ELASTİK DALGA TEORİSİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ELASTİK DALGA TEORİSİ"

Transkript

1 ELASTİK DALGA TEORİSİ ( - 5. ders ) Doç.Dr. Eşref YALÇINKAYA Geçtiğiiz hafta; Dalga hareketi ve türleri Yaılan dalga Yaılan dalga enerjisi ve sönülene Bu derste; Süperpozison prensibi Fourier analizi Dalgaların girişii

2 Süperpozison prensibi Verilen bir zaanda dalga profili üzerindeki herhangi bir taneciğin erdeğiştiresi birbirinden bağısız olarak aılan dalgaların erdeğiştirelerinin toplaıdır. Bu bir vektörel toplaa işlei olup süperpozison die adlandırılır. Süperpozison prensibinin fiziksel önei, karaşık bir dalgaı basit dalgaların birleşii olarak inceleebile ikanı sağlaasıdır. Anı orta içinde aılan iki vea daha fazla dalganın neden olduğu net genlik, her bir dalganın arı arı neden olduğu genliklerinin toplaına eşittir. Örneğin, birbirine doğru seahat eden iki dalga, birbirinin içinden geçerek herhangi bir bozulaa uğraadan diğer tarafa deva eder. 4

3 Dalgaların Girişii Girişi; iki vea daha fazla dalga dizisinin toplanasının (süperpozisonunun) fiziksel etkilerini ifade eden teknik bir teridir. Sin( kx t ) Sin( kx t) İki dalganın toplaı; Pozitif x önünde aılan iki dalga Frekansları anı Genlikleri anı Aralarında kadar faz farkı var ( [ Sin( kx t ) Sin( kx t)] Cos ) Sin( kx t ) dalga genliği aılan dalga 5 ( Cos ) Sin( kx t ) Cos çok küçük vea sıfır ise genlik aklaşık dir faz farkı 8 derecee akın ise genlik aklaşık dır Yapıcı girişi Bozucu girişi 6

4 Frekansları ve fazları anı, fakat genlikleri farklı olan iki dalganın girişii Frekansları anı, fakat genlikleri ve fazları farklı olan basit haronik dalgaların toplaları ine bir basit haronik dalga oluşturur. Yeni dalganın genliği dalgalar arasındaki faz farkına bağlıdır. Faz farkı sıfır (vea sıfıra akın) olduğu zaan apıcı girişi, faz farkı 8 derece (vea 8 derecee akın) olduğu zaan bozucu girişi edana gelir. 7 Karaşık Dalgalar Farklı frekanslara sahip haronik dalgalar toplanırsa, toplanan dalgalardan farklı karaşık bir dalga elde edilir. Böle bir dalganın şekli bir sinüs vea kosinüs eğrisi oladığı gibi taneciklerin hareketi de basit haronik hareket değildir Fazları ve genlikleri anı, fakat frekansları farklı olan iki dalganın girişii

5 Genlikleri anı, fakat frekansları biri diğerinin üç katı olan iki dalganın süperpozisonu Toplanan dalgaların fazlarının farklı olası duruunda topla dalga Yüksek frekanslı bir dalganın düşük frekanslı bir dalga üzerine bindirilesi Frekansları birbirine çok akın iki dalganın grup oluşturası 5

6 Durağan dalgalar Sin( kx t) Sin( kx t) İki dalganın toplaı; Frekansları, hızları ve genlikleri anı olan ve bir tel bounca birbirine ters önde ilerleen iki dalga [ Sin( kx t) Sin( kx t)] SinkxCos t durağan dalga denklei SinkxCos t Dalga genliği kx,,,... vea x,,,,... v. b. Değerleri için sıfır ani iniu (düğü noktaları) 5 kx,,,... vea 5 x,,,... v. b Değerleri için ani aksiu (anti düğü noktaları) Enerji tel bounca herhangi bir önde taşınaz, tel üzerinde durağan kalır. Bu hareket her noktada genlikleri farklı olan w açısal frekanslı bir basit haronik harekettir. 6

7 First Haronic Standing Wave Pattern Second Haronic Standing Wave Pattern Third Haronic Standing Wave Pattern Fourier Serileri Fransız ateatikçi J. Fourier, periodik dalga şeklinin tanıı apış ve haroniklere sahip sinüsoidin, ani tü frekansları teel frekansının (ilk haronik) katları olarak bulunabilen, bir serisi olarak açıklaıştır. Örneğin, Hz, Hz, Hz ve devaı şeklinde bir sinüsoid serisinin Hz teel frekansı, Hz ikinci haroniği ve devaı şeklinde frekansları içerir. Genelde herhangi bir periodik dalga şekli f(t); vea a f ( t) asinwt asinwt asinwt... b Coswt b Coswt b Coswt... a f ( t) ( ansinnwt bncosnwt) n Fourier serisi şeklinde azılabilir. Burada a / sabittir ve f(t) nin ortalaa değeridir. 4 7

8 a f ( t) ( ansinnwt bncosnwt) n a ve b katsaıları ω nın teel frekans bileşenlerini gösterir. Benzer şekilde, a ve b katsaıları ω nın ikinci haronik bileşenlerini gösterir ve diğer katsaılarda öncekilere benzerdir. Genelde, farklı frekansta birden fazla sinüsoidin toplaı aklaşık dalga şeklini verir. 5 a f ( t) a a b n n n f ( t) dt ( a n f ( t)sin( nt) dt cos nt b f ( t)cos( nt) dt n sin nt) 6 8

9 7 The Doppler Effect Sabit bir ses kanağı, sabit bir frekansta ses dalgaları üretior ve dalga cepheleri kanaktan itibaren sietrik olarak orta içinde ses dalgası hızında aılıor. Dalga cepheleri arasındaki uzaklık dalga bou olup her önde eşittir. Her öndeki dinleici anı frekansı işitir. 8 9

10 Source oving with Vsource < Vsound Kanak ses hızından daha düşük bir hızda (Vk=.7Vs) sağa doğru hareket ederken anı özellikte ses dalgaları aaa deva edior. Kanağın hareketi nedenile sağdaki dalga cepheleri sıklaşırken soldaki dalga cepheleri açılıor. Sağdaki bir dinleici daha üksek frekansları işitirken, soldaki dinleici daha düşük frekansları duuor. 9 Source oving with Vsource = Vsound Şidi kanak orta içinde ses dalgası (Vs=4 /sn) ile anı hızda hareket edior. Sonuç olarak sağdaki bir dinleici kanak kendisine erişincee kadar hiç bir şe duuor. Kanak eriştiğinde ise, dalga cephelerinin birbiri üzerine eklenesi nedenile şiddetli bir şok dalgasıla karşılaşıor.

