İlhan AYDIN

Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14.

DÜZCE ÜN IVERS ITES I FEN-EDEB IYAT FAKÜLTES I

DENEY-4 İŞLEMSEL KUVVETLENDİRİCİLERİN DOĞRUSAL UYGULAMALARI

İleri Diferansiyel Denklemler

Devre Teorisi Ders Notu Dr. Nurettin ACIR ve Dr. Engin Cemal MENGÜÇ

Fiziksel Sistemlerin Matematik Modeli. Prof. Neil A.Duffie University of Wisconsin-Madison ÇEVİRİ Doç. Dr. Hüseyin BULGURCU 2012

TERMODİNAMİĞİN BİRİNCİ YASASI

İÇİNDEKİLER. Bölüm 2 CEBİR 43

8. ALTERNATİF AKIM VE SERİ RLC DEVRESİ

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.

ELKE315-ELKH315 Introduction to Control Systems FINAL January 2, 2016 Time required: 1.5 Hours

U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN3102 OTOMATİK KONTROL Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı

İkinci Mertebeden Lineer Diferansiyel Denklemler

SİLİNDİRİK ELEKTROT SİSTEMLERİ

H04 Mekatronik Sistemler. Yrd. Doç. Dr. Aytaç Gören

Sınav süresi 75 dakika. Student ID # / Öğrenci Numarası

DİĞER ANALİZ TEKNİKLERİ

Per-unit değerlerin avantajları

Zaman Domeninde Modelleme Transfer Fonksiyonu Durum Uzay Dönüşümü Durum Uzay Transfer Fonksiyonu DönüşümÜ

LAPLACE DÖNÜŞÜMÜNÜN DEVRE ANALİZİNE UYGULANMASI

Math 103 Lineer Cebir Dersi Final Sınavı

MAT 302 SOYUT CEBİR II SORULAR. (b) = ise =

Devre Teorisi Ders Notu Dr. Nurettin ACIR ve Dr. Engin Cemal MENGÜÇ

EEM211 ELEKTRİK DEVRELERİ-I

ARASINAV SORULARININ ÇÖZÜMLERİ GÜZ DÖNEMİ A A A A A A A

İleri Diferansiyel Denklemler

1 Lineer Diferansiyel Denklem Sistemleri

TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi

ARASINAV SORULARI. EEM 201 Elektrik Devreleri I

DEVRE DEĞİŞKENLERİ Bir elektrik devresinde enerji ölçülebilen bir değer değildir fakat ölçülebilen akım ve gerilim değerlerinden hesaplanır.

ELM 331 ELEKTRONİK II LABORATUAR DENEY FÖYÜ

İleri Diferansiyel Denklemler

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

ÖLÇME VE DEVRE LABORATUVARI DENEY: 4

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

Bölüm 1. Elektriksel Büyüklükler ve Elektrik Devre Elemanları

1. RC Devresi Bir RC devresinde zaman sabiti, eşdeğer kapasitörün uçlarındaki Thevenin direnci ve eşdeğer kapasitörün çarpımıdır.

Bölüm 12 İşlemsel Yükselteç Uygulamaları

EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular

Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar

ELE 201L DEVRE ANALİZİ LABORATUVARI

Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method)


DENKLEMLER CAUCHY-EULER DENKLEMİ. a n x n dn y dx n + a n 1x n 1 dn 1 y

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI

YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRO NIK Y Ü K. M Ü H.

Enerji Sistemleri Mühendisliği Bölümü

Özdeğer ve Özvektörler

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ

8.Konu Vektör uzayları, Alt Uzaylar

DENİZ HARP OKULU ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

İleri Diferansiyel Denklemler

GEÇİCİ OLAYLARIN İNCELENMESİ

TRANFER FONKSİYONLARI SİSTEMLERİN MATEMATİKSEL MODELİ BASİT SİSTEM ELEMANLARI

ELE401/ /17 GÜZ ÖDEV 2 - ÇÖZÜMLER

TEKİRDAĞ SOSYAL BİLİMLER LİSESİ 10. SINIF MATEMATİK DERSİ YILLIK PLANI

10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması

Transkript:

DEVRE VE SİSTEM ANALİZİ 01.1.015 ÇALIŞMA SORULARI 1. Aşağıda verilen devrede anahtar uzun süre konumunda kalmış ve t=0 anında a) v 5 ( geriliminin tam çözümünü diferansiyel denklemlerden faydalanarak bulunuz. b) Devrenin kararlılığını inceleyiniz ve geçici hal süresini bulunuz.. Aşağıda verilen devrede anahtar uzun süre konumunda kalmış ve t=0 anında a) i 3 ( akımının tam çözümünü diferansiyel denklemlerden faydalanarak bulunuz. b) Devrenin kararlılığını inceleyiniz ve geçici hal süresini bulunuz. 3. Aşağıdaki şekilde verilen devrede anahtar uzun süre açık konumunda kalmış ve t=0 s anında kapalı a) Dinamik elemanların v3(0 - ) ve i4(0 - ) başlangıç değerlerini bulunuz (5p). b) v 3( geriliminin tam çözümünü diferansiyel denklemlerden faydalanarak bulunuz (5p). c) Devrenin kararlılığını inceleyiniz ve geçici hal süresini (tgh) hesaplayınız (10p). 1

