Homoteti (Homothety) DÖNÜfiÜMLERLE GEOMETR. Düzlemde M sabit bir nokta ve k bir reel say olmak

Save this PDF as:

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Homoteti (Homothety) DÖNÜfiÜMLERLE GEOMETR. Düzlemde M sabit bir nokta ve k bir reel say olmak"

Transkript

1 ÖNÜfiÜLRL GTR ¾ Homoteti (Homothet) üzlemde sabit bir nokta ve k bir reel sa olmak üzere; P = + k.(p ) ÖRNK üzlemde (5, 6) noktas n n (, 7) merkezli ve k = oranl homoteti ini bulal m. eflitli ini sa laan P noktas na P nin merkezli k oranl homoteti i denir. ranan nokta olsun, ¾ H : R R P = H(P) = + k. (P ) dönüflümüne P noktas n n merkezi ve oranl homoteti dönüflümü merkezi denir. ölece H() = = olur. NT : k = oranl homoteti ile fleklin a da noktan n kendisi elde edilir. P P P = k. P ÖRNK üzlemde T(4, 8) noktas n n (5, ) merkezli ve k = oranl homoteti ini bulal m. ÖRNK üzlemde P(, ) noktas n n (, 4) merkezli ve k = oranl homoteti ini bulal m. ranan olsun. (5, ) T(4, 8) (, 4) P(, ) P = Tolup aranan nokta ile T noktalar n n orta noktas d r. ölece; = (T ) P =. P P =.(P ) P (, 4) =.(, ) P = (8,) bulunur. (5, ) = (,0) 9 = d, n olup 9 H(T) = d, n bulunur. 0.S n f Geometri Konu nlatımlı Soru ankası 7

2 ÖNÜfiÜLRL GTR ÖRNK 4 ÖRNK 6 Yukar daki flekilde [] do ru parças n n merkezi ve k = 4 oranl homoteti ini bulal m. fiekildeki karesinin merkezli ve k = oranl homoteti ini bulal m. = 4. [ ] do ru parças [] do ru parças n n merkezli ve k = 4 oranl homotete idir. ÖRNK 5 üçgeninin merkezi ve k [, ] oranl homoteti ini bulal m. karesi karesinin merkezi ve k = Yukar da; =., =., =. dir. =., =., =. luflan flekil bir kesik piramittir. NT : üzlemde merkezli k oranl homoteti sonucunda elde edilen flekilde, k = ise fleklin kendisi 0 < k < ise fleklin(k oran nda) küçültülmüflü k > ise fleklin (k oran nda) büütülmüflü elde edilir. 0.S n f Geometri Konu nlatımlı Soru ankası 8

3 ÖNÜfiÜLRL GTR şağıdaki homotetileri inceleiniz. P Q K F L [] : [] nin merkezli k = [F] : [] nin merkezli k = [KL] : [] nin merkezli k = 4 NT : Homoteti dönüşümü uzunlukları değiştirir, açıları korur. merkezli ve oranları k, k olan iki homotetinin bileşkesi, merkezli ve k. k oranlı homoteti dönüşümüdür. ir şekle öteleme, dönme, ansıma ve homoteti dönüşümlerinin bileşkeleri ugulanarak elde edilen şekle ilk şeklin benzeri denir. enzerlik oranında kullanılan homotetilerin oranlarının çarpımıdır. [F] : [] nin merkezli k = [KL] : [] nin merkezli k = [] : [] nin merkezli k = [PQ] : [] nin merkezli k = noktas : noktas n n merkezli k = oranl noktas : noktas n n merkezli k = oranl noktas : noktas n n merkezli k = oranl noktas : noktas n n merkezli k = oranl noktası : noktasının merkezli ve k = oranlı homotetiğidir. noktası : noktasının merkezli ve k = oranlı homotetiğidir. noktası : noktasının merkezli ve k = oranlı homotetiğidir. ÖRNK 7 Yukar da d do rusu üzerinde eflit aral klarla s ralanm fl,,,, noktalar için afla- dakllerden kaç tanesi do rudur? I. noktas, noktas n n merkezli ve k = II. noktas, noktas n n merkezli ve k = III. noktas, noktas n n merkezli ve k = 4 IV. noktas, noktas n n merkezli ve k = V. noktas, noktas n n merkezli ve k = fiekil dikkatlice incelenirse I, II, III ve IV. önermeler do ru, V. önerme anl flt r. d 0.S n f Geometri Konu nlatımlı Soru ankası 9

4 ÖNÜfiÜLRL GTR şağıdaki homoteti görsellerini inceleip homoteti merkezleri ve oranlar n tahmin etmee çal fl n z. ❺ ❶ ❷ ❻ ❸ ❼ S ❹ ❽ 0.S n f Geometri Konu nlatımlı Soru ankası 0

5 ÖNÜfiÜLRL GTR TST. P noktas n n merkezli ve k oranl homoteti i olan nokta T oldu una göre, afla dakilerden hangisi do rudur? ) T = P + k( P) ) T = + k(p ) ) T = K + k( + P) ) T = P + k(p ) ) T = k + P 5. nalitik düzlemde P(4, 8) noktas n n (, ) merkezli ve k oranl homoteti i T(6, 0) noktas oldu una göre, k kaçt r? ) ) 4 ) 5 6 ) 5 7 ) 4 9. nalitik düzlemde, P(5, ) noktas n n (, ) merkezli ve k = oranl homoteti i afla- dakilerden hangisidir? ) (8, ) ) (, ) ) (8, 5) ) (4, 5) ) (, 5) 6. nalitik düzlemde T(, ) noktas n n (a, b) merkezli ve k = oranl homoteti i (4, 9) oldu una göre, a.b kaçt r? ) 6 ) 8 ) 0 ) ) 4. nalitik düzlemde P( 8, 6) noktas n n orijin merkezli ve k = oranl homoteti i afla- dakilerden hangisidir? ) (, 4) ) (, 4) ) ( 4, ) ) (4, ) ) (, 4) 7. nalitik düzlemde 8 birim uzunlu undaki 5 do ru parças n n k = oranl homoteti inin 4 uzunlu u kaç birimdir? ) 8 ) 0 ) ) 4 ) 6 4. nalitik düzlemde P(, 6) noktas n n (p, t) merkezli ve k = oranl homoteti i (4, 8) noktas oldu una göre, p + t kaçt r? ) 60 ) 50 ) 40 ) 0 ) 0 8. nalitik düzlemde (, 5) noktas n n (, 6) merkezli homoteti i ( 9, n) oldu una göre, n kaçt r? ) 4 ) 5 ) 6 ) 7 ) 8 0.S n f Geometri Konu nlatımlı Soru ankası

6 ÖNÜfiÜLRL GTR TST 9. noktas n n merkezli ve k = oranl homoteti i noktas, noktas n n merkezli ve k = oranl homoteti i noktas d r. una göre, ) ) ) + toplam kaçt r? ) ) 5. Uzunluklar de ifltiren dönüflüm afla dakilerden hangisidir? ) Ötelemeli ans ma ) Yata ans ma ) öndürme ) Öteleme ) Homoteti. Yukar daki zeminde üçgeninin merkezli ve k = oranl homoteti i afla dakilerden hangisidir? 0. ranlar ve 4 olan efl merkezli iki homoteti dönüflümüne u raan bir üçgenin ilk halinde çevresi 5 birim oldu una göre, son halinde çevresi kaç birimdir? ) 75 ) 60 ) 50 ) 40 ) 5 ) ) ) ). nalitik düzlemde birim uzunlu undaki bir do ru parças n n k = oranl homoteti inin uzunlu u kaç birimdir? ) ) 6 ) 8 ) 0 ) ) 4 0.S n f Geometri Konu nlatımlı Soru ankası

: Bir d do rusu üzerinde; A, B, C ve D noktalar alal m. d. n n uzunlu u denir ve. d d1 d2 F G. E, F d G, H d ve ise. d // d 1 2

: Bir d do rusu üzerinde; A, B, C ve D noktalar alal m. d. n n uzunlu u denir ve. d d1 d2 F G. E, F d G, H d ve ise. d // d 1 2 VI. ÖLÜM ÜZLEME VEKTÖRLER YÖNLÜ RU PRÇSI Tan m : üzlemde ve noktalar verilsin. [] n n dan e do ru önlendirildi ini düflünelim. öle do ru parçalar na, önlü do ru parçalar denir. önlü do ru parças, ile gösterilir.

