DÜZLEMSEL ÜÇ İNDİSLİ DAĞITIM PROBLEMİNİN FORMÜLASYONU VE EŞDEĞER ÖZELLİKLERİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "DÜZLEMSEL ÜÇ İNDİSLİ DAĞITIM PROBLEMİNİN FORMÜLASYONU VE EŞDEĞER ÖZELLİKLERİ"

Transkript

1 DEÜ MÜHENDİSLİK FKÜLESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 3 Syı: 2 sh Myıs 2 DÜZLEMSEL ÜÇ İNDİSLİ DĞM PROBLEMİNİN FORMÜLSYONU VE EŞDEĞER ÖZELLİKLERİ HE FORMULON ND EQUVLEN CHRCERZONS OF HE PLNR HREE NDEX RNSPORON PROBLEM Mustf ÖZEL ÖZE/BSRC Bu çlışd çıkışlı deolu ve vrışlı düzlesel üç idisli dğıtı robleii forülsyou ve eşdeğer forülsyolrı iceleiştir. Proble ve eşdeğer robleleri cebirsel özellikleri ktsyılr trisii geelleştiriliş tersleri kullılrk veriliştir. Proble ve eşdeğer robleleri ortk cebirsel özelliklere shi olduklrı görülüştür. this er we ivestigte the equivlet forultios of the lr three ide trsorttio roble of order usig the geerlized iverse of its coefficiet tri d give reltios betwee the equivlet robles. t is the show tht the roble d its equivlet robles hve coo lgebric chrcteriztios. NHR KELİMELER/KEYWORDS Dğıtı roblei Doğrusl rogrl roblei Geelleştiriliş tersler rsorttio roble Lier rogrig roble Geerlized iverses DEÜ Mühedislik Fkültesi Mki Mühedisliği Bölüü Borov İZMİR

2 Syf No: 52 M. ÖZEL. GİRİŞ Düzlesel üç idisli dğıtı roblei Hitchcock-Koos dğıtı robleii bir geelleesidirbulut 998; Korsikov 989 Vlch 986. Bu roble ilk kez Hitchcock trfıd orty tılış Koos trfıd yrıtılı olrk ele lıış ve Dtzig trfıd Sile yöteie uygulıştır. Dh sorlrı Vlch trfıd çözülerii vrlık koşullrı ve Korsikov trfıd d boyutu ile ilgili çlışlr veriliştir. Bu çlışd düzlesel üç idisli dğıtı roblei özel bir doğrusl rogrl roblei olrk forüle edilerek eşdeğer forülsyolrı verilecektir. Problei çözüü ve bzı özellikleri eşdeğer forülsyou ktsyılr trisii özdeğer ve özvektörleri ciside iceleecektir. 2. EMEL NM VE EOREMLER Bu bölüde roblei eşdeğer forülsyolrıı elde edileside kullcğıız bzı teel tı ve teoreleri vereceğiz. [ i ve B[b i q tris olsu. q B[b i trisie ve B i Kroecker çrıı deir. B B 2 trisie de ve B i Kroecker tolı deir. Burd ve B sırsıyl ve trislerdir Be-srel vd. 974; Grybill 969. eore 2. trisii λ i özdeğerlerie krşılık gele özvektörler i ve B trisii µ özdeğerlerie krşılık gele özvektörler y ise Bi y λ i µ i y 3 y Bi y λ i µ i 4 dir Brewer 978.

3 Fe ve Mühedislik Dergisi Cilt : 3 Syı : 2 Syf No: 53 eore 2.2 [BC olsu. ı geelleştiriliş tersii B B CKC B B N KC B B 5 olsı içi gerek ve yeter koşul N NC B B C 6 dir. Burd C B B N - BB C ve K C 7 dir Bulut 998; Bulut 99. eore 2.3 kk trisi -bb olsu. ı tersi b b k b 8 dir. Burd b ve k b ve tü elelrı ol kk tristir Grybill PROBLEMİN FORMÜLSYONU Bu bölüde çıkışlı fctories deolu wrehouses ve vrışlı wholesle outlets düzlesel üç idisli dğıtı robleii iceleyeceğiz. Vrsylı ki çıkışlr deolr ve vrışlr sırsı ile { S S2 } D { D D2 } ve P { P P2 } S L S L D L P küeleri ile verilsi ve G SD SP DP SDP 9 ğı etwork tılsı. Bu geoetrik olrk; kerlrı S D ve P ve yüzeyleri SD SP ve DP ol kübik bir yı gösterir Bulut 998; Korsikov 989; Vlch 986. Bu ğd etwork ikili çrılr ğı teelerii odes ve üçlü çrı ise ğı yrıtılrıı rcs ifde eder. Eğer S i de D ye ve ord P k y yıl gödereleri ik bir biri göderei tşı liyetlerii c ik ve yrıtlrı ksitelerii

4 Syf No: 54 M. ÖZEL k S i D i > k Si Pk i bik > k D P k h k > ile tılrsk; üç idisli dğıtı robleii Eşitlik 9 biçiide özel bir ğ kışı olrk forüle edebiliriz. Bu şekilde tıl Eşitlik 9 ğı düzlesel üç idisli dğıtı roblei deir. Eşitlik 9 ğıı doğrusl rogrl roblei olrk forüle edebiliriz. Buu içi [ 2 L c [ c c2 L c [ L i i i2 i i 2 L [ bibi L bi [ h h h b i 2 i 2 L h 2 L 2 L [ 2 L b [ b b 2 L b h [ h h 2 L h [ b h vektörleri ile trisii ele llı. Burd rklı trisi Eşitlik 9 ğ kışı robleii bğltı trisi ve tü elelrı ol trisdir.böylece Eşitlik 9 d verile düzlesel üç idisli dğıtı robleii { c b h } Mi 2 biçiide bir doğrusl rogrl roblei olrk forüle edebiliriz.

5 Fe ve Mühedislik Dergisi Cilt : 3 Syı : 2 Syf No: 55 Eşitlik 2 üç idisli düzlesel dğıtı robleidir. ktsyılr trisi özel bir tristir. Eğer trisii M M 3 biçiide yzrsk Eşitlik 2 robleii çıkış ve vrışlı bir dğıtı robleie bğlı olrk iceleebileceği orty çıkr. Dikkt edilirse; - rklı M trisi çıkış ve vrışlı bir dğıtı robleii ktsyılr trisi ve G S D S D ğıı köşe-yrıt bğltı trisidir Bulut PROBLEMİN EŞDEĞER FORMÜLSYONLR Eşitlik 2 roblei özel bir doğrusl rogrl robleidir. Bu roblei ve deklelerii eşdeğer özelliklerii kullrk iceleyebiliriz. Şidi Eşitlik ve 3 de verile ve M trislerii kullrk ve M M trislerii bullı. 4 M M 5 Bu souçlr roblei ve trislerii özellikleriyle iceleebileceğii orty koyr. şğıdki teore trisii özdeğerlerii ve trislerii özdeğerlerie bğlı olrk hesldığıı gösterektedir. eore 2. i kullrk det λ λ λ λ λ λ - - λ - - λ - - λ 6 elde edilir.

