Şekil 7.1 Bir tankta sıvı birikimi

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Şekil 7.1 Bir tankta sıvı birikimi"

Transkript

1 6 7. DİFERENSİYEL DENKLEMLERİN SAYISAL ÇÖZÜMLERİ Diferensiyel denklemlerin sayısal integrasyonunda kullanılabilecek bir çok yöntem vardır. Tecrübeler dördüncü mertebe (Runge-Kutta) yönteminin hemen hemen her duruma uygulanabildiğini ve pek çok durumda ikinci ve birinci mertebe yöntemlerin yeterli olduğunu göstermektedir. Bu bölümde en basit düzeyden başlanarak üç sayısal integrasyon yöntemi ele alınacaktır. Adi Diferensiyel Denklemler Adi diferensiyel denklemler sadece bir bağımsız değişken bulundurur. Bir eş zamanlı adi diferensiyel denklemler takımında bağımsız değişken (genellikle zaman veya uzaklık) bütün denklemlerde ortaktır. Bu denklemlerin amacı bağımsız değişkenle bağımlı sistem değişkenleri arasında ilişki sağlamaktır. Denklemlerin çözümü sistem değişkenlerinin bağımsız değişkene bağlı değerlerini verir. Bu ilişki genellikle sayısal ya da grafiksel şekilde ifade edilir. Bir örnek bu terimlerin anlaşılmasına yardımcı olacaktır. Aşağıdaki şekil içerisine Q i hızı ile bir sıvı akan bir tankı göstermektedir. Bu akım sabit olabilir. Daha özel olarak zamanla değişebilir. Bu durumda Q i (t) şeklinde yazılır. Bunun anlamı Q i nün; t nin fonksiyonu olması, yani zamanla değişmesidir. Tanktan dışarı musluktan Qo(t) hızı ile sıvının aktığını düşünelim. Qo(t) hızı tank içerisindeki sıvının H yüksekliğine bağlıdır. Qo ile H yüksekliği arasındaki ilişki Şekil 7. Bir tankta sıvı birikimi Q 0 = C v H ile verilir. Burada Cv sıvının aktığı kesitin karakteristiğidir. Birikim=giren-çıkan İfadesi kullanılarak sistem için bir diferensiyel denklem oluşturulabilir. dv dt = Q V=A.H i Q 0

2 6 Bu denklem bağımsız değişken t ve bağımlı değişken V ye göre lineer olmayan bir adi diferensiyel denklemdir. V nin türevi eşitliğin sağ tarafındaki ifadesidir. Sistem parametreleri A ve C v dir. Buna karşılık Q i ; girişi bazen zorlayıcı fonksiyon olarak ele alınır. Denklemin her iki tarafı t zamanına göre integrallenirse, dv dt dt V = Q = Q dt ( i 0 ) yani V hacmi giren akım ile çıkan akım farkının integralidir. Doğal olarak söylendiğinde, tank içindeki sıvı hacmi giren akımla çıkan akım farkının t süresi içerisindeki birikimidir. Açıkça görüldüğü gibi integrasyon birikim olayının matematik eşdeğeridir. Bununla birlikte doğal proseslerin sadece birikme şeklinde olabildiği diferensiyellenmedikleri hatırdan çıkarılmamalıdır. Değişkenler arasındaki ilişkiler en iyi diferensiyel denklemlerle belirtilir. Ancak, diferensiyel denklemlerin çözümü daima integrasyonla yapılır. Buna göre bütün fiziksel sistemler diferensiyel denklemlerden ziyade integral eşitliklerine göre tanımlanabilir. Bir diferensiyel denklemi integral şekline değiştirirken integrasyon sınırları ve başlangıç şartı ortaya konulmalıdır. Örneğin "herhangi bir zamanda V hacminin değişim hızı giren ve çıkan akımlar arasındaki farktır." şekildeki bir belirtme daha fazla açıklama gerektirmeyen tam bir ifadedir. Buna karşılık, " V hacmi giren ve çıkan akımlar arasındaki farkın integralidir" şeklindeki ifade integrasyon sınırlarının tanımını, yani ne zamandan ne zamana zamanın değiştirildiğini ve V nin başlanğıç değerinin belirtilmesini gerektirir. Bu yüzden integralin tam olarak ifadesi V t) = V ( t ) + ( Q Q ) dt ( i 0 t t t deki toplam hacim = t deki başlangıç hacmi + t den t ye birikme Bu yüzden sayısal integrasyonla bir veya daha fazla denklem çözüleceği zaman aşağıdaki iki kural uygulanmalıdır. a. Herbir integrasyon değişkeni için bir başlama şartı veya başlangıç değeri sağlanmalıdır. b. İntegrasyon sınırları yani bağımsız değişkenin başlangıç ve son değerleri belirtilmelidir.

3 63 7. Birinci Mertebe Yöntemi (Basit Euler) yöntemidir. Genellikle basit Euler olarak bilinen bu yöntem mevcut en basit sayısal integrasyon V = V dt V, V nin türevi veya değişim hızıdır. V(t) için belirli şartlarda aşağıdaki çözüm olsun V nin türevi V eğrisinin eğimidir. Zaman ekseni boyunca Dt dar bölgesinde V türevi V den V ye değişir. Bu aralıkta V de V den V ye değişir. Şekil 7. Basit Euler yönteminin prensibi Birinci mertebe yöntemi zaman aralığının t başlangıcında aralığında t zamanına kadar sabit olduğunu farzeder ve bu takdirde V deki değişim V = V. Dt V = V V. Dt + V türevini çıkarır. Dt yani t deki V değeri V ile V eğrisinin t deki eğiminin Dt aralığı ile çarpımının toplamına eşittir. Bu şekilde bulunan V doğru V değerine sadece bir yaklaşımdır. Çünkü V in Dt aralığında sabit olduğu kabulüne dayanır. Gerçekte V den V ye V deki küçük bir değişim V -V hatasına neden olur. İntegrasyonun gerçekleştirilme işlemi şöyledir. Bağımsız değişken artma değeri Dt belirtilir. İntegrasyonun başlangıcında i türevi çıkarılır ve sonra i+ e Dt kadar tek bir adım atılır. Böylece bağımlı değişken, V i+ = V i + V.Dt i