11 Source oving with Vsource > Vsound Ses kanağı, ses duvarını delip ondan daha üksek bir hızda hareket edior ve ilerleen dalga cephelerine neden oluor. Sağdaki bir gözleci kanak anından geçtikten sonra sesini duuor. Oluşan dalga cepheleri konisinin kenarları ses bobası olarak adlandırılan şok dalgalarını oluşturur.

12 4

Düzlem Elektromanyetik Dalgalar

Düzlem Elektromanyetik Dalgalar Düzlem Elektromanetik Dalgalar Düzgün Düzlem Dalga: E nin, (benzer şekilde H nin) aılma önüne dik sonsuz düzlemlerde, anı öne, anı genliğe ve anı faza sahip olduğu özel bir Maxwell denklemleri çözümüdür.

Detaylı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı FOURIER SERİLERİ Bu bölümde Fourier serilerinden bahsedeceğim. Önce harmoniklerle (katsıklıklarla) ilişkili sinüsoidin tanımından başlıyacağım ve serilerin trigonometrik açılımlarını kullanarak katsayıları

Detaylı

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu) BÖLÜM I GİRİŞ 1.1 Sinyal Bir sistemin durum ve davranış bilgilerini taşıyan, bir veya daha fazla değişken ile tanımlanan bir fonksiyon olup veri işlemde dalga olarak adlandırılır. Bir dalga, genliği, dalga

Detaylı

Fizik 101: Ders 12 Ajanda. Problemler İş & Enerji Potansiyel Enerji, Kuvvet, Denge Güç

Fizik 101: Ders 12 Ajanda. Problemler İş & Enerji Potansiyel Enerji, Kuvvet, Denge Güç Fizik 101: Ders 1 Ajanda Probleler İş & Enerji Potansiyel Enerji, Kuvvet, Denge Güç Proble: Yaylı Sapan Yay sabiti k olan iki yaydan bir sapan yapılıştır. Her iki yayın başlangıç uzunluğu x 0. Kütlesi

Detaylı

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir.

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. ALTERNATiF AKIM Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. Doğru akım ve alternatif akım devrelerinde akım yönleri şekilde görüldüğü

Detaylı

YAY DALGALARI. 1. m. 4. y(cm) Şe kil de 25 cm lik kıs mı 2,5 dal ga ya kar şı lık ge lir.

YAY DALGALARI. 1. m. 4. y(cm) Şe kil de 25 cm lik kıs mı 2,5 dal ga ya kar şı lık ge lir. 1. BÖÜM A DAGAARI AIŞTIRMAAR ÇÖZÜMER A DAGAARI 1.. (c) T λ 5c Şe kil de 5 c lik kıs ı,5 dal ga a kar şı lık ge lir. 0 5 (c) Bu du ru da, 5 λ = 5 λ = 10 c Dal ga nın aıla hı zı, 60 V = = = 15 t c/ s Dal

Detaylı

SİSMİK PROSPEKSİYON DERS-3

SİSMİK PROSPEKSİYON DERS-3 SİSMİK PROSPEKSİYON DERS-3 DOÇ.DR.HÜSEYİN TUR SİSMİK DALGA YAYINIMI Dalga Cepheleri Ve Işınlar Bir kaynaktan çıkan dalganın hareketi sırasında herhangi bir zamanda hareketin başlamak üzere olduğu noktaları

Detaylı

İşaret ve Sistemler. Ders 2: Spektral Analize Giriş

İşaret ve Sistemler. Ders 2: Spektral Analize Giriş İşaret ve Sistemler Ders 2: Spektral Analize Giriş Spektral Analiz A 1.Cos (2 f 1 t+ 1 ) ile belirtilen işaret: f 1 Hz frekansında, A 1 genliğinde ve fazı da Cos(2 f 1 t) ye göre 1 olan parametrelere sahiptir.

Detaylı

Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I DENEY 4 GENLİK (AM) DEMODÜLASYONU

Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I DENEY 4 GENLİK (AM) DEMODÜLASYONU Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölüü EEM 316 Haberleşe I DENEY 4 GENLİK (AM) DEMODÜLASYONU 4.1 Aaçlar 1. Genlik odülasyonunun genel prensiplerinin anlaşılası.. Diyot Algılayıı ile

Detaylı

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Elektrik devrelerinde ölçülebilen büyüklükler olan; 5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Akım Gerilim Devrede bulunan kaynakların tiplerine göre değişik şekillerde olabilir. Zamana bağlı

Detaylı

DEPREMLERİN KAYIT EDİLMESİ - SİSMOGRAFLAR -

DEPREMLERİN KAYIT EDİLMESİ - SİSMOGRAFLAR - DEPREMLERİN KAYIT EDİLMESİ - SİSMOGRAFLAR - Doç.Dr. Eşref YALÇINKAYA (. Ders) Bu derste ; Sismograf ve bileşenleri Algılayıcı Sinyal koşullandırma birimi Kayıt sistemi Sismometrenin diferansiyel denklemi

Detaylı

Alternatif Akım Devre Analizi

Alternatif Akım Devre Analizi Alternatif Akım Devre Analizi Öğr.Gör. Emre ÖZER Alternatif Akımın Tanımı Zamaniçerisindeyönüveşiddeti belli bir düzen içerisinde (periyodik) değişen akıma alternatif akımdenir. En bilinen alternatif akım

Detaylı

Fizik 101: Ders 23 Gündem

Fizik 101: Ders 23 Gündem Fizik 101: Ders 3 Gündem Basit Harmonik Hereket Yatay yay ve kütle Sinus ve cosinus lerin anlamı Düşey yay ve kütle Enerji yaklaşımı Basit sarkaç Çubuk sarkaç Basit Harmonik Hareket (BHH) Ucunda bir kütle

Detaylı

EĞİLME. Düşey yükleme. Statik Denge. M= P. x P = P. M= P.a (eğilme momenti, N.m) 2009 The McGraw-Hill Companies, Inc. All rights reserved.