6 Syf No: 56 M. ÖZEL Eğer k y z ve i sırsı ile ve trislerii özvektörleri ise ı özvektörlerii i k t y z v 7 olduğu görülür. Burd ve trislerii özdekleleri sırsı ile det γ γ γ det det α α α olrk hes edilir. deklei dekleie eşdeğerdir. Eşitlik 4 kullılrk { } h b c Mi o o o 8 elde edilir. Bu Eşitlik 4 robleie eşdeğerdir burd o Ro çrıdır. Şidi de trisii hes edeli. eore 2.2 ve 2.3 ü kullrk { } [ 2 9 ve dolyısıyl 2

7 Fe ve Mühedislik Dergisi Cilt : 3 Syı : 2 Syf No: 57 elde edilir. Bu souç d Eşitlik 2 robleii trisii özdeğer ve özvektörleriyle iceleebileceğii gösterektedir. Böylece Mi { c } 2 yzılır. Bu roble de Eşitlik 2 ile verile roblee eşdeğerdir. Bu souç düzlesel üç idisli dğıtı robleii ve trisleriyle iceleebileceğii roblei çözüüü bu trislerii özdeğer ve özvektörlerie bğlı olrk elde edilebileceğii ve roble ile eşdeğer robleleri ortk cebirsel özelliklere shi olduklrıı gösterektedir. KYNKLR Be-srel. Greville.N.E. 974: Geerlized iverses: theory d lictios.wiley New York. Brewer.M. 978: Kroecker Products d Mtri Clculus i Syste heory EEE r. o Circuits d Systes Vol cs-25 o Bulut H. 99: lgebric Chrcteriztios of the Sigulr Vlue Decoositios i the rsorttio roble. Mth. l. l Bulut S.. 998: Costructio d lgebric Chrcteriztios of the Plr d il rsorttio Probles. Mth. l. l Grybill F.. 969: troductio to trices with lictios i sttistics Wdsworth Belot Clif. Korsikov.D. Burkrd R.E. 989: O the Diesio of Polytoes of Plr hree- de rsorttio Probles Otiiztio Vlch M. 986: Coditios for the Eistece of Solutios of the hree-diesiol Plr rsorttio Proble Discrete lied Mthetics

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 2 Sayı: 1 sh Ocak 2000

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 2 Sayı: 1 sh Ocak 2000 ÖZE / ABSRAC DEÜ MÜHENDİSLİK FAKÜLESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: Sayı: sh. 4-45 Ocak 000 İKİ İNDİSLİ DÜZLEMSEL DAĞIIM PROBLEMİNİN MARİS DENKLEMLERİ İLE İNCELENMESİ (INVESIGAION OF WO-INDEX PLANAR

Detaylı

DAĞITIM PROBLEMİNİN OPTİMALLİK KOŞULLARININ İNCELENMESİ (INVESTIGATION OF OPTIMALITY CONDITIONS OF THE TRANSPORTATION PROBLEM)

DAĞITIM PROBLEMİNİN OPTİMALLİK KOŞULLARININ İNCELENMESİ (INVESTIGATION OF OPTIMALITY CONDITIONS OF THE TRANSPORTATION PROBLEM) DEÜ ÜHEDİSİK FAKÜESİ FE ÜHEDİSİK DERGİSİ Cilt: Sayı: sh. 7 ayıs DAĞII PROEİİ OPİAİK KOŞUARII İCEEESİ ÖZE/ASRAC (IVESIGAIO OF OPIAIY CODIIOS OF HE RASPORAIO PROE) Süleya ŞAFAK* u çalışada, çıkış varışlı

Detaylı

a bir reel (gerçel) sayı ve n bir pozitif tam sayı olsun. 1 dir. n a ye üslü ifade

a bir reel (gerçel) sayı ve n bir pozitif tam sayı olsun. 1 dir. n a ye üslü ifade ÜSLÜ İFADELER A. Tı bir reel (gerçel syı ve bir pozitif t syı olsu.... te olck şekilde, te ı çrpıı ol deir. ye üslü ifde Kurl. sıfırd frklı bir reel syı olk üzere,. 0 0 0 ifdesi tısızdır.. ( R... 0 7..

Detaylı

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1 IAAOJ, Scietific Sciece, 23,(2), 22-25 GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE Adullh AKKURT, Hüseyi YILDIRIM Khrmmrş Sütçü İmm Üirsitesi, Fe-Edeiyt Fkültesi

Detaylı

a R, n tek ve Örneğin, a, b R + ve m, n Z + olmak üzere; 1. n a b a b dir. 2. n m n m a a n n n 5. m n m 6. 0 a b n a n b dir. Örnek 4.

a R, n tek ve Örneğin, a, b R + ve m, n Z + olmak üzere; 1. n a b a b dir. 2. n m n m a a n n n 5. m n m 6. 0 a b n a n b dir. Örnek 4. Bölü. Köklü Syılr Muhrre Şhi. Köklü Syılr.. Köklü Syılrı Tıı Bu bölüde, kök dediğiiz sebollerle gösterile gerçek syılrı köklü syılr olrk tıtck ve bulrı gerçek syılrı rsyoel kuvvetleri olduğuu göstereceğiz.

Detaylı

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce

Detaylı

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları...

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları... İÇİNDEKİLER Ön Söz... Mtris Cebiri... Elementer İşlemler... Determinntlr...7 Lineer Denklem Sistemleri...8 Vektör Uzylrı...6 Lineer Dönüşümler...48 Özdeğerler - Özvektörler ve Köşegenleştirme...55 Genel

Detaylı

Pr[ ] 1 Pr[ ] 1 ( ) 1 ( ) What if not known?