4 64 t = t i+ için V tekrar bulunur ve adımlama işlemi tekrarlanır. Bu işlem alt sınırdan üst sınıra i+ bütün integral geçişleri tamamlanıncaya kadar sürer. İntegrasyon işlemi sırasında kısaltmalardan gelen hata büyüyüp gerçek değerlerle hesaplanan değerler arasında önemli farklar oluşabilir. Hata İle Artma Büyüklüğü Arasındaki İlişki Dt adım büyüklüğünün değeri azaldıkça doğru değere daha fazla yaklaşılır. Aşağıdaki şekil bunu göstermektedir. Şekil 7.3 Basit Euler yönteminde hata t deki V türevinden başlayıp ta ya kadar yarım adım gerçekleştirildikten sonra burada tekrar V çıkarılırsa bununla ta dan t ye ikinci yarım adım yapıldığında bulunan V değeri V a a değerine V den daha yakındır. Görüldüğü gibi V -V hatası, yaklaşık olarak adım değerini yarıya düşürmekle yarıya indirilebilmektedir. Buradan birinci mertebe yöntemiyle integrasyonda sayısal hataların kademe büyüklüğü ile orantılı olduğu sonucuna varılabilir. Bu yüzden istenen tolerans veya müsade edilen maksimum hata kullanılan kademe büyüklüğüne bağlıdır. Hata kullanılan değişken değerinin % si % =.00 V veya mutlak bir değer olarak alınır. Bunun nedeni V 0 olduğunda % hata tanımı v çalışmaz. Matematiksel olarak bu tanımlar oldukça hassas olabilir. Ancak bilgisayarda yanlış bir seçim işlem süresini uzatabilir. Mesela aşağıdaki şekil bir diferensiyel denklemler takımının iki çözümünü göstermektedir. Pratik amaçlar yönünden yaklaşık çözümün oldukça yeterli olduğu görülmektedir.

5 65 Şekil 7.4 Basit Euler yönteminde yaklaşık çözüm Ancak matematiksel olarak sayısal çözümün hata kesri eğimin hızlı değiştiği yerlerde teorik olarak kabul edilemez düzeylerdedir. Bu yüzden belirtilen hata toleransı bazen yanıltıcı ve zaman kaybettirici olabilir. Bunlardan dolayı ilk olarak problem denklemlerinde verilen bilgiye dayanan nominal bir kademe büyüklüğü kullanılarak denklemler sayısal olarak çözülür. Sonuçlar kararlı görünüyorsa kademe büyüklüğü ikiye bölünerek hesap tekrarlanır. Sonuçlar karşılaştırılır. Eğer ilk kademe büyüklüğü yeterli görünüyorsa nominal kademe büyüklüğü artması sürdürülür. Bundan sonra yeterli duyarlık sağlanıncaya kadar kademe büyüklüğü azaltılır. Genellikle uygun bir optimum kademe büyüklüğü bulmak için birkaç deneme çözümü gerekir. Fortran Programı Önceki bölümde açıklanan tanktaki sıvı düzeyi değişimini (H) tanka giren Qi, ve tanktan çıkan sıvı akım hızlarının fonksiyonu olarak yazalım. dh i 0 dt Q Q = A H, Q i ve Q 0 değişkenlerini tek bir eşitlikte toplamak yerine herbirini ayrı tanımlamak daha uygundur. bu denklemlerin çözümü için C v, A ve H ın başlangıç şartı (t = 0 H = 0 gibi) gerekmektedir. Diğer gerekli veri Q(t) dir. Bu ise t nin keyfi bir fonksiyonudur. Şekil 7.5 Q(t) nin düzensiz bir fonksiyon şeklinde verilmesi

6 66 Eğriyi oluşturan noktaları birleştiren bir dizi lineer denklem yazılabilir. Programdaki bilgi akışı aşağıdaki şekilde gösterilebilir. Şekil 7.6 Sayısal integrasyonda bilgi akışı Bu denklemlerin çözüm programı üç bölüme ayrılabilir. Başlangıç Bölümü: Ön hesaplamlar ve gerekli icra deyimlerinden, keyfi fonksiyon ve çözüm için gerekli veri girişlerinden oluşur. C BIRINCI MERTEBE INTEGRASYON 0 FORMAT(F0.3,3X,F0.3,3X,F0.3,3X,F0.3,3X,F0.3) DIMENSION AT(5),AQ(5) C BASLANGIC BOLUMU DATA(AT(N),N=,)/0.,.5,.,.,3.,4.,5.,6.,7.,8.,9.,0./ DATA(AQ(N),N=,)/0,0,34,5,63,70,70,6,48,4,4,40/ OPEN(4,FILE=BIRCIKTI,STATUS=OLD,ACCESS=SEQUENTIAL) WRITE(,0) WRITE(4,0) 0 FORMAT(7X, T H DH Q, / Q0,/, /4X,======= ======== ======== ======== ========) DT=0. A=5 T=0 H=0 TPRNT=0