Detaylı

MATEMAT K TEST. 3. a ve b reel say lar olmak üzere, 3 a = 4 ve 3 2a b 3 = 8 oldu una göre,

MATEMAT K TEST. 3. a ve b reel say lar olmak üzere, 3 a = 4 ve 3 2a b 3 = 8 oldu una göre, MTMT K TST KKT! + u testte 80 soru vard r. + u test için ar lan cevaplama süresi 5 dakikad r. + evaplar n z, cevap ka d n n Matematik Testi için ar lan k sma iflaretleiniz.. a, b, c pozitif reel sa lard

Detaylı

ÜN TE I. ANAL T K DÜZLEM

ÜN TE I. ANAL T K DÜZLEM ÜN TE I. ANAL T K DÜZLEM 1. G R fi. SAYI DO RUSU. ANAL T K DÜZLEM 4. K NOKTA ARASINDAK UZAKLIK 5. B R DO RU PARÇASININ ORTA NOKTASININ KOORD NATLARI 6. B R DO RU PARÇASINI, VER LEN B R ORANDA BÖLEN NOKTALARIN

Detaylı

ÜÇGEN LE LG L TEMEL KAVRAMLAR

ÜÇGEN LE LG L TEMEL KAVRAMLAR III. ÖLÜM ÜÇGN L LG L TML KVRMLR Tan m (Çokgen) : n > olmak üzere, bir düzlemde 1,, 3,..., n gibi birbirinden farkl, herhangi üçü do rusal olmayan n nokta verilsin. Uç noktalar d fl nda kesiflmeyen [ 1

Detaylı

Yukar daki kare ve dikdörtgene göre eflitlikleri tan mlay n z. AB =... =... =... =...

Yukar daki kare ve dikdörtgene göre eflitlikleri tan mlay n z. AB =... =... =... =... Üçgen, Kare ve ikdörtgen MTEMT K KRE VE KÖRTGEN Kare ve ikdörtgenin Özellikleri F E Kare ve dikdörtgenin her kenar uzunlu u birer do ru parças d r. Kare ve dikdörtgenin kenar, köfle ve aç say lar eflittir.

Detaylı

2. Afla daki çokgenlerden hangisi düzgün. 1. Afla dakilerden hangisi çokgen de ildir? çokgen de ildir? A) B) A) B) C) D) C) D)

2. Afla daki çokgenlerden hangisi düzgün. 1. Afla dakilerden hangisi çokgen de ildir? çokgen de ildir? A) B) A) B) C) D) C) D) Ad : Soyad : S n f : Nu. : Okulu : Çokgenler Dörtgenler MATEMAT K TEST 15 1. Afla dakilerden hangisi çokgen de ildir? 4. Afla daki çokgenlerden hangisi düzgün çokgen de ildir? 2. Afla daki çokgenlerden

Detaylı

GEOMETR 7 ÜN TE V KÜRE

GEOMETR 7 ÜN TE V KÜRE ÜN TE V KÜRE 1. KÜRE a. Tan m b. Bir Kürenin Belirli Olmas c. Bir Küre ile Bir Düzlemin Ara Kesiti 2. KÜREN N ALANI 3. KÜREN N HACM 4. KÜREDE ÖZEL PARÇALAR a. Küre Kufla I. Tan m II. Küre Kufla n n Alan

Detaylı

GEOMETR 7 ÜN TE II P RAM T

GEOMETR 7 ÜN TE II P RAM T ÜN TE II P RAM T 1. P RAM TLER N TANIMI. DÜZGÜN P RAM T a. Tan m b. Düzgün Piramidin Özelikleri. P RAM D N ALANI a. Düzgün Olmayan Piramidin Alan b. Düzgün Piramidin Alan 4. P RAM D N HACM 5. DÜZGÜN DÖRTYÜZLÜ

Detaylı

ÇÖZÜM [KB] çizilirse, SORU. Boyutlar 9 cm ve 12 cm olan dikdörtgenin bir düzlem üzerindeki izdüflümü bir do ru parças ise, [KC] [CB] ve

ÇÖZÜM [KB] çizilirse, SORU. Boyutlar 9 cm ve 12 cm olan dikdörtgenin bir düzlem üzerindeki izdüflümü bir do ru parças ise, [KC] [CB] ve GMTR erginin bu sa s na Uza Geometri ve o runun nalitik ncelemesi konular na çözümlü sorular er almakta r. u konua, ÖSS e ç kan sorular n çözümü için gerekli temel bilgileri ve pratik ollar, sorular m

Detaylı

TEMEL MATEMAT K TEST

TEMEL MATEMAT K TEST TEMEL MATEMAT K TEST KKAT! + Bu bölümde cevaplayaca n z soru say s 40 t r + Bu bölümdeki cevaplar n z cevap ka d ndaki "TEMEL MATEMAT K TEST " bölümüne iflaretleyiniz. 2 4. 4. 0,5 2. iflleminin sonucu

Detaylı

GEOMETR 7 ÜN TE III S L ND R

GEOMETR 7 ÜN TE III S L ND R ÜN TE III S L ND R 1. S L ND R K YÜZEY VE TANIMLAR 2. S L ND R a. Tan m b. Silindirin Özelikleri 3. DA RESEL S L ND R N ALANI a. Dik Dairesel Silindirin Alan I. Dik Dairesel Silindirin Yanal Alan II. Dik

Detaylı

YGS Soru Bankas MATEMAT K Temel Kavramlar

YGS Soru Bankas MATEMAT K Temel Kavramlar 9. 7 = 3.3.3, 07 = 3.3.3 007 = 3.3.3, 0007 = 3.3.3,... Yukar daki örüntüye göre, afla daki say lar n hangisi 81'in kat d r? A) 00 007 B) 0 000 007 C) 000 000 007 D) 00 000 000 007 13. Ard fl k 5 pozitif

Detaylı

1. Yukar daki çubuk makarna afla dakilerden hangisinin modelidir? Yukar daki rakamlardan kaç tanesinde dikey do ru modeli vard r?

1. Yukar daki çubuk makarna afla dakilerden hangisinin modelidir? Yukar daki rakamlardan kaç tanesinde dikey do ru modeli vard r? Ad : Soyad : S n f : Nu. : Okulu : 1. Yukar daki çubuk makarna afla dakilerden hangisinin modelidir? Do ru Düzlem Nokta 5. MATEMAT K TEST 19 Ifl n Do ru Do ru parças 2. Afla daki hangi do runun çizgi modeli

Detaylı

Çokgenler. Dörtgenler. Çember. Simetri. Örüntü ve Süslemeler. Düzlem. Geometrik Cisimler

Çokgenler. Dörtgenler. Çember. Simetri. Örüntü ve Süslemeler. Düzlem. Geometrik Cisimler MTEMT K Çokgenler örtgenler Çember Simetri Örüntü ve Süslemeler üzlem Geometrik isimler Temel Kaynak 5 Çokgenler ÇOKGENLER E F En az üç do ru parças n n, birer uçlar ortak olacak flekilde ard fl k olarak

Detaylı

TEK ve ÇOK YÜZEYLİ KAPALI YÜZEYLER ve KATI CİSİMLER 1 TEST

TEK ve ÇOK YÜZEYLİ KAPALI YÜZEYLER ve KATI CİSİMLER 1 TEST ve Ç ÜLİ PLI ÜLR ve S I İSİMLR.. P(a,, ) ukarıdaki dik koordinat sisteminde (,, ) olduğuna göre, dikdörtgenler prizmasının hacmi kaç br tür? nalitik uzayda yukarıdaki dikdörtgenler prizmasının yüzey alanı