EĞİLME. Düşey yükleme. Statik Denge. M= P. x P = P. M= P.a (eğilme momenti, N.m) 2009 The McGraw-Hill Companies, Inc. All rights reserved. 009 The Graw-Hill Copanies, n. All rights reserved. - ifthechancs OF ATERALS EĞİLE Basit eğile Eksantrik üklee Beer Johnston DeWolf aurek Düşe üklee Statik Denge P.a (eğile oenti, N.) P. P P 009 The Graw-Hill

Detaylı

DENEY 3 ATWOOD MAKİNASI

DENEY 3 ATWOOD MAKİNASI DENEY 3 ATWOOD MAKİNASI AMAÇ Bu deney bir cisin hareketi ve hareketi doğuran sebepleri arasındaki ilişkiyi inceler. Bu deneyde, eğik hava asası üzerine kuruluş Atwood akinesini kullanarak, Newton un ikinci

Detaylı

NÜKLEER REAKSİYONLAR

NÜKLEER REAKSİYONLAR NÜLEER REASİONLAR Polonudan çıkan parçacıklarının enerjisi 7,68 e dir. ukarıda erilen reaksionun gerçekleşe oranı /5000 dir. ani 5000 heludan sadece biri reaksiona uğraakta diğerleri a çarpışadan saçılakta

Detaylı

İşaret ve Sistemler. Ders 3: Periyodik İşaretlerin Frekans Spektrumu

İşaret ve Sistemler. Ders 3: Periyodik İşaretlerin Frekans Spektrumu İşaret ve Sistemler Ders 3: Periyodik İşaretlerin Frekans Spektrumu Fourier Serileri Periyodik işaretlerin spektral analizini yapabilmek için periyodik işaretler sinüzoidal işaretlerin toplamına dönüştürülür

Detaylı

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri 2. Alternatif Akım =AC (Alternating Current) Değeri ve yönü zamana göre belirli bir düzen içerisinde değişen akıma AC denir. En çok bilinen AC dalga biçimi Sinüs dalgasıdır. Bununla birlikte farklı uygulamalarda

Detaylı

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET TİTREŞİM VE DALGALAR Periyodik Hareketler: Belirli aralıklarla tekrarlanan harekete periyodik hareket denir. Sabit bir nokta etrafında periyodik hareket yapan cismin hareketine titreşim hareketi denir.

Detaylı

Fizik 101: Ders 14 Ajanda

Fizik 101: Ders 14 Ajanda Fizik 0: Ders 4 Ajanda Boyutta inelastik çarpışa Patlaalar Boyutta elastik çarpışa Kütle erkezi referans gözle çerçeesi Çarpışan arabalar Elastik çarpışanın özellikleri Moentuun Korunuu dp F DIŞ 0 dt dp

Detaylı

Fizik 101: Ders 24 Gündem

Fizik 101: Ders 24 Gündem Terar Fizi 101: Ders 4 Günde Başlangıç oşullarını ullanara BHH denlelerinin çözüü. Genel fizisel saraç Burulalı saraç BHHte enerji Atoi titreşiler Proble: Düşey yay Proble: taşıa tuneli BHH terar BHH &

Detaylı

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ Dersin Öğreti Eleanı: Yrd. Doç. Dr. Yasin KABALCI Ders Görüşe

Detaylı

BÖLÜM 3: İLETİM HAT TEORİSİ

BÖLÜM 3: İLETİM HAT TEORİSİ BÖLÜM 3: İLETİM HAT TEORİSİ 1 İLETİM HATLARI İletim hatlarının tarihsel gelişimi iki iletkenli basit hatlarla(ilk telefon hatlarında olduğu gibi) başlamıştır. Mikrodalga enerjisinin iletimini gerçekleştirmek

Detaylı

Fizik 101: Ders 16. Konu: Katı cismin dönmesi

Fizik 101: Ders 16. Konu: Katı cismin dönmesi Fizik 0: Ders 6 Konu: Katı cisin dönesi Döne kineatiği Bir boyutlu kineatik ile benzeşi Dönen sistein kinetik enerjisi Eylesizlik oenti Ayrık parçacıklar Sürekli katı cisiler Paralel eksen teorei Rotasyon

Detaylı

Alternatif Akım Devreleri

Alternatif Akım Devreleri Alternatif akım sürekli yönü ve şiddeti değişen bir akımdır. Alternatif akımda bazı devre elemanları (bobin, kapasitör, yarı iletken devre elemanları) doğruakım devrelerinde olduğundan farklı davranırlar.

Detaylı

DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP

DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP Amaç: Bu deneyin amacı, öğrencilerin alternatif akım ve gerilim hakkında bilgi edinmesini sağlamaktır. Deney sonunda öğrencilerin, periyot, frekans, genlik,

Detaylı

ALTERNATİF AKIMIN DENKLEMİ

ALTERNATİF AKIMIN DENKLEMİ 1 ALTERNATİF AKIMIN DENKLEMİ Ani ve Maksimum Değerler Alternatif akımın elde edilişi incelendiğinde iletkenin 90 ve 270 lik dönme hareketinin sonunda maksimum emk nın indüklendiği görülür. Alternatif akımın

Detaylı

SİSMİK DALGALAR. Doç.Dr. Eşref YALÇINKAYA (4. Ders) Sismogramlar üzerinde gözlenebilen dalgalar sismik dalgalar olarak adlandırılır.

SİSMİK DALGALAR. Doç.Dr. Eşref YALÇINKAYA (4. Ders) Sismogramlar üzerinde gözlenebilen dalgalar sismik dalgalar olarak adlandırılır. SİSMİK DALGALAR Doç.Dr. Eşref YALÇINKAYA (4. Ders) Sismik dalgalar Sismogramlar üzerinde gözlenebilen dalgalar sismik dalgalar olarak adlandırılır. Sismik dalgalar bir kaynaktan ortaya çıkarlar ve; hem

Detaylı

VEKTÖRLER KT YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU

VEKTÖRLER KT YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU VEKTÖRLER KT YRD.DOÇ.DR. KMİLE TOSUN ELEKOĞLU 1 Mekanik olaları ölçmekte a da değerlendirmekte kullanılan matematiksel büüklükler: Skaler büüklük: sadece bir saısal değeri tanımlamakta kullanılır, pozitif

Detaylı

ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler. Yard.Doç.Dr. Ahmet Özkurt.

ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler. Yard.Doç.Dr. Ahmet Özkurt. ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net İçerik AC ve DC Empedans RMS değeri Bobin ve kondansatörün

Detaylı

Güç elektroniği elektrik mühendisliğinde enerji ve elektronik bilim dalları arasında bir bilim dalıdır.