7 67 Türev Bölümü: Bu bölüm sonuç olarak türevin hesaplayan cebirsel ifadeler veya birden fazla denklem çözülecekse türevler bulundurur. Hiçbir değişken önceden bir deyimle belirtilmeden kullanılamaz. Mesala dh türevi için denklem Qi ve Qo ın tanımından sonra yazılmalıdır. C TUREV BOLUMU 7 Q0=7.SQRT(H) Q=FUN(T,,AT,AQ) DH=(Q-Q0)/A Burada giriş QI değeri FUN den alınır. Bu noktada bütün integrasyon değişkenleri (T,H) belirtilmekte ve türev (DH), ara ve diğer bağımlı değişkenler hesaplanmaktadır. Bu bölümün altında ilgili değişkenlerin bağıl durumları ile bilgi yazılmalıdır. Bu yüzden türev bölümünü yazma bölümü izlemelidir. Yazma bölümü: Genellikle bu bilgi belirli aralıklarda istenir. Bu yüzden t zamanının bir sonraki yazma zamanını gösteren bir yazma indeksi (TPRNT) ile karşılaştırmak için programa bir test dahil edilmelidir. C YAZMA VE BITIRME ICIN TEST BOLUMU IF(T.GE.TPRNT) WRITE(,0) T,H,DH,Q,Q0 IF(T.GE.TPRNT) WRITE(4,0) T,H,DH,Q,Q0 IF(T.GE.TPRNT) TPRNT=TPRNT+ IF(T.GE.0.) GOTO 8 İntegrasyon Bölümü: Bu bölüm son bölüm olup, bağımsız değişken ekseni boyunca düzenli bir biçimde adımlama işlemini içerir. C INTEGRASYON BOLUMU T=T+DT H=H+DHDT GO TO 7 8 STOP END Yukarıdaki programın çıktısı aşağıdaki gibi olacaktır. T H DH Q Q0 ======= ======== ======== ======== ========

8 68 Çok sayıda diferensiyel eşitlikler durumunda integrasyon adımları herhangi bir sırada yazılabilir. Bu kademeli integrasyonun yapılmasından sonra hesaplama, tekrar çevirme girmek, türevleri tekrar çıkarmak ve devam etmek üzere, türev bölümünün ilk satırına yöneltilir. Çevrim tekrar tekrar bağımsız değişken T önceden belirlenen sınıra ulaşıncaya kadar sürer. Bunun testi print deyiminden hemen sonra yapılır. Yazma bölümündeki son satırdaki deyim bunu göstermektedir. Bu deyim yerine getirildikten sonra bilgisayar yeni bir DT değerine yöneltilebilir veya bitirilebilir. Bu 8 numaralı deyimdir. Gerçekte hesaplamayı durdurmak üzere diğer herhangi bir problem şartı kullanılabilir. Örneğin H ın önceden belirlenen bir düzeye gelmesi durumunu ifade etmek için uygun bir bitirme deyimi şu sekilde olabilir. IF(H.GE.6.5.) GOTO 8

Şekil 6.2 Çizgisel interpolasyon

Şekil 6.2 Çizgisel interpolasyon 45 Yukarıdaki şekil düzensiz bir X,Y ilişkisini göstermektedir. bu fonksiyon eğri üzerindeki bir dizi noktayı birleştiren bir seri düzgün çizgi halindeki bölümlerle açıklanabilir. Noktaların sayısı ne

Detaylı

Şekil 8.6 Bilgi akışının sistem içinde düzenlenmesi

Şekil 8.6 Bilgi akışının sistem içinde düzenlenmesi 97 Bu denkle takıının çözüü belirli bir P1(t) ve P3(t) rejii için Z düzeyinin değişiini verir. Bu çözüün ateatiksel tekniklerle gerçekleştirilesi güçtür. Ancak noral progralaa bilen biri tarafından kolayca

Detaylı

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM Yavaş değişen akımların analizinde kullanılacak genel denklem bir kanal kesitindeki toplam enerji yüksekliği: H = V g + h + z x e göre türevi alınırsa: dh d V = dx dx

Detaylı

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. Çankırı Karatekin Üniversitesi Matematik Bölümü 2015 Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. (Adi ) Bir ya da daha fazla bağımsız değişkenden oluşan bağımlı değişken ve türevlerini

Detaylı

bir sonraki deneme değerinin tayin edilmesi için fonksiyonun X e göre türevi kullanılır. Aşağıdaki şekil X e karşı f(x) i göstermektedir.

bir sonraki deneme değerinin tayin edilmesi için fonksiyonun X e göre türevi kullanılır. Aşağıdaki şekil X e karşı f(x) i göstermektedir. 37 Newton-Raphson Yöntemi İle Çözüme Ulaşma Bu yöntem özellikle fonksiyonun türevinin analitik olarak elde edilebildiği durumlarda kullanışlıdır. Fonksiyonel ilişkinin ifade edilmesinde daha uygun bir

Detaylı

Math 322 Diferensiyel Denklemler Ders Notları 2012

Math 322 Diferensiyel Denklemler Ders Notları 2012 1 Genel Tanımlar Bir veya birden fazla fonksiyonun türevlerini içeren denklemlere diferensiyel denklem denmektedir. Diferensiyel denklemler Adi (Sıradan) diferensiyel denklemler ve Kısmi diferensiyel denklemler

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7. Adi Diferansiyel Denklemlerin Sayısal Çözümü

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7. Adi Diferansiyel Denklemlerin Sayısal Çözümü Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7 Adi Diferansiyel Denklemlerin Sayısal Çözümü Copyright The McGraw-Hill Companies, Inc. Permission required

Detaylı

fonksiyonunun [-1,1] arasındaki grafiği hesaba katılırsa bulunan sonucun

fonksiyonunun [-1,1] arasındaki grafiği hesaba katılırsa bulunan sonucun . UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II FİNAL SORULARI ÇÖZÜMLERİ d belirli integralinin aşağıdaki çözümünün doğru olup olmadığını belirtiniz. Eğer çözüm yanlış ise sebebini açıklayınız.