Detaylı

6. SINIF MATEMAT K DERS ÜN TELEND R LM fi YILLIK PLAN

6. SINIF MATEMAT K DERS ÜN TELEND R LM fi YILLIK PLAN SAYLAR Do al Say lar Parças ve fl n 6. SNF MATEMAT K DERS ÜN TELEND R LM fi YLLK PLAN Süre/ KAZANMLAR Ders AÇKLAMALAR 1. Do al say larla ifllemler yapmay gerektiren problemleri çözer ve kurar. Do al say

Detaylı

Do ufl Üniversitesi Matematik Kulübü Matematik Bireysel Yar flmas 2004 Soru ve Yan tlar

Do ufl Üniversitesi Matematik Kulübü Matematik Bireysel Yar flmas 2004 Soru ve Yan tlar o ufl Üniversitesi Matematik Kulübü Matematik ireysel Yar flmas 2004 Soru ve Yan tlar Soru. S f rdan farkl bir a say s için sonsuz ondal klarla oluflan ifadesinin de eri nedir? ise, Soru 2. 0 < < 0 olmak

Detaylı

GEOMETR 7 ÜN TE IV KON

GEOMETR 7 ÜN TE IV KON ÜN TE IV KON 1. KON K YÜZEY VE TANIMLAR 2. KON a. Tan m b. Dik Dairesel Koni I. Tan mlar II. Dik Dairesel Koninin Özelikleri III. Dönel Koni c. E ik Dairesel Koni 3. D K DA RESEL KON N N ALANI 4. DA RESEL

Detaylı

Do ufl Üniversitesi Matematik Kulübü Matematik Bireysel Yar flmas 2005 Soru ve Yan tlar

Do ufl Üniversitesi Matematik Kulübü Matematik Bireysel Yar flmas 2005 Soru ve Yan tlar Matematik ünyas, 2005 Yaz o ufl Üniversitesi Matematik Kulübü Matematik ireysel Yar flmas 2005 Soru ve Yan tlar 1. Maliyeti üzerinden yüzde 25 kârla sat lan bir mal n sat fl fiyat ndan yüzde onluk bir

Detaylı

GEOMETR 7 ÜN TE I PR ZMALAR

GEOMETR 7 ÜN TE I PR ZMALAR ÜN TE I PR ZMALAR 1. PR ZMAT K YÜZEY VE TANIMLAR 2. PR ZMA a. Tan m b. Prizman n Özelikleri 3. D K PR ZMA a. Tan m b. Dik Prizman n Özelikleri 4. E K PR ZMA a. Tan m b. E ik Prizman n Özelikleri 5. DÜZGÜN

Detaylı

say s kaç basamakl d r? 2. Bir düzlemde verilen 8 noktadan 4 tanesi ayn do ru üzerindedir. Di er 4 noktadan. 3. n do al say olmak üzere;

say s kaç basamakl d r? 2. Bir düzlemde verilen 8 noktadan 4 tanesi ayn do ru üzerindedir. Di er 4 noktadan. 3. n do al say olmak üzere; . 7 8 say s kaç basamakl d r? ) 2 B) 0 ) 9 ) 8 E) 7 2. Bir düzlemde verilen 8 noktadan 4 tanesi ayn do ru üzerindedir. i er 4 noktadan hiçbiri bu do ru üzerinde bulunmamaktad r ve bu 4 noktadan herhangi

Detaylı

1. Afla daki flekillerin boyal k s mlar n bütün, yar m ve çeyrek olarak belirtiniz.

1. Afla daki flekillerin boyal k s mlar n bütün, yar m ve çeyrek olarak belirtiniz. Ad : Soyad : S n f : 2. SINIF Nu. : Kesirler 53 Uygulamal Etkinlik 1. Afla daki flekillerin boyal k s mlar n bütün, yar m ve çeyrek olarak belirtiniz. 4. Afla daki boflluklar uygun ifadelerle tamamlay

Detaylı

TEMEL MATEMAT K TEST

TEMEL MATEMAT K TEST TML MTMT K TST KKT! + u bölümde cevaplayaca n z soru say s 40 t r + u bölümdeki cevaplar n z cevap ka d ndaki "TML MTMT K TST " bölümüne iflaretleyiniz.. + : flleminin sonucu kaçt r? 4. ört do al say afla

Detaylı

F Z K A IRLIK MERKEZ ÖRNEK 1 : ÇÖZÜM 1: Bir cisim serbestçe dönebilece i bir noktadan as l rsa, düfley do rultu daima a rl k merkezinden

F Z K A IRLIK MERKEZ ÖRNEK 1 : ÇÖZÜM 1: Bir cisim serbestçe dönebilece i bir noktadan as l rsa, düfley do rultu daima a rl k merkezinden F Z A IRI EREZ ÖRNE 1 : I m II 2m ütleleri m, 2m olan eflit bölmeli, düzgün ve türdefl I ve II levhalar flekildeki gibi birbirine tutturularak noktas ndan bir iple as l yor. Bu levhalar afla dakilerden

Detaylı

ÖRNEK 1: Üç basamakl 4AB say s, iki basamakl BA say s n n 13 kat ndan 7 fazlad r. Buna göre, BA say s kaçt r? ÖRNEK 2:

ÖRNEK 1: Üç basamakl 4AB say s, iki basamakl BA say s n n 13 kat ndan 7 fazlad r. Buna göre, BA say s kaçt r? ÖRNEK 2: MATEMAT K SAYILAR - I ÖRNEK : Üç basamakl 4AB sa s, iki basamakl BA sa s n n kat ndan fazlad r. Buna göre, BA sa s kaçt r? A) B) 25 C) 2 D) 2 E) 2 (ÖSS - ) ÖRNEK 2: Dört basamakl ABCD sa s, üç basamakl

Detaylı

ÖTELEME VE DÖNME DÖNÜŞÜMLERİ SİMETRİ, ÖTELEMELİ DÖNME VE ÖTELEMELİ SİMETRİ DÖNÜŞÜMLERİ

ÖTELEME VE DÖNME DÖNÜŞÜMLERİ SİMETRİ, ÖTELEMELİ DÖNME VE ÖTELEMELİ SİMETRİ DÖNÜŞÜMLERİ ÖÜ 1 Ö V Ö ÖÜŞÜİ ) Öteleme önüşümü...7 ) önme önüşümü... 11 ) önme imetrisi...13 ) gulama estleri...15 ÖÜ İİ, Öİ Ö V Öİ İİ ÖÜŞÜİ ) imetri...5 ) ir oktanın ksenlere ve Orijine Göre imetriği...7 ) ir oktanın

Detaylı

25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır?

25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır? . f: R { 4} R, > ise ( ) 4 f =, ise 6 8. ( ) f = 6 + m + 4 eğrisinin dönüm noktasının ordinatı olduğuna göre, m kaçtır? ) 7 ) 8 ) 9 ) E) fonksiyonu aşağıdaki değerlerinin hangisinde süreksizdir? ) ) )

Detaylı

8. SINIF ESLiK ve BENZERLiK

8. SINIF ESLiK ve BENZERLiK 0 8. SINI SLiK ve NZRLiK şlik: Karşılıklı açılar ve kenar uzunlukları eşit olmalı. Sembolleri enzerlik: Karşılıklı açılar eşit, karşılıklı kenarlar orantılı olmalı. Sembolleri ~ veya olduğuna göre verilmeyen

Detaylı

ÜN TE I. KON KLER N ANAL T K NCELENMES

ÜN TE I. KON KLER N ANAL T K NCELENMES ÜN TE I. KON KLER N ANAL T K NCELENMES 1. G R fi. EL PS I. Tan mlar II. Elipsin eksenleri ve özel noktalar a. Asal eksen b. Yedek eksen c. Merkezil elips d. Elipsin köfleleri e. Elipsin odak noktalar f.

