FREKANS CEVABI YÖNTEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI

Benzer belgeler
DENEY 4 Birinci Dereceden Sistem

Otomatik Kontrol (Doğrusal sistemlerde Kararlılık Kriterleri) - Ders sorumlusu: Doç.Dr.HilmiKuşçu

Kontrol Sistemleri Tasarımı

Tanım: Kök yer eğrisi sistem parametrelerinin değişimi ile sistemin kapalı döngü köklerinin s düzlemindeki yerini gösteren grafiktir.

Yrd.Doç. Dr. Mustafa Akkol

TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 301 Kontrol Sistemleri I.

Kontrol Sistemleri. Frekans Ortamında Karalılık

SİSTEMLERİN ZAMAN CEVABI

1. Tabanı 2a büyük eksenli, 2b küçük eksenli elips ile sınırlanan ve büyük eksene dik her kesiti kare olan cismin 16ab 2 hacmini bulunuz.

n 1 1. Pratik Bilgi-1 in y a(x r) k türünden 2. Pratik Bilgi-1 x a(y k) r türünden

25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ


5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ

Ders # Otomatik Kontrol. Kök Yer Eğrileri. Prof.Dr.Galip Cansever. Otomatik Kontrol. Prof.Dr.Galip Cansever

U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN3102 OTOMATİK KONTROL Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

Süzgeç. Şekil 4.1 Süzgeçlemedeki temel fikir

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

Bölüm 9 KÖK-YER EĞRİLERİ YÖNTEMİ

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi

DİZİLER - SERİLER Test -1

TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME

limiti reel sayı Sonuç:

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ

Sistem Dinamiği. Bölüm 9- Frekans Domeninde Sistem Analizi. Doç.Dr. Erhan AKDOĞAN

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

H(s) B(s) V (s) Yer Kök Eğrileri. Şekil13. V s R s = K H s. B s =1için. 1 K H s

KONTROL SİSTEMLERİ. Prof. Dr. İlhan KOCAARSLAN

Yard. Doç. Dr. Mustafa Akkol

LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2

OLĐMPĐYATLARA HAZIRLIK ĐÇĐN DOĞRUSAL ĐNDĐRGEMELĐ DĐZĐ PROBLEMLERĐ ve ÇÖZÜMLERĐ (L. Gökçe)

Frekans Analiz Yöntemleri I Bode Eğrileri

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri

DENEY 7 BJT KUVVETLENDİRİCİLERİN FREKANS CEVABI

2. Matematiksel kavramları organize bir şekilde sunarak, bu kavramları içselleştirmenizi sağlayacak pedagojik bir alt yapı ile yazılmıştır.

+ y ifadesinin en küçük değeri kaçtır?

8. Bir aritmetik dizide a 2 = 2, a 7 = 8 ise, ortak fark aşağıdakilerden

Analog Alçak Geçiren Filtre Karakteristikleri


Artan-Azalan Fonksiyonlar Ekstremumlar. Yard. Doç. Dr. Mustafa Akkol

vor vsu n Sini 2 = n 12 = sabit ; Sinr n1 Sini n = Sinr Sinr = Sini

BİR ÇUBUĞUN MODAL ANALİZİ. A.Saide Sarıgül

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri

VII. OLİMPİYAT SINAVI. Sınava Katılan Tüm Talebe Arkadaşlara Başarılar Dileriz SORULAR k polinomu ( )

OLİMPİYAT SINAVI. 9 x.sin x + 4 / x.sin x, 0 x π İfadesinin alabileceği en küçük tamsayı değeri kaçtır? A) 14 B) 13 C) 12 D) 11 E) 10

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10

ENDÜSTRİYEL ELEKTRONİK İŞLEMSEL KUVVETLENDİRİCİLERİN LİNEER UYGULAMALARI HAKAN KUNTMAN EĞİTİM-ÖĞRETİM YILI

Sistemin derecesi, sistemin karakteristik denkleminin en sade halinde (çarpansız) paydadaki s nin en yüksek derecesidir.

MAT MATEMATİK I DERSİ

GAMA FONKSİYONU. H. Turgay Kaptanoğlu. A. Tanım Gama fonksiyonu, 0 < x < değerleri için Euler integrali dediğimiz

TÜREV VE UYGULAMALARI

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği

ALTERNATİF AKIMIN VEKTÖRLERLE GÖSTERİLMESİ

Kontrol Sistemlerinin Tasarımı

MAT MATEMATİK I DERSİ


İleri Diferansiyel Denklemler

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1

BÖLÜM 8 ALAN ETKİLİ TRANSİSTÖRLER (JFET) Konular:

SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme

Bağıl hız ve bağıl ivme..