Pr[ ] 1 Pr[ ] 1 ( ) 1 ( ) What if not known? 1 Mrkov ve Chebychev Eşitsizlikleri Pr [ ] = 1 Pr [ < ] = 1 f ( ) dx = 1 () x dx F Pr[ ] 1 Pr[ ] 1 ( ) 1 ( ) Wht if ot kow? bilimiyor olbilir r.d. i sdece ortlmsıı ve vrysıı bildiğimizi vrsylım. Ortlm

Detaylı

Ğ ç Ğ Ğ Ö Ö ç ç Ö ç ç Ö ç

Ğ ç Ğ Ğ Ö Ö ç ç Ö ç ç Ö ç Ğ Ğ Ö Ö ç Ğ Ğ ç Ö ç ç Ş ç ç ç Ş Ğ ç Ş Ğ ç Ğ Ğ Ö Ö ç ç Ö ç ç Ö ç ç Ğ Ğ Ö Ö Ö ç Ç Ö ç Ö ç Ş ç Ç Ö Ö Ğ Ö ç ç ç Ğ Ğ Ö ç Ö Ç Ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç Ş ç ç ç Ö ç Ö ç Ö Ö ç ç Üç Ö Ç ç Ö Ş Ş ÇŞ ç Ö

Detaylı

DERS 3. Matrislerde İşlemler, Ters Matris

DERS 3. Matrislerde İşlemler, Ters Matris DES Mrislerde İşleler, Ters Mris Mrisler Mrislerle ilgili eel ılrııı ıslı e sır ve e süu oluşurk içide diiliş e sıı oluşurduğu lo ir ris deir ir ris geellikle şğıdki gii göserilir ve [ ij ], i ; j risii

Detaylı

YILLAR ÖSS-YGS ) a 0 ve b 0 olmak üzere; 8) Üslü Denklemler: a -1, a 0, a 1

YILLAR ÖSS-YGS ) a 0 ve b 0 olmak üzere; 8) Üslü Denklemler: a -1, a 0, a 1 YILLAR 00 00 00 00 00 00 008 009 00 0 ÖSS-YGS Böle: i,( 0 ÜSLÜ İFADELER R ve Z olk üzere te ı çrpıı deir. ii, (b 0 b b... te Not:.... dır. te... 0 ve... 0. 0 te 0 te ÜSLÜ ÇOKLUKLARLA İLGİLİ ÖZELLİKLER

Detaylı

MERAKLISINA MATEMATİK

MERAKLISINA MATEMATİK TRİGONOMETRİ : Siüs i b c R si si y si z İsptı : m(ëo).m(ëa) m(ëo).m(ëb) m(ëo).m(ëc) m(ëo) m(ëo) y m(ëo) z b c b c & si & si y & si y R R R R R R si si y b si z c & & & R R R & R.si & b R.siy & c R.siz

Detaylı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı Trce ve Kellogg Yöemleri Kullılrk İegrl Operörlerii Özdeğerlerii Nümerik Hesı Erk Tşdemir () ; Yüksel Soyk () ; Melih Göce (3) (¹)Kırklreli Üiversiesi, Kırklreli, Türkiye, erksdemir@homil.com (²)Büle Ecevi

Detaylı

ÜSLÜ SAYILAR. (-2) 3 = (-2). (-2). (-2) = (-8) Kuvvet Tek; NEGATİF. (-2) 4 = (-2). (-2). (-2). (-2) = 16 Kuvvet Çift; POZİTİF.

ÜSLÜ SAYILAR. (-2) 3 = (-2). (-2). (-2) = (-8) Kuvvet Tek; NEGATİF. (-2) 4 = (-2). (-2). (-2). (-2) = 16 Kuvvet Çift; POZİTİF. SINIF ÜSLÜ SAYILAR www.tyfuolcu.co Üslü Syı : ifdesi ı te çrpıı lı gelektedir. =.... te =.. = 8 =. = 4 =. = 9 4 =... = 81 10 6 = 10.10.10.10.10.10 Teel Kvrlr ile. ifdeleri çok sık krıştırıl ifdelerdeir.

Detaylı

8. sınıf ders notları zfrcelikoz@yahoo.com

8. sınıf ders notları zfrcelikoz@yahoo.com III - SAYI ÖRÜNTÜLERİ Htırltm: Syılrı virgülle yrılrk, birbirii rdı dizilmesie syı dizisi, dizideki her bir syıy d terim deir. hrfi verile örütüde syılrı sırsıı belirte semboldür ve ici syıy örütüü geel

Detaylı

MATRİSLER. r r r A = v v v 3. BÖLÜM. a a L a. v r. a = M a. Matris L L L L. elemanları a ( i = 1,2,..., m ; j = 1,2,... n) cinsinden kısaca A = [ ]

MATRİSLER. r r r A = v v v 3. BÖLÜM. a a L a. v r. a = M a. Matris L L L L. elemanları a ( i = 1,2,..., m ; j = 1,2,... n) cinsinden kısaca A = [ ] 3. BÖLÜM 2 v r = M m v r 2 2 = 22 M m2 v r n n 2n = M mn MTRİSLER gibi n tne vektörün oluşturduğu, r r r = v v v [ L ] 2 n şeklindeki sırlnışın mtris denir. 2 nlitik Geometriden Biliyoruz ki : Mtris 2

Detaylı

İkinci Türevi Preinveks Olan Fonksiyonlar İçin Hermite-Hadamard Tipli İntegral Eşitsizlikleri

İkinci Türevi Preinveks Olan Fonksiyonlar İçin Hermite-Hadamard Tipli İntegral Eşitsizlikleri İkinci Türevi Preinveks Oln Fonksiyonlr İçin Hermite-Hdmrd Tili İntegrl Eşitsizlikleri İmdt İŞCAN*, Selim NUMAN*, Kerim BEKAR* *Giresun Üniversitesi, Fen Edeiyt Fkültesi, Mtemtik Bölümü, Giresun, TÜRKİYE

Detaylı

DERS 4. Determinantlar, Leontief Girdi - Çıktı Analizi

DERS 4. Determinantlar, Leontief Girdi - Çıktı Analizi DERS Determitlr eotief Girdi - Çıktı lizi.. ir Kre Mtrisi Determitı. Determit kvrmıı tümevrıml tımlycğız. mtrisleri determitıı tımlyrk şlylım. Tım. tımlır. mtrisiidetermitı olrk Örek. mtrisii determitı

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

Rasyonel Çekirdekli Belirli İntegral Operatörlerin Özdeğerlerinin Farklı Nümerik Yöntemler Kullanılarak Yaklaşık Hesabı

Rasyonel Çekirdekli Belirli İntegral Operatörlerin Özdeğerlerinin Farklı Nümerik Yöntemler Kullanılarak Yaklaşık Hesabı Krel Fe ve Mü Derg 6():9-, 06 Krel Fe ve Müedilik Dergii Dergi we yfı: p://fdeuedur rşır Mklei Ryoel Çekirdekli Belirli İegrl Operörleri Özdeğerlerii Frklı Nüerik Yöeler Kullılrk Yklşık Heı Te pproxie

Detaylı

İkinci Dereceden Denklemler

İkinci Dereceden Denklemler İkini Dereeden Denkleler İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER TANIMLAR :,, R ve olk üzere + + denkleine, ikini dereeden ir ilineyenli denkle denir Bu denkledeki,, gerçel syılrın ktsyılr, e ilineyen