Detaylı

ÖRNEK ÖRNEK ÖRNEK ÖRNEK

ÖRNEK ÖRNEK ÖRNEK ÖRNEK Öteleme ve yansımanın birlikte kullanıldığı dönüşümlere ötelemeli yansıma denir. Düzlemde yansıma ve ötelemeli yansıma dönüşümlerinde uzaklıklar korunurken açıların yönleri değişir. Ötelemeli yansıma dönüşümünde

Detaylı

01 DÖRTGENLER. homoteti dönüflümü d fl bükey dörtgen iç bükey dörtgen orta taban dörtgen

01 DÖRTGENLER. homoteti dönüflümü d fl bükey dörtgen iç bükey dörtgen orta taban dörtgen 01 ÖRTGNLR homoteti dönüflümü d fl büke dörtgen iç büke dörtgen orta taban dörtgen 9 dörtgeni ve temel elemanlar n aç klama, ugulamalar apma, dörtgenlerle ilgili teoremleri ispatlama ve ugulamalar apma,

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS 1 GMTRİ TSTİ 1. u testte sırasıyla Geometri (1 ) nalitik Geometri (3 30) ile ilgili 30 soru vardır.. evaplarınızı, cevap kâğıdının Geometri Testi için ayrılan kısmına işaretleyiniz. 1. bir üçgen =

Detaylı

TEMEL MATEMAT K TEST

TEMEL MATEMAT K TEST TEMEL MTEMT K TEST KKT! + u bölümde cevaplayaca n z soru say s 40 t r + u bölümdeki cevaplar n z cevap ka d ndaki "TEMEL MTEMT K TEST " bölümüne iflaretleyiniz. 1. 1 3 1 3 1 2 1 2. 5 + 7 iflleminin sonucu

Detaylı

ÜN TE III. ÇEMBER N ANAL T K NCELENMES

ÜN TE III. ÇEMBER N ANAL T K NCELENMES ÜN TE III. ÇEMBER N ANAL T K NCELENMES 1. G R fi. ÇEMBER N DENKLEM 3. MERKEZLER R J NDE, EKSENLER ÜZER NDE V E YA EKSENLERE T E E T LAN ÇEMBERLER N DENKLEM 4. ÇEMBER N GENEL DENKLEM 5. VER LEN ÜÇ NKTADAN

Detaylı

Do ufl Üniversitesi Matematik Kulübü nün

Do ufl Üniversitesi Matematik Kulübü nün Matematik ünas, 003 Güz o ufl Üniversitesi Matematik Kulübü Matematik Yar flmas /. ölüm o ufl Üniversitesi Matematik Kulübü nün üniversitenin ö retim üelerinin de katk - lar la düzenledi i liseleraras

Detaylı

ÜN TE IV. DÜZLEMDE VEKTÖRLER

ÜN TE IV. DÜZLEMDE VEKTÖRLER ÜN TE IV. DÜZLEMDE VEKTÖRLER 1. YÖNLÜ DO RU PRÇSI I. Yönlü Do ru Parças n n Tan m I I. Yönlü Do ru Parças n n Uzunlu u III. Yönlü Do ru Parças n n Tafl y c s IV. S f r Yönlü Do ru Parças V. Paralel Yönlü

Detaylı

ege yayıncılık Parabolün Tan m ve Tepe Noktas TEST : 49 1. Afla daki fonksiyonlardan hangisinin grafi i bir parabol belirtir?

ege yayıncılık Parabolün Tan m ve Tepe Noktas TEST : 49 1. Afla daki fonksiyonlardan hangisinin grafi i bir parabol belirtir? Parabolün Tan m ve Tepe Noktas TEST : 9. Afla daki fonksionlardan hangisinin grafi i bir parabol belirtir? 5. Afla daki fonksionlardan hangisi A(,) noktas ndan geçer? A) f() = B) f() = f() = + f() =. f()

Detaylı

Sunum ve Sistematik 1. ÜNİTE: TEMEL GEOMETRİK KAVRAMLAR VE KOORDİNAT GEOMETRİYE GİRİŞ

Sunum ve Sistematik 1. ÜNİTE: TEMEL GEOMETRİK KAVRAMLAR VE KOORDİNAT GEOMETRİYE GİRİŞ Sunum ve Sistematik 1. ÜNİT: TML GOMTRİK KVRMLR V KOORİNT GOMTRİY GİRİŞ KONU ÖZTİ u başlık altında, ünitenin en can alıcı bilgileri, kazanım sırasına göre en alt başlıklara ayrılarak hap bilgi niteliğinde

Detaylı

ÜN TE I. A) TEKRAR EDEN, YANSIYAN VE DÖNEN fiek LLER a) Fraktallar b) Yans yan ve Dönen fiekiller ALIfiTIRMALAR ÖZET TEST I-I

ÜN TE I. A) TEKRAR EDEN, YANSIYAN VE DÖNEN fiek LLER a) Fraktallar b) Yans yan ve Dönen fiekiller ALIfiTIRMALAR ÖZET TEST I-I ÜN TE I A) TEKRAR EDEN, YANSIYAN VE DÖNEN fiek LLER a) Fraktallar b) Yans yan ve Dönen fiekiller ALIfiTIRMALAR ÖZET TEST I-I B) ÜSLÜ SAYILAR a) Bir Tam Say n n Negatif Kuvveti b) Tekrarl Çarp mlar Üslü

Detaylı

Do al Say lar Do al Say larla Toplama fllemi Do al Say larla Ç karma fllemi Do al Say larla Çarpma fllemi Do al Say larla Bölme fllemi Kesirler

Do al Say lar Do al Say larla Toplama fllemi Do al Say larla Ç karma fllemi Do al Say larla Çarpma fllemi Do al Say larla Bölme fllemi Kesirler Do al Say lar Do al Say larla Toplama fllemi Do al Say larla Ç karma fllemi Do al Say larla Çarpma fllemi Do al Say larla Bölme fllemi Kesirler Kesirlerle Toplama, Ç karma ve Çarpma fllemi Oran ve Orant

Detaylı

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80.

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80. 11 ÖLÜM SİZİN İÇİN SÇTİLR LRİMİZ 1 80 0 bir dörtgen = = = m() = 80 m() = 0 Verilenlere göre, açısının ölçüsü kaç derecedir? 0 10 0 bir üçgen m() = 0 m() = 10 m() = 0 Yukarıda verilenlere göre, oranı kaçtır?

Detaylı

Y ll k Plan MATEMAT K 8. SINIF Ö RETMEN KILAVUZ K TABI

Y ll k Plan MATEMAT K 8. SINIF Ö RETMEN KILAVUZ K TABI ÜNİTELENDİRİLMİŞ YILLIK PLAN MATEMAT K 8. SINIF Ö RETMEN KILAVUZ K TABI 9 SINIF : 8 LEND R LM fi Y I L L I K P L A N ÖRÜNTÜ VE SÜSLEMELER. Do ru, çokgen ve çember modellerinden örüntüler infla eder, çizer

Detaylı

İÇİNDEKİLER. Üçgenler. Katı Cisimler. Doğruda Açı Prizma Üçgende Açı Silindir Açı Kenar Bağıntıları Piramit...