Güç elektroniği elektrik mühendisliğinde enerji ve elektronik bilim dalları arasında bir bilim dalıdır. 3. Bölüm Güç Elektroniğinde Temel Kavramlar ve Devre Türleri Doç. Dr. Ersan KABALC AEK-207 GÜNEŞ ENERJİSİ İLE ELEKTRİK ÜRETİMİ Güç Elektroniğine Giriş Güç elektroniği elektrik mühendisliğinde enerji ve

Detaylı

MIT 8.02, Bahar 2002 Ödev # 11 Çözümler

MIT 8.02, Bahar 2002 Ödev # 11 Çözümler Adam S. Bolton bolton@mit.edu MIT 8.02, Bahar 2002 Ödev # 11 Çözümler 15 Mayıs 2002 Problem 11.1 Tek yarıkta kırınım. (Giancoli 36-9.) (a) Bir tek yarığın genişliğini iki katına çıkarırsanız, elektrik

Detaylı

TEK FAZLI DOĞRULTUCULAR

TEK FAZLI DOĞRULTUCULAR ELEKTRĠK-ELEKTRONĠK ÜHENDĠSLĠĞĠ GÜÇ ELEKTRONĠĞĠ LABORATUAR TEK FAZL DOĞRULTUCULAR Teorik Bilgi Pek çok güç elektroniği uygulamasında, giriş gücü şebekeden alınan 50-60 Hz lik AC güç şeklindedir ve uygulamada

Detaylı

BÖLÜM 2 DİYOTLU DOĞRULTUCULAR

BÖLÜM 2 DİYOTLU DOĞRULTUCULAR BÖLÜM 2 DİYOTLU DOĞRULTUCULAR A. DENEYİN AMACI: Tek faz ve 3 faz diyotlu doğrultucuların çalışmasını ve davranışlarını incelemek. Bu deneyde tek faz ve 3 faz olmak üzere tüm yarım ve tam dalga doğrultucuları,

Detaylı

REAKTİF GÜÇ KOMPANZASYONU ve REZONANS HESAPLARI

REAKTİF GÜÇ KOMPANZASYONU ve REZONANS HESAPLARI REAKTİF GÜÇ KOMPANZASYONU ve REZONANS HESAPLARI Alper Terciyanlı TÜBİTAK-BİLTEN alper.terciyanli@emo.org.tr EMO Ankara Şube Reaktif Güç Kompanzasyonu Eğitimi 16.07.2005 1 Kapsam Genel Kavramlar Reaktif

Detaylı

H a t ı r l a t m a : Şimdiye dek bilmeniz gerekenler: 1. Maxwell denklemleri, elektromanyetik dalgalar ve ışık

H a t ı r l a t m a : Şimdiye dek bilmeniz gerekenler: 1. Maxwell denklemleri, elektromanyetik dalgalar ve ışık H a t ı r l a t m a : Şimdiye dek bilmeniz gerekenler: 1. Maxwell denklemleri, elektromanyetik dalgalar ve ışık 2. Ahenk ve ahenk fonksiyonu, kontrast, görünebilirlik 3. Girişim 4. Kırınım 5. Lazer, çalışma

Detaylı

Uçlarındaki gerilim U volt ve içinden t saniye süresince Q coulomb luk elektrik yükü geçen bir alıcıda görülen iş:

Uçlarındaki gerilim U volt ve içinden t saniye süresince Q coulomb luk elektrik yükü geçen bir alıcıda görülen iş: Etrafımızda oluşan değişmeleri iş, bu işi oluşturan yetenekleri de enerji olarak tanımlarız. Örneğin bir elektrik motorunun dönmesi ile bir iş yapılır ve bu işi yaparken de motor bir enerji kullanır. Mekanikte

Detaylı

KABLOSUZ İLETİŞİM

KABLOSUZ İLETİŞİM KABLOSUZ İLETİŞİM 805540 MODÜLASYON TEKNİKLERİ SAYISAL MODÜLASYON İçerik 3 Sayısal modülasyon Sayısal modülasyon çeşitleri Sayısal modülasyon başarımı Sayısal Modülasyon 4 Analog yerine sayısal modülasyon

Detaylı

Rastgele Süreçler. Rastgele süreç konsepti (Ensemble) Örnek Fonksiyonlar. deney. Zaman (sürekli veya kesikli) Ensemble.

Rastgele Süreçler. Rastgele süreç konsepti (Ensemble) Örnek Fonksiyonlar. deney. Zaman (sürekli veya kesikli) Ensemble. 1 Rastgele Süreçler Olasılık taması Rastgele Deney Çıktı Örnek Uzay, S (s) Zamanın Fonksiy onu (t, s) Olayları Tanımla Rastgele süreç konsepti (Ensemble) deney (t,s 1 ) 1 t Örnek Fonksiyonlar (t,s ) t

Detaylı

SİSMİK PROSPEKSİYON DERS-2 DOÇ.DR.HÜSEYİN TUR

SİSMİK PROSPEKSİYON DERS-2 DOÇ.DR.HÜSEYİN TUR SİSMİK PROSPEKSİYON DERS-2 DOÇ.DR.HÜSEYİN TUR SİSMİK DALGA NEDİR? Bir deprem veya patlama sonucunda meydana gelen enerjinin yerkabuğu içerisinde farklı nitelik ve hızlarda yayılmasını ifade eder. Çok yüksek

Detaylı

Gürültü Perdeleri (Bariyerleri) Prof.Dr.Mustafa KARAŞAHİN

Gürültü Perdeleri (Bariyerleri) Prof.Dr.Mustafa KARAŞAHİN Gürültü Perdeleri (Bariyerleri) Prof.Dr.Mustafa KARAŞAHİN Gürültü nedir? Basit olarak, istenmeyen veya zarar veren ses db Skalası Ağrı eşiği 30 mt uzaklıktaki karayolu Gece mesken alanları 300 mt yükseklikte

Detaylı

Bant Sınırlı TBGG Kanallarda Sayısal İletim

Bant Sınırlı TBGG Kanallarda Sayısal İletim Bant Sınırlı TBGG Kanallarda Sayısal İletim Bu bölümde, bant sınırlı doğrusal süzgeç olarak modellenen bir kanal üzerinde sayısal iletimi inceleyeceğiz. Bant sınırlı kanallar pratikte çok kez karşımıza

Detaylı

Boşlukta Dalga Fonksiyonlarının Normalleştirilmesi

Boşlukta Dalga Fonksiyonlarının Normalleştirilmesi Boşlukta Dalga Fonksiyonlarının Noralleştirilesi Konu tesilinde oentu özduruları, u p (x) ile belirlenir ve ile verilir. Ancak, boşlukta noralleştirilecek bir olasılık yoğunluğu gibi yorulanaaz zira (

Detaylı

Anakütleden rassal olarak seçilen örneklemlerden hesaplanan değerlerdir.