Detaylı

TYT / MATEMATİK Deneme - 6

TYT / MATEMATİK Deneme - 6 . Herbir hücrenin sol üst köşesinde kreler içine yzıln syılrın işlemin sonucunu verdiğine dikkt ederek syılrı yerleştirmeliyiz. 7 6 T N M 5 6 T X. ^ h ^ h bulur. M N. 0 6 6 6 0 5 5 5 6 6 5 5 ^5h ^5h ^h

Detaylı

İKİNCİ TÜREVİ PREQUASİİNVEKS OLAN FONKSİYONLAR İÇİN HERMITE-HADAMARD TİPLİ İNTEGRAL EŞİTSİZLİKLERİ

İKİNCİ TÜREVİ PREQUASİİNVEKS OLAN FONKSİYONLAR İÇİN HERMITE-HADAMARD TİPLİ İNTEGRAL EŞİTSİZLİKLERİ Ordu Üniv. Bil. Tek. Derg.,Cilt:,Syı:,,3-4/Ordu Univ. J. Sci. Tech.,Vol:,No:,,3-4 İKİNCİ TÜREVİ PREQUASİİNVEKS OLAN FONKSİYONLAR İÇİN HERMITE-HADAMARD TİPLİ İNTEGRAL EŞİTSİZLİKLERİ İmdt İŞCAN *, Selim

Detaylı

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ Mühedislik Mirlık Fkültesi İşt Mühedisliği Bölüü EPost: oguhettopcu@gilco We: http://foguedutr/topcu Bilgisyr Destekli Nüerik Aliz Ders otlrı Ahet TOPÇU + + + + + + + +

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Selc AKSOY GRUPLARDA VE YARIGRUPLARDA FİBONACCİ DİZİLERİ ATEATİK ANABİLİ DALI ADANA 005 ÇUKUROVA ÜNİVERSİTESİ FEN BİLİLERİ ENSTİTÜSÜ GRUPLARDA

Detaylı

Ü Ş Ü

Ü Ş Ü Ğ Ö Ü Ü Ğ Ü Ğ Ü Ş Ü Ç Ü ÇŞ Ç Ş Ş Ü Ö Ö Ş Ö Ş Ö Ö Ç Ş Ö Ö Ö Ü Ö Ş Ö Ç Ş Ş Ö Ğ Ş Ö Ö Ç Ş Ö Ş Ö Ş Ş Ü Ü Ş Ş Ö Ö Ö Ş Ö Ğ Ö Ş Ö Ü Ö Ş Ü Ş Ç Ö Ö Ö Ö Ü Ö Ş Ğ Ö Ü Ç Ö Ü Ş Ö Ü Ç ŞÇ Ş Ş Ç Ş Ö Ö Ö Ö Ö Ö Ö ŞÇ Ö Ö

Detaylı

DENEY 6 THEVENIN, NORTON, DOĞRUSALLIK VE TOPLAMSALLIK KURAMLARININ UYGULAMALARI

DENEY 6 THEVENIN, NORTON, DOĞRUSALLIK VE TOPLAMSALLIK KURAMLARININ UYGULAMALARI T.C. Mltepe Üniversitesi Mühendislik ve Doğ Bilimleri Fkültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 201 DEVRE TEORİSİ DERSİ LABORATUVARI DENEY 6 THEVENIN, NORTON, DOĞRUSALLIK VE TOPLAMSALLIK KURAMLARININ

Detaylı

f n dµ = lim gerçeklenir. Gösteriniz (Bu teorem Monoton yakınsaklık teoreminde yakınsaklık f n = f ve (f n ) monoton artan dizi

f n dµ = lim gerçeklenir. Gösteriniz (Bu teorem Monoton yakınsaklık teoreminde yakınsaklık f n = f ve (f n ) monoton artan dizi 4.2. Pozitif Foksiyoları İtegrali SOU : f ), M +, A) kümeside bulua foksiyoları mooto arta dizisi ve h.h.h. f = f ise f dµ = f dµ gerçekleir. Gösteriiz Bu teorem Mooto yakısaklık teoremide yakısaklık yerie

Detaylı

2009 Soruları. c

2009 Soruları. c Hırvt ıstn Ulusl Mtemt ık Ol ımp ıytı Tkım Seçme Sınvı Geometr ı 2009 Sorulrı c www.sbelin.wordpress.com sbelinwordpress@gmil.com Hırvtistn d ypıln 2009 yılı TST yni Tkım Seçme Sınvın it geometri sorulrı

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

Taşkın, Çetin, Abdullayeva

Taşkın, Çetin, Abdullayeva 1 BÖLÜM 1 KÜMELER VE SAYILAR 1.1 KÜMELER 1.1.1. TEMEL TANIMLAR Kesi ir tımı ypılmmkl erer,sezgisel olrk,kümeye iyi tımlmış iri iride frklı eseler topluluğudur diyeiliriz. Kümeyi meyd getire eselere kümei

Detaylı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı Ankr Üniversitesi Mühendislik Fkültesi, Fizik Mühendisliği Bölümü FZM207 Temel ElektronikI Doç. Dr. Hüseyin Srı 2. Bölüm: Dirençli Devreler İçerik Temel Yslrın Doğrudn Uygulnışı Kynk Gösterimi ve Dönüşümü

Detaylı

Matrislerin Hadamard Çarpımı Üzerine *

Matrislerin Hadamard Çarpımı Üzerine * S Ü Fe Fa Fe Derg Sayı 37 (011) 9-14, KONYA Matrisleri Hadaard Çarpıı Üzerie * İ. Halil GÜMÜŞ, Necati AŞKARA Selçu Üiversitesi, Fe Faültesi, Mateati Bölüü, Koya Özet: Bu çalışada lieer cebirde öeli bir

Detaylı

FEKETE-SZEGÖ PROBLEM ÜZER NE. Halit ORHAN, Ömer DURMAZPINAR, Hükmi KIZILTUNÇ. Atatürk Üniversitesi, Fen Fakültesi, Matematik Bölümü, Erzurum

FEKETE-SZEGÖ PROBLEM ÜZER NE. Halit ORHAN, Ömer DURMAZPINAR, Hükmi KIZILTUNÇ. Atatürk Üniversitesi, Fen Fakültesi, Matematik Bölümü, Erzurum Eylül 009 Cilt:7 No:3 Kstmonu Eğitim Dergisi 933-940 FEKETE-SZEGÖ PROBLEM ÜZERNE Hlit ORHAN, Ömer DURMAZPINAR, Hükmi KIZILTUNÇ Attürk Üniversitesi, Fen Fkültesi, Mtemtik Bölümü, Erzurum Özet α (0 α < ),

Detaylı

Bu denklem, kapalı-döngü kutbunun var olma koşulunu, açı koşulu ve modül koşulu olmak üzere iki koşulu belirler. Burada G ( s)

Bu denklem, kapalı-döngü kutbunun var olma koşulunu, açı koşulu ve modül koşulu olmak üzere iki koşulu belirler. Burada G ( s) Kök-Yer Eğrileri: Kplı-dögü deeti iteii geçici-duru dvrışıı teel özellikleri kplı-dögü kutuplrıd belirleir. Dolyııyl probleleri çözüleeide kplı-dögü kutuplrıı - krşık yı düzleideki dğılıı rştırılı gerekir.