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 10 SAYISAL ANALİZ BÖLÜM 9-DİFERANSİYEL DENKLEMLERİN SAYISAL ÇÖZÜMÜ 1 GİRİŞ Diferansiyel denklemler, mühendislikte fiziksel olayların modellenmesinde sık karşılaşılan denklemlerdendir. Dolayısıyla bu

Detaylı

Akışkan Kinematiği 1

Akışkan Kinematiği 1 Akışkan Kinematiği 1 Akışkan Kinematiği Kinematik, akışkan hareketini matematiksel olarak tanımlarken harekete sebep olan kuvvetleri ve momentleri gözönüne almadan; Yerdeğiştirmeler Hızlar ve İvmeler cinsinden

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

BÖLÜM 1: TEMEL KAVRAMLAR

BÖLÜM 1: TEMEL KAVRAMLAR BÖLÜM 1: TEMEL KAVRAMLAR Hal Değişkenleri Arasındaki Denklemler Aralarında sıfıra eşitlenebilen en az bir veya daha fazla denklem kurulabilen değişkenler birbirine bağımlıdır. Bu denklemlerden bilinen

Detaylı

DENEY 5 RC DEVRELERİ KONDANSATÖRÜN YÜKLENMESİ VE BOŞALMASI

DENEY 5 RC DEVRELERİ KONDANSATÖRÜN YÜKLENMESİ VE BOŞALMASI DENEY 5 R DEVRELERİ KONDANSATÖRÜN YÜKLENMESİ VE BOŞALMAS Amaç: Deneyin amacı yüklenmekte/boşalmakta olan bir kondansatörün ne kadar hızlı (veya ne kadar yavaş) dolmasının/boşalmasının hangi fiziksel büyüklüklere

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

9. Güç ve Enerji Ölçümü

9. Güç ve Enerji Ölçümü 9. Güç ve Enerji Ölçümü Güç ve Güç Ölçümü: Doğru akım devrelerinde, sürekli halde sadece direnç etkisi mevcuttur. Bu yüzden doğru akım devrelerinde sadece dirence ait olan güçten bahsedilir. Sürekli halde

Detaylı

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Akışkanlar dinamiğinde, sürtünmesiz akışkanlar için Bernoulli prensibi akımın hız arttıkça aynı anda

Detaylı

Selçuk Üniversitesi. Mühendislik-Mimarlık Fakültesi. Kimya Mühendisliği Bölümü. Kimya Mühendisliği Laboratuvarı. Venturimetre Deney Föyü

Selçuk Üniversitesi. Mühendislik-Mimarlık Fakültesi. Kimya Mühendisliği Bölümü. Kimya Mühendisliği Laboratuvarı. Venturimetre Deney Föyü Selçuk Üniversitesi Mühendislik-Mimarlık Fakültesi Kimya Mühendisliği Bölümü Kimya Mühendisliği Laboratuvarı Venturimetre Deney Föyü Hazırlayan Arş.Gör. Orhan BAYTAR 1.GİRİŞ Genellikle herhangi bir akış

Detaylı

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 3

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 3 T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 3 ÇEVRE (GÖZ) AKIMLARI YÖNTEMİ Arş. Gör. Sümeyye BAYRAKDAR Arş. Gör.

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 8- SAYISAL İNTEGRASYON 1 GİRİŞ Mühendislikte sık karşılaşılan matematiksel işlemlerden biri integral işlemidir. Bilindiği gibi integral bir büyüklüğün toplam değerinin bulunması

Detaylı

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ Prof. Dr. İbrahim UZUN Yayın No : 2415 İşletme-Ekonomi Dizisi : 147 5. Baskı Eylül 2012 - İSTANBUL ISBN 978-605 - 377-438 - 9 Copyright Bu kitabın

Detaylı

EDUCATIONAL MATERIALS

EDUCATIONAL MATERIALS PROBLEM SET 1. (2.1) Mükemmel karıştırılmış, sabit hacimli tank, aynı sıvıyı içeren iki giriş akımına sahiptir. Her akımın sıcaklığı ve akış hızı zamanla değişebilir. a) Geçiş işlemini ifade eden dinamik

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 4. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Akışkanların Dinamiği

Akışkanların Dinamiği Akışkanların Dinamiği Akışkanların Dinamiğinde Kullanılan Temel Prensipler Gaz ve sıvı akımıyla ilgili bütün problemlerin çözümü kütlenin korunumu, enerjinin korunumu ve momentumun korunumu prensibe dayanır.