Anakütleden rassal olarak seçilen örneklemlerden hesaplanan değerlerdir. İSTATİSTİKTE VERİ GM-0 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Hafta sonu hava yağışlı olacak ı? Bu yıl hangi takı şapiyon olacak? Gelecek yıl döviz kuru ne olur? Bu yıl ülkeizin kişi başına illi geliri ne

Detaylı

Ü Ğ Ğ Ğ Ğ Ğ ş Ğ Ğ Ö Ğ ö ö ş ş ö ş Ğ Ğ Ğ Ğ ş ö ş ş ö ş ş ç ş ş ç ş ş ş ş ç ö ö ö ş ö ö ş ç ç ö ö ç Ç Ç ş ş Ğ ç ş ş ş ş ç ş ö ş ç ş ö ş ş ö ç ş ş ö Ö ç ş ö ş ö Ö ç ş ş ş ç ş ö ş ş ç ç ö ö ç ş Ö ö ş ö ö ş

Detaylı

ş Ğ İ İ ş ş ş ş ç ş ş ç ç ş ş ş ş ş ş İ ş ş ç ç ş ş ç ş ş ş ş ş ş ş ş ş ş ş ş ş ç ş ş ş ş ş İ ş ş ş ç ş ş ş ş ş ş ş ç Ü ç ş ş ş ş ş ş ş ç ş ş ş ç ç ş ş ş ş İ ş ş ş ş ş ç ç ş ç ç ş ş ş ş ş ş ş ş ş ç ş ş

Detaylı

Bilal ELÇİ tarafından düzenlenmiştir.

Bilal ELÇİ tarafından düzenlenmiştir. SES BU ÜNİTEDE BİLMENİZ GEREKENLER 1. Bir ses dalgasının belli bir frekans ve genliği olduğunu 2. Sesin titreşimler sonucu oluştuğunu 3. Ses yüksekliğinin sesin ince veya kalın olması anlamına geldiğini

Detaylı

= + ise bu durumda sinüzoidal frekansı. genlikli ve. biçimindeki bir taşıyıcı sinyalin fazının modüle edildiği düşünülsün.

= + ise bu durumda sinüzoidal frekansı. genlikli ve. biçimindeki bir taşıyıcı sinyalin fazının modüle edildiği düşünülsün. 4.2. çı Modülasyonu Yüse reanslı bir işaret ile bilgi taşıa, işaretin genliğinin, reansının veya azının bir esaj işareti ile odüle edilesi ile gerçeleştirilebilir. Bu üç arlı odülasyon yöntei sırasıyla,

Detaylı

ELE 301L KONTROL SİSTEMLERİ I LABORATUVARI DENEY 3: ORANSAL, TÜREVSEL VE İNTEGRAL (PID) KONTROL ELEMANLARININ İNCELENMESİ *

ELE 301L KONTROL SİSTEMLERİ I LABORATUVARI DENEY 3: ORANSAL, TÜREVSEL VE İNTEGRAL (PID) KONTROL ELEMANLARININ İNCELENMESİ * Deneyden sonra bir hafta içerisinde raporunuzu teslim ediniz. Geç teslim edilen raporlar değerlendirmeye alınmaz. ELE 301L KONTROL SİSTEMLERİ I LABORATUVARI DENEY 3: ORANSAL, TÜREVSEL VE İNTEGRAL (PID)

Detaylı

Yay Dalgaları. Test 1 Çözümleri cm m = 80 cm

Yay Dalgaları. Test 1 Çözümleri cm m = 80 cm Yay Dalgaları YY DGRI 1 Test 1 Çözüleri 3. 0 c = 80 c 1. = 8 biri 0 c rdaşık iki tepe arasındaki uzaklık dalga boyudur. Bu duruda dalga boyu şekildeki gibi 80 c olarak bulunur. v = f bağıntısına göre hız;

Detaylı

SİNYALLER ve SİSTEMLER

SİNYALLER ve SİSTEMLER SİNYALLER ve SİSTEMLER 1. Sinyallerin Sınıflandırılması 1.1 Sürekli Zamanlı ve Ayrık Zamanlı Sinyaller 1.2 Analog ve Sayısal Sinyaller Herhangi bir (a,b) reel sayı aralığında bir x(t) sinyali sonsuz değer

Detaylı

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir.

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir. BÖLÜM 6 TÜREV ALICI DEVRE KONU: Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir. GEREKLİ DONANIM: Multimetre (Sayısal veya Analog) Güç Kaynağı: ±12V

Detaylı

BÖLÜM 4 AM DEMODÜLATÖRLERİ

BÖLÜM 4 AM DEMODÜLATÖRLERİ BÖLÜM 4 AM DEMODÜLATÖRLERİ 4.1 AMAÇ 1. Genlik demodülasyonunun prensibini anlama.. Diyot ile bir genlik modülatörü gerçekleştirme. 3. Çarpım detektörü ile bir genlik demodülatörü gerçekleştirme. 4. TEMEL

Detaylı

FİZİK 4. Ders 10: Bir Boyutlu Schrödinger Denklemi

FİZİK 4. Ders 10: Bir Boyutlu Schrödinger Denklemi FİZİK 4 Ders 10: Bir Boyutlu Schrödinger Denklemi Bir Boyutlu Schrödinger Denklemi Beklenen Değer Kuyu İçindeki Parçacık Zamandan Bağımsız Schrödinger Denklemi Kare Kuyu Tünel Olayı Basit Harmonik Salınıcı

Detaylı

Sinüsoidal Gerilim ve Akım ALIŞTIRMALAR

Sinüsoidal Gerilim ve Akım ALIŞTIRMALAR Sinüsoidal Gerilim ve Akım 65 2.7. ALŞTRMALAR Soru 2.1 : 4 kutuplu bir generatörde rotor (hareketli kısım) 3000 devir/dk ile döndüğüne göre, üretilen gerilimin frekansını bulunuz. (Cevap : f=100hz) Soru

Detaylı

GEBZE TEKNİK ÜNİVERSİTESİ

GEBZE TEKNİK ÜNİVERSİTESİ GEBZE TEKNİK ÜNİVERSİTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELM222 DEVRE TEORİSİ II LABORATUVARI DENEY 3: SERİ VE PARALEL EMPEDANSLAR Öğrencinin Numarası : Adı Soyadı : Deney Arkadaşının Numarası : Adı Soyadı

Detaylı

Sakarya Üniversitesi Bilgisayar ve Bilişim Bilimleri Fakültesi Bilgisayar Mühendisliği Bölümü

Sakarya Üniversitesi Bilgisayar ve Bilişim Bilimleri Fakültesi Bilgisayar Mühendisliği Bölümü Sakarya Üniversitesi Bilgisayar ve Bilişim Bilimleri Fakültesi Bilgisayar Mühendisliği Bölümü KABLOSUZ AĞ TEKNOLOJİLERİ VE UYGULAMALARI LABORATUAR FÖYÜ Analog Haberleşme Uygulamaları Doç. Dr. Cüneyt BAYILMIŞ

Detaylı

Fizik 101: Ders 10 Ajanda

Fizik 101: Ders 10 Ajanda Fizik 101: Ders 10 Ajanda İş Dünya yüzeyinde çeki kuvvetinden dolayı yapılan iş Örnekler: Sarkaç, eğik düzle, serbest düşe Değişken kuvvetçe yapılan iş Yay Yay ve sürtüneli probleler 3 boyutta değişken

Detaylı

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır.