İÇİNDEKİLER. Üçgenler. Katı Cisimler. Doğruda Açı Prizma Üçgende Açı Silindir Açı Kenar Bağıntıları Piramit... İÇİİR Üçgenler oğruda çı... 1 Üçgende çı... 5 çı enar ağıntıları...11 ik Üçgen...17 İkizkenar Üçgen...5 şkenar Üçgen...1 Özel çılı Üçgenler...7 çıorta...1 enarorta...51 Üçgende erkezler...1 enzerlik...5

Detaylı

Olas l k Hesaplar (II)

Olas l k Hesaplar (II) Olas l k Hesaplar (II) B ir önceki yaz daki örneklerde olay say s sonluydu. Örne in, iki zarla 21 olay vard. fiimdi olay say m z sonsuz yapaca z. Kolay bir soruyla bafllayal m: [0, 1] aral nda rastgele

Detaylı

TRİGONOMETRİ Test -1

TRİGONOMETRİ Test -1 TRİGONOMETRİ Test -. y. y K O O. nalitik düzlemde verilen O merkezli birim çemberde hangi noktanın koordinatları (0, ) dir? (O noktası orijindir.) O y [OK] açıortay olmak üzere, nalitik düzlemde verilen

Detaylı

fleklinde okuruz. Pay paydas ndan büyük veya eflit olan kesirlere bileflik kesirler denir.

fleklinde okuruz. Pay paydas ndan büyük veya eflit olan kesirlere bileflik kesirler denir. Kesirler MATEMAT K KES RLER pay kesir çizgisi payda kesri tane tir. Bu kesri beflte iki ya da iki bölü befl fleklinde okuruz. kesrinde, bütünün ayr ld parça say s n gösterir. Yani paydad r. ise al nan

Detaylı

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır. MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı

Detaylı

BU ÜN TEN N AMAÇLARI

BU ÜN TEN N AMAÇLARI ÜN TE I UZAY GEOMETR 1. UZAY KAVRAMI 2. UZAYIN TEMEL (KONUM) AKS YOMLARI 3. DÜZLEMDE K DO RUNUN B RB R NE GÖRE KONUMLARI 4. UZAYDA K DO RUNUN B RB R NE GÖRE KONUMLARI 5. UZAYDA B R DO RU LE DÜZLEM N B

Detaylı

1999 ULUSAL ANTALYA MATEMAT IK OL IMP IYATI B IR INC I AŞAMA SORULARI

1999 ULUSAL ANTALYA MATEMAT IK OL IMP IYATI B IR INC I AŞAMA SORULARI 1999 ULUSL NTLY MTMT IK L IMP IYTI IR IN I ŞM SRULRI Lise 1- S nav Sorular 1. f1; ; 3; :::; 1999g kümesinin, eleman say s tek say olan kaç tane alt kümesi vard r? ) 1999 ) 1998 ) 1998-1 ) 999 ) hiçbiri.

Detaylı

ÜN TE II UZAYDA DO RULARIN VE DÜZLEMLER N D KL

ÜN TE II UZAYDA DO RULARIN VE DÜZLEMLER N D KL ÜN TE II UZAYDA DO RULARIN VE DÜZLEMLER N D KL 1. DO RULARIN D KL 2. B R DO RUNUN B R DÜZLEME D KL a. Tan m b. Düzlemde Bir Do ru Parças n n Orta Dikme Do rusu c. Bir Do runun Bir Düzleme Dikli ine Ait

Detaylı

ÜN TE II. UZAYDA VEKTÖR, DO RU VE DÜZLEM N ANAL T K NCELENMES

ÜN TE II. UZAYDA VEKTÖR, DO RU VE DÜZLEM N ANAL T K NCELENMES ANAL T K GEOMETR ÜN TE II. UZAYDA VEKTÖR, DO RU VE DÜZLEM N ANAL T K NCELENMES 1. ANAL T K UZAY. ANAL T K UZAY D A D K KOORD NAT EKSENLER VE ANAL T K UZAY I. Analitik uzayda koordinat sistemi II. Analitik

Detaylı

6. 5 portakaldan 600 ml portakal suyu ç km flt r. Buna göre, 2 L 400 ml portakal suyu kaç portakaldan ç kar?

6. 5 portakaldan 600 ml portakal suyu ç km flt r. Buna göre, 2 L 400 ml portakal suyu kaç portakaldan ç kar? Ad : Soyad : S n f : Nu. : Okulu : S v lar Ölçme Sütun Grafi i Olas l k TEST. 920 ml = L ml Yukar da verilen eflitli e göre + iflleminin sonucu kaçt r? A) 29 B) 60 C) 69 D) 9 2. Çiftçi Ak n bahçesinden

Detaylı

ÜN TE III L NEER CEB R

ÜN TE III L NEER CEB R ÜN TE III L NEER CEB R MATR SLER Matrisin ki matrisin eflitli i Toplama ifllemi ve özellikleri Matrislerde skalarla çarpma ifllemi ve özellikleri Matrislerde çarpma ifllemi Çarpma ifllemine göre birim

Detaylı

TEST. Dönüşüm Geometrisi. 1. y 5. 4

TEST. Dönüşüm Geometrisi. 1. y 5. 4 Dönüşüm Geometrisi 8. Sınıf Matematik Soru ankası TEST 33 1. 4. (0, 4) (5,4) (3, 0) Koordinat düzlemi üzerinde verilen ve noktaları arasındaki uzaklık kaç birimdir? ) 5 ) 3 2 4 2 5 2 Koordinat düzlemi

Detaylı

ÜN TE II ÇOKGENSEL BÖLGELER N ALANLARI

ÜN TE II ÇOKGENSEL BÖLGELER N ALANLARI ÜN TE II ÇOKGENSEL BÖLGELER N ALANLARI 1. ÇOKGENSEL BÖLGELER N ALANLARI 2. D KDÖRTGEN N ALANI 3. ÜÇGENSEL BÖLGELER N ALANI 4. ÜÇGENSEL ALAN PROBLEMLER ÇÖZÜLÜRKEN KULLANILACAK FORMÜLLER 5. PARALELKENARIN

Detaylı

CO RAFYA KONUM. ÖRNEK 2 : Afla daki haritada, Rize ile Bingöl il merkezlerinin yak n ndan geçen boylam gösterilmifltir.

CO RAFYA KONUM. ÖRNEK 2 : Afla daki haritada, Rize ile Bingöl il merkezlerinin yak n ndan geçen boylam gösterilmifltir. CO RAFYA KONUM ÖRNEK 1 : Aralar nda 1 lik fark bulunan iki paralel aras ndaki uzakl k de iflmezken, aralar nda 1 lik fark, bulunan iki meridyen aras ndaki uzakl k Ekvator dan kutuplara gidildikçe azalmaktad

Detaylı

ÜN TE II ÜÇGENLERDE BENZERL K

ÜN TE II ÜÇGENLERDE BENZERL K ÜN TE II ÜÇGENLERDE BENZERL K 1. ÜÇGENLERDE BENZERL N TANIMI. ORANTININ ÖZEL KLER 3. ÜÇGENLERDE BENZERL K TEOREMLER * K.A.K. Benzerlik Teoremi * A.A.A. Benzerlik Teoremi * Verilen Bir Do ru Parças n stenen

Detaylı

TANIM : a, a, a, a,..., a R ve n N olmak üzere,

TANIM : a, a, a, a,..., a R ve n N olmak üzere, MATEMAT K TANIM : a, a, a, a,..., a R ve n N olmak üzere, 0 1 2 3 n P(x) = a x n a x n 1... a x 3 a x 2 a x n n 1 3 2 1 a ifadesine reel katsay l POL NOM denir. 0 a, a, a,..., a say lar na KATSAYILAR,

Detaylı

CO RAFYA HAR TA B LG S

CO RAFYA HAR TA B LG S CO RAFYA HAR TA B LG S ÖREK : Bir fiziki haritada Çukurova ile Konya Ovas n n farkl renklerle belirtilmifl olmas, bu ovalar n afla dakilerden hangisi bak m ndan farkl oldu unu gösterir? ÖREK 3 : A) Y ll

Detaylı

F Z K 3 ÜN TE II HAREKET

F Z K 3 ÜN TE II HAREKET ÜN TE II HAREKET 1. Bir Do ru Üzerinde Konum ve Yer De ifltirme 2. Düzgün Hareket 3. Ortalama H z ve Anî H z 4. Ortalama vme ve Anî vme 5. Sabit vmeli Hareket ÖZET Ö REND KLER M Z PEK fit REL M DE ERLEND