Detaylı

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER LAGRANGE YÖNTEMİ Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde değişkenler ve kısıtlar genel olarak şeklinde gösterilir. fonksiyonlarının

Detaylı

EEM211 ELEKTRİK DEVRELERİ-I

EEM211 ELEKTRİK DEVRELERİ-I EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siirt Üniversitesi Elektrik-Elektronik Mühendisliği Kaynak (Ders Kitabı): Fundamentals of Electric Circuits Charles K. Alexander Matthew N.O. Sadiku

Detaylı

Bölüm 4 KAPALI SİSTEMLERİN ENERJİ ANALİZİ. Bölüm 4: Kapalı Sistemlerin Enerji Analizi

Bölüm 4 KAPALI SİSTEMLERİN ENERJİ ANALİZİ. Bölüm 4: Kapalı Sistemlerin Enerji Analizi Bölüm 4 KAPALI SİSTEMLERİN ENERJİ ANALİZİ 1 Amaçlar Özellikle otomobil motoru ve kompresör gibi pistonlu makinelerde yaygın olarak karşılaşılan hareketli sınır işi veya PdV işi olmak üzere değişik iş biçimlerinin

Detaylı

FONKSİYONLARIN TABLO ŞEKLİNDE HESAPLANMASI

FONKSİYONLARIN TABLO ŞEKLİNDE HESAPLANMASI FONKSİYONLARIN TABLO ŞEKLİNDE HESAPLANMASI Bu kısımda bir fonksiyon değerlerinin tablo şeklinde hesaplanması incelenecektir. İncelenecek fonksiyon y=f(x) şeklinde bir değişenli veya z=f(x,y) şeklinde iki

Detaylı

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Alıştırmalar 1 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Denklem Mertebe Derece a) 2 1 ( ) 4 6 c) 2 1 d) 2 2 e) 3 1 f) 2 4 g)

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri

Detaylı

Diferansiyel denklemler uygulama soruları

Diferansiyel denklemler uygulama soruları . Aşağıdaki diferansiyel denklemleri sınıflandırınız. a) d y d d + y = 0 b) 5 d dt + 4d + 9 = cos 3t dt Diferansiyel denklemler uygulama soruları 0.0.3 c) u + u [ ) ] d) y + = c d. y + 3 = 0 denkleminin,

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

Akışkanların Dinamiği

Akışkanların Dinamiği Akışkanların Dinamiği Akışkanların Dinamiğinde Kullanılan Temel Prensipler Gaz ve sıvı akımıyla ilgili bütün problemlerin çözümü kütlenin korunumu, enerjinin korunumu ve momentumun korunumu prensibe dayanır.

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 4- LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ Matematikte veya hidrolik, dinamik, mekanik, elektrik

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

DÜZENLİ AKIMLARDA ENERJİ DENKLEMİ VE UYGULAMALARI

DÜZENLİ AKIMLARDA ENERJİ DENKLEMİ VE UYGULAMALARI DÜZENLİ AKIMLARDA ENERJİ DENKLEMİ VE UYGULAMALARI, iş yapabilme yeteneği olarak tanımlanır(kg.m yada Kwh). Bir sıvının enerjisi, sıvı birim ağırlığının sahip olduğu iş yapabilme yeteneğidir. 1. Potansiyel

Detaylı

Diferensiyel Denklemler I Uygulama Notları

Diferensiyel Denklemler I Uygulama Notları 2004 Diferensiyel Denklemler I Uygulama Notları Mustafa Özdemir İçindekiler Temel Bilgiler...................................................................... 2 Tam Diferensiyel Denklemler........................................................4

Detaylı

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu) BÖLÜM I GİRİŞ 1.1 Sinyal Bir sistemin durum ve davranış bilgilerini taşıyan, bir veya daha fazla değişken ile tanımlanan bir fonksiyon olup veri işlemde dalga olarak adlandırılır. Bir dalga, genliği, dalga

Detaylı

B: Bu şekildeki her bir nokta dikdörtgenin noktalarını temsil eder.

B: Bu şekildeki her bir nokta dikdörtgenin noktalarını temsil eder. 2. ÇOK KATLI İNTEGRALLER, DİFERENSİYEL DENKLEMLERE GİRİŞ 2.1. Çok Katlı İntegraller 2.1.1. İki Katlı İntegraller Fonksiyonu bir B bölgesinde sınırlı yani için olsun. B bölgesi alt bölgelere ayrılırsa;

Detaylı

TERMODİNAMİĞİN BİRİNCİ YASASI

TERMODİNAMİĞİN BİRİNCİ YASASI İzotermal ve Adyabatik İşlemler Sıcaklığı sabit tutulan sistemlerde yapılan işlemlere izotermal işlem, ısı alışverişlerine göre yalıtılmış sistemlerde yapılan işlemlere ise adyabatik işlem adı verilir.

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM309 Elektronik-2 Laboratuarı Deney Föyü Deney#6 İşlemsel Kuvvetlendiriciler (OP-AMP) - 2 Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA, 2015 DENEY

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

MTK467 Nesneye Yönelik Programlama. Hafta 4 - Döngüler Zümra Kavafoğlu https://zumrakavafoglu.github.io/

MTK467 Nesneye Yönelik Programlama. Hafta 4 - Döngüler Zümra Kavafoğlu https://zumrakavafoglu.github.io/ MTK467 Nesneye Yönelik Programlama Hafta 4 - Döngüler Zümra Kavafoğlu https://zumrakavafoglu.github.io/ while döngüsü while(koşul){ } döngü ifadeleri Koşul boolean değerli olmalıdır. Koşulun değeri true

Detaylı

Bilgisayar Programlamaya Giriş I KAREKÖK BULMA Acaba hesap makinesi bir sayının karekökünü nasıl buluyor? başlangıç değeri olmak üzere,

Bilgisayar Programlamaya Giriş I KAREKÖK BULMA Acaba hesap makinesi bir sayının karekökünü nasıl buluyor? başlangıç değeri olmak üzere, KAREKÖK BULMA Acaba hesap makinesi bir sayının karekökünü nasıl buluyor? başlangıç değeri olmak üzere, dizisi değerine yakınsar. Yani; olur. Burada birinci sorun başlangıç değerinin belirlenmesidir. İkinci