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır. PO.D. MUAT DEMİ AYDIN ***Bu ders notları bir sonraki slatta verilen kanak kitaplardan alıntılar apılarak hazırlanmıştır. Mühendisler için Vektör Mekaniği: STATİK.P. Beer, E.. Johnston Çeviri Editörü: Ömer

Detaylı

ÇÖZÜMLER. 3. I. Ortam sürtünmesiz ise, a) Di na mi ğin te mel pren si bi sis te me uy gu lan dığın 30 T 1 T 1. II. Ortamın sürtünme katsayısı 0,1 ise,

ÇÖZÜMLER. 3. I. Ortam sürtünmesiz ise, a) Di na mi ğin te mel pren si bi sis te me uy gu lan dığın 30 T 1 T 1. II. Ortamın sürtünme katsayısı 0,1 ise, BÖÜM DİNAMİ AIŞIRMAAR ÇÖZÜMER DİNAMİ 1 4kg 0N yty M düzle rsınd : rsınd cisin ivesi /s olduğundn cise uygulnn kuvvet, 1 4 0 N olur M rsınd : M rsınd cisin ivesi /s olduğundn cise etki eden sürtüne kuvveti,

Detaylı

NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ History in Pictures - On January 5th, 1940, Edwin H. Armstrong transmitted thefirstfmradiosignalfromyonkers, NY to Alpine, NJ to Meriden, CT to Paxton, MA to Mount Washington. 5 January is National FM

Detaylı

KABLOSUZ İLETİŞİM

KABLOSUZ İLETİŞİM KABLOSUZ İLETİŞİM 805540 MODÜLASYON TEKNİKLERİ FREKANS MODÜLASYONU İçerik 3 Açı modülasyonu Frekans Modülasyonu Faz Modülasyonu Frekans Modülasyonu Açı Modülasyonu 4 Açı modülasyonu Frekans Modülasyonu

Detaylı

ADI: SOYADI: No: Sınıfı: A) Grubu. Tarih.../.../... ALDIĞI NOT:...

ADI: SOYADI: No: Sınıfı: A) Grubu. Tarih.../.../... ALDIĞI NOT:... ADI: SOYADI: No: Sınıfı: A) Grubu Tarih.../.../... ADIĞI NOT:.... Boşluk doldura a) uetin büyüklüğünü ölçek için... kullanılır. b) Uyduların gezegen etrafında dolanasını sağlayan kuet... c) Cisilerin hareket

Detaylı

DALGALAR. Dalgalar titreşim doğrultusuna ve Taşıdığı enerjiye göre aşağıdaki şekilde sınıflandırılır.

DALGALAR. Dalgalar titreşim doğrultusuna ve Taşıdığı enerjiye göre aşağıdaki şekilde sınıflandırılır. DALGALAR Dalga hareketi Nedir? Durgun bir su birikintisine bir tas attığımızda, tasın suya düştüğü noktadan dışarıya doğru daireler seklinde bir hareketin yayıldığını görürüz. Bu hareket bir dalga hareketidir.

Detaylı

Ünite. Dalgalar. 1. Ses Dalgaları 2. Yay Dalgaları 3. Su Dalgaları

Ünite. Dalgalar. 1. Ses Dalgaları 2. Yay Dalgaları 3. Su Dalgaları 7 Ünite Dalgalar 1. Ses Dalgaları 2. Yay Dalgaları 3. Su Dalgaları SES DALGALARI 3 Test 1 Çözümleri 3. 1. Verilen üç özellik ses dalgalarına aittir. Ay'da hava, yani maddesel bir ortam olmadığından sesi

Detaylı

ELEKTRİK VE ELEKTRİK DEVRELERİ 2

ELEKTRİK VE ELEKTRİK DEVRELERİ 2 1 ELEKTİK VE ELEKTİK DEVELEİ ALTENATİF AKIM Enstrümantal Analiz, Doğru Akım Analitik sinyal transduserlerinden çıkan elektrik periyodik bir salınım gösterir. Bu salınımlar akım veya potansiyelin zamana

Detaylı

Işığın Tanecikli Özelliği. Test 1 in Çözümleri

Işığın Tanecikli Özelliği. Test 1 in Çözümleri 37 Işığın Tanecikli Özelliği 1 Test 1 in Çözüleri 1. Fotoeletronların katottan ayrıla ızı, kullanılan ışığın frekansı ile doğru, dalga boyu ile ters orantılıdır. Bu elektronların anado doğru giderken ızlanaları

Detaylı

İŞ-GÜÇ-ENERJİ 1.İŞ 2.GÜÇ 3.ENERJİ. www.unkapani.com.tr. = (ortalama güç) P = F.V (Anlık Güç)

İŞ-GÜÇ-ENERJİ 1.İŞ 2.GÜÇ 3.ENERJİ. www.unkapani.com.tr. = (ortalama güç) P = F.V (Anlık Güç) İŞ-GÜÇ-ENERJİ Herangi bir cise kuvvet uyguladığıızda cisi kuvvet doğrultusunda yol alıyorsa kuvvet iş yapıştır denir. Yapılan işin değeri kuvvet ile kuvvet doğrultusunda alınan yolun çarpıına eşittir.

Detaylı

Su Dalgaları. Test 1 in Çözümleri

Su Dalgaları. Test 1 in Çözümleri 3 Su Dalgaları Test in Çözüleri. x +x. Periyodik dalgalarda ardışık tepe ile çukur arasındaki uzaklık dalga boyunun yarısına eşittir. Dalga boyunun yarısı 6 c olduğuna göre, dalga boyu c dir. λ λ v K.