Detaylı

7. BÖLÜM DOĞRUSAL DÖNÜŞÜMLER

7. BÖLÜM DOĞRUSAL DÖNÜŞÜMLER 7. BÖLÜM DOĞRUSAL DÖNÜŞÜMLER DOĞRUSAL DÖNÜŞÜMLER Bir V ektör uzyıı bir bşk W ektör uzyı döüştüre foksiyolr şu şekilde gösterilir: : V W Burd kullıl termioloji foksiyolrl yıdır. Öreği, V ektör uzyı foksiyouu

Detaylı

DETERMINANTLAR. 1. Permütasyon. 1. Permütasyon ) permütasyonundaki ters dönüşüm. 1. Permütasyon 2. BÖLÜM ( )

DETERMINANTLAR. 1. Permütasyon. 1. Permütasyon ) permütasyonundaki ters dönüşüm. 1. Permütasyon 2. BÖLÜM ( ) . BÖÜM. Permütsyo Tım: Bir tm syılr {,,, } kümesideki elemlrı tekrr olmksızı frklı DETERMINNTR sırlmlrıı düzelemesie permütsyo deir. Örek: {,, 3} tm syılr kümesii ltı frklı permütsyou vrdır: (,, 3), (,,

Detaylı

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - 1-1 1 SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = 100+10+b bc = 100+10b+c bcd =1000+100b+10c+d

Detaylı

YILLAR ÖSS-YGS /LYS /1 0/1 ÇÖZÜM: 1) xοy A ise ο işlemi A da kapalıdır.

YILLAR ÖSS-YGS /LYS /1 0/1 ÇÖZÜM: 1) xοy A ise ο işlemi A da kapalıdır. YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS /LYS - - - 0/ 0/ ĐŞLEM ( ) ( ) (+ ) ( ) 7 6 76+ bulunur ve e bğlı bütün tnımlı fonksionlr bir işlem belirtir i göstermek için +,,*, gibi işretler kullnılır

Detaylı

Ş Ç ş ş ç ş ş ş ş ş Ç ş ç ş ç ş ç ş ç ö ş ş ö ş ş ş ö ş ö ö ş ş ş ş ç ş ş ş ö ö ş ş ş ş ş ş ş ç ş ş ş ş ş ş ş ç ö ç ç ş ö ş ç ş ş ş ö şş ş ş ş ş ş ş Ş

Ş Ç ş ş ç ş ş ş ş ş Ç ş ç ş ç ş ç ş ç ö ş ş ö ş ş ş ö ş ö ö ş ş ş ş ç ş ş ş ö ö ş ş ş ş ş ş ş ç ş ş ş ş ş ş ş ç ö ç ç ş ö ş ç ş ş ş ö şş ş ş ş ş ş ş Ş Ş Ç ş ş ç ş ş ş ş ş Ç ş ç ş ç ş ç ş ç ö ş ş ö ş ş ş ö ş ö ö ş ş ş ş ç ş ş ş ö ö ş ş ş ş ş ş ş ç ş ş ş ş ş ş ş ç ö ç ç ş ö ş ç ş ş ş ö şş ş ş ş ş ş ş Ş ş ş Ö ö ö Ö ş çş ç ş ş ö ş ö ş ş Ö Ş Ğ ç ş ş ö ş ş

Detaylı

FEN VE MÜHENDİSLİKTE MATEMATİK METOTLAR 10. KİTAP DİFERANSİYEL DENKLEMLER III DD III

FEN VE MÜHENDİSLİKTE MATEMATİK METOTLAR 10. KİTAP DİFERANSİYEL DENKLEMLER III DD III FEN VE MÜHENDİSİKTE MATEMATİK METOTAR 0. KİTAP DİFERANSİYE DENKEMER III DD III 8 İÇİNDEKİER I. SO() ve KÜRESE HARMONİKER A) SO Spektruu B) Diferansiyel Operatör Tesilleri C) Uzay Tersinesi D) Küresel Haronikler

Detaylı

Fizik 101: Ders 8 Ajanda

Fizik 101: Ders 8 Ajanda Fizik 0: Ders 8 Ajnd Sürtüne Engelleyici kuvvetler Son(uç) hız Çok prçcıklı sistelerin diniği Atwood kinesi Eğik düzlede iki kütleli genel durulr İlginç probleler Sürtüne (özetle): Sürtüne iki yüzey rsınd

Detaylı

ö Ö ğ

ö Ö ğ Ü ö ö ö Ğ ğ Ü Ğ Ğ Ö ğ ö ö ğ «ö Ö ğ Ü Ü Ü Ğ Ö Ö Ü Ğ ğ ö ö Ö ğ ğ ğ ğ ö ğ ğ Ü ğ ğ ğ ö ğ Ü ğ ğ ö ğ ğ ğ ğ Ü Ü ö ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ö ğ ğ Ö ö ğ ğ ö ğ ğ ö» ğ ö ğ ğ ğ ğ ö ğ ğ ö ö ö ö ğ Ö ğ Ğ ğ ö

Detaylı

Ğ ç ğ ç ç ğ ç ğ ç ç ğ ç ğ ğ ç ç ğ ç ç ğ ç ç ç ğ ç ç ğ ç ç ç İ ğ ğ ğ ç ğ ğ ç ğ ğ ğ ğ ğ ç ç ç ç ğ ç ğ ç ç ğ ğ ç ç ç ğ ğ ç ğ ğ ç ç ç ç İ ğ ç ğ ç ğ ç ç ğ

Ğ ç ğ ç ç ğ ç ğ ç ç ğ ç ğ ğ ç ç ğ ç ç ğ ç ç ç ğ ç ç ğ ç ç ç İ ğ ğ ğ ç ğ ğ ç ğ ğ ğ ğ ğ ç ç ç ç ğ ç ğ ç ç ğ ğ ç ç ç ğ ğ ç ğ ğ ç ç ç ç İ ğ ç ğ ç ğ ç ç ğ İ Ü İ İ İ ç ğ ğ ç ç Ğ «Ö Ğ ğ ç ğ ç ğ ç ç ğ ğ ç ğ ç ğ ç ğ ç ğ ç ç Ö ğ Ö ğ ç Ğ ç ğ ç ç ğ ç ğ ç ç ğ ç ğ ğ ç ç ğ ç ç ğ ç ç ç ğ ç ç ğ ç ç ç İ ğ ğ ğ ç ğ ğ ç ğ ğ ğ ğ ğ ç ç ç ç ğ ç ğ ç ç ğ ğ ç ç ç ğ ğ ç ğ ğ ç