Detaylı

Yrd. Doç. Dr. A. Burak İNNER

Yrd. Doç. Dr. A. Burak İNNER Yrd. Doç. Dr. A. Burak İNNER Kocaeli Üniversitesi Bilgisayar Mühendisliği Yapay Zeka ve Benzetim Sistemleri Ar-Ge Lab. http://yapbenzet.kocaeli.edu.tr Doğrusal programlama, karar verici konumundaki kişilerin

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

EEM211 ELEKTRİK DEVRELERİ-I

EEM211 ELEKTRİK DEVRELERİ-I EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siirt Üniversitesi Elektrik-Elektronik Mühendisliği Kaynak (Ders Kitabı): Fundamentals of Electric Circuits Charles K. Alexander Matthew N.O. Sadiku

Detaylı

2. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

2. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 2. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 C.1.2. Piyasa Talep Fonksiyonu Bireysel talep fonksiyonlarının toplanması ile bir mala ait

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METODLAR -I BERNOULLİ DENEYİ FÖYÜ 2014 1. GENEL BİLGİLER Bernoulli denklemi basınç, hız

Detaylı

TERMODİNAMİĞİN TEMEL EŞİTLİKLERİ

TERMODİNAMİĞİN TEMEL EŞİTLİKLERİ Serbest İç Enerji (Helmholtz Enerjisi) Ve Serbest Entalpi (Gibbs Enerjisi) Fonksiyonları İç enerji ve entalpi fonksiyonları yalnızca termodinamiğin birinci yasasından tanımlanır. Entropi fonksiyonu yalnızca

Detaylı

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 2- HATA VE HATA KAYNAKLARI Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ Bir denklemin veya problemin çözümünde kullanılan sayısal yöntem belli bir giriş verisini işleme tabi tutarak sayısal

Detaylı

NOT: Toplam 5 soru çözünüz, sınav süresi 90 dakikadır. SORULAR VE ÇÖZÜMLER

NOT: Toplam 5 soru çözünüz, sınav süresi 90 dakikadır. SORULAR VE ÇÖZÜMLER Adı- Soyadı: Fakülte No : Gıda Mühendisliği Bölümü, 2016/2017 Öğretim Yılı, Güz Yarıyılı 00391-Termodinamik Dersi, Dönem Sonu Sınavı Soru ve Çözümleri 13.01.2017 Soru (puan) 1 (20) 2 (20) 3 (20) 4 (20)

Detaylı

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek Boyut analizi, göz önüne alınan bir fiziksel olayı etkileyen deneysel değişkenlerin sayısını ve karmaşıklığını azaltmak için kullanılan bir yöntemdir. Akışkanlar mekaniğinin gelişimi ağırlıklı bir şekilde

Detaylı

Geometrik nivelmanda önemli hata kaynakları Nivelmanda oluşabilecek model hataları iki bölümde incelenebilir. Bunlar: Aletsel (Nivo ve Mira) Hatalar Çevresel Koşullardan Kaynaklanan Hatalar 1. Aletsel

Detaylı

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ OTOMATİK KONTROL SİSTEMLERİ DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ 1) İdeal Sönümleme Elemanı : a) Öteleme Sönümleyici : Mekanik Elemanların Matematiksel Modeli Basit mekanik elemanlar, öteleme hareketinde;

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Ders Notları 3 Geçirimlilik Permeabilite

Ders Notları 3 Geçirimlilik Permeabilite Ders Notları 3 Geçirimlilik Permeabilite Zemindeki mühendislik problemleri, zeminin kendisinden değil, boşluklarında bulunan boşluk suyundan kaynaklanır. Su olmayan bir gezegende yaşıyor olsaydık, zemin

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 1- GİRİŞ Doç. Dr. Ali Rıza YILDIZ 1 Mühendislikte, herhangi bir fiziksel sistemin matematiksel modellenmesi sonucu elde edilen karmaşık veya analitik çözülemeyen denklemlerin

Detaylı

BÖLÜM-6 BLOK DİYAGRAMLARI

BÖLÜM-6 BLOK DİYAGRAMLARI 39 BÖLÜM-6 BLOK DİYAGRAMLARI Kontrol sistemlerinin görünür hale getirilmesi Bileşenlerin transfer fonksiyonlarını gösterir. Sistemin fiziksel yapısını yansıtır. Kontrol giriş ve çıkışlarını karakterize

Detaylı

Bölüm 1. Elektriksel Büyüklükler ve Elektrik Devre Elemanları

Bölüm 1. Elektriksel Büyüklükler ve Elektrik Devre Elemanları Bölüm Elektriksel Büyüklükler ve Elektrik Devre Elemanları. Temel Elektriksel Büyüklükler: Akım, Gerilim, Güç, Enerji. Güç Polaritesi.3 Akım ve Gerilim Kaynakları F.Ü. Teknoloji Fak. EEM M.G. .. Temel

Detaylı

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için

Detaylı

R-712 SOĞUTMA LABORATUAR ÜNİTESİ DENEY FÖYLERİ

R-712 SOĞUTMA LABORATUAR ÜNİTESİ DENEY FÖYLERİ DENEYSAN EĞİTİM CİHAZLARI SAN. VE TİC. Yeni sanayi sitesi 36.Sok. No:22 BALIKESİR Telefaks:0266 2461075 http://www.deneysan.com R-712 SOĞUTMA LABORATUAR ÜNİTESİ DENEY FÖYLERİ HAZIRLAYAN Yrd.Doç.Dr. Hüseyin

Detaylı

Sembolik Programlama1. Gün. Sembolik Programlama. 20 Eylül 2011

Sembolik Programlama1. Gün. Sembolik Programlama. 20 Eylül 2011 Sembolik Programlama 1. Gün Şenol Pişkin 20 Eylül 2011 Sunum Kapsamı MuPAD İçerik Başlangıç 1. Bölüm: Cebirsel işlemler 2. Bölüm: Denklem çözümleri MuPAD Kısaca MuPAD Bilgisi ve Tarihçesi MuPAD Diğer Araçlar

Detaylı

Geometriden kaynaklanan etkileri en aza indirmek için yük ve uzama, sırasıyla mühendislik gerilmesi ve mühendislik birim şekil değişimi parametreleri elde etmek üzere normalize edilir. Mühendislik gerilmesi

Detaylı

Okut. Yüksel YURTAY. İletişim : (264) Sayısal Analiz. Giriş.