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç

Vektör bileşenleri için dikey eksende denge denklemi yazılırak, aşağıdaki eşitlik elde edilir. olarak elde edilir. 2

BÖLÜM-9 SİSTEM HASSASİYETİ

LİNEER CEBİR DERS NOTLARI. Ayten KOÇ

sorusu akla gelebilir. Örneğin, O noktasından A noktasına hareket, OA sembolü ile gösterilir

Deney 5 : Ayrık Filtre Tasarımı. Prof. Dr. Aydın Akan Bahattin Karakaya Umut Gündoğdu Yeşim Hekim Tanç

Analiz II Çalışma Soruları-2

ASAL ÇARPANLARINA AYIRMA ÇÖZÜMLÜ SORULAR

BÖLÜM-6 BLOK DİYAGRAMLARI

f n dµ = lim gerçeklenir. Gösteriniz (Bu teorem Monoton yakınsaklık teoreminde yakınsaklık f n = f ve (f n ) monoton artan dizi

11. SINIF KONU ÖZETLİ SORU BANKASI

Tahmin Edici Elde Etme Yöntemleri

Permütasyon Kombinasyon Binom Aç l m. Olas l k ve statistik. Karmafl k Say lar

Matematik Olimpiyatları İçin

n 1 1. Pratik Bilgi-1 in y a(x r) k türünden 2. Pratik Bilgi-1 x a(y k) r türünden

T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK LABORATUVARI-II DENEY RAPORU AKTİF FİLTRELER

GİRİŞ. Daha karmaşık yapıda olan ve bu ders kapsamına girmeyen denklemler için örnekler ise;

SAÜ. Mühendislik Fakültesi Endüstri Mühendisliği Bölümü DİFERENSİYEL DENKLEMLER Dönemi Ders Notları. Prof. Dr.

Mekanik Titreşimler ve Kontrolü. Makine Mühendisliği Bölümü

1998 ÖYS. orantılı olacaktır. Bu iki kardeşten büyük olanın bugünkü yaşı kaçtır? 1. Üç basamaklı bir x doğal sayısının 7

Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop. Teorik Bilgi

Final sınavı konularına aşağıdaki sorular dahil değildir: 1, 2, 3, 4, 5, 6, 7, 19, 20, 21, 25, 27, 28, 29, 30, 33-b.

Şekil 1: Direnç-bobin seri devresi. gerilim düşümü ile akımdan 90 o ileri fazlı olan bobin uçlarındaki U L gerilim düşümüdür.

1. GRUPLAR. 2) Aşağıdaki kümelerin verilen işlem altında bir grup olup olmadığını belirleyiniz.

DENEY-4. Transistörlü Yükselteçlerin Frekans Analizi

Ders İçerik Bilgisi. Sistem Davranışlarının Analizi. Dr. Hakan TERZİOĞLU. 1. Geçici durum analizi. 2. Kalıcı durum analizi. MATLAB da örnek çözümü

EEM 202 DENEY 9 Ad&Soyad: No: RC DEVRELERİ-II DEĞİŞKEN BİR FREKANSTA RC DEVRELERİ (FİLTRELER)

MERAKLISINA MATEMATİK

Chapter 1 İçindekiler

Mat-Lab ile Kök Yer Eğrileri

DENEY 7: GAZLARIN ISI SIĞASI. Amaç: Havanın molar ısı sığasının sabit basınçta (Cp)ve sabit hacimde (Cv)belirlenmesi.

ÖSS MATEMATİK TÜREV FASİKÜLÜ

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ

Transkript:

FREKANS CEVABI YÖNEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI G(s (r(t ı Laplace döüşümü; A(s B(s A(s (s p (s p L(s p C(s G(sR(s R(s R s A(s B(s R(s A(s R a C(s L B(s s s j s j s p a b b s p c(t jt jt p t p ae ae b e L t b e b e p t G(j G(j e jφ

c(t R G(j si( t Φ c(t Csi( t Φ r R si t r C si(tφ R o C t φ

C(j R(j G(j G(j C(j R(j C(j G(j R(j çıkışı si geliği girişi si geliği çıkışı si eğrisi -girişi si BODE (LOGARİMİK DİYAGRAMLARIN ÇİZİMİ GH(j (j N ( K( j a [ ] (ζ / j (/ (j j ( j eğrisi Lm GH(j logk log j log j GH(j a log Arcta N9 Arcta a log j ζ j Arcta ζ/ Arcta / (j Nlog j