Detaylı

SES DALGALARı Dalgalar genel olarak, mekanik ve elektromanyetik dalgalar olmak üzere iki ana gruba ayrılır. Elektromanyetik dalgalar, yayılmak için bi

SES DALGALARı Dalgalar genel olarak, mekanik ve elektromanyetik dalgalar olmak üzere iki ana gruba ayrılır. Elektromanyetik dalgalar, yayılmak için bi SES FĠZĠĞĠ SES DALGALARı Dalgalar genel olarak, mekanik ve elektromanyetik dalgalar olmak üzere iki ana gruba ayrılır. Elektromanyetik dalgalar, yayılmak için bir ortama ihtiyaç duymazlar ve boşlukta da

Detaylı

Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I DENEY 5 FM MODÜLASYONU

Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I DENEY 5 FM MODÜLASYONU Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölüü EEM 36 Haberleşe I ENEY 5 FM MOÜLASYONU 5. Aaçlar. Varaktor diyotun çalışası ve karakteristiğinin inelenesi. 2. Frekans Modülasyonunda, gerili

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ DENEY FÖYÜ DENEY ADI AC AKIM, GERİLİM VE GÜÇ DENEYİ DERSİN ÖĞRETİM ÜYESİ DENEY SORUMLUSU DENEY GRUBU: DENEY TARİHİ : TESLİM

Detaylı

TAM KLİMA TESİSATI DENEYİ

TAM KLİMA TESİSATI DENEYİ TAM KLİMA TESİSATI DENEYİ. AMAÇ Klia sistelerini sınıflandırarak, tipik bir klia tesisatında kullanılan eleanların incelenesi, yaz ve kış kliasına etki eden paraetrelerin deneysel ve teorik olarak gözlenesidir.

Detaylı

8. FET İN İNCELENMESİ

8. FET İN İNCELENMESİ 8. FET İN İNCELENMESİ 8.1. TEORİK BİLGİ FET transistörler iki farklı ana grupta üretilmektedir. Bunlardan birincisi JFET (Junction Field Effect Transistör) ya da kısaca bilinen adı ile FET, ikincisi ise

Detaylı

Bölüm 11 ALTERNATİF AKIM (AC) Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

Bölüm 11 ALTERNATİF AKIM (AC) Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley Bölüm 11 ALTERNATİF AKIM (AC) Hedef Öğretiler Fazör tanımı ve alternatif akım. Voltaj, akım, ve faz açısı. Direnç ve Reaktans. Empedans ve L-R-C devresi. AC devrelerinde güç. AC devrelerinde direnç. AC

Detaylı

Ahenk (Koherans, uyum)

Ahenk (Koherans, uyum) Girişim Girişim Ahenk (Koherans, uyum Ahenk (Koherans, uyum Ahenk (Koherans, uyum http://en.wikipedia.org/wiki/coherence_(physics#ntroduction Ahenk (Koherans, uyum Girişim İki ve/veya daha fazla dalganın

Detaylı

AÇIK UÇLU SORULAR. h( 3) = 3 ise, f(1) değeri kaçtır? II. g(x) = 2x + 3. 5. f: R R, f nin grafiği y eksenine göre simetriktir.

AÇIK UÇLU SORULAR. h( 3) = 3 ise, f(1) değeri kaçtır? II. g(x) = 2x + 3. 5. f: R R, f nin grafiği y eksenine göre simetriktir. ÜNİTE FONKSİYONLARLA İŞLEMLER VE UYGULAMALAR Bölüm TEK FONKSİYON, ÇİFT FONKSİYON AÇIK UÇLU SORULAR. R den R e I. () = +. : R R, nin graiği orijine göre simetriktir. h() = ( + ) ( + ) + onksionu tanımlanıor.

Detaylı

Doç.Dr. Cesim ATAŞ MEKANİK ŞEKİL DEĞİŞTİREN CİSİMLER MEKANİĞİ DİNAMİK

Doç.Dr. Cesim ATAŞ MEKANİK ŞEKİL DEĞİŞTİREN CİSİMLER MEKANİĞİ DİNAMİK STATİK (Ders Notları) Kaynak: Engineering Mechanics: Statics, SI Version, 6th Edition, J. L. Meriam, L. G. Kraige, Wiley Yardımcı Kaynak: Mühendislik Mekaniği: Statik, R.C Hibbeler & S.C. Fan, Literatür

Detaylı

Yukarıdaki şekilde, birim geribeslemeli bir kontrol sisteminin ileri yol transfer fonksiyonuna ait, sistemin orijinal çevrim kazancı K = 1 için deneysel olarak elde edilmiş Bode eğrisi verilmiştir. Aşağıdaki

Detaylı

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK STATİK Ders Notları Kaynaklar: 1.Engineering Mechanics: Statics, 9e, Hibbeler, Prentice Hall 2.Engineering Mechanics: Statics, SI Version, 6th Edition, J. L. Meriam, L. G. Kraige 1. STATİĞE GİRİŞ 1.1 TANIMLAR

Detaylı

BÖLÜM 12-15 HARMONİK OSİLATÖR

BÖLÜM 12-15 HARMONİK OSİLATÖR BÖLÜM 12-15 HARMONİK OSİLATÖR Hemen hemen her sistem, dengeye yaklaşırken bir harmonik osilatör gibi davranabilir. Kuantum mekaniğinde sadece sayılı bir kaç problem kesin olarak çözülebilmektedir. Örnekler

Detaylı

BÖLÜM 4: M-N-V 4.1. İZOSTATİK SİSTEMLER. Yapıda döşeme üzerinde bulunan sabit ve hareketli yükleri kolonlara aktaran yapı elemanı olan kiriş,

BÖLÜM 4: M-N-V 4.1. İZOSTATİK SİSTEMLER. Yapıda döşeme üzerinde bulunan sabit ve hareketli yükleri kolonlara aktaran yapı elemanı olan kiriş, ÖÜ Q.. İZOSTTİK SİSTR ÖÜ : Yapıda döşee üzerinde bulunan sabit ve hareketli ükleri kolonlara aktaran apı eleanı olan kiriş,. ir boutu diğerine göre küçük olan [b,h

Detaylı

Ses ile İlgili Temel Kavramlar

Ses ile İlgili Temel Kavramlar Bölüm 1 Ses ile İlgili Temel Kavramlar 1.1 Sesin Oluşumu ve Yayılması Titreşen bir nesnenin ortamda neden olduğu dalga hareketi sağlıklı bir kulak ve beyin tarafından ses olarak algılanır. O halde sesin

Detaylı

ALFA BOZUNUMU MEHMET YÜKSEL ÇÜ FBE FİZİK ABD ADANA-2010

ALFA BOZUNUMU MEHMET YÜKSEL ÇÜ FBE FİZİK ABD ADANA-2010 ALFA BOZUNUMU MEHME ÜKSEL ÇÜ FBE FİZİK ABD ADANA-010 İÇERİK 1. Giriş. Alfa (α) Parçacığı ve Özellikleri 3. Alfa Bozunuu Niçin Olur? 4. eel Alfa Bozunu Reaksiyonları 4.1. Alfa (α) Bozunuunda Enerji ve Moentu

Detaylı

TEMEL DC ÖLÇÜMLERİ: AKIM ÖLÇMEK: Ampermetre ile ölçülür. Ampermetre devreye seri bağlanır.