Okut. Yüksel YURTAY. İletişim :  (264) Sayısal Analiz. Giriş. Okut. Yüksel YURTAY İletişim : Sayısal Analiz yyurtay@sakarya.edu.tr www.cs.sakarya.edu.tr/yyurtay (264) 295 58 99 Giriş 1 Amaç : Mühendislik problemlerinin bilgisayar ortamında çözümünü mümkün kılacak

Detaylı

DĐRENÇ DEVRELERĐNDE KIRCHOFF UN GERĐLĐMLER ve AKIMLAR YASASI

DĐRENÇ DEVRELERĐNDE KIRCHOFF UN GERĐLĐMLER ve AKIMLAR YASASI DENEY NO: DĐRENÇ DEVRELERĐNDE KIRCHOFF UN GERĐLĐMLER ve AKIMLAR YASASI Bu deneyde direnç elamanını tanıtılması,board üzerinde devre kurmayı öğrenilmesi, avometre yardımıyla direnç, dc gerilim ve dc akım

Detaylı

DENEY NO: 2 KIRCHHOFF UN AKIMLAR YASASI. Malzeme ve Cihaz Listesi:

DENEY NO: 2 KIRCHHOFF UN AKIMLAR YASASI. Malzeme ve Cihaz Listesi: DENEY NO: 2 KIRCHHOFF UN AKIMLAR YASASI Malzeme ve Cihaz Listesi: 1. 12 k direnç 1 adet 2. 15 k direnç 1 adet 3. 18 k direnç 1 adet 4. 2.2 k direnç 1 adet 5. 8.2 k direnç 1 adet 6. Breadboard 7. Dijital

Detaylı

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER YILLAR 00 00 00 00 00 00 007 008 009 00 ÖSS-YGS - - - - - - - - BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER a,b R ve a 0 olmak üzere ab=0 şeklindeki denklemlere Birinci dereceden bir bilinmeyenli denklemler

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI DENEY RAPORU. Deney No: 3 PID KONTROLÜ

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI DENEY RAPORU. Deney No: 3 PID KONTROLÜ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI DENEY RAPORU Deney No: 3 PID KONTROLÜ Öğr. Gör. Cenk GEZEGİN Arş. Gör. Ayşe AYDIN YURDUSEV Öğrenci: Adı Soyadı Numarası

Detaylı

FORMAT (a1,a2,a3,...) : format deyiminin satır numarasıdır READ, WRITE deyimleri ile verilir. : alan bildirim deyimleridir.

<fn> FORMAT (a1,a2,a3,...) : format deyiminin satır numarasıdır READ, WRITE deyimleri ile verilir. : alan bildirim deyimleridir. FORMAT deyimi Değişkenlere ait bilgilerin yazılması veya değişkenlere değer okunması sırasında, gerekli tür ve uzunlukların belirtildiği yani giriş ve çıkış işlemlerinin hangi düzende olması gerektiğini

Detaylı

Elektrik ve Magnetizma

Elektrik ve Magnetizma Elektrik ve Magnetizma 1.1. Biot-Sawart yasası Üzerinden akım geçen, herhangi bir biçime sahip iletken bir tel tarafından bir P noktasında üretilen magnetik alan şiddeti H iletkeni oluşturan herbir parçanın

Detaylı

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI Konu Başlıkları Lineer Denklem Sistemlerinin Çözümü İntegral ve Türev İntegral (Alan) Türev (Sayısal Fark ) Diferansiyel Denklem çözümleri Denetim Sistemlerinin

Detaylı

EEM211 ELEKTRİK DEVRELERİ-I

EEM211 ELEKTRİK DEVRELERİ-I EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siirt Üniversitesi Elektrik-Elektronik Mühendisliği Kaynak (Ders Kitabı): Fundamentals of Electric Circuits Charles K. Alexander Matthew N.O. Sadiku

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

Termodinamik. Öğretim Görevlisi Prof. Dr. Lütfullah Kuddusi. Bölüm 4: Kapalı Sistemlerin Enerji Analizi

Termodinamik. Öğretim Görevlisi Prof. Dr. Lütfullah Kuddusi. Bölüm 4: Kapalı Sistemlerin Enerji Analizi Termodinamik Öğretim Görevlisi Prof. Dr. Lütfullah Kuddusi 1 Bölüm 4 KAPALI SİSTEMLERİN ENERJİ ANALİZİ 2 Amaçlar Özellikle otomobil motoru ve kompresör gibi pistonlu makinelerde yaygın olarak karşılaşılan

Detaylı

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 Bölüm 2 STATİK DENGE ANALİZİ 19 2.1 İktisatta Denge Kavramı 20 2.1.1.