3. Aşağıda verilen devrede anahtar uzun süre konumunda kalmış ve t=0 anında a) i 4 ( akımının sıfır giriş çözümünü bulunuz (10p). b) i 4 ( akımının sıfır durum çözümünü bulunuz (10p). c) i 4 ( akımının tam çözümünü bulunuz (5p). 4. Aşağıdaki şekilde verilen devrede anahtar uzun süre kapalı konumunda kalmış ve t=0 s anında açık a) Dinamik elemanların v(0 - ) ve i4(0 - ) başlangıç değerlerini bulunuz (10p). b) v ( geriliminin tam çözümünü diferansiyel denklemlerden faydalanarak bulunuz c) Devrenin kararlılığını inceleyiniz ve geçici hal süresini (tgh) hesaplayınız (5p). 5. Aşağıda verilen dinamik devrenin; a) v o ( gerilimine ilişkin diferansiyel denklemi yazınız. b) v k ( u( birim basamak girişi için v o ( nin sıfır durum çözümünü bulunuz ve c) v k ( ( birim impuls girişi için v o ( nin sıfır durum çözümünü bulunuz ve d) Devrenin kararlılığını inceleyiniz. Zaman sabitini bulunuz. 6. Aşağıda verilen dinamik devrenin; a) v o ( gerilimine ilişkin diferansiyel denklemi yazınız. b) v k ( u( birim basamak girişi için v o ( nin sıfır durum çözümünü bulunuz ve

c) ( ( birim impuls girişi için v o ( nin sıfır durum çözümünü bulunuz ve v k d) Devrenin kararlılığını inceleyiniz. Zaman sabitini bulunuz. İşlemsel kuvvetlendiricinin tanım bağıntıları: i p =0, i n =0, v p = v n 7. Aşağıda verilen dinamik devrenin; Durum ve çıkış denklemlerini parametrik ve sıralı olarak matrissel biçimde yazınız ve A, B, C ve D matrislerini belirleyiniz. 8. Aşağıda verilen dinamik devrenin, durum ve çıkış denklemlerini parametrik ve sıralı olarak matrissel biçimde yazınız ve A, B, C ve D matrislerini belirleyiniz. 9. Aşağıda verilen dinamik devrede anahtar uzun süre kapalı kalmış ve t=0s anında açılmıştır. a) t=0 - anı için kapasite elemanının ilk koşulunu bulunuz. b) v 4 ( geriliminin tam çözümünü Laplace dönüşümünden faydalanarak bulunuz. 3

10. Aşağıda verilen devrede anahtar uzun süre konumunda kalmış ve t=0 anında i 3 ( akımının tam çözümünü Laplace dönüşümünden faydalanarak bulunuz ve devrenin kararlılığını inceleyiniz. 11. Şekil 1 de verilen devrede anahtar uzun süre açık konumunda kalmış ve t=0 anında kapalı a) t=0 - anı için dinamik elemanların ilk koşullarını bulunuz. b) v 4 ( geriliminin tam çözümünü Laplace dönüşümünden faydalanarak bulunuz. 1. Bir kapılı devrenin uç gerilimi ve akımına ilişkin diferansiyel denklem aşağıda verilmiştir. a) i(=u( A, v ( 0 ) V ve v '(0 ) 5 V/s olduğuna göre, v( geriliminin tam çözümünü Laplace dönüşümünden faydalanarak bulunuz. b) i(=tu( ve i(= ( için v( geriliminin tam çözümünü bulunuz. c) Diferansiyel denklemi aşağıda verilen bir kapılı devrenin giriş empedans fonksiyonunu bulunuz ve kararlılığını inceleyiniz. Not: Devre fonksiyonu bulunurken ilk koşulların sıfırlanması gerektiğini unutmayınız. 13. Aşağıda verilen devre için; d v( dv( 3 v( i( dt dt a) H v (s)=v out (s)/v in (s) gerilim transfer fonksiyonunu H v ( s) a s a s a 1 0 biçiminde 1s b1s b0 bulunuz (a, a 1, a 0 katsayılarından bazıları sıfır çıkabilir) ve sistemin kararlılığını inceleyiniz. Not: Kararlılık için devre fonksiyonunun payda polinomunun kökleri incelenir. Karakteristik denklemin kökleri için yapılan kararlılık incelemesi burada da aynen geçerlidir. b) Giriş gerilimi v in ( = 1u( için devrenin birim basamak yanıtını bulunuz. c) Giriş gerilimi v in (=δ( için devrenin birim impuls yanıtını bulunuz. 4

14. Aşağıda verilen devre için; a. H v (s)=v çıkış (s)/v giriş (s) gerilim transfer fonksiyonunu bulunuz (15p). b. Giriş gerilimi v giriş ( = 1u( için v çıkış ( çıkış gerilimini bulunuz (10p). c. Giriş gerilimi v giriş ( = δ( için v çıkış ( çıkış gerilimini bulunuz (5p). İşlemsel kuvv. tanım bağıntıları: i p =0, i n =0, v p = v n 15. Bir elektriksel sistemin çıkış akımına ilişkin diferansiyel denklem aşağıda verilmiştir. Laplace dönüşümünden faydalanarak; a) Çıkış akımının sıfır giriş çözümünü bulunuz (i öz =? ). b) Çıkış akımının sıfır durum çözümü bulunuz (i z =? ). c) Çıkış akımının geçici hal bileşenini bulunuz (i gh =? ). d i di 10 16i 40cos(4t ), dt dt i(0 + )=1 A, i (0 + )=0 16. Bir kapılı devrenin uç gerilimine ilişkin diferansiyel denklem aşağıda verilmiştir. Kaynak akımı i k (=1+1sin( A dir. v( gerilime ilişkin ilk koşullar v(0 - )=1 V, v (0 - )=1 V/s olarak verilmiştir. Laplace dönüşümünden faydalanarak v( nin tam çözümünü bulunuz (15p). d v( dv( 9 6 v( i ( k dt dt 4 5