(i Kazaç K (ii İtegral veya türev çarpaı (j± N (iii Birici derecede gecikme çarpaı (j± r (iv İkici derecede gecikme çarpaı db İtegral ve ürev Çarpaları: (jw± Lm( j log j db ζ j log [ db] (j ± p 4 - Eğim - db/dek GH(j j 4 - GH(j j Eğim - db/dek - 4. - 4. φ φ 8-9 9.. (a (b

Birici Derecede Çarpalar: (jw± Lm( j log j log [ db] Alçak frekas bölgeside, w<< içi çok küçük w değerleride, Lm( j log [ db] w>> gibi w'ı çok büyük değerleri içi, Lm( j log log log [ db] db - - Asimptot Gerçek eğri Kırılma frekası Asimptot db 4 Asimptot Gerçek eğri Asimptot φ -45 φ 9 45-9 5 5 5 5

İkici Derecede Çarpalar ζ j (j ζ j (j Lm ζ j (j log ζ w<<w gibi çok düşük frekaslar içi log-modül deklemi; -log db halii alır / >> gibi çok yüksek frekaslarda, log-modül deklemi aşağıdaki biçimi alır. Lm ζ j (j log 4log db

Modul eğrileri Lm db - -4. ζ j (j Boyutsuz frekas değerleri log φ ξ. ξ. ξ.3 ξ.5 ξ.7 ξ ζ ζ / j (j / ζ Arcta ( mod ül log ζ Faz eğrileri φ -9-8. ξ ξ.7 Boyutsuz frekas değerleri ξ. ξ. ξ.3 ξ.5 / r M r ζ ζ ζ

Logaritmik (Bode Diyagramları Çizimide İzleecek Yol Logaritmik eğrileri çizimide aşağıda verile işlem sırası uygulaacak olursa sistematik bir şekilde çözüm kolayca elde edilir. (i İlköce, eğer trasfer foksiyou GH(s olarak verilmiş ise s yerie jw koarak frekas trasfer foksiyou GH(jw elde edilir. Daha sora GH(jw temel çarpalarıa ayrılarak yazılır. (ii Herbir çarpaı kırılma frekası ayrı ayrı buluur. Daha sora bu çarpalara ait asimptod deklemleri elde edilir. (iii Çarpalara ait asimptodlar çizilir ve eğer gerekli ise tam eğriler çizilir. E büyük hata kırılma frekasıda ortaya çıktığıa göre bu değer hesaplaır ve tam eğri çizimde e bde asimptodlara teğet çizilir. (iv Her bir log-modül eğrisi şekil üzeride toplaarak bileşke logmodül eğrisi elde edilir. Buu içi çeşitli kırılma frekasları arasıda toplamalar yapılarak iki oktada bir düz çizgi geçirmek suretiyle bileşke asimtodik eğri buluur. Uygu ilave düzeltmeleri yapılarak daha sora tam eğri elde edilir. (v GH(jw ı faz açısı eğrisi herbir çarpaa ait faz açısı eğrisii toplamak suretiyle elde edilir. (vi Elde edile tüm değerler bir tablo da toplaırsa çizimde kolaylık sağlar.

s j Bode Eğrisi Çizimie Örek Uygulama Açık dögü trasfer foksiyou ola sistemi Bode eğrisii çiziiz. ÇÖZÜM: 5(s GH(s s s(.5s 6 s ( 6 5(j GH(jH j j koyarsak j (.5j ( 6 6 elde edilir. Log-modül eğrilerii elde etmek içi yukarıdaki deklemi aşağıdaki şekilde çarpalara ayırabiliriz. LmGH(j Lm5 Lm(j Lm(j Lm(.5j Lm veya / log GH(j log5 log( log j 6 j ( 6 [ ] log (.5 / log (- ( 6 ( 6 /

GH(jH 5(j j j j (.5j ( ( 6 6 İfadesii Log-modül ve Faz Açısı Karakteristikleri Çarpa Kırılma frekası kr >> kr içi yaklaşık modül deklemi Log-modül özellikleri Faz açısı özellikleri ablo 9.3 5 Yok Yok Sabit ve -4dBlik yatay çızgi Sabit (j- Yok Yok -db/dek eğimde Sabit -9 (.5j-.4 -log.5 << de db >> de-db/dek ile 9 arasıda değişir (j log << de db >> de db/dek ile -9 arasıda değişir de -45 3 6-4log/6 << 3 de db >> 3 de-4db/dek ile -8 arasıda değişir 3 de -9