Detaylı

Üçgende Açı ABC bir ikizkenar. A üçgen 30

Üçgende Açı ABC bir ikizkenar. A üçgen 30 1. 4. bir ikizkenar üçgen 0 = m () = 0 m () = 70 70 Kıble : Müslümanların namaz kılarken yönelmeleri gereken, Mekke kentinde bulunan Kabe'yi gösteren yön. arklı iki ülkede bulunan ve noktalarındaki iki

Detaylı

Düzlem - Do ru - Nokta - Aç - Üçgen - Kare - Dikdörtgen - Çember - Simetri - Örüntü ve Süslemeler

Düzlem - Do ru - Nokta - Aç - Üçgen - Kare - Dikdörtgen - Çember - Simetri - Örüntü ve Süslemeler Geometri Düzlem - Do ru - Nokta - Aç - Üçgen - Kare - Dikdörtgen - Çember - Simetri - Örüntü ve Süslemeler ncele, bul flekilleri Çemberleri, üçgenleri, Resimdeki kareleri. Dikdörtgen hangileri? C S MLER

Detaylı

Saat Yönünde 90 Derecelik Dönme Hareketi. Saatin Tersi Yönünde 90 Derecelik Dönme Hareketi

Saat Yönünde 90 Derecelik Dönme Hareketi. Saatin Tersi Yönünde 90 Derecelik Dönme Hareketi Saat Yönünde 9 Derecelik Dönme Hareketi Saatin Tersi Yönünde 9 Derecelik Dönme Hareketi çizilmiş olan üçgenin orjin etrafında saat yönünde 9 lik dönme hareketine ait görüntüsünü çizip bu üçgenin köşe koordinatlarını

Detaylı

TEST. Çemberde Açılar. 1. Yandaki. 4. Yandaki saat şekildeki. 2. Yandaki O merkezli. 5. Yandaki O merkezli. 6. Yandaki. O merkezli çemberde %

TEST. Çemberde Açılar. 1. Yandaki. 4. Yandaki saat şekildeki. 2. Yandaki O merkezli. 5. Yandaki O merkezli. 6. Yandaki. O merkezli çemberde % Çemberde çılar 7. Sınıf Matematik Soru ankası 58. Yandaki merkezli s ( ) = 50c 4. Yandaki saat şekildeki gibi 04.00 ı gösterdiğinde akrep ile yelkovan arasında oluşan x açısı kaç derecedir? ' olduğuna

Detaylı

GEOMETR K fiek LLER. Bunlar biliyor musunuz? Yüzey: Bir varl n d fl ve genifl bölümleri. yüzey. Düz: Yüzeyinde girinti, ç k nt olmayan.

GEOMETR K fiek LLER. Bunlar biliyor musunuz? Yüzey: Bir varl n d fl ve genifl bölümleri. yüzey. Düz: Yüzeyinde girinti, ç k nt olmayan. GEOMETR K fiek LLER Bunlar biliyor musunuz? Yüzey: Bir varl n d fl ve genifl bölümleri. yüzey yüzey Düz: Yüzeyinde girinti, ç k nt olmayan. yüzey Küre: Tek yüzeyli cisim. Küp: Birbirine eflit alt yüzeyi

Detaylı

Aç ve Aç Ölçüsü. Üçgen, Kare ve Dikdörtgen. Geometrik Cisimler. Simetri. Örüntü ve Süslemeler

Aç ve Aç Ölçüsü. Üçgen, Kare ve Dikdörtgen. Geometrik Cisimler. Simetri. Örüntü ve Süslemeler MTEMT K ç ve ç Ölçüsü Üçgen, Kare ve ikdörtgen Geometrik Cisimler Simetri Örüntü ve Süslemeler Temel Kaynak 4 ç ve ç Ölçüsü ÇI VE ÇI ÖLÇÜSÜ ç lar n dland r lmas C Resimde aç oluflturulan yerlerin baz lar

Detaylı

LYS MATEMATİK KONU ANLATIM FASİKÜLÜ

LYS MATEMATİK KONU ANLATIM FASİKÜLÜ Ders Adı.ınıf Mezun LY MATEMATİK KONU ANLATIM FAİKÜLÜ TÜREV KAF 0 Konu Bir doğrunun eğimi dik koordinat sisteminde X ekseni ile aptığı pozitif önlü açının tanjantıdır. Örneğin, şekilde verilen d doğrusunun

Detaylı

KES RLER. Bunlar biliyor musunuz? Bütün bir fleyin bölündü ü iki eflit parçadan her biri. Tam, bölünmemifl fley. Bütün elma gibi.

KES RLER. Bunlar biliyor musunuz? Bütün bir fleyin bölündü ü iki eflit parçadan her biri. Tam, bölünmemifl fley. Bütün elma gibi. KES RLER Bunlar biliyor musunuz? Bütün: Tam, bölünmemifl fley. Bütün elma gibi. Yar m: Bütün bir fleyin bölündü ü iki eflit parçadan her biri. Kesir: Bir bütünün bölündü ü eflit parçalar n birini veya

Detaylı

LYS Y OĞRU MTMTİK TSTİ LYS-. u testte Matematik ile ilgili soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a ve b asal

Detaylı

CO RAFYA. DÜNYA NIN fiekl N N VE HAREKETLER N N SONUÇLARI ÖRNEK 1 :

CO RAFYA. DÜNYA NIN fiekl N N VE HAREKETLER N N SONUÇLARI ÖRNEK 1 : CO RAFYA DÜNYA NIN fiekl N N VE HAREKETLER N N SONUÇLARI ÖRNEK 1 : K rk nc paralel üzerindeki bir noktan n hangi yar mkürede yer ald afla dakilerin hangisine bak larak saptanamaz? A) Gece-gündüz süresinin

Detaylı

Bir çekirge çok ama çok uzun bir yol üstünde. Çekirge öne

Bir çekirge çok ama çok uzun bir yol üstünde. Çekirge öne Çekirge Kaç S çrar ya da Rastgele Yürüyüfl Bir çekirge çok ama çok uzun bir yol üstünde. Çekirge öne ya da arkaya 1 metre s çrayabiliyor. Belli bir olas l kla öne, belli bir olas l kla arkaya s çr yor.

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08 LİSNS YRLŞTİRM SINVI- MTMTİK-GMTRİ SINVI MTMTİK TSTİ SRU KİTPÇIĞI 08 U SRU KİTPÇIĞI LYS- MTMTİK TSTİ SRULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik Testi

Detaylı

F Z K OPT K. Kavram Dersaneleri 6. Çözüm: ÖRNEK 1 : Karanl k bir ortamda, küresel bir X fl k kayna n n önüne flekil I deki gibi Y topu konulmufltur.