Detaylı

GİRİŞ/ÇIKIŞ VE TANIMLAMA DEYİMLERİ

GİRİŞ/ÇIKIŞ VE TANIMLAMA DEYİMLERİ GİRİŞ/ÇIKIŞ VE TANIMLAMA DEYİMLERİ Giriş/Çıkış deyimlerine neden gerek vardır? Biçimli giriş/çıkış deyimleri, Klavye den veri girişi Dosya dan veri okuma ve dosyaya yazma Ekrana sonuçları yazdırma, Yazıcı,

Detaylı

How to ASP Language. Elbistan Meslek Yüksek Okulu 2011 2012 Bahar Yarıyılı. Öğr. Gör. Murat KEÇECĠOĞLU. 29 Eki. 1 Kas. 2013

How to ASP Language. Elbistan Meslek Yüksek Okulu 2011 2012 Bahar Yarıyılı. Öğr. Gör. Murat KEÇECĠOĞLU. 29 Eki. 1 Kas. 2013 How to ASP Language Elbistan Meslek Yüksek Okulu 2011 2012 Bahar Yarıyılı 29 Eki. 1 Kas. 2013 Öğr. Gör. Murat KEÇECĠOĞLU Fonksiyonlar, kendilerini göreve çağıran VBScript komutlarına ve işlemlerine bir

Detaylı

FEN BİLİMLERİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

FEN BİLİMLERİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ FEN BİLİMLERİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS SAYISAL YÖNTEMLER FM-223 2 / 2.YY 2 2+0+0 4 Dersin Dili : Türkçe Dersin Seviyesi : Lisans

Detaylı

BÖLÜM 4 KONTROL DEYİMLERİ - 24 -

BÖLÜM 4 KONTROL DEYİMLERİ - 24 - BÖLÜM 4 KONTROL DEYİMLERİ - 24 - 4.1 İf Deyimi İnsan olarak kararlarımızı hemen hemen daima "bir şey öyle ise böyle, öyle değilse şöyle davranmak" üzere almaz mıyız? PHP programında if deyimi bunu sağlar.

Detaylı

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek Boyut analizi, göz önüne alınan bir fiziksel olayı etkileyen deneysel değişkenlerin sayısını ve karmaşıklığını azaltmak için kullanılan bir yöntemdir. kışkanlar mekaniğinin gelişimi ağırlıklı bir şekilde

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

STORED PROCEDURE LER (Saklı Yordamlar)

STORED PROCEDURE LER (Saklı Yordamlar) STORED PROCEDURE LER (Saklı Yordamlar) Eskiden yazılımlar, sadece prosedür denilen kod parçalarından oluşurdu. Her prosedür belli bir işlevi yerine getirmek için yazılmış kod parçalarıdır. Mesela, 2 sayı

Detaylı

Kontrol Sistemlerinin Analizi

Kontrol Sistemlerinin Analizi Sistemlerin analizi Kontrol Sistemlerinin Analizi Otomatik kontrol mühendisinin görevi sisteme uygun kontrolör tasarlamaktır. Bunun için öncelikle sistemin analiz edilmesi gerekir. Bunun için test sinyalleri

Detaylı

MOTORLAR-5 HAFTA GERÇEK MOTOR ÇEVRİMİ

MOTORLAR-5 HAFTA GERÇEK MOTOR ÇEVRİMİ MOTORLAR-5 HAFTA GERÇEK MOTOR ÇEVRİMİ Yrd.Doç.Dr. Alp Tekin ERGENÇ GERÇEK MOTOR ÇEVRİMİ Gerçek motor çevrimi standart hava (teorik) çevriminden farklı olarak emme, sıkıştırma,tutuşma ve yanma, genişleme

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

KESİKLİ İŞLETİLEN PİLOT ÖLÇEKLİ DOLGULU DAMITMA KOLONUNDA ÜST ÜRÜN SICAKLIĞININ SET NOKTASI DEĞİŞİMİNDE GERİ BESLEMELİ KONTROLU

KESİKLİ İŞLETİLEN PİLOT ÖLÇEKLİ DOLGULU DAMITMA KOLONUNDA ÜST ÜRÜN SICAKLIĞININ SET NOKTASI DEĞİŞİMİNDE GERİ BESLEMELİ KONTROLU KESİKLİ İŞLETİLEN PİLOT ÖLÇEKLİ DOLGULU DAMITMA KOLONUNDA ÜST ÜRÜN SICAKLIĞININ SET NOKTASI DEĞİŞİMİNDE GERİ BESLEMELİ KONTROLU B. HACIBEKİROĞLU, Y. GÖKÇE, S. ERTUNÇ, B. AKAY Ankara Üniversitesi, Mühendislik

Detaylı

ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR

ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR 1.1 Amaçlar AC nin Elde Edilmesi: Farklı ve değişken DC gerilimlerin anahtar ve potansiyometreler kullanılarak elde edilmesi. Kare dalga

Detaylı

İÇİNDEKİLER. iii ÖNSÖZ BÖLÜM 1 TEMEL KAVRAMLAR 1 BÖLÜM 2 LİNEER KISMİ DİFERENSİYEL DENKLEMLER 9

İÇİNDEKİLER. iii ÖNSÖZ BÖLÜM 1 TEMEL KAVRAMLAR 1 BÖLÜM 2 LİNEER KISMİ DİFERENSİYEL DENKLEMLER 9 İÇİNDEKİLER ÖNSÖZ ix BÖLÜM 1 TEMEL KAVRAMLAR 1 1.1. Tanımlar 2 1.2. Diferensiyel Denklemlerin Çözümü (İntegrali) 5 1.3. Başlangıç Değer ve Sınır Değer Problemleri 7 BÖLÜM 2 LİNEER KISMİ DİFERENSİYEL DENKLEMLER

Detaylı

MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ

MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ SİMPLEKS TABLONUN YORUMU MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ Şu ana kadar verilen bir DP probleminin çözümünü ve çözüm şartlarını inceledik. Eğer orijinal modelin parametrelerinde bazı değişiklikler

Detaylı