Modül [db] - -4 Bileşke modül eğrisi log5 -log((.5 / log( / / - log (- ( ( 6 6-6 -8. (a Log-Modül eğrileri 9 Φ [ ] -9 ((.5j (j 5 j j ( ( ( 6 6-8 Bileşke faz açısı eğrisi -7. (b Faz açısı eğrileri

KUUPSAL EĞRİLER GH(j frekas trasfer foksiyou kutupsal eğrisi, kutupsal ekse takımı üzeride, 'ı sıfırda sosuza kadar değişimie bağlı olarak G(j büyüklüğüü faz açısıa karşı çizile eğrisidir. Diğer bir deyişle kutupsal eğri 'ı değişimie bağlı olarak vektörü ucuu çizdiği eğridir [GH(j] GH(j GH(j 3 GH(j GH(j [GH(j]

GH(j j Birici Derecede Çarpa: (jw ± Arcta içi GH(j, / içi GH(j/ ve içi GH(j 9, - 45.5 45 GH(j.5 GH(j

GH(j İkici Derecede Çarpa: [z(jw/w(jw/w]±: (<z< ζ(j (j ( (ζ φ ζ Arcta lim GH(j ve lim GH(j -8 (ξ: büyük (ξ: küçük

GH(j lim w Kutupsal Eğrileri Geel Biçimleri K( j (j m a ( j ( j ( j GH(j (w ip 3 b L( j m u9 w L( j u - K ip ip ip

NYQUIS KARARLILIK ÖLÇÜÜ C(s R(s G(s G(sH(s GH Düzlemi GH Düzlemi - * G(jH(j G(jH(j G(jH(j (a (b G(jH(jı GH düzlemi ve GH düzlemideki kutupsal eğrileri

ZNP ZÖzyapısal deklemi, G(sH(s sağ yarı s-düzlemideki sıfırlarıı (dolayısıyla sistemi kutupları sayısı NNyquist eğrisii, G(jwH(jw -j oktası etrafıdaki çevreleme sayısı R - - (a (b

BAĞIL KARARLILIK: FAZ VE KAZANÇ PAYLARI Faz payı, g ve kazaç geçiş frekası, w: Faz payı g; w kazaç geçiş frekasıda, sistemi kararsızlık eşiğie getirmek içi gerekli ilave faz gecikmesidir. Kazaç geçiş frekası w, açık dögü trasfer foksiyou şiddetii G(jwH(jw birim değere eşit olduğu yerdeki frekas değeridir. Faz payı, g matematiksel olarak 8 artı kazaç geçiş frekasıdaki faz açısı, G(jwH(jwf olarak taımlaır ve aşağıdaki şekilde formülüze edilir. γ8 G(j wh(jw LmKP Kazaç payı, KP ve faz geçiş frekası, wp: KP kazaç payı, faz açısıı - 8 ye eşit olduğu yerdeki modül değerii tersie eşittir. Faz geçiş frekası, wp ise faz açısıı, G(jwH(jw, -8 'ye eşit olduğu yerdeki frekas değeridir. Bua göre kazaç payı aşağıdaki şekilde ifade edilir. logkp -log G(j π H(j π KP G(j π H(j π

Pozitif kazaç payı G düzlemi Negatif faz payı G düzlemi K p γ - Pozitif faz payı G(j γ φ G(j - K p φ Negatif kazaç payı Kararlı sistem (a Karasız sistem G(j (db Pozitif kazaç payı G(j (db Negatif kazaç payı log log - _ G(j G(j -9-9 -8-7 Pozitif faz payı log -8-7 Negatif faz payı log Kararlı sistem Kararsız sistem (b

Açık dögü frekas trasfer foksiyou UYGULAMA ÖRNEKLERİ GH(j j( j.( j.5 a GH(j ı modül ve faz açısı deklemlerii aşağıdaki şekilde gösterebiliriz. GH(j (. GH(j -9 - Arcta. Arcta.5 (.5 trigoometrik özdeşliğii kullaabiliriz. Sıır değerleri, içi modül sosuz ve faz açısı -9 ve sosuz içi modül faz açısı-7 olur.5 9 -Arcta -. GH(j (.. ArctaAArctaBArcta π A B AB π rad/s olarak buluur (.5..4

KP GH(j π KP.4.5 (. (.5 Bu örekte 6 rad/s olarak hesaplamıştır GH(j -9 - Arcta. Arcta.5 GH(j -9 - Arcta. 6 Arcta.5 6 56.9 GH(j (.. π (.5..4 - -.4 G(j π rad/s olarak buluur