Detaylı

İĞİ ğ ş. ğ ş ğ ğ ğ Ş İ. ş ş. ş ğ ğ. ş ş ğ ş ş ş. ğ ş ş İ İ İ. ş ş

İĞİ ğ ş. ğ ş ğ ğ ğ Ş İ. ş ş. ş ğ ğ. ş ş ğ ş ş ş. ğ ş ş İ İ İ. ş ş İĞİ ğ ş ğ ş ğ ğ ğ ğ ş ş ş Ş İ İ İ İ ş ş ş ğ ğ ş ş ğ ş ş ş ğ ş ş ş ğ ş ş ş ş ş İ İ İ ş ş ş ğ İ ş ş ş ğ ş ş ğ ş ş ş ğ ğ ş ş ş ğ ş ş ş ğ ğ ş ş ğ ş ğ ğ ğ ş ş ğ ğ ş ş ğ ş ğ ğ ş ğ İ ğ ğ ş ğ ğ ş ş ğ ş ğ ğ ş ş

Detaylı

ö ü ü ö ö ü ö ü ü ğ ö ç ü Ç ğ ç ç ö ü ç ü ö Ş ğ üç ğ ç ü ö ç ç ç ç ğ ç ü ü ç ö ç ü ç ü ö ğ ç ç ö ç ğ ğ ç ç ö ç ö ü ğ ü Ş Ü Ü ö

ö ü ü ö ö ü ö ü ü ğ ö ç ü Ç ğ ç ç ö ü ç ü ö Ş ğ üç ğ ç ü ö ç ç ç ç ğ ç ü ü ç ö ç ü ç ü ö ğ ç ç ö ç ğ ğ ç ç ö ç ö ü ğ ü Ş Ü Ü ö ö Ş ü ö ü ö ğ ç ü Ç ç ü ğ ü ü ğ ç ö ğ ö ç ö ç ü ö ü ö ğ ü ç ö ğ ö ö ğ ğ ğ ç ö ğ ö ç ö «Ö ö ü ğ Ç ğ ğ ç ü ç ö ö ö ğ ç ö ü ü ö ö ü ö ü ü ğ ö ç ü Ç ğ ç ç ö ü ç ü ö Ş ğ üç ğ ç ü ö ç ç ç ç ğ ç ü ü ç ö ç ü ç

Detaylı

Ş Ğ ş Ğ İ Ğ İ ş ş Ü Ü Ş Ü İ ş ş ş

Ş Ğ ş Ğ İ Ğ İ ş ş Ü Ü Ş Ü İ ş ş ş İ İ Ğ Ğ İ İ ş Ğ Ğ «Ğ İ Ğ ş ş ş ş ş Ç ş ş İ ş Ç ş İ İ İ ş Ş Ğ ş Ğ İ Ğ İ ş ş Ü Ü Ş Ü İ ş ş ş Ğ İ İ Ş Ğ ş ş İ ş ş Ş ş İ İ ş Ğ ş ş ş Ü ş ş ş İ ş Ğ ş ş ş Ş ş İ ş İ İ ş İ İ ş İ İ Ö Ü ş Ö ş ş ş İ ş ş ş ş İ ş

Detaylı

ç ç ç ç ç

ç ç ç ç ç Ğ Ö Ş ç ç ç ç ç ç ç Ç Ş Ü Ş Ü ç ç ç ç Ö ç ç ç ç ç ç ç Ş ç ç Ö ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç Ö ç ç ç Ş ç ç ç Ö ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç

Detaylı

Ü Ü Ğ Ü Ğ Ü «Ğ Ğ» Ü

Ü Ü Ğ Ü Ğ Ü «Ğ Ğ» Ü Ü Ü Ğ Ü Ğ Ü «Ğ Ğ» Ü ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ü Ü ğ ğ ğ ğ ğ ğ Ğ ğ ğ ğ ğ ğ ğ ğ ğ Ü ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ

Detaylı

ö Ş Ç ö ö ö ö ö Ö ö Ö ö Ç ö ö ö Ö Ğ Ğ

ö Ş Ç ö ö ö ö ö Ö ö Ö ö Ç ö ö ö Ö Ğ Ğ ö ö ö ö ö ö ö ö ö ö ö ö ö Ş Ş ö ö Ş Ç ö ö ö ö ö Ö ö Ö ö Ç ö ö ö Ö Ğ Ğ ö ö Ç Ş Ğ Ç Ş Ş Ğ ö Ü Ğ ö Ü ö ö Ü Ü Ç Ü Ç ö ö ö ö Ç ö ö ö ö Ö Ü Ö ö ö ö ö ö ö ö Ö Ü ö ö ö ö ö ö ö ö ö Ü ö ö Ö ö ö ö ö Ö ö ö ö ö Ş ö

Detaylı

ğ Ü ğ ğ ğ ğ ğ ğ ğ İ ğ ğ ğ İ ğ ğ ğ ğ ğ ğ

ğ Ü ğ ğ ğ ğ ğ ğ ğ İ ğ ğ ğ İ ğ ğ ğ ğ ğ ğ İ İ İ İ İ İ İ İ İ İ Ö İ İ İ Ö İ ğ ğ ğ ğ ğ ğ Ü ğ ğ ğ ğ ğ ğ Ü ğ ğ ğ ğ ğ ğ ğ İ ğ ğ ğ İ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ü ğ ğ Ö ğ ğ ğ Ö ğ ğ ğ ğ ğ ğ ğ Ü ğ ğ ğ İ ğ ğ ğ Ö ğ ğ Ç ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ü ğ ğ ğ ğ Ç ğ ğ

Detaylı

Ç Ç Ç Ş İ ğ ğ ğ Ç Ş İ ğ Ç ğ ğ ğ Ç ğ Ş ğ ğ ğ Ç ğ Ş ğ ğ ğ ğ İ ğ İ İ ğ ğ ğ ğ ğ ğ ğ ğ ğ

Ç Ç Ç Ş İ ğ ğ ğ Ç Ş İ ğ Ç ğ ğ ğ Ç ğ Ş ğ ğ ğ Ç ğ Ş ğ ğ ğ ğ İ ğ İ İ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ğ İ Ü Ş İ İ Ş İ Ş Ğ Ç Ö İĞİ Ç Ç ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ İ İ ğ ğ ğ ğ ğ ğ Ç Ç Ç Ş İ ğ ğ ğ Ç Ş İ ğ Ç ğ ğ ğ Ç ğ Ş ğ ğ ğ Ç ğ Ş ğ ğ ğ ğ İ ğ İ İ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ İ İ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ü Ü İŞ İ İ ğ İ