TEMEL DC ÖLÇÜMLERİ: AKIM ÖLÇMEK: Ampermetre ile ölçülür. Ampermetre devreye seri bağlanır. TEMEL DC ÖLÇÜMLERİ: AKIM ÖLÇMEK: Ampermetre ile ölçülür. Ampermetre devreye seri bağlanır. AMPERMETRENİN ÖLÇME ALANININ GENİŞLETİLMESİ: Bir ampermetre ile ölçebileceği değerden daha yüksek bir akım ölçmek

Detaylı

MATEMATİĞİN GEREKLİLİĞİ

MATEMATİĞİN GEREKLİLİĞİ Dr. Serdar YILMAZ MEÜ Fizik Bölümü Ses dalgalarının özellikleri 2 MATEMATİĞİN GEREKLİLİĞİ Matematik, yaşamı anlatmakta kullanılır. Matematik yoluyla anlatma, yanlış anlama ve algılamayı engeller. Yaşamda

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çöümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMLERİ - İki Boutlu

Detaylı

HIZ ve İVME AMAÇ: Yer-çekimi ivmesini ölçmek Sürtünmesiz eğik düzlemde hız-zaman ilişkisini incelemek BİLİNMESİ GEREKEN KAVRAMLAR:

HIZ ve İVME AMAÇ: Yer-çekimi ivmesini ölçmek Sürtünmesiz eğik düzlemde hız-zaman ilişkisini incelemek BİLİNMESİ GEREKEN KAVRAMLAR: HIZ ve İVME AMAÇ: Yer-çekii ivesini ölçek Sürtünesiz eğik düzlede hız-zaan ilişkisini inceleek BİLİNMESİ GEREKEN KAVRAMLAR: Konu vektörü Yer-değiştire vektörü Ortalaa hız ve anlık hız Ortalaa ive ve anlık

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

BÖLÜM X OSİLATÖRLER. e b Yükselteç. Be o Geri Besleme. Şekil 10.1 Yükselteçlerde geri besleme

BÖLÜM X OSİLATÖRLER. e b Yükselteç. Be o Geri Besleme. Şekil 10.1 Yükselteçlerde geri besleme BÖLÜM X OSİLATÖRLER 0. OSİLATÖRE GİRİŞ Kendi kendine sinyal üreten devrelere osilatör denir. Böyle devrelere dışarıdan herhangi bir sinyal uygulanmaz. Çıkışlarında sinüsoidal, kare, dikdörtgen ve testere

Detaylı

GÖRÜNTÜ İŞLEME UYGULAMALARI. Arş. Gör. Dr. Nergis TURAL POLAT

GÖRÜNTÜ İŞLEME UYGULAMALARI. Arş. Gör. Dr. Nergis TURAL POLAT GÖRÜNTÜ İŞLEME UYGULAMALARI Arş. Gör. Dr. Nergis TURAL POLAT İçerik Görüntü işleme nedir, amacı nedir, kullanım alanları nelerdir? Temel kavramlar Uzaysal frekanslar Örnekleme (Sampling) Aynalama (Aliasing)

Detaylı

11. SINIF KONU ANLATIMLI. 1. ÜNİTE: KUVVET VE HAREKET 6. Konu ENERJİ VE HAREKET ETKİNLİK VE TEST ÇÖZÜMLERİ

11. SINIF KONU ANLATIMLI. 1. ÜNİTE: KUVVET VE HAREKET 6. Konu ENERJİ VE HAREKET ETKİNLİK VE TEST ÇÖZÜMLERİ . SINIF KONU NLTIMLI. ÜNİTE: KUVVET VE HREKET 6. Konu ENERJİ VE HREKET ETKİNLİK VE TEST ÇÖZÜMLERİ 6. Enerji ve Hareket. Ünite 6. Konu (Enerji ve Hareket) K v 0 0 5 nın Çözüleri L M yatay Cisin K noktasında

Detaylı

Doğrultucularda ve Eviricilerde Kullanılan Pasif Filtre Türlerinin İncelenmesi ve Karşılaştırılması

Doğrultucularda ve Eviricilerde Kullanılan Pasif Filtre Türlerinin İncelenmesi ve Karşılaştırılması Enerji Verimliliği ve Kalitesi Sempozyumu EVK 2015 Doğrultucularda ve Eviricilerde Kullanılan Pasif Filtre Türlerinin İncelenmesi ve Karşılaştırılması Mehmet Oğuz ÖZCAN Ezgi Ünverdi AĞLAR Ali Bekir YILDIZ

Detaylı

8.04 Kuantum Fiziği Ders XII

8.04 Kuantum Fiziği Ders XII Enerji ölçümünden sonra Sonucu E i olan enerji ölçümünden sonra parçacık enerji özdurumu u i de olacak ve daha sonraki ardışık tüm enerji ölçümleri E i enerjisini verecektir. Ölçüm yapılmadan önce enerji

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

8.04 Kuantum Fiziği Ders X. Schrödinger denk. bir V(x) potansiyeli içinde bir boyutta bir parçacığın hareketini inceler.

8.04 Kuantum Fiziği Ders X. Schrödinger denk. bir V(x) potansiyeli içinde bir boyutta bir parçacığın hareketini inceler. Schrödinger denklemi Schrödinger denk. bir V(x) potansiyeli içinde bir boyutta bir parçacığın hareketini inceler. Köşeli parantez içindeki terim, dalga fonksiyonuna etki eden bir işlemci olup, Hamilton

Detaylı

SAYISAL GÖRÜNTÜLERDE ANA BİLEŞENLER DÖNÜŞÜMÜ (THE PRINCIPAL COMPONENTS TRANSFORMATION ON DIGITAL IMAGES)

SAYISAL GÖRÜNTÜLERDE ANA BİLEŞENLER DÖNÜŞÜMÜ (THE PRINCIPAL COMPONENTS TRANSFORMATION ON DIGITAL IMAGES) Akca, M.,D., Doan, S., 00. Saisal oruntulerde Ana Bilesenler Donusuu. Harita Derisi, Sai 9,sf:-5. ÖZE SAYISAL ÖRÜNÜLERDE ANA BİLEŞENLER DÖNÜŞÜMÜ (HE PRINIPAL OMPONENS RANSFORMAION ON DIIAL IMAES) M. Devri

Detaylı