F Z K OPT K. Kavram Dersaneleri 6. Çözüm: ÖRNEK 1 : Karanl k bir ortamda, küresel bir X fl k kayna n n önüne flekil I deki gibi Y topu konulmufltur. F Z OT ÖRNE 1 : fiekil I L M aranl k bir ortamda, küresel bir fl k kayna n n önüne flekil I deki gibi topu konulmufltur fiekil II Ifl kl bölge fiekil III ayna a, L, M noktalar n n birinden bak ld nda,

Detaylı

ÜN TE IV. A) DENKLEM S STEMLER a) Bir Bilinmeyenli Rasyonel Denklemler b) Do rusal Denklem Sistemleri ALIfiTIRMALAR ÖZET TEST IV-I

ÜN TE IV. A) DENKLEM S STEMLER a) Bir Bilinmeyenli Rasyonel Denklemler b) Do rusal Denklem Sistemleri ALIfiTIRMALAR ÖZET TEST IV-I ÜN TE IV A) DENKLEM S STEMLER a) Bir Bilinmeyenli Rasyonel Denklemler b) Do rusal Denklem Sistemleri ALIfiTIRMALAR ÖZET TEST IV-I B) ÜÇGENLERDE EfiL K ve BENZERL K a) Üçgenlerde Efllik b) Üçgenlerde Efllik

Detaylı

. K. AÇI I ve UZUNLUK 5. C. e k s TR e m. m(cab)= 5x, m(acd)= 3x, m(abe)= 2x. O merkezli çemberde m(bac)= 75º . O ? F 75º

. K. AÇI I ve UZUNLUK 5. C. e k s TR e m. m(cab)= 5x, m(acd)= 3x, m(abe)= 2x. O merkezli çemberde m(bac)= 75º . O ? F 75º Geometri Çözmek ir yrıcal calıkt ktır ÇI I ve UZUNLUK 1? m()=, m()=, m()= 7º merkezli çemberde m()= 7º Verilenlere göre açısının ölçüsü kaç derecedir? ) 10 ) 1 ) 10 ) 1 ) 17 Verilenlere göre açısının ölçüsü

Detaylı

TAR H MATEMAT K PROBLEMLER - III. Kavram Dersaneleri 78. ÖRNEK 1: % 24 'ü olan say kaçt r? ÖRNEK 2:

TAR H MATEMAT K PROBLEMLER - III. Kavram Dersaneleri 78. ÖRNEK 1: % 24 'ü olan say kaçt r? ÖRNEK 2: TAR H MATEMAT K PROBLEMLER - III ÖRNEK 1: % 24 'ü 86424 olan say kaçt r? A) 360 B) 354196 C) 320120 D) 36 E) 360 (ÖSS - 1999) ÖRNEK 2: Bir miktar pastan n 3 ini lknur, geriye kalan n da Buse yemifltir.

Detaylı

Eski Yunan matematikçileri cetvel ve pergel yard m yla

Eski Yunan matematikçileri cetvel ve pergel yard m yla Cetvelsiz de Olur! Eski Yunan matematikçileri cetvel ve pergel yard m yla yap lan çizimler çok ilgilendirirdi. Çünkü Eflatun a göre, do ru ve daire, geometrik flekiller aras nda mükemmel olan tek flekillerdi.

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS 1 GOMTRİ TSTİ 1. u testte sırasıyla Geometri (1 ) nalitik Geometri (3 30) ile ilgili 30 soru vardır.. evaplarınızı, cevap kâğıdının Geometri Testi için ayrılan kısmına işaretleyiniz. 1. [ [ [ [] []

Detaylı

BİRLİKTE ÇÖZELİM. 1. Aşağıda verilen açıların ölçülerini açı ölçer yardımıyla bulup, açıları isimlendirerek ölçülerini L D) MLK

BİRLİKTE ÇÖZELİM. 1. Aşağıda verilen açıların ölçülerini açı ölçer yardımıyla bulup, açıları isimlendirerek ölçülerini L D) MLK 6. SINI MTMTİK 5.ÜNİT İRLİKT ÇÖZLİM 1. şağıda verilen açıların ölçülerini açı ölçer yardımıyla bulup, açıları isimlendirerek ölçülerini yazınız. % % s( ) = 30 s( KLM ) = 140 K L P M % s( ) = 105 % s( PRS

Detaylı

LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI

LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI LYS GNL KTILIMLI TÜRKİY GNLİ NLİN NM SINVI GMTRİ (M-TM) 1. u testte Geometri ile ilgili 30 soru vardır.. evaplarınızı, cevap kâğıdının Geometri Testi için arılan kısmına işaretleiniz. 3. u test için süreniz

Detaylı

TEST Levhan n a rl G olsun. G a rl n n O F 1 TORK (KUVVET MOMENT ) - DENGE

TEST Levhan n a rl G olsun. G a rl n n O F 1 TORK (KUVVET MOMENT ) - DENGE R (UVVE MME ) - DEE ES -... evhalar dengede oldu una göre, desteklerin oldu u noktalara göre moment al n rsa,...... oldu u görülür. CEVA B d d d d. ucuna göre moment cambaz den ye giderken momenti azald

Detaylı

AÇILAR / TEST-1. B, C, E doğrusal = 50 E C. A, B, L doğrusal = 100 = 30 = 40 C 60 D

AÇILAR / TEST-1. B, C, E doğrusal = 50 E C. A, B, L doğrusal = 100 = 30 = 40 C 60 D ÇIR / TST-1 P = [P] m( P ) = //,, doğrusal m( ) = 30 // m( ) m( ) = = 30 d3 // d3 // d4 m( ) = Verilenlere göre, + + ) 250 ) 260 ) 270 ) 280 ) 300 Verilenlere göre, m( ) ) 25 ) 30 ) 35 ) 40 ) 50 10 Verilenlere

Detaylı

arşılıklı kenar uzunlukları ve açılarının ölçüleri birbirine eşit olan çokgenlere eş çokgenler denir şlik sembolü dir m () m () 3 cm m () m () m(g) m(h) m() m() 4 2 cm GH H 3 cm G 4 2 cm GH H G Yukarıdaki

Detaylı

4. HAFTA OLASILIK VE STAT ST K. Olas Durumlar Belirleme. n aç klar ve hesaplar. 2. Permütasyon ve kombinasyon. aras ndaki fark aç klar.

4. HAFTA OLASILIK VE STAT ST K. Olas Durumlar Belirleme. n aç klar ve hesaplar. 2. Permütasyon ve kombinasyon. aras ndaki fark aç klar. 259 E K İ M L Ü L Y E Y 2. HFT 1. HFT 5. HFT. HFT 3. HFT HFT 2 ST LNI OLSILIK VE STT ST K OLSILIK VE STT ST K OLSILIK VE STT ST K SYILR SYILR... LKÖ RET M OKULU MTEMT K...8... SINIF ÜN TELEND R LM fi YILLIK

Detaylı

ÇEMBER KARMA / TEST-1

ÇEMBER KARMA / TEST-1 ÇMR RM / S-... Verilenlere göre, m( ) ) ) 0 ) ) 0 ) Verilenlere göre, m(g ) ) ) ) 6 ) 0 ) 60 0 0 G 0 ) ) ) ) ) 8 L 0 [] [] = {} m( ) = 0 m() = 0 ve üçgenlerinin çevrel çemberi m( ) = 0 m() = 0 m() = üçgen

Detaylı

1. KONU. Geometrik Cisimler ve Şekiller. 1. Afla daki nesnelerden küp, prizma ve silindire benzeyen nesneleri iflaretleyiniz.

1. KONU. Geometrik Cisimler ve Şekiller. 1. Afla daki nesnelerden küp, prizma ve silindire benzeyen nesneleri iflaretleyiniz. 1. KONU Adı - Soyadı:... Numarası:.. Sınıfı:. Ön Çalışma 1. Afla daki nesnelerden küp, prizma ve silindire benzeyen nesneleri iflaretleyiniz. SALÇA + 11 2. Afla daki nesnelerden koni, prizma ve küreye

Detaylı

örnektir örnektir Geometri TYT Yeni müfredata tam uygun MİKRO KONU TARAMA TEST AYRINTILARI VE ÖRNEKLERİ (1-10. Testler)

örnektir örnektir Geometri TYT Yeni müfredata tam uygun MİKRO KONU TARAMA TEST AYRINTILARI VE ÖRNEKLERİ (1-10. Testler) TYT Geometri MİKRO KONU TRM TST YRINTILRI V ÖRNKLRİ (-0. Testler) Yeni müfredata tam uygun eğerli öğretmenimiz, branşınızla ilgili TYT konu tarama testlerimizden bazı örnekleri incelemeniz için size sunuyoruz.