Detaylı

ö Ç ş ş ö ç ç ş ş ö ö ö Ç ö ş ş ö

ö Ç ş ş ö ç ç ş ş ö ö ö Ç ö ş ş ö Ğ Ğ Ğ Ğ Ğ Ğ ş ş ş ş ş ş ş ş ş ş ş ç ç ş ş ç ö ş ö ö ş ö ö ş ö Ç ş ş ö ç ç ş ş ö ö ö Ç ö ş ş ö Ğ Ğ Ğ Ğ ş Ğ ş ş ş ş ş ş ş ş ş ş ş ş ş ş ş ç ş ç ş ş ç ö ö ş ö ö ş ş ş ş ö ş ş ö Ğ Ğ Ğ Ğ ş Ğ ş Ğ ş ş ş ş ş ş

Detaylı

Metropol Yayınları YÖS 2009 Metropol Publications

Metropol Yayınları YÖS 2009 Metropol Publications > > etropol Yınlrı YÖS 009 etropol Pulictions. ve. sorulrd, gruptki kümelerin şekilleri irer rkml gösterilerek I gruptki sılr elde edilmiştir. Soru işretile elirtilen kümenin hngi sıl gösterildiğini ulunuz.

Detaylı

BAĞIMSIZ UYARILMIŞ DC MOTOR DENEY 325-06

BAĞIMSIZ UYARILMIŞ DC MOTOR DENEY 325-06 İNÖNÜ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİKELEKTRONİK MÜH. BÖL. 35 ELEKTRİK MAKİNALARI LABORATUVARI I BAĞIMSIZ UYARILMIŞ DC MOTOR DENEY 3506. AMAÇ: Bğımsız uyrılmış DC motorun moment/hız ve verim

Detaylı

ş ş ş ç İ Ü ş ş ş ş ç ç ş ş ş ç ş Ü ç ş ş şç ş ş ş ş ç ş ç ş ç ş ş ç Ş ş İ ş Ş ş İ ç ş

ş ş ş ç İ Ü ş ş ş ş ç ç ş ş ş ç ş Ü ç ş ş şç ş ş ş ş ç ş ç ş ç ş ş ç Ş ş İ ş Ş ş İ ç ş İ Ğ İ Ş ç İ İ Ö ş ş Ş ş ç Ş ş ş ç ç ş ş ş Ö ş ç ş ç ç ş ş ş ş ş ç ş ş ş ş ş ş ş ç İ Ü ş ş ş ş ç ç ş ş ş ç ş Ü ç ş ş şç ş ş ş ş ç ş ç ş ç ş ş ç Ş ş İ ş Ş ş İ ç ş ş ş ç ş İİ İ İİ ç ş ş ç İ Ğİ İ İ Ş İ İ ş

Detaylı

JEODEZI. Referans Yüzeyi Dönel Elipsoidin Genel Özellikleri. Dönel Elipsoidin Geometrik Parametreleri

JEODEZI. Referans Yüzeyi Dönel Elipsoidin Genel Özellikleri. Dönel Elipsoidin Geometrik Parametreleri .0.013 1 JEODEZI.0.013 Referns Yüeyi Dönel Elipsidin Genel Öellikleri Dönel Elipsidin Gemetrik Prmetreleri Elips: iki nkty uklıklrı tplmı sbit ln nktlr kümesine denir. Bir elipsin küçük ekseni çevresinde

Detaylı

ASİT-BAZ TEORİSİ. (TİTRASYON) Prof. Dr. Mustafa DEMİR. M.DEMİR(ADU) ASİT-BAZ TEORİSİ (titrasyon) 1

ASİT-BAZ TEORİSİ. (TİTRASYON) Prof. Dr. Mustafa DEMİR. M.DEMİR(ADU) ASİT-BAZ TEORİSİ (titrasyon) 1 ASİT-BAZ TEORİSİ (TİTRASYON) Prof. Dr. Mustf DEMİR M.DEMİR(ADU) 009-05-ASİT-BAZ TEORİSİ (titrsyon) 1 Arhenius (su teorisi) 1990 Asit: Sud iyonlştığınd iyonu veren, bz ise O - iyonu veren mddelerdir. Cl,NO,

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

Ğ Ğ ş ç ş ç ç ç ş ç ç Ş ç «ş ş Ö Ş Ş ş ş ç Ö Ş ş Ü ç ç ş ş ş ç Ş ş ç ç ç ş ç ş ş ş ç ç ç ş Ç ş ş ç ş ç ş ş Ş ş ç ş ç ç ş ç ş ç ç ş ç ç ş Ü ş çş ş ş Çş Ç Ü çş ş Ç çş ç ş Ş Ö Ö ş ç ç ç ş ç ç ç ş ş ç ç ş

Detaylı

ç ç Ö Ç Ş Ç ç Ç ç ç ç Ö ç Ç Ş ç ç Ş Ç Ş Ö Ö Ş ç Ö ç ç ç ç Ş Ö Ç Ç Ş ç ç Ş Ş Ş Ö ç ç ç ç Ö Ş Ç Ö Ö ç «Ö ç Ş ç Ç «ÇŞ Ş Ö Ç ç Ö ç Ç Ş Ö Ö ç ç ç Ö Ş Ö ç Ö ç Ç Ş Ç «ç Ö Ç Ş ç ç ç «ç Ç Ş Ö Ö Ç ç ç Ş ç ç Ö ç

Detaylı

Yaklaşık Temsil Polinomları

Yaklaşık Temsil Polinomları Yklşık Tesl ololrı Teke for eğrler tesl ede ofset oktlrıd htlı oktlr bulusı duruud terpolso pololrı sıırlı kullı lı bulblektedr. Arıc terpolso pololrı le verle oktlrd geçe eğrler elde edldğde teke for

Detaylı

14) ( 2) 6 üslü sayısının kesir olarak yazılışı A) ) 2 3 sayısı aşağıdakilerden hangisine eşittir? 16) -6 2 üslü sayısının eşiti kaçtır?

14) ( 2) 6 üslü sayısının kesir olarak yazılışı A) ) 2 3 sayısı aşağıdakilerden hangisine eşittir? 16) -6 2 üslü sayısının eşiti kaçtır? ÜSLÜ SAYILAR KAZANIM PEKİŞTİRME SORULARI ) üslü syısı şğıdkilerden hngisine eşittir? 6 9 7 ) +++++++ işleminin sonucu şğıdkilerden hngisi ile ifde edilebilir?. + )... işleminin sonucu şğıdkilerden hngisi

Detaylı

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ ESKİŞEHİR OSMNGZİ ÜNİVERSİESİ Müendislik Mimrlık Fkültesi İnşt Müendisliği Bölümü E-Post: ogu.met.topu@gmil.om We: ttp://mmf.ogu.edu.tr/topu Bilgisyr Destekli Nümerik nliz Ders notlrı met OPÇU n>m 8 8..