Detaylı

Örnek...3 : β θ. Örnek...1 : Örnek...2 : KARMAŞIK SAYILAR 4. w i. = n z { i=0,1,2,...,(n 1) } Adım 1. Adım 2. Adım 3

Örnek...3 : β θ. Örnek...1 : Örnek...2 : KARMAŞIK SAYILAR 4. w i. = n z { i=0,1,2,...,(n 1) } Adım 1. Adım 2. Adım 3 KARMAŞIK SAYININ ORJİN ETRAFINDA DÖNDÜRÜLMESİ z = a + bi karmaşık sayısını, uzunluğunu değiştirmeden orijin etrafında pozitif yönde β kadar döndürülmesiyle elde edilen yeni karm aşık sa yı w olsun. İm

Detaylı

( ANALİTİK DÜZLEM NOKTA BÖLGELER İKİ NOKTA ARASI UZAKLIK ORTA NOKTA ÜÇGENİN AĞIRLIK MERKEZİ VE ALANI DEĞERLENDİRME ) dört bölgeye ayrılır.

( ANALİTİK DÜZLEM NOKTA BÖLGELER İKİ NOKTA ARASI UZAKLIK ORTA NOKTA ÜÇGENİN AĞIRLIK MERKEZİ VE ALANI DEĞERLENDİRME ) dört bölgeye ayrılır. NİTİ GEMETRİ 1 ( NİTİ DÜZEM NT ÖGEER İİ NT RSI UZI RT NT ÜÇGENİN ĞIRI MEREZİ VE NI DEĞERENDİRME NİTİ DÜZEM Dİ RDİNT DÜZEMİ İki saı doğrusunun dik kesişmesile oluşan düzleme, dik koordinat düzlemi ve a

Detaylı

10. SINIF GEOMETRİ KONU ÖZETİ

10. SINIF GEOMETRİ KONU ÖZETİ 2012 10. SINIF GEOMETRİ KONU ÖZETİ TOLGA YAVAN Matematik Öğretmeni 1. ÜNİTE: DÜZLEM GEOMETRİDE TEMEL ELEMANLAR VE İSPAT BİÇİMLERI Temel Postulatlar İspatlanamayan ve ispatına gerek duyulmayan ancak doğru

Detaylı

kesri 3 tane Bu kesri yedide üç fleklinde okuruz. Yukar daki bütün 7 efl parçaya ayr lm flt r. Buna payda denir. 3

kesri 3 tane Bu kesri yedide üç fleklinde okuruz. Yukar daki bütün 7 efl parçaya ayr lm flt r. Buna payda denir. 3 Temel Kaynak Kesirler KES RLER kesri tane dir. Bu kesri yedide üç fleklinde okuruz. Yukar daki bütün efl parçaya ayr lm flt r. Buna payda denir. payda Bütünden al nan ya da belirtilen parça say s na ise

Detaylı

ZARLARLA OYNAYALIM. Önden = = + = Arkadan = = + + = = + + =

ZARLARLA OYNAYALIM. Önden = = + = Arkadan = = + + = = + + = ZARLARLA OYNAYALIM Zar kullanarak toplama ve ç karma ifllemleri yapabiliriz. Zarda karfl l kl iki yüzdeki say lar n toplam daima 7 dir. Zarda 2 gözüküyorsa karfl s ndaki yüzeyin 7 2 = 5 oldu unu bulabilirsiniz.

Detaylı

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir.

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir. PİRAMİTLER Bir düzlemde kapalı bir bölge ile bu düzlemin dışında bir T noktası alalım. Kapalı bölgenin tüm noktalarının T noktası ile birleştirilmesi sonucunda oluşan cisme piramit denir. T noktası piramidin

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI GEOMETRİ TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI GEOMETRİ TESTİ İKKT! SRU KİTPÇIĞINIZIN TÜRÜNÜ LRK VP KÂĞIINIZ İŞRTLMYİ UNUTMYINIZ. MTMTİK SINVI GMTRİ TSTİ 1. u testte 30 soru vardır. 2. evaplarınızı, cevap kâğıdının Geometri Testi için ayrılan kısmına işaretleyiniz.

Detaylı

( ANALİTİK DÜZLEM NOKTA BÖLGELER İKİ NOKTA ARASI UZAKLIK ORTA NOKTA ÜÇGENİN AĞIRLIK MERKEZİ VE ALANI DEĞERLENDİRME )

( ANALİTİK DÜZLEM NOKTA BÖLGELER İKİ NOKTA ARASI UZAKLIK ORTA NOKTA ÜÇGENİN AĞIRLIK MERKEZİ VE ALANI DEĞERLENDİRME ) NİTİ GEMETRİ 1 ( NİTİ DÜZEM NT ÖGEER İİ NT RSI UZI RT NT ÜÇGENİN ĞIRI MEREZİ VE NI DEĞERENDİRME NİTİ DÜZEM Dİ RDİNT DÜZEMİ İki saı doğrusunun dik kesişmesile oluşan düzleme, dik koordinat düzlemi ve a

Detaylı

Tam Kare Sayıların Karekökleri - Çalışma Kağıdı Ortaokul Matematik Kafası Kerim Hoca ile 64 arasında kaç tane tam sayı vardır?

Tam Kare Sayıların Karekökleri - Çalışma Kağıdı Ortaokul Matematik Kafası Kerim Hoca ile 64 arasında kaç tane tam sayı vardır? 8.Sınıf Matematik Yayın No : 8- / Kazanım : 8.1.3.. KAREKÖKLÜ İFADELER Tam Kare Sayıların Karekökleri - Çalışma Kağıdı + 3 1 Alıştırmalar 3. Aşağıdaki eşitliklerde x in alabileceği değerleri bulunuz. 1.

Detaylı

Saygıdeğer Meslektaşlarım ve Sevgili Öğrenciler,

Saygıdeğer Meslektaşlarım ve Sevgili Öğrenciler, Saygıdeğer Meslektaşlarım ve Sevgili Öğrenciler, u kitap son açıklanan YS (Yüksek Öğretim urumları Sınavı) ve M müfredatı göz önünde bulundurularak hazırlanmıştır. Geometri hem bilgi hem de görmeye dayalı

Detaylı

Kavram Dersaneleri 8 SAYILAR - I ÖRNEK 23: ÖRNEK 24: a, 5 ve 6 say taban n göstermek üzere, (123) + (1a2) = (2b2) eflitli inde. b kaçt r?

Kavram Dersaneleri 8 SAYILAR - I ÖRNEK 23: ÖRNEK 24: a, 5 ve 6 say taban n göstermek üzere, (123) + (1a2) = (2b2) eflitli inde. b kaçt r? ÖRNEK 3: x y y Bölme ifllemine göre x en az kaçt r? A) 6 B) 9 C) D) 4 E) 4 ÖRNEK 4: a, ve 6 say taban n göstermek üzere, (3) + (a) = (b) eflitli inde a 6 b kaçt r? A) 0 B) C) D) 3 E) 4 ÇÖZÜM 4: ÇÖZÜM 3

Detaylı

4. a = 3 ve b = 12 olmak üzere aşağıdakilerden hangisi bir irrasyonel sayıdır?

4. a = 3 ve b = 12 olmak üzere aşağıdakilerden hangisi bir irrasyonel sayıdır? . SINIF 1. lanı 39 m olan kare şeklindeki bir bah- 3. çenin bir kenar uzunluğu, hangi metreler arasındadır? ) 4 - B) - 6 MTEMTİK C) 6-7 D) 7 - B C Yukarıdaki geometri tahtasında, bir lastik, B ve C noktalarındaki

Detaylı

Do ufl Üniversitesi Matematik Kulübü Matematik Yar flmas 2003 Bireysel Yar flma Soru ve Çözümleri

Do ufl Üniversitesi Matematik Kulübü Matematik Yar flmas 2003 Bireysel Yar flma Soru ve Çözümleri o ufl Üniversitesi Matematik Kulübü Matematik Yar flmas 2003 ireysel Yar flma Soru ve Çözümleri olamayaca ndan (çünkü bir kareköke eflit), y = 1/2 bulunur. olay s yla = y 2 = 1/4. 2a + 4b = 6a 3b oldu

Detaylı