Detaylı

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ BÖÜ DİNAİ ODE SORU - 1 DEİ SORUARIN ÇÖZÜERİ 1 ( ) (+) 0N 6/s 6/s 60 10N N 10N 0N 1N cis i uy gu l nn net kuv vet cis i ön ce (+) yön de y vş l tır Ci si dur duk tn son r ( ) yön de hız l nır Cis in iv

Detaylı

GRUP TANIMLAYAN BAZI YARIGRUP VE MONOİD TAKDİMLERİ* Some Semigroup and Monoid Presentations Defining a Group*

GRUP TANIMLAYAN BAZI YARIGRUP VE MONOİD TAKDİMLERİ* Some Semigroup and Monoid Presentations Defining a Group* GRU TANIMLAYAN BAZI YARIGRU VE MONOİD TAKDİMLERİ* Soe Seigroup d Mooid resettios Defiig Group* Bsri ÇALIŞKAN Ç.Ü. Fe Biieri Estitüsü Mteti Abii Dı Firet KUYUCU Ç.Ü.Fe Edebit Fütesi Mteti Böüü ÖZET Bu çışd

Detaylı

Yarım Toplayıcı (Half Adder): İki adet birer bitlik sayıyı toplayan bir devredir. a: Birinci Sayı a b c s. a b. s c.

Yarım Toplayıcı (Half Adder): İki adet birer bitlik sayıyı toplayan bir devredir. a: Birinci Sayı a b c s. a b. s c. Syıl Devreler (Lojik Devreleri) Tümleştirilmiş Kominezonl Devre Elemnlrı Syıl itemlerin gerçekleştirilmeinde çokç kullnıln lojik devreler, klik ğlçlrın ir ry getirilmeiyle tümleştirilmiş devre olrk üretilirler

Detaylı

BÖLÜM DETERMINANTLAR SD 1

BÖLÜM DETERMINANTLAR SD 1 SD 1 2. BÖLÜM DETERMINANTLAR 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 1. Permütsyo Tım: Bir tm syılr {1, 2,, } kümesideki elemlrı tekrr olmksızı frklı sırlmlrıı düzelemesie

Detaylı

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR Vektörler zr rd.doç.dr.nevin MAHİR ÜNİTE 3 Amçlr Bu üniteyi çlıştıktn sonr; Düzlemde vektör kvrmını öğrenecek, İki vektörün eşitliği, toplmı, doğrusl bğımlılığı ile bir vektörün bir gerçel syı ile çrpımı,

Detaylı

1) Asgari sayıda çevre akımları ve bilinmeyen tanımlayarak değerlerini bulunuz ve güç dengesini sağladığını gösteriniz.

1) Asgari sayıda çevre akımları ve bilinmeyen tanımlayarak değerlerini bulunuz ve güç dengesini sağladığını gösteriniz. ELEKTRİK-ELEKTRONİK DERSİ VİZE SORU ÖRNEKLERİ Şekiller üzerindeki renkli işretlemeler soruy değil çözüme ittir: Mviler ilk şmd sgri bğımsız denklem çözmek için ypıln tnımlrı, Kırmızılr sonrki şmd güç dengesi

Detaylı

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür. ÖZDEĞER VE ÖZVEKTÖRLER A n n tipinde bir matris olsun. AX = λx (1.1) olmak üzere n 1 tipinde bileşenleri sıfırdan farklı bir X matrisi için λ sayıları için bu denklemi sağlayan bileşenleri sıfırdan farklı

Detaylı

ş ş ğ Ö ş Ç ş ö Ü Ü Ö Ü Ç Ö ö ö ş ğ ğ Ç ğ ş Ö ş ş ğ ş ö ö ş ş ğ Ö ş ş ş Ç ğ ğ ğ ğ ş ğ ş ğ ğ ğ ö ş ğ ş ğ Ç ğ ş ş ö ğ ö ğ ş ö ğ ş ö ğ ş ş Ç ğ ö ö ş ş ğ

ş ş ğ Ö ş Ç ş ö Ü Ü Ö Ü Ç Ö ö ö ş ğ ğ Ç ğ ş Ö ş ş ğ ş ö ö ş ş ğ Ö ş ş ş Ç ğ ğ ğ ğ ş ğ ş ğ ğ ğ ö ş ğ ş ğ Ç ğ ş ş ö ğ ö ğ ş ö ğ ş ö ğ ş ş Ç ğ ö ö ş ş ğ ş ş ğ Ö ş Ç ş ö ş ğ ğ ğ ğ ş ğ ö ğ ş ş ş ğ ş ş ş ğ ş ş ğ Ü ş ş ö öş Ü ö ğ ö ğ ş ğ ş ö Ç ğ ş ö ğ ğ ş ş ş ö ş ö ğ ö ş ğ ş Ç ğ ş ş ö ş ğ ğ ş ö ş ğ Ü ş ş ğ ğ ö Ö Ç ş ö Ç ş ö Ç ş ö ş ş ö ş ö ğ ş ş ö ş ş ş ğ

Detaylı

A, A, A ) vektör bileşenleri

A, A, A ) vektör bileşenleri Elektromnetik Teori hr 006-007 Dönemi VEKTÖR VE SKLER KVRMI Mühendislik, fiik ve geometri ugulmlrınd iki türlü büüklük kullnılır: skler ve vektör. Skler, sdece büüklüğü oln niceliklerdir. elli bir ölçeği

Detaylı

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır.

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır. LYS- MTEMTİK MTEMTİK TESTİ. u testte Mtemtik lnın it toplm 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için yrıln kısmın işretleyiniz.. = 5! +! olduğun göre,! syısının türünden eşiti şğıdkilerden

Detaylı

IDDM YARDIMIYLA TERS MATRİS HESAPLAMA. Kadınhanı, KONYA, e-posta: aocdiken@selcuk.edu.tr

IDDM YARDIMIYLA TERS MATRİS HESAPLAMA. Kadınhanı, KONYA, e-posta: aocdiken@selcuk.edu.tr SDÜ FEN EDEBİT FKÜLTESİ FEN DERGİSİ E-DERGİ. 8,, 98- DDM RDML TERS MTRİS HESPLM O ÇBKDİKEN *, Ke DN ** * Seçu Üverte, Kdıhı MO, Bgyr Teooer ve Prog, Kdıhı, KON, e-pot: ocde@ecu.edu.tr ** Seçu Üverte, dd

Detaylı

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır?

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır? RAKAM Syılrı ifde etmek için kullndığımız 0,,2,3,4,5,6,7,8,9 sembollerine rkm denir. Örnek... :, b ve c birbirlerinden frklı birer rkmdır..b+9.b c en çok kçtır? DOĞAL SAYILAR N={0,,2,3...,n,...} kümesine

Detaylı